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We present an extensive overview of the phase diagram, spin-wave excitations, and finite-temperature
transitions of the anisotropic-exchange magnets on an ideal nearest-neighbor triangular lattice. We
investigate transitions between five principal classical phases of the corresponding model: ferromagnetic,
Néel, its dual, and the two stripe phases. Transitions are identified by the spin-wave instabilities and by the
Luttinger-Tisza approach, and we highlight the benefits of the former while outlining the shortcomings of
the latter. Some of the transitions are direct and others occur via intermediate phases with more complicated
forms of ordering. The spin-wave spectrum in the Néel phase is obtained and is shown to be nonreciprocal,
εα;k ≠ εα;−k, in the presence of anisotropic bond-dependent interactions. In a portion of the Néel phase, we
find spin-wave instabilities to a long-range spiral-like state. This transition boundary is similar to that of the
spin-liquid phase of the S ¼ 1=2 model discovered in our prior work, suggesting a possible connection
between the two. Further, in the stripe phases, quantum fluctuations are mostly negligible, leaving the
ordered moment nearly saturated even for the S ¼ 1=2 case. However, for a two-dimensional surface of the
full 3D parameter space, the spin-wave spectrum in one of the stripe phases exhibits an enigmatic
accidental degeneracy manifested by pseudo-Goldstone modes. As a result, despite the nearly classical
ground state, the ordering transition temperature in a wide region of the phase diagram is significantly
suppressed from the mean-field expectation. We identify this accidental degeneracy as due to an exact
correspondence to an extended Kitaev-Heisenberg model with emergent symmetries that naturally lead to
the pseudo-Goldstone modes. There are previously studied dualities within the Kitaev-Heisenberg model
on the triangular lattice that are exposed here in a wider parameter space. One important implication of this
correspondence for the S ¼ 1=2 case is the existence of a region of the spin-liquid phase that is dual to the
spin-liquid phase discovered recently by us. We complement our studies by the density-matrix
renormalization group of the S ¼ 1=2 model to confirm some of the duality relations and to verify the
existence of the dual spin-liquid phase.
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I. INTRODUCTION

Ever since the seminal works by Wannier [1] and
Anderson [2], a motif of spins on a triangular-lattice
network epitomizes the idea of geometric frustration that
can give rise to nonmagnetic spin-liquid states [3,4].
A variety of materials and models with the triangular,
kagome, and pyrochlore lattices have provided a natural
playground for geometric frustration and realized various
exotic and quantum-disordered states [2–7].
More recently, magnetic materials with anisotropic spin-

spin interactions, which arise from spin-orbit coupling in

their magnetic ions, have offered a different path to achieve
similar goals. A strong mixing of spin and orbital degrees of
freedom leads to the bond-dependent anisotropic-exchange
interactions providing an alternative mechanism for frus-
tration [8,9]. A particular case is that of the so-called compass
model [10] on the tricoordinated honeycomb lattice with
each spin component interacting selectively along only one
of the bonds via an Ising-like interaction. In a celebrated
work [11], Kitaev showed that it has a spin-liquid ground
state with fractionalized excitations, a finding that set off a
significant research effort [12]. In real materials, however,
desired terms occur along with the other diagonal and off-
diagonal components of the anisotropic-exchange matrix
that are allowed by the lattice symmetry [12–16]. These
terms have proven to be detrimental to the Kitaev spin liquid
and so far have prevented its definite realization [12].
Combining the geometric frustration of the lattice with

the spin-orbit-induced anisotropic exchanges is potentially
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a very fruitful and less explored area. The recently syn-
thesized rare-earth compound YbMgGaO4 (YMGO) has
offered an example of such a synergy, with the pseudospin
S ¼ 1=2 states of the strongly spin-orbit-coupled f shells of
the magnetic Yb3þ ions arranged in nearly perfect triangu-
lar-lattice layers [17,18]. It has been initially marketed as a
spin-liquid candidate, given the lack of ordering and broad
features in its dynamical response [17–26]. However, this
initial optimism has faded considerably due to experimental
evidence and theoretical arguments in favor of the intrinsic
disorder causing a “mimicry” of a spin liquid [26–33].
Nevertheless, the problem of the triangular-lattice aniso-
tropic-exchange magnets has attracted considerable interest
[31–40] and remains the focus of much research as a wider
family of materials become available [41–45].
In our first study, Ref. [31], we argued that the exper-

imental range of parameters of the model that should
describe a disorder-free YMGO does not support a spin-
liquid state, in agreement with exact-diagonalization [37]
and variational Monte Carlo studies [38]. In our more
recent work, Ref. [39], we provided a detailed exploration
of the phase diagram of the most generic nearest-neighbor
triangular-lattice model in order to find out whether
anisotropic-exchange interactions on this lattice can poten-
tially create much desired exotic states. We have used
the density-matrix renormalization group (DMRG) for the
S ¼ 1=2 model and discovered a spin-liquid region in its
3D phase diagram [39]. We have also established a close
similarity and a direct isomorphism of this newly found
spin-liquid phase to the much studied spin liquid of the
fully isotropic Heisenberg J1–J2 model on the triangular
lattice [46–51]. We have also pointed out that the spin
liquid with open spinon Fermi surface [20,21,25,34] is not
realized in the phase diagram of the model. This is also in
accord with Ref. [38].
In the present study, we expand our previous work

in several directions. First, we provide a quasiclassical
description of the five principal magnetically ordered
single-Q phases that span the 3D phase diagram of the
nearest-neighbor anisotropic-exchange model on the tri-
angular lattice. These phases are ferromagnetic, 120° Néel,
dual 120°, and two different stripe states. For four of them,
we find explicit expressions for their spin-wave spectra. To
the best of our knowledge, the spin-wave spectrum of the
120° Néel phase with anisotropic terms has not been
discussed previously. We demonstrate that it is generally
nonreciprocal in this case: εα;k ≠ εα;−k.
Next, we analyze the transition boundaries between these

principal phases as given by the instabilities of their
magnon spectra. We find that such an approach closely
and reliably reproduces phase boundaries obtained by a
numerical optimization of classical energy in large
clusters of spins [36], offering obvious advantages over
this technique. In agreement with prior studies [32,35,36],
we also find consistent discrepancies of the phase

boundaries provided by the Luttinger-Tisza method [52]
and discuss a potential reason for that.
For the 120° phase close to the Heisenberg limit, we find

an instability toward a long-range spiral state that is similar
to the Z2 vortex state found in the triangular-lattice Kitaev-
Heisenberg model [53,54]. With the correspondence to that
model discussed below in more detail, we note that the
identified transition boundary is similar to the boundary of
the spin-liquid phase advocated in our previous work [39]
for the quantum S ¼ 1=2 case, suggesting a possible rela-
tion between the two.
In the present study, we also explore the ferromagnetic

and stripe parts of the phase diagram in order to check
whether the regions dominated by anisotropic interactions
can lead to strongly frustrated and highly degenerate states.
The on-site magnetization is nearly classical, and quantum
fluctuations are negligible for most of these regions even in
the quantum S ¼ 1=2 limit. Enigmatically, however, the
ordering Néel temperature calculated from the spin-wave
spectrum in one of the stripe phases is suppressed in the
vicinity of a surface of parameters in the 3D parameter
space. This suppression originates from the gapless pseudo-
Goldstone spin-wave modes, which occur due to an
accidental degeneracy, with the Mermin-Wagner theorem
dictating TN ¼ 0 for a two-dimensional (2D) system.
Although quantum fluctuations induce a gap in the
pseudo-Goldstone spectrum via an order-by-disorder effect
[55], the ordering temperature remains suppressed in that
region compared to themean-field expectations. Thus, while
the system is almost classical, large values of the factor
f ¼ TMF=TN , which is used to identify a proximity to a
quantum-disordered state [23,35], can be highly misleading,
questioning it as a useful measure in such cases.
Crucially, this surface of accidental degeneracy in the

anisotropic-exchange model is identified as corresponding
to an extended Kitaev-Heisenberg model. This latter model
possesses emergent symmetries that naturally lead to the
pseudo-Goldstone modes in the quasiclassical limit, thus
explaining the enigmatic trends described above. There are
also additional symmetry transformations within that
model, known as Klein dualities [56,57], that allow one
to make deeper connections between different parts of the
parameter space.
Using these insights, we have performed DMRG studies

of the quantum S ¼ 1=2 anisotropic-exchange model in
previously unexplored parts of the phase diagram [39]. We
have validated quasiclassical phase boundaries discussed
above and verified previous studies of the Kitaev-
Heisenberg model [53,54,58–60] that are exposed here
in a wider parameter space. We demonstrate that the so-
called nematic phase [53,54,59,60] corresponds to the
boundary between two stripe phases and does not represent
a separate state in the quantum limit.
We emphasize that the region that we have previously

identified as a spin-liquid phase in Ref. [39] includes a
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sector of the line that corresponds to the Kitaev-Heisenberg
model. This implies that previous numerical studies of the
S ¼ 1=2 Kitaev-Heisenberg model [54,60] must have
overlooked the spin-liquid phase, either due to smallness
of their clusters [54] or due to periodic boundary conditions
[60] that are unfavorable for DMRG.
However, the most important implication of the corre-

spondence to the Kitaev-Heisenberg model is that it
necessitates an existence of another spin liquid, the one
that is Klein dual to the spin liquid found in Ref. [39]. In
our present DMRG study, we confirm the existence of this
dual spin-liquid phase. Interestingly, for the exchange
matrix written in crystallographic axes, the dual spin liquid
occurs in the region dominated by anisotropic terms. We
also use the structure factor SðqÞ to argue that the dual spin
liquid can be seen as a result of a “melting” of the dual 120°
phase, just as the spin liquid of Ref. [39] is a molten 120°
phase, with both phases maintaining the shapes of the
structure factor similar to that of their parent ordered states.
The confirmation of the dual spin liquid strengthens our
case for both of them.
The paper is structured as follows. Section II presents the

model and simplified classical phase diagram. Section III
shows spin-wave spectra of the key phases. In Sec. IV,
phase boundaries are discussed. Section V discusses finite-
temperature transitions. In Sec. VI, a transformation to the
extended Kitaev-Heisenberg model is given. Section VII
presents the DMRG results. We conclude in Sec. VIII, and
the Appendixes contain further details.

II. MODEL AND CLASSICAL PHASES

A. Model

In systems with spin-orbit coupling, magnetic degrees of
freedom are entangled with the orbital orientations that are
tied to the lattice due to crystal fields [8]. Because of that,
Hamiltonians of the low-energy effective pseudospins
involve bond-dependent interactions that obey only discrete
symmetries of the underlying lattice, thus, explicitly break-
ing spin-rotational symmetries [35].
The most general nearest-neighbor spin-orbit-induced

anisotropic-exchange Hamiltonian applicable to a variety
of systems can be written as [16]

Ĥ ¼
X
hiji

ST
i ĴijSj; ð1Þ

where ST
i ¼ ðSxi ; Syi ; Szi Þ, hiji denotes nearest-neighbor

sites, and Ĵij is a 3 × 3 exchange matrix that depends on
the bond orientation. Since the spin-rotational symmetries
are generally absent, constraints on the matrix elements of
Ĵij come solely from the space group symmetry of the
lattice.
The effect of these constraints on the Hamiltonian (1)

for the triangular-lattice materials, such as YbMgGaO4

and others, has been thoroughly discussed in Refs. [25,31,
35,38,40]. Here we provide a brief and intuitive derivation
of the main results.
Consider the Hamiltonian (1) on the δ1 bond (see Fig. 1)

with the x axis parallel to it

Ĥij ¼ ST
i

0
B@

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

1
CASj: ð2Þ

As can be seen from Fig. 1, the symmetries of the lattice are
the C3 rotation around the z axis, C2 rotation around each
bond, site inversion symmetry I, and two translations T 1

and T 2 along δ1 and δ2, respectively [35]. These sym-
metries eliminate most of the elements of the exchange
matrix. First, the 180° rotation around the δ1 bond changes
y → −y and z → −z, but should leave the two-site form (2)
invariant, leaving us with

Ĥij ¼ ST
i Ĵ1Sj ¼ ST

i

0
B@

Jxx 0 0

0 Jyy Jyz
0 Jzy Jzz

1
CASj: ð3Þ

Then, inversion with respect to the bond center, which is a
combination of the site inversion and T 1 translation, and
change i ↔ j should also leave Eq. (3) invariant, allowing
only the symmetric off-diagonal term Jzy ¼ Jyz. Renaming
it as Jzy ¼ Jz� and rewriting the diagonal terms using
XXZ-like parametrization Jzz ¼ ΔJ, with J ¼ ðJxx þ
JyyÞ=2 and J�� ¼ ðJxx − JyyÞ=4 yields the two-site
Hamiltonian for δ1 in a “spin-ice” form [61]

Ĥij ¼ JðΔSziSzj þ Sxi S
x
j þ Syi S

y
jÞ

þ 2J��ðSxi Sxj − Syi S
y
jÞ þ Jz�ðSziSyj þ Syi S

z
jÞ: ð4Þ

FIG. 1. A sketch of the triangular-lattice layer of magnetic ions
(empty circles) embedded in the octahedra of ligands (black dots)
with the primitive vectors. Thick (blue) bonds are between
magnetic ions, and ion-ligand bonds are the thin solid (dashed)
lines for above (below) the plane.
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For the other bonds, using the C3 invariance with the z
axis to transform Eq. (3) to the δα bond in Fig. 1 changes
the Ĵ1 matrix in Eq. (3) to Ĵα ¼ R̂−1

α Ĵ1R̂α where

R̂α ¼

0
B@

cos φ̃α sin φ̃α 0

−sin φ̃α cos φ̃α 0

0 0 1

1
CA ð5Þ

is the rotation matrix, or, explicitly

Ĵα ¼

0
B@

J þ 2J��c̃α −2J��s̃α −Jz�s̃α
−2J��s̃α J − 2J��c̃α Jz�c̃α
−Jz�s̃α Jz�c̃α ΔJ

1
CA; ð6Þ

where the abbreviations are c̃α ¼ cos φ̃α and s̃α ¼ sin φ̃α.
Altogether, the most general Hamiltonian (1) on the

triangular lattice becomes

H ¼
X
hiji

fJðSxi Sxj þ Syi S
y
j þ ΔSziS

z
jÞ

þ 2J��½ðSxi Sxj − Syi S
y
jÞc̃α − ðSxi Syj þ Syi S

x
jÞs̃α�

þ Jz�½ðSyi Szj þ SziS
y
jÞc̃α − ðSxi Szj þ Szi S

x
jÞs̃α�g; ð7Þ

where c̃ðs̃Þα ¼ cosðsinÞφ̃α as above, the bond angles φ̃α

are that of the primitive vectors δα with the x axis,
φ̃α ¼ f0; 2π=3;−2π=3g, and the spin operators are in
crystallographic axes that are tied to the lattice; see Fig. 1.
The Hamiltonian (7) is naturally divided in the bond-

independent XXZ part and the bond-dependent anisotropic
J�� and Jz� terms, also referred to as the pseudodipolar
terms [38], which generally break continuous spin-
rotational symmetries down to discrete ones.

B. Classical phase diagram

Since there are four parameters in the model (7), its
parameter space is three dimensional, with the fourth
degree of freedom setting the energy scale. We apply
one physical constraint on it by assuming the easy-plane
type of the XXZ anisotropy 0 ≤ Δ ≤ 1, as this is natural for
a variety of layered systems of interest [18,26]. As was
pointed out in Ref. [35], one needs to consider only positive
Jz� since the global π rotation around the z axis that should
leave the Hamiltonian invariant is equivalent to changing
Jz� → −Jz�. With these two constraints, one can map the
entire 3D parameter space on a cylinder, with the vertical
axis represented by the XXZ anisotropy Δ, Jz� as the
radial, and J��=J as the polar variables, so that each
horizontal cut represents an entire 2D phase space of the
model (7) for a fixed Δ.
In Figs. 2(b) and 2(c), we use a parametrization

ðJ; 2J��; 5Jz�Þ ¼ ð−r sinφ; r cosφ;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Þ; ð8Þ

such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ ð2J��Þ2 þ ð5Jz�Þ2

p
¼ 1, with the choice

of numerical coefficients made to exaggerate the region
where all parameters are of the same order, J��, Jz� ≲ J.
The XY and the Heisenberg limits of the XXZ part of the
model, Δ ¼ 0 and Δ ¼ 1, correspond to the bottom and the
top of the cylinder, respectively. The 2D phase diagram of
the Δ ¼ 1 limit is shown in more detail in Fig. 2(c).
By the energy minimization for the commensurate

single-Q states, there are five ordered phases shown in
the classical phase diagram in Figs. 2(b) and 2(c) with spin
arrangements shown in Fig. 2(c) and the ordering vectors in
the Brillouin zone in Fig. 2(a). Two of the phases are
favored by the XXZ part of the model (7), the ferromag-
netic phase with Q ¼ Γ, and the 120° phase with
Q120° ¼ K, for J < 0 and J > 0, respectively.

(c)

(d)

(b)(a)

FIG. 2. (a) Brillouin zone of the triangular lattice with the ordering vectors for each phase. (b) The 3D classical phase diagram of the
model (7) for the single-Q states; see text for their description. The vertical axis is 0 ≤ Δ ≤ 1. (c) The 2D cut of (b) at Δ ¼ 1 with a
sketch of spin structures and parametrization of the radial and angular coordinates. (d) A detailed sketch of the dual 120° state. It is
generally noncoplanar (see Sec. VI) and consists of 12 sublattices with the unit cell indicated.
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Although not so obvious, the two stripe phases are
favored by the J�� and Jz� bond-dependent terms that are
selecting the states that satisfy them fully on one of the
bonds and partially on the others [39]. While the stripes
have the same ordering vector Q ¼ M or equivalent, they
differ by the mutual orientation of spins and bonds. In the
stripe-x phase favored only by the J�� < 0 term, spins are
in plane and along one of the bonds. In the stripe-yz phase,
spins are perpendicular to one of the bonds and are also
tilted out of plane, taking advantage of both J�� and Jz�
terms; see Fig. 2(c).
The remaining small region is the dual 120° phase with

ordering vector Qd120° ¼ K=2 or equivalent. While the
reason for this terminology and the logic behind this state is
made clear in Sec. VI, it is related to the conventional 120°
order via the so-called Klein-duality transformation [56].
The dual 120° state is a 12-sublattice state, which is a
combination of four counterrotating 120° structures shown
in different colors in Fig. 2(d).
The classical per-site energies of these phases [in units of

SðSþ 1Þ] are as follows:

EFM ¼ 3J; E120° ¼ −
3

2
J; Estripe-x ¼ −Jþ 4J��;

Estripe-yz ¼ −J̃c −ΔJ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2z� þ J̃2c

q
;

Ed120° ¼
1

2

�
J̃c þΔJ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2z� þ J̃2c

q �
; ð9Þ

where we abbreviate J̃c ¼ ½Jð1 − ΔÞ þ 4J���=2 and the
(negative) out-of-plane tilt angle of the stripe-yz state is
found by energy minimization as tan 2θ ¼ −2Jz�=J̃c.
Our discussion reproduces the results of previous studies

of the single-Q ordered ground states of the model (7)
that have identified the stripe and 120° states for J > 0
[32,35,38,39]; see, in particular, Ref. [37]. We also extend
the same approach to the entire available parameter space.
However, as was first pointed out in Ref. [36] using
numerical energy optimization in large clusters, more
complicated multi-Q ordered structures become ground
states of the classical model near the phase boundaries of
the stripe and 120° regions. We confirm these findings by
studying instabilities in the spin-wave spectra (see Sec. IV)
and also identify a different instability within the 120°
phase for a range ofΔ near the Heisenberg limit of the XXZ
term in Eq. (7). This instability is toward a different multi-
Q state with a long-range spiral-like distortion of the 120°
order that is similar to the Z2 vortex state discussed
previously for the triangular-lattice Kitaev-Heisenberg
(or K–J) model [53,54]. Our discussion of the correspon-
dence of the model (7) to the K–J model in Sec. VI extends
this earlier finding to a broader range of parameters.
Since the continuous spin-rotational symmetries in model

(7) are broken, one generally expects gapped spin excitations
in all ordered phases. This is indeed true for the stripe-x and

for most of the stripe-yz parts of the phase diagram, where in
the latter part, a peculiar accidental degeneracy exists along a
2D surface of parameters that is related to duality relations
discussed in Sec. VI A. However, the ferromagnetic (FM)
and the 120° states of the classical model exhibit an
accidental degeneracy everywhere in their 3D regions of
stability, also referred to as an emergent symmetry in
Ref. [38]. This degeneracy means that their spectra are
gapless, and the orientation of their spin configurations is not
fixed within the lattice plane for Δ < 1, or at all for Δ ¼ 1,
offering examples of the emergent Uð1Þ and Oð3Þ sym-
metries, respectively. However, since the model (7) breaks
rotational symmetry, it means that quantum and thermal
fluctuations will select a preferred direction and gap out the
spectrum.We discuss the outcomes of such a quantum order-
by-disorder effect in these phases in Sec. III.
It is worth noting that most of the phase diagram in Fig. 2

is occupied by the states with quantum fluctuations that
remain insignificant even for the quantum S ¼ 1=2 limit,
such as stripes and FM states. Thus, by and large, strong
anisotropic terms on the triangular lattice do not seem to
result in a massive degeneracy of the classical states that
would indicate possible exotic phases, contrary to some
early expectations [18].

III. MAGNON SPECTRA

Although the linear spin-wave spectra and transverse
dynamical structure factors for the ordered single-Q spin
structures can be obtained numerically (see Ref. [62] and
Supplemental Material of Ref. [55]), their analytical forms
can be tremendously useful and informative. In this section,
we present the linear spin-wave theory (LSWT) for four out
of five ordered single-Q phases shown in Fig. 2 and
discussed in Sec. II above: the stripe-x, stripe-yz, 120°
Néel, and ferromagnetic states. We do not consider the
spectrum of the dual 120° state because of its complicated
12-sublattice structure. Some of our results for the stripe
phases have been discussed previously either in limiting
cases [31] or with minimal details [35]. We emphasize that
the spectrum of the 120° phase in the presence of the bond-
dependent anisotropic terms has not been calculated
previously. The same is true for the ferromagnetic phase,
which is, however, much simpler.
The spin-wave expansion requires a rotation of the axes

on each site from the laboratory reference frame fx; y; zg,
in which the Hamiltonian is typically written to a local
reference frame fx̃; ỹ; z̃g with the z̃ along the spin’s
quantization axis given by the classical energy minimiza-
tion for a spin configuration

Si ¼ R̂iS̃i; ð10Þ
where S̃i is the spin vector in the local reference frame at the
site i, and R̂i is the rotation matrix for that site. Thus, the
spin Hamiltonian in Eq. (1) can be rewritten as
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Ĥ ¼
X
hiji

ST
i ĴijSj ¼

X
hiji

S̃T
i J̃ijS̃j; ð11Þ

where the “rotated” exchange matrix is

J̃ij ¼ R̂T
i ĴijR̂j: ð12Þ

This procedure is followed by a standard bosonization of
spin operators via the Holstein-Primakoff transformation
S̃zi ¼ S − a†i ai, S̃

þ ≈ ai
ffiffiffiffiffiffi
2S

p
, and a subsequent diagonal-

ization of the harmonic part of the Hamiltonian.
In the following, we use a two-stage rotation from the

crystallographic to local reference frame R̂ ¼ R̂φ · R̂θ,
with the first rotation in the x-y plane by an angle φ,

R̂φ ¼

0
B@

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

1
CA; ð13Þ

and the second rotation in the x-y plane

R̂θ ¼

0
B@

sin θ 0 cos θ

0 1 0

− cos θ 0 sin θ

1
CA: ð14Þ

Thus, the spin transformation is given by

R̂i ¼

0
B@

sin θi cosφi − sinφi cos θi cosφi

sin θi sinφi cosφi cos θi sinφi

− cos θi 0 sin θi

1
CA; ð15Þ

where θi are the out-of-plane canting angles of the spins.
While not unique, this approach is physically intuitive and
is motivated by the in-plane orderings.
A particularly simple and useful example that is used

below is that of the states that are coplanar with the lattice
plane, such as stripe-x and 120° Néel, for which all θi ¼ 0
and the rotation matrix (15) simplifies to

R̂i ¼

0
B@

0 − sinφi cosφi

0 cosφi sinφi

−1 0 0

1
CA: ð16Þ

After this rotation, the Hamiltonian (7) that yields the
LSWT becomes

H¼
X
hiji

fJ½ΔS̃xi S̃xj þ cos ðφi −φjÞðS̃zi S̃zj þ S̃yi S̃
y
jÞ�

þ 2J�� cos ðφ̃α þφi þφjÞðS̃zi S̃zj − S̃yi S̃
y
jÞ

− Jz�½cos ðφ̃α −φjÞS̃xi S̃yj þ cos ðφ̃α −φiÞS̃yi S̃xj �g; ð17Þ

where φiðjÞ are the angles of the spins with the x axis in the
laboratory frame, and we omit the terms that contribute
only to the anharmonic order of the SWT.

Choosing the ordering vector according to the classical
energy minimization dictates the number of sublattices
within the magnetic unit cell ns. Upon introducing the
corresponding Holstein-Primakoff boson species and after
the Fourier transform, the LSWT Hamiltonian reads

H2 ¼
1

2

X
k

x̂†
kĤkx̂k; ð18Þ

where x̂†
k ¼ ða†k; b†k;…; a−k; b−k;…Þ is a vector of length

2ns and Ĥk is a 2ns × 2ns matrix

Ĥk ¼ S

�
Âk B̂k

B̂†
k Â�

−k

�
; ð19Þ

where we isolate the factor S. Then the eigenvalues of ĝĤk,
fε1k; ε2k;…;−ε1−k;−ε2−k;…g give magnon energies.
Here, ĝ is a diagonal matrix ½1; 1;…;−1;−1;…�;
see Ref. [63].

A. Stripe-x phase

For the stripe-x phase, the ordering vector is one of the
M points, and spins are split into two sublattices with spins
along one of the bonds φi ¼ φ0 þ ðQriÞ. Choosing the
ordering vector Q ¼ M0 ¼ ð0; 2π= ffiffiffi

3
p Þ for convenience

dictates φA ¼ 0 and φB ¼ π for the A and B sublattices;
see Fig. 2. After some straightforward algebra with the
Hamiltonian in Eq. (17) separating the bonds into intra- and
intersublattice ones yields the 4 × 4 LSWT matrix in
Eq. (19) with the 2 × 2 matrices Âk and B̂k,

Âk ¼
�
Ak Bk

B�
k Ak

�
; B̂k ¼

�
Dk Ck

Ck D�
k

�
; ð20Þ

and the elements of the matrices given by

Ak ¼ 2ðJ − 4J��Þ þ ½Jð1þ ΔÞ − 2J��� coskδ1;
Bk ¼ ½JðΔ − 1Þ − J�� þ iJz��ðcoskδ2 þ coskδ3Þ;
Ck ¼ ½Jð1þ ΔÞ þ J���ðcoskδ2 þ coskδ3Þ;
Dk ¼ ½JðΔ − 1Þ þ 2J�� − 2iJz�� coskδ1: ð21Þ
In this case, the eigenvalues of the Hamiltonian matrix (19)
can be found analytically by diagonalizing ðĝĤkÞ2 instead
of ĝĤk, giving two magnon branches

ε21;2k ¼ S2
�
A2
k þ jBkj2 − C2

k − jDkj2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jAkBk − CkDkj2 − jBkD�

k − B�
kDkj2

q �
: ð22Þ

Figure 3 gives an example of the two magnon branches for
a representative point within the stripe-x phase along the
two paths in the Brillouin zone shown in the inset with the
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ordering vector at M0 also indicated. The left inset shows a
sketch of the Jz�–J�� phase diagram for Δ ¼ 1.0 in
Cartesian coordinates with the point indicating the chosen
set of parameters. As expected, the spectrum is fully
gapped due to the symmetry-breaking terms.

B. Stripe-yz phase

In the stripe-yz phase, the ordering vector and the
number of sublattices are the same as in the stripe-x case,
but the spins are tilted away from the laboratory frame; see
Fig. 2(c). Choosing againQ ¼ M0 fixes all φi ¼ π=2 while
the out-of-plane angles are θi ¼ θ þ ðQriÞ, leading to θA ¼
θ and θB ¼ θ þ π, where θ < 0 according to the classical
energy minimization in Sec. II B. Thus, the matrix of
rotation to local reference frames (15) becomes

R̂i ¼

0
B@

0 −1 0

sin θi 0 cos θi
− cos θi 0 sin θi

1
CA; ð23Þ

which yields a somewhat lengthly “rotated” Hamiltonian
Eq. (11) shown in Appendix A. The subsequent spin-wave
expansion yields the LSWT matrix (19) with the structure
identical to the stripe-x case, Eq. (20) above. We delegate
explicit expressions for Ak, Bk, Ck, and Dk for the stripe-
yz phase to Appendix A for brevity. Needless to say, the
magnon energies are calculated using the same expres-
sions (22).
Figure 4 shows magnon energies for a point within the

stripe-yz phase along the same two paths in the Brillouin
zone as in Fig. 3 and for the same ordering vector Q ¼ M0.
Although one expects the spectrum to be fully gapped due
to the symmetry-breaking terms as in the stripe-x case,

there is a gapless mode at the M point, which is not the
ordering vector, and the spectrum is fully gapped atM0. The
gap vanishes because of the choice of parameters in Fig. 4,
Δ ¼ 1.0, J�� ¼ 0.2J, and Jz� ¼ 2

ffiffiffi
2

p
J�� that belong to a

2D surface of parameters

Jz� ¼ ½4J�� þ Jð1 − ΔÞ�=
ffiffiffi
2

p
; ð24Þ

which yields an accidental degeneracy and a pseudo-
Goldstone (gapless) mode. For Δ ¼ 1, Eq. (24) gives a
line of points defined by Jz� ¼ 2

ffiffiffi
2

p
J��, and the out-of-

plane tilt of spins in this case is given by tan θ ¼ −1=
ffiffiffi
2

p
.

At this stage, the condition (24) can be seen as a
serendipitous discovery that is sufficient to ensure an
accidental degeneracy of the magnon band. For the
LSWT matrix elements in Eq. (20), Eq. (24) follows from
requiring DM ¼ 0, which simultaneously makes
AM ¼ jBMj; see Appendix A for their explicit expressions.
While this accidental degeneracy looks similar to the

case of the J1–J2 model on a triangular lattice [64], the
symmetry associated with it is hidden. We identify this 2D
surface of accidental degeneracies in the parameter space as
corresponding to an extended Kitaev-Heisenberg model,
which possesses emergent symmetries that naturally lead to
the pseudo-Goldstone modes in the quasiclassical limit; see
Sec. VI A. For a generic choice of parameters within the 3D
region of the stripe-yz phase, the accidental degeneracy is
not present, but the gap remains small in a large portion of
the phase diagram. In Appendix A, we provide two
additional plots of magnon energies for the stripe-yz phase
to substantiate this point.
We also point out that the presence of this gapless or

nearly gapless mode does not affect quantum fluctuations,
which remain small even in the quantum S ¼ 1=2 limit
throughout the stripe-yz phase. However, the ordering Néel
temperature is necessarily suppressed in a vicinity of the 2D

FIG. 4. Same as Fig. 3 for J > 0, Δ ¼ 1.0, J�� ¼ 0.2J, and
Jz� ¼ 2

ffiffiffi
2

p
J�� within the stripe-yz phase. See text for the

discussion of the accidental degeneracy at the M point.

FIG. 3. Magnon energies ε1;2k (upper and lower curves) from
Eq. (22) for J > 0, Δ ¼ 1.0, J�� ¼ −0.3J, and Jz� ¼ 0.2J.
Solid (dashed) lines are along the ΓMKΓ (ΓM0K0Γ) paths; the
ordering vector at M0 is indicated in the inset. Left inset: The 2D
Jz�–J�� phase diagram for Δ ¼ 1.0 with the point indicating the
chosen set of parameters.
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surface in Eq. (24) due to the Mermin-Wagner theorem. We
discuss this dichotomy in Sec. V.

C. 120° phase

For the 120° phase, the ordering vector is one of the K
points [see Fig. 2(a)] and spins form a three-sublattice
structure. For instance, choosing the ordering vector Q ¼
K0 ¼ ð4π=3; 0Þ and fixing the angle on the A sublattices to
φA defines the other angles via φi ¼ φ0 þ ðQriÞ. Thus,
φB ¼ φA þ ðδ1QÞ ¼ φA − 2π=3 and φC ¼ φA − ðδ1QÞ ¼
φA þ 2π=3 as expected for the 120° pattern. Using these
phases in the Hamiltonian (17), after some tedious but
straightforward algebra, one obtains the 3 × 3 Âk and B̂k
LSWT matrices in Eq. (19)

Âk ¼ 3J
�
1̂þ 1

4
ð2Δ − 1ÞM̂1

�
− 3J��M̂2 − i

3Jz�
2

M̂3;

B̂k ¼ 3J
4
ð1þ 2ΔÞM̂1 þ 3J��M̂2 − i

3Jz�
2

M̂4: ð25Þ

Since the nearest-neighbor interactions couple only differ-
ent sublattices, the resultant M̂i matrices are all traceless
and are built from the hopping amplitudes, which are either
bond independent, as for M̂1 in the XXZ term

M̂1 ¼

0
B@

0 γ γ�

γ� 0 γ

γ γ� 0

1
CA; γ ¼ 1

3

X
α

eikδα ; ð26Þ

or bond dependent, as for the ones originating from the
anisotropic J�� and Jz� terms

M̂2 ¼

0
B@

0 γAB γ�AC
γ�AB 0 γBC

γAC γ�BC 0

1
CA; ð27Þ

M̂3 ¼

0
B@

0 γ̄AB γ̄�AC
−γ̄�AB 0 γ̄BC

−γ̄AC −γ̄�BC 0

1
CA; ð28Þ

M̂4 ¼

0
B@

0 γ̃AB γ̃�AC
γ̃�AB 0 γ̃BC

γ̃AC γ̃�BC 0

1
CA; ð29Þ

where

γRS ¼
1

3

X
α

eikδα cos ðφR þ φS þ φ̃αÞ;

γ̄RS ¼
1

3

X
α

eikδα ½cos ðφR − φ̃αÞ − cos ðφS − φ̃αÞ�;

γ̃RS ¼
1

3

X
α

eikδα ½cos ðφR − φ̃αÞ þ cos ðφS − φ̃αÞ�; ð30Þ

and sums over α involve only three primitive vectors δα.
With the Âk and B̂k matrices (25) written out explicitly,

the 6 × 6 LSWT Hamiltonian (19) has to be diagonalized
numerically. Figure 5(a) shows the resultant magnon
spectrum for a representative point in the 120° phase for
J�� < 0 indicated in the insets along the two paths in the
Brillouin zone shown in Fig. 5(b), which also shows an
intensity map of the lowest magnon branch. Note that due
to the three-sublattice structure, the magnetic Brillouin
zone is one-third of the full one, and the spectrum in
Fig. 5(a) is symmetric with the middle of the Γ − K line, so
the K and Γ points are equivalent. Thus, the spectrum
possesses only one Goldstone mode for Δ < 1.
While one expects the spectrum to be gapless because of

the emergent Uð1Þ symmetry of the classical model
discussed in Sec. II B, the unusual feature in Figs. 5(a)
and 5(b) is the nonreciprocal character of the magnon
dispersions, εα;k ≠ εα;−k [65,66], which is due to the Jz�

(a)

(b) (c)

FIG. 5. (a) Magnon energies for a point in the 120° phase along
two reciprocal k contours (solid and dashed) in (b), with the
ordering vector indicated. (b) Intensity plot of the lower branch.
(c) The φ-dependent part of the zero-point energy vs φ that
selects the structure sketched in (a). The spectrum retains C3 but
not I symmetry; see text.
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term that breaks the inversion symmetry of the LSWT
Hamiltonian in the 120° state. While Ĥ−k ≠ Ĥk does not
automatically imply the nonreciprocity, the Jz� term also
makes Ĥ�

−k ≠ Ĥk, which together seem to be a sufficient
condition. As one can see in Fig. 5(b), the 2π=3-rotation
symmetry of the spectrum is preserved, but the inversion is
not. An additional figure showing the same behavior for
J�� > 0 is given in Appendix A.
As we discuss in Sec. II B, anisotropic terms do not

contribute to classical energy of the 120° state, yielding an
accidental Uð1Þ degeneracy for Δ < 1. Since the magnon
spectra depend on the angles of spins with bonds, this
degeneracy will be lifted by zero-point fluctuations via the
order-by-disorder mechanism [55,67,68] that should select
a preferred spin direction and open a gap in the spectrum. In
the 120° structure, fixing an angle of one spin fixes the rest,
so the quantum energy correction is given by δEðφÞ ¼
−3JS=2þP

α;k εα;kðφÞ=6, where εα;kðφÞ are the magnon
energies that depend on the angle φ of a spin in one of the
sublattices with the x axis, and the sum is over the full
Brillouin zone.
In Fig. 5(c), we show this quantum correction with its

average value subtracted ΔEðφÞ ¼ δEðφÞ − hδEðφÞi vs φ.
Thus, for the given parameters, fluctuations pin spins to the
bond directions in the manner shown in the sketch of the
120° configuration in Fig. 5(a). That is, each spin is
perpendicular to one of the bonds and bisects an angle of
the triangle corresponding to the choice φ ¼ π=6þ πn=3.
This choice is for the parameters to the left of the dashed line
in the inset in Fig. 5(a). To the right of it, a state with spins
along the bonds is chosen with φ ¼ πn=3; see Appendix A.
Curiously, the fact that the energy minimum must switch
implies that the Uð1Þ symmetry is retained on a 2D surface
within the 120° phase.

D. Ferromagnetic phase

For the ferromagnetic phase, the ordering vector is at
Q ¼ Γ ¼ ð0; 0Þ, and the spin state can be described with
a single-sublattice picture, i.e., all φi ¼ φ and θi ¼ θ. As
we mention in Sec. II, for Δ < 1 the XXZ anisotropy
reduces the symmetry to Uð1Þ and makes θ ¼ 0. For
Δ ¼ 1, the classical energy is insensitive to the global
direction of the ordered moment and the symmetry is
Oð3Þ. Having this latter case in mind, the matrix of
rotation to local reference frames (15) retains its general
form, and we list the relevant terms of the rotated
exchange matrix in Appendix A.
The spin-wave expansion yields a simple Hamiltonian

H ¼ 3S
X
k

�
Aka

†
kak −

1

2
ðBka

†
ka

†
−k þ H:c:Þ

�
; ð31Þ

with somewhat involved expressions for Ak and Bk,

Ak¼−2Jðcos2θþΔsin2θÞþJ½2þð1−ΔÞcos2θ�γk
−2J��cos2θγF;k−Jz� sin2θ γ̄F;k;

Bk¼Jð1−ΔÞcos2θγk−2J��ð1þsin2θÞγF;k
þJz� sin2θ γ̄F;kþ2ið2J�� sinθ γ̃F;kþJz�cosθ γ̂F;kÞ;

ð32Þ

where, using notations cφ̄ ¼ cos φ̄ and sφ̄ ¼ sin φ̄,

γk ¼ 1

3

X
α

cα;

γF;k ¼ 1

3

X
α

cαcφαþ2φ; γ̃F;k ¼ 1

3

X
α

cαsφαþ2φ;

γ̄F;k ¼ 1

3

X
α

cαsφ−φα
; γ̂F;k ¼ 1

3

X
α

cαcφ−φα
; ð33Þ

where cα ¼ coskδα and sums over α involve only three
primitive vectors δα as before.
The magnon spectrum is given by

εk ¼ 3S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k − jBkj2

q
; ð34Þ

and expressions for Ak and Bk (32) simplify considerably
for Δ < 1 as it forces a coplanar state with θ ¼ 0.
Figure 6 shows the magnon spectrum along the two

paths in the Brillouin zone for a representative point in the
FM phase as indicated in the insets. Note that J < 0.
Similar to the 120° phase, the entire 3D region of the FM
phase has an accidental Uð1Þ degeneracy of the classical
model for Δ < 1 and Oð3Þ for Δ ¼ 1 as we discuss in
Sec. II B, hence, the gapless spectrum. One can show from
Eqs. (32) and (33) that the Goldstone mode should be linear

FIG. 6. Magnon energies along two contours shown in the inset
for a representative point in the FM phase: J < 0, Δ ¼ 0.5,
J�� ¼ 0.4J, and Jz� ¼ −0.1J. Inset shows the intensity plot of
the magnon dispersion. A sketch depicts the orientation selected
by the order-by-disorder mechanism.
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in k for allΔ < 1 and quadratic forΔ ¼ 1; see Appendix A
for another plot of the magnon spectrum demonstrating the
latter result.
Similar to the stripe states, once the direction of the

orderedmoment is chosen, theC3 symmetry is broken, while
inversion remains; see Fig. 6. The direction of the ordered
moment in the FM state is selected via order by disorder, as
for the 120° state. The same type of analysis for the
parameters in Fig. 6 pins spins in the manner shown in
the sketch of the ordered structure, i.e., perpendicular to one
of the bonds with φ ¼ π=2þ πn=3. We find that for Δ < 1,
the preferred orientation of the ordered moment in the FM
phase of the phase diagram switches from the perpendicular
(φ ¼ π=2) to the parallel (φ ¼ 0) orientation in a region
roughly near J�� ≈ 0, although the details of such a switch
canbemore complicated. In analogywith the 120° phase, this
behavior also implies a surface where Uð1Þ symmetry is
retained.
For Δ ¼ 1, the quantum selection of the direction of the

ordered moment is more complicated because of the Oð3Þ
degeneracy. However, in case of parameters that fall on the
line corresponding to the K–J model (see Sec. VI) order by
disorder selects the so-called cubic axes as a set of preferred
directions, in agreement with Ref. [53].

IV. INSTABILITIES OF MAGNON SPECTRA

In the preceding sections, principal single-Q ordered
phases of the model (7) are identified and their spectra of
excitations are found. Here we advocate a straightforward
and fruitful approach that provides further insights into the
phase diagram of the model via an investigation of the
stability boundaries of the magnon spectra. Generally, a
magnon spectrum of a state is defined in a corresponding
region of the phase diagram. As a function of the model
parameters, a magnon branch may soften and become
imaginary or have ε2k < 0 at one or at a set of k points,
indicating a transition to a different state, which is referred to
as magnon instability.
The well-known examples of such a behavior are

magnon-softening transitions in the J1–J2 model on the
square and triangular lattices and in some of its extensions
[64,69,70], in which magnon instability occurs exactly at
the classical phase boundary. There are also other exam-
ples, such as the XXZ version of the same model on the
triangular lattice [71], in which the magnon stability region
extends beyond the boundary of its classical phase. Such an
overlap of the magnon stability regions of the neighboring
phases suggests a first-order transition between them [72].
Finally, magnon instability may occur before the bounda-
ries of its classical phase are reached, indicating an
intermediate phase.

A. Stripe phases

First, we explore magnon instabilities in the stripe
phases. Reference [36] used a numerical optimization of

energy in large clusters of classical spins and was first to
demonstrate that the single-Q classical phase diagram of
the model (7) of the type shown in Fig. 2 may be
incomplete. It was shown that the more complicated
multi-Q states, which can be described as modulated stripe
phases with incommensurate ordering vectors, create a
layer of intermediate states between the stripe and 120°
phases.
We support this finding using magnon instabilities and

explore it in a wider region of phase space. Figures 7 and 8
show the 2D Jz�–J�� phase diagrams for several values of
Δ with magnon instability boundaries obtained from
Eq. (22) for the stripe-x and stripe-yz phases. While not
shown, magnon instability boundaries for the choice ofΔ ≈
0.56 are virtually indistinguishable from the phase boun-
daries of the multi-Q regions identified numerically
in Ref. [36].
Moreover, the k points of the observed magnon insta-

bilities also coincide with the ones identified in Ref. [36] as
the new ordering vectors. For instance, for most of the
boundary region with the 120° phase, the magnon insta-
bility occurs at the incommensurate vector Q located along
the line between the Γ andK points in the Brillouin zone, in
agreement with Ref. [36]. Needless to say, our method of
identifying multi-Q transition boundaries offers obvious
advantages over the numerical approach, as it requires only
the knowledge of the magnon spectrum of the single-Q
states.
In Fig. 7, which displays magnon instability lines (solid

lines) from the stripe phases for Δ ¼ 1 that occur before the
classical boundaries (dotted lines) are reached, we also
compare them to the results of the Luttinger-Tisza (LT)
method [52] shown by the dashed lines. The LT method,
with the so-called “weak” constraint, essentially amounts to
finding a minimum of the lowest eigenvalue of the Fourier
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FIG. 7. The Jz�–J�� phase diagram of the model (7) for Δ ¼ 1
with transition boundaries from Fig. 2 (dotted lines), from
magnon instabilities in the stripe-x and stripe-yz phases (solid
lines) and by the LT approach (dashed lines); see text.
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transform of the exchange matrix (6) JαβðqÞ in the q space
to find a single-Q ground state. It has been used previously
to study the phase diagram of the model (7) [32,35,36] and
is instrumental in identifying stripe structures as the ground
states of the model. However, it was noted that the LT
method sometimes fails and finds an incommensurate state
even when the true ground state is a commensurate single-
Q state [32,35]. In fact, these problems are not specific to
the model (7) and have been known and understood as
coming from the weak nature of the constraint [73].
Figure 7 illustrates these consistent discrepancies of the

LT method with the results of the magnon instability
approach for the phase boundaries of the stripe phases.
Curiously, the two methods agree for one point
fJ��; Jz�g ≈ f0.1; 0.3g, which is actually a point that
belongs to the line corresponding to the K–J model (see
Sec. VI), so one can suspect an emergent Uð1Þ=Oð3Þ
symmetry along this line as the reason for restoring the
validity of the LT approach. The other range where LT
agrees with our method is the range of Jz� ≳ 0.5 of the

stripe-to-stripe boundary. The reason for that is not totally
clear. We also note that the LT method breaks down within
the 120° phase for any Δ at any nonzero J��, predicting
incommensurate states [32]. Altogether, significant care
must be exercised when using it.
Lastly, we point out that the energy gain created by the

modulation of the stripe states in the multi-Q structures is
shown to be tiny, approximately 10−3J [36]. This smallness
may explain why no multi-Q states are detected by DMRG
[39] for the quantum S ¼ 1=2 case.

B. 120° phase

While the border regions of the stripe-x and stripe-yz
phases with the 120° phase get replaced by the multi-Q
states, magnon instabilities within the 120° phase also
indicate intriguing behavior. First, the 120° magnons
defined by the algebra in Sec. III C are stable with respect
to the anisotropic J�� term far beyond the classical
boundaries of the 120° phase regardless of the value of
the XXZ anisotropy Δ, with stability boundaries shown in
Fig. 8 by the half-ellipse lines. This fact strongly suggests a
first-order transition from the 120° to the stripe phases if
quantum fluctuations are included.
Second, the spectrum stability with respect to the

anisotropic Jz� term is more drastic. In fact, while the
XXZ anisotropy provides a finite range of stability to
magnons in the 120° phase, magnons in the Δ ¼ 1 limit are
unstable to any finite value of Jz�; see Fig. 8. This
instability is toward a different multi-Q long-range spiral
state, which corresponds to the spectrum softening at three
symmetric k points in the immediate vicinity of the Γ and
K points. This new state is very similar to the so-called Z2

vortex state that was discussed intensely in the triangular-
lattice Kitaev-Heisenberg model [53,54]. In Sec. VI, we
discuss the correspondence of our model (7) to that model
along the line in theΔ ¼ 1 plane. Our present consideration
shows that a similar state exists in a significantly wider
parameter space.
We note that both trends are commensurate with our

previous DMRG results for the quantum S ¼ 1=2 case in
Ref. [39]. Namely, DMRG observes only a direct transition
from the 120° to the stripe phases vs J�� and the transition
is likely first order [39]. The behavior of the transition
boundary of the spin-liquid phase found in Ref. [39] and
the overall shape of the phase space occupied by it is
similar to the boundary of the long-range spiral state
discussed above. The main difference is that the footprint
of the spin liquid in the Δ ¼ 1 plane is smaller and an
ordered 120°-like phase is stabilized for Jz� ≲ 0.27. Both
the spiral (Z2 vortex) and the spin-liquid phases shrink and
disappear upon reducing Δ. This similarity may argue for a
possible relation between the two, suggesting the spin-
liquid state of Ref. [39] to be a molten Z2 vortex state rather
than of a molten 120° state. However, to add a word of
caution, we find no indication of any sizable shift of the
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FIG. 8. Same as in Fig. 7 for several Δ; dotted lines are
transitions in Fig. 2, solid lines are magnon instabilities of the
stripe and 120° phases (half-ellipse shape). Filled areas are stable
single-Q phases and blank regions are multi-Q states.
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peaks in the spin-liquid structure factor from the commen-
surate ordering vector of the 120° state, nor do we see any
traces of the chirality in the spin-liquid wave function that
is nonzero in the Z2 vortex state; see Ref. [39].

V. QUANTUM AND THERMAL FLUCTUATIONS
IN THE STRIPE PHASES

In this section, we verify whether strong anisotropies in
the model (7) can result in strong quantum or thermal
fluctuations in the stripe phases using a quasiclassical
approach.

A. Quantum fluctuations

The on-site ordered moment for T ¼ 0 within the LSWT
takes the standard form

hSi ¼ S −
1

N

X
μ;k

v2μk; ð35Þ

where N is the total number of lattice sites, the k sum is
over the full Brillouin zone of the lattice, μ ¼ 1, 2
numerates magnon branches in the stripe phase, vμk are
the Bogolyubov parameters of the transformation that
diagonalizes the Hamiltonian in Eq. (19), and we use
the symmetry of the sublattices in the stripe phases.
In the stripe phases, given the symmetry between

sublattices, normalization of the Bogolyubov parameters
is u2μk − v2μk ¼ 1=2, and their squares can be found
analytically following Ref. [74]

u2μk ¼ M11½εμk�Q
ν≠μðεμk − ενkÞ

; ð36Þ

whereM11½λ� is the first minor of λÎ − ĝĤk with the LSWT
Hamiltonian matrix (19), the product in the denominator is

over three out of four eigenvalues fε1k; ε2k;−ε1−k;−ε2−kg
found in Sec. III A, and the explicit expression forM11½λ� is
given by

M11½λ� ¼ ðAk þ λÞðλ2 þ C2
k þ jDkj2 − A2

kÞ
þ jBkj2ðAk − λÞ − CkðD�

kBk þ B�
kDkÞ; ð37Þ

with the matrix elements for the stripe-x phase given in
Eq. (35) and for the stripe-yz phase in Appendix A.
The intensity map of hSi obtained from Eq. (35) for

S ¼ 1=2 and Δ ¼ 1 is shown in Fig. 9(a) throughout the
stripe phases. One can see that the on-site magnetization is
nearly classical, and quantum fluctuations are really neg-
ligible for these regions all the way to the transition
boundaries even in the quantum S ¼ 1=2 limit. While this
observation may seem natural for the strongly gapped
stripe-x phase [31], it is somewhat less obvious in the
stripe-yz phase because its spectrum has low-lying pseudo-
Goldstone modes owing to an accidental degeneracy; see
Sec. III B. As we argue in Sec. VI A, this is because the
model in this region is related to a ferromagnetic state,
which translates into a nondivergent contribution of the
gapless region to the fluctuations in Eq. (35).
We also note that we do not show the results for the

ordered moment hSi from the 120° and ferromagnetic
states. In the former state, the spectrum is unstable toward
the spiral-like state for Δ ¼ 1, as we discuss in Sec. IV B
above. In the latter state, the order-by-disorder selection of
the ordered moment direction is complicated for Δ ¼ 1 and
has to be done numerically; see Sec. III D.
These problems are avoided for smaller Δ, and we

present such calculations in Fig. 10(a) for Δ ¼ 0.5. Here
the order-by-disorder selection in both 120° and FM phases
is straightforward (see Secs. III C and III D), and for the
120° state, the formalism for calculating hSi is the same

(a) (b)

 = 1.0

TN /TMFS
 

FIG. 9. Intensity maps of the (a) T ¼ 0 on-site ordered moment hSi, Eq. (35), and (b) ratio TN=TMF, Eqs. (42) and (38), in the stripe
phases for S ¼ 1=2. Parametrization is as in Fig. 2, Δ ¼ 1. Ellipse shows Jz� ¼ 2

ffiffiffi
2

p jJ��j line, Eq. (24); see text.
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as in Eqs. (35) and (36). Note that the empty regions in
Fig. 10(a) are from the dual 120° state and the multi-Q
regions discussed in Sec. IVA, for which it is simply
challenging to perform similar calculations. There is,
however, hardly any doubt that they are equally well
ordered as the rest of the phase diagram.
Thus, we reiterate once again that most of the phase

diagram of the model (7) is occupied by the states with
insignificant quantum fluctuations even for S ¼ 1=2.

B. Thermal fluctuations

It is common in studies of frustrated magnets and their
models to characterize them with the “frustration ratio” f ¼
θCW=TN [35,75], the ratio of the Curie-Weiss temperature
θCW to the actual ordering temperature TN , as a measure of
a proximity to potentially exotic states.
A more refined alternative to θCW in anisotropic models

is the mean-field transition temperature [76]

TMF ¼ −
SðSþ 1Þ

3kB
λminðQÞ; ð38Þ

where λminðQÞ is the lowest eigenvalue of the Fourier
transform of the exchange matrix (6) Ĵij at the ordering
vector. For the stripe ordersQ ¼ M0, and λminðQÞ is simply
the classical energy per unit cell from Eq. (9) λx ¼ 2Estripe-x

for the stripe-x phase and λyz ¼ 2Estripe-yz for the stripe-
yz phase.
The transition temperature can be found from the

vanishing point of the ordered moment within the LSWT

hSiT ¼ hSi − 1

N

X
μ;k

ðu2μk þ v2μkÞnðεμkÞ; ð39Þ

where nðεμkÞ is the magnon occupation number. However,
this approach is known to overestimate TN [77], as it leads

to hSiT ∝ ðTN − TÞ for T → TN, not to a power law.
Instead, we use the self-consistent RPA method of
Refs. [74,78], in which one introduces the T dependence
in the magnon spectrum as ε̃k ¼ 2hSiTεk. Then the spin
Green’s function is given by [78]

hS−kSþ−kiω ¼ 2hSiT
X
μ

�
u2μk

ω − ε̃μk
−

v2μk
ωþ ε̃μk

�
; ð40Þ

and Eq. (39) is replaced by a self-consistent condition

hSiT ¼ 1

2
−
2hSiT
N

X
μ;k

½u2μknðε̃μkÞ − v2μknð−ε̃μkÞ�: ð41Þ

At T → TN , the ordered moment hSiT → 0, and Eq. (41)
yields the ordering temperature

1

TN
¼ 2

N

X
μ;k

u2μk þ v2μk
εμk

: ð42Þ

Note that this approach is only valid for S ¼ 1=2, with
expressions being more complicated for larger spins [78].
The results of the calculations of f−1 ¼ TN=TMF are

shown in Figs. 9(b) and 10(b) for Δ ¼ 1 and Δ ¼ 0.5,
respectively. For the stripe-x phase, the ordering temperature
is close to the mean-field temperature except near the
transition boundaries as expected. The results for the
stripe-yz phase are more intriguing. There is clearly a line
of parameters where TN is exactly zero in both figures. This
line is given by Eq. (24), which reduces to Jz� ¼ 2

ffiffiffi
2

p jJ��j
forΔ ¼ 1 in Fig. 9(b). It corresponds to the condition for the
accidental degeneracy and for the pseudo-Goldstonemode in
themagnon spectrum; see Sec. III B.On a technical level, it is
easy to understand why the transition temperature vanishes.
In Eq. (42), uk, vk ∼ const and the magnon energy εk ∼ k2

near the accidental degeneracy point, leading to a logarithmic

S
 

(a) (b)

 = 0.5

TN /TMF

FIG. 10. (a), (b) Same as in Fig. 9(a), 9(b) forΔ ¼ 0.5with hSi for the 120° and FM phases in (a). Ellipse shows the line from Eq. (24).
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divergence. Physically, this divergence is a manifestation of
the Mermin-Wagner theorem that forbids ordering in 2D in
the presence of a continuous symmetry.
Several comments are in order. First, both ferromagnetic

and 120° magnon spectra are gapless, and the states retain a
continuous symmetry on the classical level. Therefore, by
the same Mermin-Wagner theorem, the ordering transition
temperature TN is zero throughout their regions, as is
shown in Figs. 9(b) and 10(b).
Second, we provide a clear example that a large

frustration ratio can be highly misleading as a guide to a
quantum-disordered region in 2D. In our case, quantum
fluctuations are negligible and the ordered moment is
nearly classical, but TMF=TN can be large, which naively
would imply a proximity to a spin-liquid state [35].
Third, because the degeneracy leading to pseudo-

Goldstone modes is accidental, quantum fluctuations will
induce a gap in them via an order-by-disorder effect [55].
We delegate the quantitative discussion of this effect to
Appendix B, which needs some further developments
discussed in Sec. VI A. Although the degeneracy will be
lifted, the ordering temperature will remain suppressed in
that region compared to the mean-field expectations.
Lastly, while a detailed phenomenology of the pseudo-

Goldstone modes and suppressed ordering temperature is
achieved and demonstrated, it still leaves the question on
the nature of the accidental degeneracy wide open. The
system is in a well-ordered stripe phase, with the in-plane
and out-of-plane angles of spins seemingly pinned by the
energy minimization, with no obvious combinations of φ
and θ manifesting a continuous symmetry of the spin
configuration in the crystallographic axes. In order to
elucidate the nature of this symmetry, we need to consider
a different set of axes used in the anisotropic bond-
dependent models, which we discuss next.

VI. CUBIC AXES AND GENERALIZED
KITAEV-HEISENBERG MODEL

The underlying crystal structure of the triangular-lattice
model considered in this work is that of the 2D arrangement
of the edge-sharing octahedra of ligands, such as O2−,
surrounding magnetic ions, such as Yb3þ in the case of
YbMgGaO4; see Fig. 11. It is also a particular example of
the 2D and 3D crystal structures built from the edge-
sharing octahedra, such as the honeycomb and pyrochlore
lattices; see Ref. [16] for an overview.
Because of the crystal field effect and since the super-

exchange processes between magnetic ions are mediated by
the ligands, this geometry precipitates bond-dependent
anisotropic-exchange interactions between magnetic
moments of the ions with strong spin-orbit coupling
[12,13,16,56]. At the same time, this robust structure
maintains high lattice symmetry of the resultant spin
models, such as the one discussed in Sec. II for our model
(7), which limits the number and the type of allowed terms.

This lattice arrangement also makes natural the choice of
axes that is different from the crystallographic ones that are
used in this work so far, the so-called cubic axes. The cubic
axes are directly tied to the edges of the cubes, that is, to the
bonds of the magnetic ions with ligands (see Fig. 11) as
opposed to the crystallographic ones that consider only
magnetic ions. Crucially, aside from this physical justifi-
cation, some of the hidden symmetries of the model
become apparent in this language.
One of the choices for the cubic axes is illustrated in

Fig. 11, where we also outline the octahedron of the ligand
sites and the ligand-to-magnetic-ion bonds that are forming
cubic shapes, with bonds and sites of the lattice being the
same as in Fig. 1. Then, the transformation from the cubic
to crystallographic reference frame Scryst ¼ R̂cScubic is
given by

R̂c ¼

0
BBB@

0 1ffiffi
2

p 1ffiffi
2

p

−
ffiffi
2
3

q
1ffiffi
6

p − 1ffiffi
6

p

− 1ffiffi
3

p − 1ffiffi
3

p 1ffiffi
3

p

1
CCCA: ð43Þ

Next, the model (7) in the cubic axes can be rewritten as
the extended Kitaev-Heisenberg (K–J) model

H ¼
X
hijiγ

½J0Si · Sj þ KSγi S
γ
j þ ΓðSαi Sβj þ Sβi S

α
j Þ

þ Γ0ðSγi Sαj þ Sγi S
β
j þ Sαi S

γ
j þ Sβi S

γ
jÞ�; ð44Þ

where we use conventions and notations borrowed from the
much-studied extendedK–Jmodel on the honeycomb lattice
[12]. The diagonals of the faces of the cubes in Fig. 11 that
connect magnetic ions form the triangular lattice with three
different bonds denoted as fX; Y; Zg≡ f�δ1;�δ2;�δ3g.
They are perpendicular to the corresponding cubic axes; i.e.,
the X bond is perpendicular to the x axis, Y to y, and Z to z,
respectively. In themodel (44), these bonds are numerated as

z

y

x

FIG. 11. Same as Fig. 1, side view. Octahedron of ligands is
highlighted; cubic axes and bonds of the triangular lattice are
shown. Spin ordering corresponds to the stripe-yz phase for the
parameters along the gapless K–J line; see text.
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hijiγ with the triads of fα; β; γg being fy; z; xg on the X
bond, fz; x; yg on the Y bond, and fx; y; zg on the Z bond;
see Ref. [16] for the model in terms of exchange matrices.
The parameters of the extended K–J model (44) are

related to the parameters of the original model (7) as

J0 ¼
1

3
ð2J þ ΔJ þ 2J�� þ

ffiffiffi
2

p
Jz�Þ;

K ¼ −2J�� −
ffiffiffi
2

p
Jz�;

Γ ¼ 1

3
ð−J þ ΔJ − 4J�� þ

ffiffiffi
2

p
Jz�Þ;

Γ0 ¼ 1

6
ð−2J þ 2ΔJ þ 4J�� −

ffiffiffi
2

p
Jz�Þ: ð45Þ

This relation was previously discussed in Refs. [15,16] with
slightly different factor and axes conventions.
In Sec. II B, we discuss invariance of the model (7) to the

simultaneous change of sign of the Jz� term and a global π
rotation of the crystallographic axes about the z axis as a
justification to consider only Jz� > 0. In order to access
Jz� < 0 in Eq. (45), rotation of the crystallographic axes
SxðyÞ → −SxðyÞ leads to the following transformation in the
J0KΓΓ0 language [15]

0
BBB@

J0
K

Γ
Γ0

1
CCCA

0

¼

0
BBB@

1 þ4=9 −4=9 þ4=9

0 −1=3 þ4=3 −4=3
0 þ4=9 þ5=9 þ4=9

0 −2=9 þ2=9 þ7=9

1
CCCA

0
BBB@

J0
K

Γ
Γ0

1
CCCA; ð46Þ

which returns the same extended Kitaev-Heisenberg model
(44) and is, thus, self-dual.

A. Degeneracies and Klein duality for Δ= 1

As we mention in Secs. III B and V B, in theΔ ¼ 1 plane
of the phase diagram in Fig. 2, there is a special line defined
by Jz� ¼ 2

ffiffiffi
2

p
J�� [see Eq. (24)] for which accidental

degeneracy of the magnon spectrum in the stripe-yz phase
occurs. One can immediately see from Eq. (45) that along
this line, two parameters of the model vanish, Γ ¼ Γ0 ¼ 0,
reducing the model in the cubic axes (44) to a simpler and
more symmetric Kitaev-Heisenberg model

H ¼
X
hijiγ

J0Si · Sj þ KSγi S
γ
j; ð47Þ

with J0 ¼ J þ 2J�� and K ¼ −6J��. This line of corre-
spondence to the Kitaev-Heisenberg model is shown in the
phase diagram in Fig. 12 as an oval, with the left half of it
obtained via a relation in Eq. (46) for Jz� < 0.
Not only does this correspondence to the higher-

symmetry model hint at the source of the enigmatic
degeneracies, but it also provides deeper insight into
connections between different parts of the phase diagram,

thanks to the prior works on the model (47) on the
honeycomb and triangular lattices [53,54,56,57].
Contrary to their explicit anisotropic character, compass

models often exhibit continuous symmetries in the classical
limit [10,79]. For instance, it is easy to see that for a
classical ferromagnetic state, the Kitaev term in Eq. (47) is
invariant under the global spin rotation, thus, demonstrating
an emergent Oð3Þ symmetry [53,54]. This consideration is
directly relevant to the accidental degeneracy in the stripe-
yz phase via the so-called Klein-duality transformation
[53,54,56,57]. This is a four-sublattice transformation, in
which one spin SðrÞ is left intact, while spins connected to
it via the XðY; ZÞ bonds Sðrþ δγÞ are rotated around the
xðy; zÞ cubic axes by π. Crucially, this transformation
leaves the K–J Hamiltonian (44) invariant, with the
parameters redefined as

J̃0 ¼ −J0; K̃ ¼ 2J0 þ K; ð48Þ

and in terms of J and J�� as

J̃ ¼ −
J
3
−
8J��
3

; J̃�� ¼ −
J
3
þ J��

3
: ð49Þ

One can easily see in Fig. 11 that the described spin
transformation converts the stripe-yz state into the ferro-
magnetic one. Since the FM state of the Kitaev-Heisenberg
model (44) is invariant under global spin rotation, the

FIG. 12. Phase diagram of the model (7) for Δ ¼ 1 as in Fig. 2.
The ellipse is the line of Jz� ¼ 2

ffiffiffi
2

p jJ��j for which model (7)
corresponds to Kitaev-Heisenberg model (44). Special points
with higher symmetries and some Klein-duality connections are
highlighted; see text.
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stripe-yz state must also be invariant under a corresponding
four-sublattice spin rotation, demonstrating accidental
Oð3Þ symmetry that naturally leads to the pseudo-
Goldstone modes in the quasiclassical limit.
In the crystallographic notations, the out-of-plane spin

angle in the stripe-yz phase along the K–J line is tan θ ¼
−1=

ffiffiffi
2

p
(see Sec. III B), which is precisely along one of the

cubic axes; see Fig. 11. Interestingly, as is shown for the
K–J model on the honeycomb [80,81] and triangular
lattices [54], precisely this orientation is chosen by quan-
tum fluctuations from a classically degenerate Oð3Þ mani-
fold of states. In our case, this choice is made on the
classical level by restricting ourselves with the two-
sublattice stripe state of the surrounding phase in Fig. 12.
We underscore that the Klein duality is not restricted to

the classical limit as the preceding discussion may seem to
suggest, but it rather implies an exact similarity of the
ground state and excitations up to the described spin
rotations [56,57]. This means that the entire section of
the K–J line in Fig. 12 belonging to the stripe-yz phase is
dual to the entire section of the same line within the FM
phase, as can be confirmed from Eq. (49), with the point
marked as “K-only” being self-dual. For instance, one of
the implications of the Klein duality is the existence of a
point in the stripe-yz phase that is dual to the isotropic
Heisenberg ferromagnetic point and thus must be free from
any quantum fluctuations [14]. Its coordinates according to
Eq. (49) are J̃ ¼ J̃�� > 0 and Jz� ¼ 2

ffiffiffi
2

p jJ��j, and it is
marked as the “J̃0-only” point in Fig. 12 with the dashed
line emphasizing the duality relation.
In practice, Klein duality means that the calculations for

quantities such as the Néel temperature in the stripe-yz
phase along the K–J line can be performed in the
ferromagnetic phase instead. Since the K–J model is
Oð3Þ symmetric only on the classical level, of interest is
the gap in the pseudo-Goldstone mode that is generated by
the order-by-disorder effect. In Appendix B, we present
calculations of the Hartree-Fock corrections to the magnon
spectrum for the ferromagnetic Kitaev-Heisenberg model
and use Klein duality to obtain the self-consistent transition
temperature in the stripe-yz phase. Although the fluc-
tuation-induced gap Eg in the magnon spectrum is small,
the transition temperature is very sensitive to it, TN ∝
TMF= ln ðTMF=EgÞ [77], leading to a finite TN except for the
J̃0-only point. The resultant transition temperatures are still
significantly suppressed compared to the mean-field
expectations (38).
The implications for the rest of the phase diagram in

Fig. 12 are the following. A section of the K–J line was
previously identified as a “nematic” phase [53,54,59,60]. In
Fig. 12, this section coincides with the boundary between
the stripe-x and stripe-yz phases and is unlikely to represent
a separate phase on its own.
Another insight is provided by the Klein duality into the

dual 120° phase. The isotropic antiferromagnetic Heisenberg

model has a Klein-dual point within the dual 120° phase
marked as the second “J̃0-only” point in Fig. 12 with the
coordinates J̃ ¼ J̃�� < 0; see Eq. (49). This relation also
elucidates the nature of the dual 120° state. It is obtained from
the three-sublattice 120° state by the Klein rotations of spins
around cubic axes resulting in the 12-sublattice state. Since
the cubic axes are not collinear with the crystallographic
ones, the resultant state is generally noncoplanar; see
Ref. [56] for the projection of such a state onto the
triangular-lattice plane. It is only when the plane of the
initial 120° state is chosen to be parallel to one of the principal
planes of the cubic coordinate system that theKlein rotations
will keep spins of the dual 120° state in the same plane. This
situation is sketched in Fig. 2.
The most important implication of the correspondence of

the model (7) to the Kitaev-Heisenberg model (47) along
the line Jz� ¼ 2

ffiffiffi
2

p
J�� in Fig. 12 is that it necessitates the

existence of a spin-liquid region in the S ¼ 1=2 case that is
Klein dual to the spin liquid found by us in Ref. [39]. The
confirmation of this is the subject of Sec. VII.

B. Gapless modes at Δ < 1

As we discuss in Secs. III B and V B, the pseudo-
Goldstone modes in the magnon spectrum of the stripe-yz
phase persist for Δ < 1 along the lines defined by Jz� ¼
½4J�� þ Jð1 − ΔÞ�= ffiffiffi

2
p

; see Eq. (24). For the extended
Kitaev-Heisenberg model (44) with parameters in
Eq. (45), this condition means that only one of the off-
diagonal terms remains zero along these lines (Γ ¼ 0), while
the other one does not (Γ0 ≠ 0) leading to theK–J–Γ0 model
with J0 ¼ J þ 2J�� and Δ-dependent K and Γ0,

K ¼ JðΔ − 1Þ − 6J��; Γ0 ¼ JðΔ − 1Þ=2: ð50Þ

Thus, while for Δ ¼ 1 the accidental degeneracies are
associated with the high symmetry of the Kitaev-
Heisenberg model, in this case their origin is more subtle.
For the K–J–Γ0 model, Klein-duality transformation

does not leave the Hamiltonian form invariant. While
Heisenberg and Kitaev terms do preserve their structure
with the change of

J̃0 ¼ −J0; K̃ ¼ 2J0 þ K; ð51Þ

the symmetric Γ0 term becomes antisymmetric. For exam-
ple, on the X bond and in the cubic axes,

Γ0ðSxi Syj þ Syi S
x
j þ Sxi S

z
j þ SziS

x
jÞ ð52Þ

becomes

Γ0ðSxi Syj − Syi S
x
j þ Sxi S

z
j − SziS

x
jÞ: ð53Þ

However, for Δ < 1 and along the K–J–Γ0 lines, the spin
orientation in the stripe-yz phase remains along one of the
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cubic axes. Therefore, the Γ0 term does not contribute to the
classical energy and leaves the accidental degeneracy of the
Kitaev-Heisenberg model intact.

VII. QUANTUM REALM: DUAL SPIN
LIQUIDS IN THE S= 1=2 MODEL

There are several new aspects of the anisotropic-
exchange model (7) that have been discussed in this work
so far. These are the classification of all its single-Q
classical phases, the identification of the instabilities of
some of them to more complex multi-Q states, and various
quantum and thermal effects in the magnetically ordered
phases; see Secs. II–V. There is also a fruitful connection
with an extended Kitaev-Heisenberg model (44) that
uncovers hidden symmetries and relates different parts of
the phase diagram to each other; see Sec. VI. Here, we build
upon these insights using DMRG for the S ¼ 1=2 model.
In our prior work, Ref. [39], we have discovered a spin-

liquid (SL) region of the 3D phase diagram of the model (7)
using DMRG, with the sketch of its base shown in Fig. 13
as a triangle enveloping the tricritical point of the 120°
and the stripe phases. According to Ref. [39], the SL
phase occupies a distorted cone shape with the base at
Δ ¼ 1.0, the widest dimensions Jz� ≃ ½0.27; 0.45�J and
J�� ≃ ½−0.17; 0.1�J, and the tip of the cone protruding
along the XXZ axis down to Δ≳ 0.7.
It is important to note that for Δ ¼ 1.0, the SL area in

Fig. 13 includes a segment of the line that corresponds to
the pure Kitaev-Heisenberg model (47) that we discuss
in Sec. VI A. Thus, in retrospect, our discovery is also a
discovery of a spin liquid in the K–J model on the
triangular lattice, without the benefit of having an exact
Kitaev-like solution in this geometry. We note that this
finding is in disagreement with the previous numerical
studies of this model [54,60], which we believe have

missed the SL phase due to finite-size effects [54] or
unfavorable boundary conditions [60].
Crucially, the Klein duality along the line of a correspon-

dence to the Kitaev-Heisenberg model necessitates the
existence of another spin liquid region sketched in
Fig. 13. Thus, in our present DMRG study, we investigate
the previously unexplored parts of the phase diagram in
order to confirm the existence of this dual SL phase. As in
Ref. [39], we use several complementary approaches: the
long-cylinder 1D “scans” with one parameter varied along
the length of the 6 × 36 cylinder to explore different phases
[31,46], the shorter cylinders with fixed parameters (6 × 20,
“nonscans”), as well as the intensity maps of the structure
factorSðqÞ and correlation lengths; see alsoAppendixC.We
use different boundary conditions and ranges of the varied
parameter to exclude unwanted proximity effects.
For the DMRG calculations in the 6 × 36 cylinders, we

typically perform 20–24 sweeps and keep up to m ¼
1600–2000 states depending on the complexity of the
Hamiltonian with truncation error < 10−5. For the 6 ×
20 cylinders, the protocol is 24 sweeps and up tom ¼ 2000

states with truncation error < 10−6. In the real-space
images of cylinders below, the size of the arrows represents
the projection of local spin in the lattice plane, and the color
is used to indicate the sign of the out-of-plane tilt angle of
the spins. The thickness of the nearest-neighbor bonds is
proportional to the magnitude of the hSiSji correlation,
with the (solid) dashed lines representing (anti)ferromag-
netic sign of it.

A. Dual spin-liquid region

Figure 14 summarizes the results from the two long-
cylinder scans through the putative dual SL region, first
along the K–J line and second normal to it at the tricritical
point of the dual 120° and the stripe phases. The portions of
the phase diagram shown on the left of the cylinder images
in Figs. 14(a) and 14(b) indicate the direction and extent of
each scan, and Figs. 14(c) and 14(d) show the magnitude of
the ordered moment hSi along the scans.
In Fig. 14(a), the scan covers the entire stretch from

the dual 120° point, that is, the point that is Klein dual to the
isotropic Heisenberg antiferromagnetic 120° point, to
the self-dual K-only point K > 0; see also Fig. 12. In the
notations of the Kitaev-Heisenberg model (47), this
scan is from fJ0;Kg¼f−1;2g= ffiffiffi

5
p

to fJ0;Kg¼f0;1g,
with the normalization of J20 þ K2 ¼ 1. Using duality trans-
formation (48), one can see that the dual 120° point indeed
corresponds to the J̃0-only model. In the notations of the
original anisotropic-exchange model (7), the scan is per-
formed along the Jz� ¼ 2

ffiffiffi
2

p jJ��j line with Δ ¼ 1.0 by
varying J=jJ��j from −1 to 2, as is indicated in Figs. 14(a)
and 14(c).
We note that no special boundary conditions are applied

in any of the long-cylinder scans, yet the dual 120° order

FIG. 13. Phase diagram for Δ ¼ 1.0 from Fig. 12 with high-
lighted spin-liquid regions. The lower SL region is from Ref. [39].
The magnified region emphasizes the vicinity of the dual spin-
liquid region that is studied here by DMRG.
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appears naturally on the left end of the cylinder in Fig. 14(a)
and is clearly discernible. Nearly half of this scan is
occupied by what is clearly identifiable as a stripe state,
which is intermediate between the stripe-x and stripe-yz
states in that the spins are neither parallel nor perpendicular
to any of the bonds. It is also tilted out of the lattice plane
similar to the stripe-yz state. As we point out above (see
Sec. VI A), this section of the K–J line, which is exposed
here in a wider parameter space, corresponds to the
boundary between two stripe phases and should not
represent a separate phase in the quantum limit. In
Refs. [54,60], this boundary is referred to as the nematic
phase even in the quantum limit, while Ref. [82] called it a
spin liquid. We believe that both terms must have been used
in error; see also Appendix C for a DMRG scan across the
right end of the scan in Fig. 14(a), the K-only point.
Despite a significant range of the scan in Fig. 14(a), there

is a clear suppression of order between the ordered phases.
The shaded regions in Figs. 14(a) and 14(c) indicate the
range that is obtained from the Klein duality of the extent of
the “original” spin liquid along the K–J line in Fig. 13,
J=jJ��j ≈ ½−0.22; 0.23�. It agrees with the minimum in the
ordered moment, and we refer to it as the dual SL region.
Similar to the SL phase of Ref. [39], which comes from

melting of the 120° phase, the dual spin liquid appears to be
born out of the dual 120° phase.
The second scan through the dual SL region is shown in

Fig. 14(b), with the vertical line within the shaded region
marking its intersect with the first scan. It is also a tricritical
point of the classical dual 120° and the stripe phases. The
scan in Fig. 14(b) is not on the K–J line, so the natural
notations here are of the anisotropic-exchange model (7), in
which this scan corresponds to the J ¼ 0 line, the line
where the XXZ part of the model is absent and the only two
variables are Jz� and J��. Keeping Jz� ¼ 2

ffiffiffi
2

p
in order to

match the first scan at J�� ¼ −1, we vary J�� from −2 to
−0.5. The stripe-x and stripe-yz phases are clearly seen in
the scan, separated by a rather wide shaded region
J�� ≈ ½−1.26;−0.76�, where magnetic order is suppressed.
In Fig. 14(d), the dashed lines show the ordered moment as
given by the 1=S calculations in the stripe phases, indicat-
ing that magnon instability boundaries are not unlike the
boundaries of the putative dual SL phase.
As is in the previous studies [39], the long-cylinder scans

are only part of the evidence for the spin liquid. In order to
confirm the SL, we perform DMRG nonscans on 6 × 20
clusters with fixed parameters. Figure 15(a) shows one
of them for the point that is at the core of the suggested
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FIG. 14. Long-cylinder DMRG scans (a) along the K–J line from the dual 120° to the K-only point, and (b) normal to it at the classical
tricritical point of the dual 120° and the stripe phases J ¼ 0 and Jz� ¼ −2

ffiffiffi
2

p
J��. Sketches of the phases indicate the direction and

extent of each scan, with (c) and (d) showing hSi along the scans. Shaded areas indicate putative dual spin-liquid regions. Dashed lines in
(d) are the LSWT results for hSi, Eq. (35), in the stripe phases.
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dual SL region, at J ¼ 0 and Jz� ¼ −2
ffiffiffi
2

p
J��, a tricritical

point of the classical phases. Since it is on the K–J line,
its coordinates in the K–J language correspond to
fJ0; Kg ¼ f−1; 3g= ffiffiffiffiffi

10
p

.
The cluster presented in Fig. 15(a) shows no discernible

traces of any magnetic order and has weak nearest-
neighbor hSiSji correlations of ferromagnetic sign. The
boundary conditions are open with one site removed on
each side of the cylinder to avoid spinon localization,
common to the Z2 spin-liquid states [39,46] and indicative
of them. Without the sites removed, a weak pattern similar
to the dual 120° structure appears at the boundaries (not
shown) and decays exponentially toward the center of the
cluster, all supportive of the SL state. This behavior is in
clear contrast with the results of a similar analysis of the
dual 120° (J̃0-only) point offered in Appendix C. There,
the long-cylinder scans also suggest a possible SL state,
but the 6 × 20 nonscan cluster verification demonstrates a
robust 12-sublattice order with a power-law decay from
the boundary, as expected.
A more comprehensive insight into the spin-spin corre-

lations and into the nature of the SL state is given by the
static structure factor observable in experiments,

SðqÞ ¼ 1

N

X
αβ;ij

�
δαβ −

qαqβ
q2

�
hSαi Sβj ieiqðRi−RjÞ: ð54Þ

We obtain it from the Fourier transform of the real-space
spin-spin correlation function hSαi Sβj i determined from the
DMRG ground-state wave function with all ji − jj dis-
tances that are available in the cylinder.
In Fig. 15(b), we present an intensity map of SðqÞ from

the cluster in Fig. 15(a). It shows clear maxima at the
Qd120° ¼ ð2π=3; 0Þ and equivalent points associated with
the dual 120° order; see Sec. II B. This is in accord with the
original spin liquid of Ref. [39] having broad maxima in
SðqÞ at the Q120°. These results also suggest that the dual
spin liquid can be seen as a result of a “melting” of the dual
120° phase in the same way that the spin liquid of Ref. [39]
can be seen as a molten 120° phase, both maintaining the
shape of the structure factor similar to that of the parent
ordered states.

Altogether, we confirm the existence of the second SL
region in the phase diagram of the anisotropic-exchange
model, with properties that are in accord with the expect-
ations based on the Klein duality relation along the K–J
line. This confirmation of the dual spin liquid strengthens
our case for both SL regions.
Two additional notes are in order. In Sec. IV B, we

remark on a similarity of the spin-liquid region in the
quantum S ¼ 1=2 model from Ref. [39] with the quasi-
classical region of instability of the 120° phase to a multi-Q
long-range spiral or a Z2-vortex-like state, suggesting a
possible connection between the two. This similarity may
imply that the discussed spin liquids should originate from
the melting of the Z2-vortex and dual Z2-vortex states
rather than their more simple 120° and dual 120° counter-
parts. However, we reiterate here that while the long-range
distortions of the ordered states found in DMRG clusters
are possible, there are no traces of the expected shifts of the
peaks from the commensurate ordering vectors in the SL
structure factors. There is also no detectable residual
chirality in the spin-liquid wave functions that may be
expected to survive from the Z2-vortex states; see Ref. [39].
Thus, the relation between the quasiclassical and quantum
ground states of the problem in this region deserves further
investigation.
Lastly, a superficial observation is that both the original

and the dual spin liquids seem to be centered at the
tricritical points of the classical single-Q ordered phases.
In the K–J notations, they correspond to the K ¼ J0 > 0
andK ¼ −3J0 > 0 points, respectively. Interestingly, in the
anisotropic-exchange notations, the dual tricritical point
corresponds to the model (7) with no XXZ terms and only
anisotropic Jz� and J�� terms. While we are unable to
draw any useful insight from this observation or identify
any quasiclassical degeneracy that can be affiliated with
this model, the chance that this point can have a special
solution may be an intriguing possibility.

B. Phase diagram of the K–J S= 1=2 model

Although the full parameter space of the nearest-neigh-
bor anisotropic-exchange model (7), or, equivalently, of the
extended K–J–Γ–Γ0 model (44) on the triangular lattice is
three dimensional, their relation to a simpler and more

(a) (b)

FIG. 15. (a) 6 × 20 DMRG cluster for J ¼ 0 and Jz� ¼ −2
ffiffiffi
2

p
J��. (b) Intensity map of SðqÞ, Eq. (54), from (a); see text.
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symmetric K–J model (47) along a one-dimensional line
has proven to be very informative. Thus, we conclude this
section by summarizing our DMRG results for the quantum
S ¼ 1=2 K–J model (47) in the form of its 1D phase
diagram shown in Fig. 16, where we use the standard
parametrization J0 ¼ cosφ and K ¼ sinφ, and the positive
(counterclockwise) φ direction corresponds to the negative
(clockwise) direction along the ellipse in our 2D phase
diagram in Fig. 12; see Eq. (47).
We fully agree with the previous studies of the triangular-

lattice K–J model [53,54,58–60,82] on the location and
boundaries of the FM and stripe-yz phases. Note that we
deviate in the notations for what we refer to as the “120°” and
“dual 120°” phases. They were quasiclassically identified as
the multi-Q distortions of such 120° orders and were called
the Z2 vortex crystal and its dual phases [53,54]. These
regions are still designated as the Z2 vortex and the dual Z2

vortex states in the S ¼ 1=2 case [54,60], although the
evidence for the persistence of such distortions in this limit is
slim. We note that some deviations from the precise spiral
orders near the isotropic limit of the model may have been
detected in our prior DMRG work, Ref. [39]. While we do
not conclusively confirm or rule them out, it seems that these
deviations from the ideal orders, even if exist, play only a
minor role in the energetics of the phases in the quantum
limit; see Sec. IV. Hence, we simply use quotation marks for
the 120° in referring to them.
We disagree with the previous works on the presence of a

nematic phase in the quantum limit [54,60]. While it may
exist as a fully classical curiosity, quantum fluctuations

select a stripe state that is intermediate between the stripe-x
and stripe-yz phases; see Sec. VI A and Appendix C.
Denoting this sector a spin liquid [82] must have been in
error. In Fig. 16, we refer to it as a “stripe” phase to
distinguish from the stripe-yz phase.
Our most important findings are the two regions of the

spin-liquid phase. They occur in a proximity of, and,
arguably, as a result of a melting of their respective parent
120° phases. This is also evidenced by the structure factor
discussed in Sec. VII A and in Ref. [39]. The connection of
our “SL” region to a SL phase of the fully isotropic J1–J2
Heisenberg model was established in Ref. [39] and was
referred to as a SL isomorphism. We find that the spin-spin
correlations are very similar in them and that there is a path
in the 4D phase diagram that provides a continuous link
between the two. This connection further strengthens the
argument for our “molten 120°” phase scenario.
The respective SL regions in Fig. 16 are as follows. For

the region marked SL, K=J0 ≈ ½0.71; 1.40� and φ=π≈
½0.20; 0.30�. While this may or may not be a coincidence,
the K ¼ J0 point is included in this range. By the Klein-
duality transformation, the region referred to as “dual SL”
occurs. Its boundaries agree well with the DMRG presented
in Sec. VII A and are K=J0 ¼ ½−3.4;−2.71� and
φ=π ≈ ½0.59; 0.61�. As we discuss above, it is centered
around the K ¼ −3J0 point, which translates to the
vanishing point for the XXZ part of anisotropic-exchange
model (7) with only anisotropic J�� and Jz� terms present.
Lastly, the mean-field Schwinger-boson study [83] has

discussed various spin liquids in the triangular-lattice K–J
model. The SL region in Fig. 16 is affiliated with their
“SL2” state, but the latter state has the structure factor that
is very different from SðqÞ found by DMRG [39] and thus
can be ruled out. We also reiterate that the spin liquids that
we identify are not consistent with the “open spinon Fermi-
surface” SL state proposed for YMGO [20].

VIII. SUMMARY

In this work, we provide an extensive, if not exhaustive,
overview of the phase diagram of the nearest-neighbor
triangular-lattice anisotropic-exchange model, which is rel-
evant to a growing family of the rare-earth-based magnets
and other materials with strong spin-orbit interactions. We
explore ordered phases, identify the principal ones that
occupy amajority of the parameter space, and obtain explicit
expressions for their nontrivial spin-wave excitation spectra.
We also identify and characterize transitions of some of the
ordered phases to more complex multi-Q states and dem-
onstrate the effectiveness of the analysis of such transitions
with the help of magnon instabilities.
In the studies of the quantum and finite-temperature

effects in the well-ordered phases, a number of accidental
degeneracies that lead to emergent continuous symmetries
of the classical states are discussed, and the effect of order-
by-disorder on them is analyzed. Another systematic and

FIG. 16. The 1D phase diagram of the quantum S ¼ 1=2 K–J
model (47) using DMRG results from Sec. VII A and Ref. [39].
Pure Heisenberg, pure Kitaev, and their Klein-dual points are
marked, and the duality relation between them and SL and “120°”
phases is emphasized by dashed lines.

MAKSIMOV, ZHU, WHITE, and CHERNYSHEV PHYS. REV. X 9, 021017 (2019)

021017-20



enigmatic accidental degeneracy is found in the nearly
classical stripe phase, leading to a strongly suppressed
ordering temperature that can be falsely attributed to a
proximity to an exotic state. This degeneracy is connected
to the correspondence of the original model to an extended
Kitaev-Heisenberg model, in which the degeneracies have a
more natural explanation.
This connection is particularly fruitful for uncovering

hidden symmetries and in relating different parts of the
phase diagram to each other via the Klein-duality trans-
formation. In a rather spectacular manifestation of the
correspondence to the Kitaev-Heisenberg model, a new
region of the spin-liquid state that is Klein dual to the spin
liquid found by us in a prior work is confirmed for the
S ¼ 1=2 model using an unbiased DMRG approach. Both
the original and the dual spin liquids occur in proximity to
their parent ordered phases that are also dual to each other.
This finding strengthens our case for both spin-liquid
regions in the phase diagram of the quantum model. As
a corollary, we also provide a one-dimensional phase
diagram of the quantum Kitaev-Heisenberg model on the
triangular lattice that updates and corrects previous results.
In conclusion, the present work, together with our prior

works in the phase diagram of the anisotropic-exchange
model on a triangular lattice, creates a foundation for the
studies of the large group of materials with anisotropic
exchanges, clears the path to a consistent interpretation of the
current and future experiments, and gives important new
insights into fundamental properties of quantum magnets
with spin-orbit-generated low-energy Hamiltonians.
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APPENDIX A: LSWT DETAILS

The spin Hamiltonian in the local axes and without the
anharmonic terms is

H ¼
X
hiji

ðJ̃xxij S̃xi S̃xj þ J̃yyij S̃
y
i S̃

y
j þ J̃zzij S̃

z
i S̃

z
j

þ J̃xyij S̃
x
i S̃

y
j þ J̃yxij S̃

y
i S̃

x
jÞ: ðA1Þ

1. Stripe-yz phase

For the stripe-yz state, the elements of the rotated
exchange matrix J̃ij are

J̃xxij ¼ ðJ − 2J�� cosφαÞ sinθi sinθj þΔJ cosθi cosθj
− Jz�ðcosθi sinθj þ sinθi cosθjÞ cosφα;

J̃yyij ¼ Jþ 2J�� cosφα;

J̃zzij ¼ ðJ − 2J�� cosφαÞ cosθi cosθj þΔJ sinθi sinθj
þ Jz�ðcosθi sinθj þ sinθi cosθjÞ cosφα;

J̃xyij ¼ 2J�� sinθi sinφα − Jz� cosθi sinφα; J̃yxij ¼ J̃xyji ;

ðA2Þ

where θiðjÞ for the two sublattices are defined by the choice
of Q ¼ M0, θA ¼ θ, and θB ¼ θ þ π; see Sec. III B. After
some algebra, Eq. (A2) yields the following expressions for
the matrix elements of the LSWT matrices in Eq. (20),

Ak ¼ 2JΔþ 2½Jð1−ΔÞ þ 4J���cos2θ− 4Jz� sin2θ

þf2Jþ ½JðΔ− 1Þ þ 2J���cos2θ− Jz� sin2θgc1;
Bk ¼ f½Jð1−ΔÞ þ J���cos2θ− 2J�� − Jz� sin2θ=2g

× ðc2 þ c3Þ− i
ffiffiffi
3

p
ð2J�� sinθ− Jz� cosθÞðc2 − c3Þ;

Ck ¼ −f2Jþ ½JðΔ− 1Þ− J���cos2θþ Jz� sinθ cosθg
× ðc2 þ c3Þ;

Dk ¼ −f½Jð1−ΔÞ− 2J���cos2θþ 4J�� þ Jz� sin2θgc1;
ðA3Þ

where cα ¼ coskδα.
In Figs. 17 and 18, we present the magnon spectra for

two points within the stripe-yz phase. The motivation for
their choice is the following. The Jz� term was initially
suggested as the main source of frustration [35], so the
model with the rest of the terms absent, the Jz�-only model,
is of interest. The parameter set referred to as “model B,”
Δ ¼ 0.76, J�� ¼ 0.26J, and Jz� ¼ 0.45J, was discussed
[23,24,30] as potentially relevant to YbMgGaO4 based on a
restricted fit of neutron-scattering results in high field
and on a matching of the observed static structure factor
by a semiclassical simulation of the spin-spin correlations
[23,24].
Figure 17 shows ε1;2k from Eq. (22) vs k along the

ΓMKΓ path and Fig. 18 along the ΓM0K0Γ path, respec-
tively, whereM0 is the ordering vector. The two models are
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away from the accidental degeneracy surface (24) that we
discuss in Sec. III B, but still demonstrate a nearly gapless
mode at the M point. This yields an ordering temperature
that is suppressed compared to the mean-field value, which
naively would suggest a proximity to a spin-liquid state.
However, we confirm that no signs of strong quantum
fluctuations are present in either of the cases. For S ¼ 1=2,
LSWT for the Jz�-only model gives hSi ¼ 0.4869, sup-
ported by the DMRG result hSi ¼ 0.4795. Model B is also
nearly classical with LSWT hSi ¼ 0.4763 and DMRG
giving hSi ¼ 0.4694.

2. 120° phase

In Fig. 19, we provide another example of the nonre-
ciprocal spectrum in the 120° phase discussed in Sec. III C.
The choice of parameters is to the right of the dashed line in
the inset of Fig. 19(a), which corresponds to quantum

order-by-disorder selecting a state with spins along the
bonds φ ¼ πn=3.

3. FM phase

For the ferromagnetic state, the elements of the rotated
exchange matrix J̃ij are

FIG. 18. Same as Fig. 17 along the ΓM0K0Γ path.

FIG. 19. Same as Fig. 5. (a) Magnon energies along the two
reciprocal k contours (solid and dashed) in (b) for the parameters
shown in the graph. (b) Intensity plot of the lower branch. (c) The
φ-dependent part of the zero-point energy selecting the structure
sketched in (a) with φ0 ¼ πn=3.

FIG. 20. Magnon energies along the two contours shown in the
upper inset for a point in the FM phase (right inset) that belongs to
the line corresponding to the K–J model: J < 0, Δ ¼ 1.0,
J�� ¼ −0.1J, and Jz� ¼ 2

ffiffiffi
2

p
J��; see text. Upper inset shows

the intensity plot of the magnon dispersion. A sketch depicts the
orientation selected by the order-by-disorder mechanism with the
chosen angles φ ¼ π=2 and θ ¼ arctan ð1= ffiffiffi

2
p Þ.

FIG. 17. Magnon energies ε1;2k from Eq. (22) vs k along the
ΓMKΓ path for the model (7) with only the Jz� term present
(dashed lines) and for the model B, J > 0, Δ ¼ 0.76,
J�� ¼ 0.26J, and Jz� ¼ 0.45J (solid lines). Both are within
the stripe-yz phase, and the ordering vector is at M0 as indicated.
Left inset: The 2D phase diagram with the points indicating the
chosen set of parameters.
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J̃xxα ¼ ½J þ 2J�� cos ðφα þ 2φÞ�sin2θ þ ΔJcos2θ

− Jz� sin 2θ sin ðφ − φαÞ;
J̃yyα ¼ J − 2J�� cos ðφα þ 2φÞ;
J̃zzα ¼ ½J þ 2J�� cos ðφα þ 2φÞ�cos2θ þ ΔJsin2θ

þ Jz� sin 2θ sin ðφ − φαÞ;
J̃xyα ¼ −2J�� sin θ sin ðφα þ 2φÞ − Jz� cos θ cos ðφ − φαÞ;

ðA4Þ

and J̃yxα ¼ J̃xyα , where φ and θ are the global angles of the
ordered magnetic moment; see Sec. III D.
In Fig. 20, we demonstrate the magnon spectrum in the

FM phase that is discussed in Sec. III D. Here it is shown
for the Δ ¼ 1 plane of the phase diagram and also for the
parameters that fall on the line corresponding to the K–J
model (see Sec. VI) for which order-by-disorder fluctua-
tions select the cubic axes as a preferred direction for the
ordered moment. The Goldstone mode is clearly quadratic
in k, while the rest of the features discussed in Sec. III D are
preserved.

APPENDIX B: GAP AND TN ON THE K–J LINE

Since the degeneracy leading to the pseudo-Goldstone
modes along the K–J line in Fig. 12 is accidental, quantum
fluctuations induce a gap and make the transition temper-
ature TN (42) finite in 2D. Generally, calculations of such
order-by-disorder gaps can be rather involved; see, e.g.,
Ref. [55]. In the considered case of the stripe-yz state in the
K–J model, the problem is simplified by the absence of the
cubic anharmonicities because the spin orientation is along
one of the cubic axes. The other simplification is the Klein
duality to the ferromagnetic state, for which calculations
are straightforward.
The LSWT spectrum in the ferromagnetic phase of the

Kitaev-Heisenberg model (47) is εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k − B2

k

p
, where

Ak ¼ −6J0Sð1 − γkÞ − KSð2 − c2 − c3Þ;
Bk ¼ −KSðc2 − c3Þ; ðB1Þ

cα ¼ coskδα, and γk is from Eq. (33); see Ref. [58].
The Hartree-Fock corrections from the quartic terms in

the SWT Hamiltonian to Ak and Bk are

δAk ¼ 2J0½3nð1 − γkÞ þm1ðc1 − 1Þ þm2ðc2 þ c3 − 2Þ�
þ K½nð2 − c2 − c3Þ þ 2ðm1c1 −m2 − Δ2Þ�;

δBk ¼ ð−2J0Δ2 þ KnÞðc2 − c3Þ; ðB2Þ

with n ¼ ha†i aii, mα ¼ ha†i aiþδαi, and Δα ¼ haiaiþδαi,

n ¼ 1

2N

X
k

�
Ak

εk
− 1

�
; mα ¼

1

2N

X
k

cαAk

εk
;

Δα ¼
1

2N

X
k

cαBk

εk
; ðB3Þ

where m2 ¼ m3, Δ2 ¼ −Δ3, and Δ1 ¼ 0.
Within the 1=S approximation, the spectrum becomes

ε̃k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAk þ δAkÞ2 − ðBk þ δBkÞ2

q
: ðB4Þ

However, the most important effect of the quantum
fluctuations is the gap at k ¼ 0,

Eg ¼ jδA0j ¼ 2jKðm1 −m2 − Δ2Þj; ðB5Þ
which we also verify by the recently developed method
of Ref. [55].
Since the LSWT spectrum is parabolic, one can approxi-

mate the renormalized spectrum as

ε̃k ¼ Eg þ εk; ðB6Þ
which should suffice for the regularization of the diver-
gences leading to the vanishing ordering temperature due to
Bose factors in Eq. (41). Thus, our self-consistent transition
temperature in the Kitaev-Heisenberg model is given
by a simplified version of Eq. (42) with the renormalized
spectrum (B6)

1

TN
¼ 1

N

X
k

1þ 2v2k
ε̃k

: ðB7Þ

The results of using Eq. (B7) for the FM phase of the K–J
model are presented in Fig. 21, where we denote the
transition temperature as TN having in mind Klein duality
to the stripe-yz part of the K–J line in Fig. 12. Both TN and
K are in units of ðJ20 þ K2Þ1=2 and J0 < 0.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
K
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T N

mean-field
self-consistent SWT

FIG. 21. Ordering temperature for the FM phase of the K–J
model calculated using Eq. (B7), lower curve, and the mean-field
result, Eq. (38), upper curve. TN and K are in units of
ðJ20 þ K2Þ1=2 and J0 < 0.
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Although the gap Eg is small, the transition temperature
depends singularly on it, TN ∝ TMF= ln ðTMF=EgÞ [77],
leading to a finite and sizable TN with an exception to
the phase boundaries and to the isotropic Oð3Þ symmetric
K ¼ 0 point (“J0-only” point), where TN remains zero. The
resultant transition temperatures are still significantly sup-
pressed compared to the mean-field results of Eq. (38).

APPENDIX C: DMRG DETAILS

Figure 22 summarizes the results from the two long-
cylinder scans, one across the K-only point separating the
stripe-x and stripe-yz phases, and the other through the dual
120° region, also connecting the stripe phases. Both scans are
perpendicular to theK–J line in Fig. 12, and thevertical lines
in the clusters show the point of intersect with it.
The cutouts of the phase diagram shown on the left of the
cylinder images inFigs. 22(a) and22(b) indicate thedirection
and extent of each scan, and Figs. 22(c) and 22(d) show the
magnitude of the ordered moment hSi along the scans.
In Fig. 22(a), a scan is performed by varying J��=J from

−0.7 to −0.3 for fixed Δ ¼ 1.0 and Jz� ¼ ffiffiffi
2

p
J so that at

the K–J line Jz� ¼ −2
ffiffiffi
2

p
J�� as elsewhere. The scan

shows a clear crossover from the stripe-x to stripe-yz phase.
The spins on the left edge of the cylinder in the stripe-x
phase are slightly tilted off the lattice plane and continu-
ously deform into the stripe-yz order on the right edge with
only a small variation of the ordered moment near
hSi ≈ 0.4; see Fig. 22(c). There is no indication of a
nematic [54,60] or a spin-liquid state [82] at the K–J line,
nor there is a sign of a proximity to any.
The dashed lines in Fig. 22(c) show the ordered moment

as given by the 1=S calculations in the neighboring stripe
phases, indicating a direct transition. We also perform a
DMRG nonscan 6 × 20 cluster calculation at the K-only
point (not shown) with the results very similar to the central
part of the scan in Fig. 22(a), showing a robust order in the
form of a stripe phase with the same ordering vector at the
M point and spins oriented in between the stripe-x and
stripe-yz orders. Given the smoothness of the crossover in
Fig. 22(a) and that the ordering vector does not change, it is
not clear to us whether the two stripe phases remain distinct
in the presence of quantum fluctuations.
In Fig. 22(b), a scan is performed across the dual 120°

point by varying J��=jJj from −3.0 to 0.0 for fixed Δ ¼
1.0 and Jz� ¼ 2

ffiffiffi
2

p jJj (J < 0 here). There are well-ordered
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FIG. 22. Long-cylinder DMRG scans (a) across the K-only point (Δ ¼ 1.0, J�� ¼ −0.5J, and Jz� ¼ ffiffiffi
2

p
J) vs J��=J from −0.7 to

−0.3, and (b) across the dual 120° point (Δ ¼ 1.0, J < 0, J�� ¼ J, and Jz� ¼ 2
ffiffiffi
2

p jJj) vs J��=jJj from −3.0 to 0. Both scans go from
the stripe-x to the stripe-yz phase and are normal to the K–J line in Fig. 12, with the vertical lines in the clusters showing the intersect
with it. Sketches of the phases indicate the direction and extent of each scan, with (c) and (d) showing hSi along the scans. Dashed lines
in (c) and (d) are the LSWT results for hSi, Eq. (35), in the stripe phases.
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stripe-x and stripe-yz phases in the two ends of the
cylinder, separated by a region where the order is sup-
pressed; see also Fig. 22(d). This may seem surprising as
one expects the dual 120° ordered phase in this region. One
of the obvious reasons for a suppression of the order is a
very large gradient of parameters in this scan, combined
with a large unit cell of the 12-sublattice structure. In
Fig. 22(d), the dashed lines show the ordered moment as
given by the 1=S calculations in the stripe phases, showing
that for S ¼ 1=2 the dual 120° state expands and claims
some of the stripe regions, similar to the expansion of the
original 120° state; see Ref. [39].
To verify that the intermediate phase is not a spin liquid,

we perform a DMRG nonscan calculation in the 6 × 20

cluster for the J̃0-only dual 120° point (Δ ¼ 1.0, J < 0,
J�� ¼ J, and Jz� ¼ 2

ffiffiffi
2

p jJj) with the results shown in
Fig. 23(a). Here, the dual 120° boundary conditions are
applied at the left edge only, with a robust 12-sublattice order
parameter showing a power-law decay with a finite asymp-
tote, characteristic of the well-ordered phase; see Fig. 23(c).
The observed ordered moment of the dual 120° state in

this cluster is about hSi ≈ 0.09. Since the Klein duality
implies that all observables between dual points should be
the same, this value may seem to contradict the value of the

ordered moment at the Heisenberg 120° point, hSi ≈ 0.2
[84]. As we verify in Fig. 23(b), the smaller value of the
ordered magnetic moment is due to the mixed boundary
conditions and the resultant aspect ratio of the cluster
being far from being “optimal,” according to Ref. [84].
In Figs. 23(b) and 23(c), we demonstrate that the 120°
order on the same cluster behaves very similarly and is in
quantitative agreement with the Klein-duality expectations.
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