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Nitrogen-vacancy (NV) centers in diamond are appealing nanoscale quantum sensors for temperature,
strain, electric fields, and, most notably, magnetic fields. However, the cryogenic temperatures required for
low-noise single-shot readout that have enabled the most sensitive NV magnetometry reported to date are
impractical for key applications, e.g., biological sensing. Overcoming the noisy readout at room temperature
has until now demanded the repeated collection of fluorescent photons, which increases the time cost of the
procedure, thus reducing its sensitivity. Here, we show howmachine learning can process the noisy readout of
a single NV center at room temperature, requiring on average only one photon per algorithm step, to sense
magnetic-field strength with a precision comparable to those reported for cryogenic experiments. Analyzing
large datasets from NV centers in bulk diamond, we report absolute sensitivities of 60 nT s1=2 including
initialization, readout, and computational overheads. We show that dephasing times can be simultaneously
estimated and that time-dependent fields can be dynamically tracked at room temperature. Our results
dramatically increase the practicality of early-term single-spin sensors.
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I. INTRODUCTION

Quantum sensors are likely to be among the first
quantum technologies to be translated from laboratory
setups to commercial products [1]. The single electronic
spin of a nitrogen-vacancy (NV) center in diamond
operates with nanoscale spatial resolution as a sensor for
electric and magnetic fields [2–6]. However, achieving
high sensitivities for NV magnetometers has required a

low-noise mode of operation available only at cryogenic
temperatures, which constitutes a major obstacle to real-
world applications [7,8], or prior knowledge of correlations
existing in the estimated signal [9]. Machine learning plays
an enabling role for new generations of applications in
conventional information-processing technologies, includ-
ing pattern and speech recognition, diagnostics, and robot
control [10,11]. Here, we show how machine-learning
algorithms [12–15] can be applied to single-spin magne-
tometers at room temperature to give a sensitivity that
scales with the Heisenberg limit and reduces overheads by
requiring only one-photon readout, at each step of the
algorithm. We go on to show that these methods allow a
multiparameter estimation to simultaneously learn the
decoherence time and implement a routine for the dynami-
cal tracking of time-dependent fields.
dc-magnetic-field sensing with an NV center uses

Ramsey interferometry [1,16,17]. With a microwave π=2
pulse, the spin vector is rotated into an equal superposition
of its σz spin eigenstates, such that its magnetic moment is
perpendicular to the magnetic field (B) to be sensed
[18,19]. For some Larmor precession time τ and frequency
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fB ¼ γB=2π, the relative phase between the eigenstates
becomes ϕ ¼ 2πfBτ, where γ is the electron gyromagnetic
ratio of the magnetic moment to the angular momentum.
After a further π=2 pulse to complete the Ramsey sequence,
a measurement of the spin in its σz basis provides an
estimate of ϕ, the precision of which is usually improved by
repeating the procedure. Collecting statistics for a series of
different τ produces a fringe of phase varying with time,
from which B can be inferred.
Increasing the sensitivity of a magnetometer translates

to increasing its rate of sensing precision with sensing
time. The intrinsic resource cost in estimating B is the
total phase accumulation time [20–22], which is the sum
of every τ performed during an experiment. A funda-
mental limitation on the sensitivity of an estimate of B is
quantum projection noise—from the uncertain outcome
of a σz-basis measurement—the effect of which is
conventionally reduced through repeated measurements,
at the cost of increasing the total sensing time. A further
typical limitation on sensing precision is the timescale T�

2,
on which spin states decohere due to inhomogeneous
broadening [23]. In an idealized setting, with an optimal
sensing protocol, the Heisenberg limit (HL) [24] in
sensitivity can be achieved, to arrive at a precision limited
by T�

2 in the shortest time allowed by quantum mechanics.
In practice, overheads such as the time required for
initialization, computation, and readout must also be
accounted for, while repeated measurements due to
experimental inefficiencies and low-fidelity readout
increase the time to reach the precision limited by T�

2.
The increase in the total sensing time due to overheads
and repeated measurements thus decreases the sensitivity.
A particularly relevant overhead is the time taken to read

out the state of the spin, which depends on the experimental
conditions. At cryogenic temperatures, spin-selective opti-
cal transitions can be accessed such that, during optical
pumping, fluorescence is almost completely absent for one
of the spin states. This single-shot method allows the spin
state to be efficiently determined with a high confidence for
any given Ramsey sequence (up to collection and detection
efficiencies), resulting in a relatively low readout overhead.
At room temperature, in contrast, where spin-selective
optical transitions are not resolved in a single shot, readout
is typically performed by simultaneously exciting a spin
triplet that includes both basis states and observing fluo-
rescence from the subsequent decay, the probabilities for
which differ by only approximately 35%. Overcoming this
classical uncertainty (in addition to quantum projection
noise) to allow a precise estimate of the relative spin-state
probabilities after a given precession time τ requires
repeated Ramsey sequences to produce a large ensemble
of fluorescent photons. Such a large readout overhead
significantly reduces the sensitivity of NV magnetometry,
and, so far, the high sensitivities reported at cryogenic
temperatures are out of reach for room-temperature operation

by several orders ofmagnitude.Yet, NV sensing at cryogenic
temperatures is impractical for biological applications such
as in vivo measurements [2] and monitoring of metabolic
processes [25].
A large body of work [8,19,21,24,26–31] has developed

and improved quantum-sensing algorithms to surpass the
classical standard measurement sensitivity (SMS). While
the SMS bounds the sensitivity that can be achieved for NV
magnetometry with a constant phase accumulation time,
phase estimation algorithms using a set of different preces-
sion times τi allow the SMS to be overcome [19,21,32].
Further improvements in sensitivity are possible by adapting
measurement bases to require fewer Ramsey sequences
[8,33,34]. However, sensing algorithms that use a standard
Bayesian approach typically involve probability distribu-
tions that are computationally intensive to update or which
contain outlying regions that significantly affect an estimate.
An appealing alternative [13,14,35] uses techniques from
machine learning to approximate a probability distribution
with a relatively small collection of points, known as
particles. These methods have been applied to the problem
of learning a Hamiltonian [14,36] and to implement noise-
tolerant quantum phase estimation [37].
Here, we experimentally demonstrate a magnetic-field

learning (MFL) algorithm that operates with on average
only one-photon readout from a single NV center at room
temperature and achieves a level of sensitivity so far reported
only for cryogenic operation [8]. MFL adapts efficient
Bayesian phase estimation and Hamiltonian learning tech-
niques for magnetometry to achieve a fast convergence to the
correct value of themagnetic field and requires no adaptation
of measurement bases. The parameters of our MFL algo-
rithm, including the number of particles, can be optimized
prior to operation without adding to the sensing time over-
head. Each precession time τi is chosen [38] as the inverse of
the uncertainty σi−1 in the algorithm’s previous estimate
of B, allowing τ to grow exponentially to achieve HL
scaling in sensitivity. We tested MFL on a large dataset from
60 000 Ramsey interferometry experiments on a bulk dia-
mond NV center. We benchmark the performance of
MFL against standard FFT methods, as well as previous
experimental results from other phase estimation algorithms.
Simultaneous to the learning ofB,MFLproduces an estimate
of T�

2, which, in contrast to other phase estimation algo-
rithms, allowsMFL to lower bound its sensitivity to the SMS,
however long its implementation run time. Remarkably,
we show that MFL enables the dynamical tracking of time-
varying magnetic fields at room temperature.

II. MAGNETIC-FIELD LEARNING

In general, Hamiltonian learning algorithms estimate
the parameters x⃗ of a model Hamiltonian Ĥðx⃗Þ, through
iterations of informative measurements [14]. At each step,
a prior probability distribution Pðx⃗Þ stores estimates of
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every parameter and its uncertainty [13]. Similarly, the four
principal recursive steps of MFL, called an epoch and
depicted in Figs. 1(a)–1(d), are as follows. (a) Choose τi for
the next Ramsey sequence from the heuristic τi ≃ 1=σi−1,
where σ2i−1 is the uncertainty embedded in the prior Pðx⃗i−1Þ.
(b) Allow the system to evolve under Ĥ for a time τi,
using the Ramsey sequence shown in Figs. 1(e)–1(h).
(c) Measure the outcome E, extracted from the photo-
luminescence count, e.g., Fig. 1(i). (d) Update the prior
using Bayes’ rule, P0ðx⃗jEÞ ∝ LðEjx⃗; τÞPðx⃗Þ, where L is the
likelihood function [13]. The use of sequential Monte Carlo
algorithms [13,14,35], where particles are reallocated

when required, makes the inference process practical and
computationally efficient. Here, the Hamiltonian for the
two relevant NV states is modeled as

ĤðBÞ ¼ ωðBÞσ̂z=2 ¼ γBσ̂z=2; ð1Þ
so that ω is the only parameter to be estimated to learn the
value of B.
In Ramsey interferometry, as performed here, wemeasure

the magnetic-field component B parallel to the NV centers’
symmetry axes. However, the MFL protocol could, in
principle, be expanded to detect arbitrary oriented magnetic
fields.

FIG. 1. An epoch of the MFL algorithm including a Ramsey sequence and readout. (a) The uncertainty encoded in the prior distribution
Pi−1 determines the phase accumulation time τi for the next set of Ramsey sequences. (b) A number M of Ramsey sequences are
implemented for τi, with the precession driven by a B field from permanent magnets. Laser light is focused with a confocal microscope.
A planar copper wire on the surface of the bulk diamond generates microwave pulses. (c) The outcomes E from the Ramsey sequences are
measured. (d) The prior distribution is updated Pi−1 → Pi through Bayesian inference, from which the next phase accumulation time τiþ1

is determined. (e) The NV spin vector is initialized with laser light, rotated with microwave pulses, and, using a second laser pulse, read out
from photoluminescence (PL) with an avalanche photodiode (APD). (f) The electronic energy level triplet supports initialization and
microwave manipulation between the ms ¼ 0 and ms ¼ −1 states, which encode the basis states j0i and j1i, respectively. (g) The Bloch
sphere depicts the transit of the electronic state vector for the microwave rotations and Larmor precession. (h) Detection is performed by
optically pumping the basis states to a higher-energy level triplet and measuring the decay via (non-spin-preserving) PL. (i) A representative
PL fringe (theory plotted as a dashed line) with orange data points representing the number of detected photons for M ¼ 8.
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III. EXPERIMENT

Experiments are performed using a confocal setup, at
room temperature, with an external magnetic field of
approximately 450 G, parallel to the NV center axis,
giving a Zeeman shift of ω ¼ γB [21], where γ ≈ 2π ×
28 MHz=mT [39].
The Ramsey interferometry experiments reported here

use the ms ¼ 0 and ms ¼ −1 electronic sublevels of a few
different 12C isotopically purified diamond samples (see
Table S1 in Supplemental Material [40]). For each Ramsey
sequence, the electronic spin is initialized and read out with
532 nm laser pulses, by detecting the photoluminescence
(PL) signal with an avalanche photodiode (APD) for
350 ns. The PL signal is then normalized to extract an
experimental estimate for L. For every sequence, the
experimental overhead is the sum of the times for the
laser pulses length (3 μs), an idle time for relaxation (1 μs),
a short transistor-transistor logic (TTL) pulse for synchro-
nization (20 ns), and the duration of the two microwave
pulses (together approximately 50 ns).
Data for several hundred Ramsey fringes are generated

from experiments on three NV centers, labeled α, β, and ϵ
(Supplemental Material, Table S1 [40]). In particular, the
dataset ϵ1 comprises Ramsey sequences for precession
times increasing from τ1 to τ500 in steps of 20 ns. For each
τi, 20 275 sequences are performed, and data are stored
such that the results from each individual sequence could
be retrieved. Therefore, ð20 275M Þ500 subsets of data from ϵ1
could be selected and combined to construct fringes
comprised of M sequences. Running MFL on a sample
of these subsets allows its performance to be compared over
fringes with different (but fixed within a fringe) numbers of
sequences including down to M ¼ 8, where (due to low
collection efficiencies) the average PL count (nphot) is
approximately one photon. Additional experiments on
the three NVs generate further datasets for several hundred
fringes that each comprise tens of thousands of averaged
sequences. All implementations of MFL are reported as
representative behavior averaged over R ¼ 1000 indepen-
dent protocol runs (unless otherwise stated), each using a
single fringe from these datasets.

IV. RESULTS

We begin by analyzing how the estimate of uncertainty
in the magnetic field, σðBestÞ, given by the variance of Pðx⃗Þ,
scales with the number of MFL epochs. For this purpose,
we use the dataset α1, with 120 fringes all obtained with
M ¼ 18 500 sequences. At every MFL epoch, given the
adaptively chosen phase accumulation time τi ≃ 1=σi−1, the
experimental datum with τ minimizing (jτ − τij) is pro-
vided to the MFL updater. Figure 2(a) shows an exponen-
tial decrease in the scaling of σðBestÞ, until approximately
50 epochs are reached. After this point, the precession
times τ selected by MFL saturate at τmax ¼ 10 μs,

and σðBestÞ is reduced only polynomially fast, by accu-
mulating statistics for τ already retrieved. This slowdown
is analogous to that occurring when the heuristic requires
τ exceeding the system dephasing time [13] (see
Supplemental Material, Sec. S3, for details [40]).
The precision scaling is calculated using

η2 ¼ δB2 ¼ σ2ðBestÞT; ð2Þ

where T ≔
P

N
i τi from N epochs represents the total phase

accumulation time alone. Therefore, T neglects all over-
heads as in previous works [19,21]. Figure 2(b) plots η2

against T, for each epoch, and compares MFL with the
standard FFT method, using the same α1 set. The precision

FIG. 2. Experimental results for scaling of precision. Lines
represent median values, and performance within the 68.27%
percentile range is shown as shaded areas. (a) Estimated un-
certainty σðBestÞ is plotted as a function of the epoch number; data
from one sample run is shown as blue circles. In the inset, a plot
of the final σðωestÞ in the Ramsey frequency for a typical protocol
run, from FFT (Lorentzian fit) and MFL (Gaussian fit). (b) The
scaling of precision with total phase accumulation time T,
excluding all overheads, is shown as density plots with a linear
least-squares fit (blue dashed line). The FFT approach is plotted
as a gray dashed curve. Scaling for phase estimation algorithms in
Refs. [19,21] (respectively, green and violet lines) is also
reproduced. The inset shows data from a Ramsey fringe in
normalized PL, with a 20 ns sampling rate, up to τmax ∼ 0.14T�

2.
A least-squares fit with a decaying sinusoid is shown as a blue
dashed line.
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of MFL scales as T−0.99�0.02, which overlaps with HL
scaling (∝ T−1). The FFT method rapidly approaches the
SMS (∝ T0), whereas (neglecting overheads) the scaling
reported for quantum phase estimation methods are quali-
tatively comparable to MFL, at the expense of more
intensive postprocessing [30].
Finally, a comparison with FFT methods in terms of

frequency resolution is performed and shown in the inset in
Fig. 2(a), halting the estimation when τmax is reached. At
this moment in time, we find that σðBestÞ is approximately
40 times smaller for MFL. In order to have a meaningful
comparison, we allow for approximately similar T to be
cumulated for both MFL and FFT protocols. Therefore, in
this case, FFT adopts 500 equally spaced data points in the
interval ½0; τmax� and, hence, TFFT ¼ 2.5 ms, whereas
the representative MFL run has T ≃ 2.2 ms after analyzing
250 data points.
For a true measure of absolute sensitivity, experimental

and computational overheads must be accounted for.
Including all the relevant overheads, i.e., initialization,
readout, and computation time, into the total running time
T̄, we redefine the precision Eq. (2) in terms of absolute
precision:

η̄2 ¼ σ2ðBestÞT̄; ð3Þ

where T̄ represents the total running time [see Eq. (B1) in
Appendix B].
The average number of luminescent photons, nphot, used

for readout during each epoch, scales linearly with the
number of sequences M (nphot ∝ M); on average, one
photon every M ≃ 8 sequences is detected. As shown in
Fig. 3, we use MFL to measure the scaling of η̄ with T̄ (up
to 500 epochs) for decreasing numbers nphot within each
epoch. The plots have a shape characterized by an initial
slow decrease, followed by a fast increase in precision. The
relatively slow learning rate for the short phase accumu-
lation times in the early stages of the algorithm leads to a
slow increase in the phase accumulation time, since
(τi ∝ 1=σi−1). The algorithm is slowly learning, but the
total measurement time is increasing faster than the
decrease in uncertainty. However, when the particles start
converging to a valid estimate of B, the uncertainty
decreases exponentially, overcoming the corresponding
increase in sensing times. Our analysis compares well with
previous results performed under cryogenic conditions [8];
scaling parameters from linear least-squares fitting give a
consistent overlap with HL scaling for protocol update rates
up to 13 Hz. In Sec. S5 of Supplemental Material [40], we
also provide, for comparison, functional simulations of
another Bayesian method, quantum phase estimation [30],
adopting characteristic parameters to reproduce our exper-
imental setup.
Decreasing the number of sequences (thus nphot) per

epoch increases the statistical noise, which extends the slow

learning period. However, the total time T̄ decreases with
nphot to produce an increased sensitivity in a shorter time.
For nphot < 4, readout infidelities and losses become the
dominant noise mechanisms. In the case for nphot ¼ 1,
therefore, these additional sources of noise are included as a
precharacterized noise model (see Supplemental Material,
Sec. S6 [40]). When using as little as nphot ¼ 1, we obtain a
sensitivity of 60 nT s1=2 in approximately 10 ms, from a
total of only 4000 single Ramsey sequences.
When an NV-sensing algorithm begins to request pre-

cession times τi beyond T�
2, where no information can be

retrieved, the effectively wasted sensing time reduces the
sensitivity. Knowledge of T�

2 can ensure that all τi are less
than T�

2, to prevent this reduction in sensitivity and instead
guaranteeing it to scale at the SMS for long sensing times.
Learning T�

2 simultaneously with B, as part of a multi-
parameter estimation strategy [41,42], can be more efficient
than independently estimating T�

2 ahead of each sensing
experiment. To describe experimental data from Ramsey
fringes collected from an NV center with dephasing time
T�
2, immersed in a magnetic field of intensity B, we adopt

the likelihood function:

Lð0jB; T�
2; τÞ ¼ expð−τ=T�

2Þ cos2ðγBτ=2Þ
þ ½1 − expð−τ=T�

2Þ�=2; ð4Þ

with unknown parameters x⃗ ¼ fB; T�
2g. The exponential

decay observed in the contrast of the Ramsey fringes, here
phenomenologically observed, corresponds to approxi-
mately white noise affecting the sensing measurement here
[43]. However, more general noise models can be adopted

FIG. 3. The representative scaling of precision η̄2, inclusive of
overheads, plotted against total running time T̄. The colors
identify different average numbers of photons detected per epoch
(nphot), when correspondingly altering the M repetitions of
Ramsey sequences. Each protocol run for nphot > 1 comprises
N ¼ 150 epochs, and only Poissonian noise is modeled in the
likelihood function. For nphot ¼ 1, each run comprises N ¼ 500

epochs, and an improved likelihood models also infidelities and
losses.
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by correspondingly adapting Eq. (4) to include information
deriving, e.g., from noise spectroscopy experiments [44].
MFL naturally operates as a multiparameter estimation
protocol when the prior probability distribution Pðx⃗Þ is
multivariate [13], and the uncertainty in its joint probability
distribution is captured by a normalized covariancematrixΣ.
Each precession time τi is chosen proportional to the

inverse of the (Frobenius) norm of the covariance matrix
(see Appendices A and C). This choice can incur an initial
slow learning period due to shorter τi being initially most
useful in estimating B, while longer precession times are
better for an estimation ofT�

2.We therefore beginMFL in the
single-parameter estimation mode for B and introduce the
simultaneous learning of T�

2 at epoch N ¼ 100 (chosen
empirically).
Figure 4 shows results from running the MFL algorithm

on the β1 dataset, where τmax > T�
2. As is the case for

single-parameter estimation results, we find an exponential
scaling of the generalized uncertainty with the number of
epochs, though the learning rate for B is faster than that for
T�
2. There is a discrepancy between the estimate of T�

2 from
MFL shown in Fig. 4(a) and the fit (nonweighted least-
squares) to the decaying sinusoid shown in Fig. 4(d). The
discrepancy between these two estimates results from MFL
preferentially requesting τi < T�

2, such that an estimate of
T�
2 is more informed by data at these relatively shorter

timescales (see Appendix C).
The strength of B may not be fixed in time for typical

sensing experiments [45]. The Bayesian inference process
is conceived to learn on-line when experimentally retrieved
likelihoods PðEjx⃗Þ conflict with its prior information.
Thus, the ability to track time-varying magnetic fields
follows naturally from the MFL’s processing speed and
adaptivity. With minor controls in the Bayesian inference
procedure, including heuristics to trigger a reset of the
prior, MFL accounts for not only fluctuations in the sensed
B, but also high-amplitude changes invalidating the
a posteriori credibility region, as estimated after a number
of epochs. More details and a pseudocode are provided in
Sec. S8 in Supplemental Material [40]. Here, we test an
algorithm that tracks a Bset field using the ϵ3 dataset, where
Bset is experimentally modulated by changing the position
of the permanent magnet [see Fig. 1(b)]. Data recording is
paused during magnet adjustments, leading to stepwise
transitions in this dataset, where the magnetic field instantly
jumps to a new strength and then remains stable for a period
of between hundreds and thousands of milliseconds.
Results are shown in Fig. 5(a), with a maximum approx-

imately 30-fold instantaneous change in B. MFL detects
when the posterior distribution has become nonrepresenta-
tive of the most recent measurements, by increasing the
uncertainty σðBestÞ. After approximately ten epochs, the
estimate converges to the new value set for B. This analysis
also emphasizes the high dynamic range Bmax=σðBestÞ
achievable with the protocol, that for this dataset is as high

as 12 300. Figure 5(b) summarizes the different computa-
tional and experimental contributions to the total running
time per epoch (approximately 10 ms). The computational
time cost of MFL is τcomp ≃ 0.2 ms, with the remaining time
costs coming from experimental routines. We note that the
computational efficiency of MFL allows a computational
overhead (τcomp ¼ 0.21 ms) that is smaller than the average
phase accumulation time (τ ¼ 0.41 ms) and 2 orders
of magnitude smaller than the experimental overheads
(τexp ¼ 16.28 ms).

(a)

(b) (c)

(d)

N

)

FIG. 4. Simultaneous learning of T�
2 and the magnetic field.

(a) Simultaneous estimates of magnetic field B (purple) and
decoherence time T�

2 (green) for epochs higher than 100. Solid
lines are from MFL, and dashed lines are from a least-squares fit
to the Ramsey fringe data in (d). (b) The 68.27% credible region
at epoch 100 (green) and 500 (blue) for ω and T�

2, reported,
respectively, on the y (x) axes. The smaller area of the distribution
at the final epoch indicates the decreased uncertainty on both
parameters. (c) The norm of the covariance matrix kΣkF,
representing the uncertainty in simultaneous estimates of B
and T�

2, is plotted against the epoch number. The median
performance is shown as a solid line, with a shaded area
representing the 68.27% percentile range. (d) Renormalized
experimental data for a Ramsey fringe, along with a least-squares
fit and an MFL-learned decay function showing decoherence.
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Figure 5(c) shows numerical results demonstrating the
resilience of MFL against a dynamic component of
increasing frequency, when tracking an ac oscillating field
BðτÞ ¼ ωðτÞ=γ, where we choose ωðτÞ ¼ ω0 þ w cosðντÞ,
with ν a constant and w ≪ ω0. The effectiveness of the
tracking for each run is captured by a time-dependent
normalized squared error nmsω ≔ E½ωestðτÞ − ωðτÞ�2=
ω2
0 ¼

P
N
i ½ωestðτiÞ − ωðτiÞ�2=ðNω2

0Þ, averaged for all N
epochs performed, capturing the efficiency of the tracking
as B is not constant along epochs. Typical estimation errors
in B are lower than 3% for dynamic components up to
18 μT=ms.

V. CONCLUSION

The performance of magnetic-field learning found for
our room temperature setup is comparable to other proto-
cols in cryogenic environments [8]. These methods could
be applied to other sensing platforms where noise has been
a limiting factor. Alternatively, in pursuit of the funda-
mental limits in absolute sensing precision, they could be
used together with single-shot readout [7], adaptive meas-
urement bases [8], faster communication, and dynamical
decoupling techniques [46,47]. Some features of the setup
employed for this experiment, such as immersion lenses or
bath polarization, might not be available in some applica-
tive scenarios. However, promising developments that
enhance photon collection efficiency [48–50] or that
limit the environmental effects [3] might offer viable alter-
natives, thus removing such limitations. In conclusion, our
methods would be particularly effective in applications

where single-spin sensing is desired for nanoscale resolution,
but cryogenic conditions are prohibitive, such as biological
sensing and new nano-MRI applications [6,51].
All data used to achieve the conclusions of this work are

available for download in Refs. [52,53].
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APPENDIX A: MFL EXECUTION

The data processing is performed by adapting the open
PYTHON package QINFER [54] to the case of experimental
metrology.

(c)

M

N

B

(b)

es
t

set

(a)

FIG. 5. Magnetic-field tracking. (a) Tracking with the MFL protocol is demonstrated on experimental data, where step changes in B
are indicated by the gray bars (here, the number of sequences M ¼ 4000). The solid red line represents typical performances of MFL,
with the shaded area indicating performance within an approximately 68.27% percentile range. For comparison, a dashed purple line
indicates the outcome of a short-time Fourier transform (STFT) protocol applied progressively to all data points within time windows
composed of 50 Ramsey sequences each, with the corresponding uncertainty from a Lorentzian fit as a shaded area of the same color.
Results after fewer than three data points are omitted for STFT. (b) Itemization of the contributions to the average total time T̄ taken into
account in (a): the precession time τ and computational (τcomp) and experimental (τexp) overheads. (c) Numerical study of MFL
performance in tracking sinusoidally time-dependent magnetic fields BðτÞ ¼ ωðτÞ=γ, under ideal conditions (T�

2 ¼ ∞, τexp ¼ 0).
The y axis gives the median time-averaged square error (nmsω) in the Ramsey frequency estimate, against the peak speed at which B
changes along each simulated Ramsey sequence [max dωðτÞ=dτ]. The blue dashed line refers to the case including only binomial noise
in LðB; τÞ, while the green line is the case with limited readout fidelity (ξ ¼ 0.88), as defined in Ref. [45]. The dashed red line indicates
the error obtained via a nontracking strategy. Shaded areas indicate the approximately 68.27% percentile range.

MAGNETIC-FIELD LEARNING USING A SINGLE … PHYS. REV. X 9, 021019 (2019)

021019-7



In dc-magnetometry experiments, such as those presented
here, the reset of the sensing electron spin, and perturbation
of its environment at the start of each Ramsey sequence,
is expected to give mostly noise which is uncorrelated
across epochs. The close agreement with an exponentially
decaying envelope for the Ramsey signal suggests that the
dephasing noise is induced by an approximately Markovian
process [43]. In order to describe experimental data from
Ramsey fringes collected from an NV center with dephasing
time T�

2, immersed in a magnetic field of intensity B, [13],
we adopt the likelihood function in Eq. (4), where T�

2 is a
known parameter or approximated by T�

2 ¼ ∞ in all cases
when T�

2 ≫ τmax.
In cases when M > 1, the datum adopted is obtained

from M combined sequences as stated in the main text.
Results in Figs. 2(a), 2(b), and 5 are all obtained adopting a
majority voting scheme to preprocess data from combined
sequences [37], with no other assumptions about the noise
model. Majority voting decides each single-shot datum
according to the most frequent outcome, which is done by
previously determining, during the characterization of the
experimental setup, the average photoluminescence counts
(n̄) detected throughout the execution of a Ramsey sequence.
The datum of a single outcome is determined by comparing
the number of photons detected during the measurement
(extracted from M sweeps), n, and n̄. If n > n̄, then we set
the value of the outcome to j1i and otherwise to j0i. Without
this scheme in place, the outcome of a measurement is
assigned sampling from the set fj0i; j1ig, with probabilities
P ∝ f1 − n=nmax; n=nmaxg, respectively, with nmax the
maximum photoluminescence counts estimated during the
characterization.
Other than the study of η̄ in Fig. 3, further examples of

the performance of MFL with no majority voting scheme in
place are reported in Sec. S3 in Supplemental Material [40].
Errors in the precision scaling are estimated from a

bootstrapping procedure, involving a sampling with replace-
ment from the available runs (R). The cardinality of each
resample matches R. The resampling is repeated b0.1Rc
times. Median precision scalings from each resample are
estimated, and the standard deviation from this approximate
population of scaling performances is provided as the
precision scaling error.

APPENDIX B: ABSOLUTE SCALING

In Fig. 3, we report the absolute scaling of η̄2 ¼ σ2ðBestÞT̄,
which requires one to take into account the main exper-
imental and computational overheads contributing to the
total running time T̄ of a phase estimation (PE) protocol
(communication time τcomm is not considered here). In
particular, these can be listed as the time required by the
PE algorithm to compute the next experiment τcomp (here,
approximately 0.4 μs per step, per particle on a single-core

machine), the duration of the laser pulse τlas for initialization
and readout (3 μs in total), the waiting time τwait for
relaxation (1 μs), a short TTL pulse τTTL for the photodetec-
tor (20 ns), and the duration τMW of microwave pulses
(approximately 50 ns in total). Including variable and
constant overheads, we obtain

T̄ ¼
XN

i

ðMτi þ τcomp
i Þ þ NMðτlas þ τwait þ τTTL þ τMWÞ

ðB1Þ

after N epochs of a PE algorithm.
In the nphot ¼ 1 case, the final σðBestÞ ≃ 0.45 μT after

500 epochs, and T̄ ≃ 18 ms, that is, η̄ ≃ 60 nT s1=2. In the
nphot ¼ 20 case, exhibiting a precision scaling that is
essentially Heisenberg limited, the uncertainty saturates
at protocol convergence (approximately 150 epochs) to
σðBestÞ ≃ 0.3 μT, for a total running time T̄ ≃ 78 ms. This
result leads to a final sensitivity η̄ ≃ 84 nT s1=2 and 12.8 Hz
repetition rates.

APPENDIX C: MULTIPARAMETER LEARNING

For the multiparameter case, we use again Eq. (4), but
now considering the unknown parameters x⃗ ¼ fB; T�

2g.
Each precession time τi is chosen proportionally to
the inverse of the Frobenius norm of the covariance
matrix, kΣkF ¼ kcovðB=b; T�

2=t2ÞkF. The parameters b ¼
maxB∶PðBÞ≠0B and t2 ¼ minT�

2
∶PðT�

2
Þ≠0T�

2 are introduced to
render kΣkF dimensionless, with P the prior at epoch
N ¼ 100, when both parameters start to be learned simul-
taneously. In this analysis, this choice corresponds to
b ¼ 11 μT and t2 ¼ 20.2 μs; however, we stress how
different choices would be possible, with equivalent
results for kΣkF, up to a normalization factor. We observe
that MFL estimates of the dephasing time may differ
consistently from a nonweighted least-squares fit. In the
presence of dephasing, the heuristic of MFL preferentially
adopts experiments with τ < T�

2. On the other hand, a least-
squares fit attempts to equally mediate over data points
where the contrast in the fringes is almost completely lost,
underestimating T�

2.

APPENDIX D: FFT EXECUTION

For most analyzes, FFT estimates are run against the
whole datasets available. For example, in the case of Fig. 2,
the final estimate provided by a single run of FFT is
performed using once all of the 500 phase accumulation
times, recorded with 20 ns steps, for a representative subset
among those available in α1 (Supplemental Material,
Table S1 [40]). We emphasize how these datasets are made
of twice as many τ’s as those actually used by the MFL
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protocol (the single-run estimate being reported as con-
verged after 250 epochs).
The only exception is the tracking in Fig. 5, where the

data points are cumulatively added to the dataset. In such
tracking applications, as long as B is kept constant, the
estimate from FFT compares to MFL in a way similar to
Fig. 2. However, FFT keeps estimating B from the
prominent peak in the spectrum, corresponding to the ω
that is maintained for the longest time, not the most recent.
Thus, it fails to track changes as they occur.

APPENDIX E: PHOTON NUMBER ESTIMATION

After exciting a single NV center by a 532 nm laser
pulse, the redshifted, individual photons are detected by an
avalanche photodiode. To achieve a high collection effi-
ciency, we use for initial measurements an oil immersion
objective (NA 1.4), while for all measurements leading to
absolute precision estimates, we exploit a solid-immersion
lens on top of the NV centers and an air objective with NA
0.9. A time-tagged single-photon-counting card with nano-
second resolution is used for recoding. A TTL connection
between the time tagger and the microwave pulse generator
synchronizes the photon arrival time with respect to the
pulse sequence and allows us to record the number of
detected photons for every single laser pulse. Thereby, the
photon detection efficiency is mainly limited by the
collection volume, the total reflection within diamond
(due to the high refractive index), and further losses due
to the optics. These experimental conditions result a photon
detected about every eighth laser pulse. Thus, to read out
the NV state with high fidelity (and about 30% contrast),
multiple measurements are usually required for meaningful
statistics.
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