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We show that the Wannier obstruction and the fragile topology of the nearly flat bands in twisted bilayer
graphene at magic angle are manifestations of the nontrivial topology of two-dimensional real wave
functions characterized by the Euler class. To prove this, we examine the generic band topology of two-
dimensional real fermions in systems with space-time inversion IST symmetry. The Euler class is an integer
topological invariant classifying real two-band systems. We show that a two-band system with a nonzero
Euler class cannot have an IST-symmetric Wannier representation. Moreover, a two-band system with the
Euler class e2 has band crossing points whose total winding number is equal to 2e2. Thus the conventional
Nielsen-Ninomiya theorem fails in systems with a nonzero Euler class. We propose that the topological
phase transition between two insulators carrying distinct Euler classes can be described in terms of the pair
creation and annihilation of vortices accompanied by winding number changes across Dirac strings. When
the number of bands is bigger than two, there is a Z2 topological invariant classifying the band topology,
that is, the second Stiefel Whitney class (w2). Two bands with an even (odd) Euler class turn into a system
with w2 ¼ 0 (w2 ¼ 1) when additional trivial bands are added. Although the nontrivial second Stiefel-
Whitney class remains robust against adding trivial bands, it does not impose a Wannier obstruction when
the number of bands is bigger than two. However, when the resulting multiband system with the nontrivial
second Stiefel-Whitney class is supplemented by additional chiral symmetry, a nontrivial second-order
topology and the associated corner charges are guaranteed.
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I. INTRODUCTION

The recent discovery of Mott insulating states and super-
conductivity in twisted bilayer graphene (TBG) near the first
magic angle θ ∼ 1.05° [1,2] has led to a surge of research
activities to understand this system [3–33]. One notable
feature in the band structure of TBG is the presence of almost
flat bands near charge neutrality, which are effectively
decoupled from other bands by an energy gap. The reduced
kinetic energy of the flat bands allows this purely carbon-
based system, normally regarded as a weakly correlated
system, to be an intriguing playground to examine the Mott
physics and the associated unconventional superconductivity.

For a microscopic description of correlation effect in
TBG, there have been several theoretical efforts to con-
struct a tight-binding lattice model capturing the character-
istic band structure of the four almost flat bands near charge
neutrality [29–33]. Here we neglect the spin degrees of
freedom for counting the number of bands, which is valid
because the spin-orbit coupling is negligibly small.
According to the low-energy continuum theory, which
excellently describes the qualitative feature of the almost
flat bands, there are two Dirac points at eachK andK0 point
in the moiré Brillouin zone, whose origin can be traced back
to the Dirac points at each valley of the underlying graphene
layers [34,35]. The presence of massless Dirac fermions is
further supported by several theoretical studies [36–39] as
well as recent quantum oscillation measurement [40]. The
existence of gapless Dirac points indicatesUvð1Þ valley and
space-timeC2zT inversion symmetries, whereC2z denotes a
twofold rotation about the z axis and T is time-reversal
[29,30]. In the presence ofUvð1Þ and C2zT symmetries, the
four nearly flat bands are decoupled into two independent
valley-filtered two-band systems, and each two-band system
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possesses Dirac points at K and K0. The fact that both the
valley charge conservation and C2zT symmetry are not the
exact symmetry of the TBG indicates that the symmetry of
the low-energy physics is larger than the exact lattice
symmetry [29].
Interestingly, by putting together all the emergent sym-

metries including Uvð1Þ and C2zT symmetries, Po and
co-workers have found an obstruction to constructing well-
localized Wannier functions describing the four nearly flat
bands in TBG [29,30]. Moreover, it has been shown that the
obstruction originates from the fact that the two Dirac
points in each valley-filtered two-band system have the
same winding number, which is generally not allowed in
2D periodic systems due to the Nielsen-Ninomiya theorem
[41]. In addition, based on the observation that the winding
number is defined only for a two-band model in each
valley, it is conjectured that the Wannier obstruction is
fragile [29,30]; that is, the obstruction disappears after
one or more trivial (i.e., Wannier-representable) bands are
added to the model.
The main purpose of the present paper is to unveil the

topological nature of the nearly flat bands in TBG near a
magic angle and propose a general framework to under-
stand the band topology of 2D systems sharing the same
symmetry. In particular, we show that two bands with the
same winding number are endowed with an integer
topological invariant, the Euler class e2, when a 2D spinless
fermion system has symmetry under space-time inversion
IST ≡ C2zT or PT. We explicitly show that two bands
having a nonzero Euler class cannot have an exponentially
localized Wannier representation; that is, there is a Wannier
obstruction. Moreover, the nonzero Euler class e2 implies
that there are band crossing points, henceforth called
vortices, between the two bands, whose total winding
number is equal to −2e2. Thus, a real two-band system
carrying a nonzero e2 evidences the violation of the
Nielsen-Ninomiya theorem.
When the number of occupied bands is bigger than two,

the system is characterized by another Z2 topological
invariant, that is, the second Stiefel-Whitney class w2.
A two-band system with the Euler class e2 turns into a
multiband system with the second Stiefel-Whitney class
w2 ¼ e2 (mod2) when additional trivial bands are added.
Therefore, a two-band system with an odd e2 can still be
characterized by the nontrivial w2 ¼ 1. Even if w2 is
nontrivial in a multiband system, we show that there is
no obstruction to constructing well-localized Wanner
functions, which indicates that the band topology of a
real two-band system is fragile. When a multiband system
with w2 ¼ 1 has additional chiral symmetry, the system
exhibits a higher-order band topology, which guarantees
the existence of corner charges.
This paper is organized as follows. We first present the

topological properties of a simple four-band lattice model
proposed by Zou et al. [29], which captures all the essential

properties of the nearly flat bands in TBG at magic
angle. After clarifying the issues related with the band
topology of TBG by using the toy model, we provide a
general description of the band topology of space-time-
inversion-symmetric spinless fermion systems in 2D. We
review the concept of the Euler class in Sec. III and show
that a nontrivial Euler class leads to a Wannier obstruction
in Sec. III B. In Sec. IV. we prove the correspondence
between the vortex winding number and the Euler class,
and demonstrate the violation of the Nielsen-Ninomiya
theorem in real two-band systems with a nonzero Euler
class. Based on this correspondence, we study the transition
changing the Euler class by analyzing the winding number
of vortices. In Sec. V, we develop a new method for
calculating the winding number by using the off-diagonal
component of the Berry connection.We use this to study the
pair creation and annihilation of vortices in Sec. VI, where
we show that the topological phase transition between two
insulators carrying distinct Euler classes can be described
via the pair creation and annihilation of vortices through the
winding number reversal across a Dirac string. In Sec. VII,
we describe the fragile and higher-order nature of the band
topology of the nearly flat bands in twisted bilayer graphene
based on thewinding number annihilation and the properties
of the second Stiefel-Whitney class. In Sec. VIII, we
summarize the main results and discuss future research
directions. In addition, we explain how the winding number
can be computed by using the off-diagonal Berry phase in a
generic chiral symmetric system in the Appendix A. In
Appendix. B, we discuss the vortex annihilation in the point
of view of monopole nodal lines. In Appendix C, we show
the equivalence between the second Stiefel-Whitney class
and the Fu-Kane-Mele invariant in spin-orbit coupled two-
dimensional systems with IST ¼ C2zT symmetry. Finally, in
Appendix D, we explain the symmetry protection of
anomalous corner states and review theWilson loopmethod
to characterize the second-order band topologyby extracting
the first and secondStiefel-Whitney classes directly from the
Wilson loop spectrum without additional numerical com-
putation of the nested Wilson loop.

II. BAND TOPOLOGY OF NEARLY FLAT BANDS
IN TWISTED BILAYER GRAPHENE

Let us first clarify the issues related with the band
topology of the nearly flat bands in TBG at magic angle.
For this purpose, we study a simple four-band model
Hamiltonian proposed by Zou et al. [29], which captures
the essential characteristics of the nearly flat bands in TBG.

A. Four-band lattice model

The model is defined on a honeycomb lattice which
represents the moiré superlattice of TBG at magic angle
[29]. Putting two orbitals per site, one can construct a four-
band Hamiltonian given by

AHN, PARK, and YANG PHYS. REV. X 9, 021013 (2019)

021013-2



H ¼
X
hiji

c†i ðt̂1Þijcj þ
X
⟪ij⟫

c†i sijðit̂2Þijcj; ð1Þ

where t̂1 ¼ 0.4þ 0.6τz and t̂2 ¼ 0.1τx indicate the hopping
amplitudes between the nearest-neighbor and next-nearest-
neighbor sites with the Pauli matrices τx;y;z representing the
orbital degrees of freedom. Here we choose sij ¼ þ1 for
ri ¼ rj þ aŷ, which determines the rest of the sij’s because
of the C3z symmetry. Then the full Hamiltonian is invariant
under a threefold rotation about the z axis C3z, a two-
fold rotation about the y axis C2y, and C2zT. Namely, the
lattice model has D6 point group symmetry. This model
Hamiltonian inherits the essential features of the nearly flat
bands of TBG with enlarged emergent symmetries. In
momentum space, the Hamiltonian becomes

HðkÞ ¼ t̂1

��
1þ 2 cos

ffiffiffi
3

p
kxa
2

cos
kya

2

�
σx

þ 2 sin

ffiffiffi
3

p
kxa
2

cos
kya

2
σy

�

þ t̂2

�
4 cos

ffiffiffi
3

p
kxa
2

sin
kya

2
− 2 sin kya

�
; ð2Þ

where the Pauli matrices σx;y;z denote the sublattice degrees
of freedom of the honeycomb lattice.

B. Band topology of lower two bands

The band structure of the four-band model is shown in
Fig. 1(c). One can see that two lower bands are fully
separated from the two upper bands. The two lower bands
cross at two corners of the BZ,K andK0, forming two Dirac
points with the same winding number. As pointed out in
Ref. [29], the winding number of the two Dirac points can
be determined by examining the mirror eigenvalues of the
two occupied bands at the M point: if their mirror
eigenvalues are opposite (equal), the winding numbers of
the Dirac points at K and K0 points are equal (opposite). In
the case of the model Hamiltonian in Eq. (1), the mirror
symmetry along the ΓM line can be represented by τz, and it
can be explicitly checked that the mirror eigenvalues of the
two occupied bands are indeed opposite along this line.
Similarly, the two upper bands also possess two Dirac
points sharing the same winding number whose winding
direction is opposite to that between the lower two bands.
Both the lower two bands and the upper two bands possess
the same topological characteristic of the nearly flat bands
of TBG in a single valley while preserving all D6 point
group symmetry [29].
Let us focus on the topological properties of the lower

two bands to understand the band topology and the relevant
obstruction of the nearly flat bands in TBG. One direct
evidence showing the nontrivial topology of the lower two
bands is the winding of the Wilson loop spectrum shown in

Fig. 1(d), which is computed from the transition function in
a real gauge by using the technique developed in Ref. [42].
Here the Wilson loop operator corresponds to the transition
function. In the Wilson loop spectrum in Fig. 1(d), two
eigenvalues change symmetrically about theΘ ¼ 0 line due
to the IST symmetry, and each eigenvalue winds once as ky
is varied. Below, we show that the unit winding of the
transition function in a real gauge indicates the unit Euler
class je2j ¼ 1, which imposes an obstruction to Wannier
representation and leads to the violation of the Nielsen-
Ninomiya theorem.

III. EULER CLASS AND WANNIER
OBSTRUCTION FOR REAL FERMIONS

IN TWO DIMENSIONS

The central symmetry governing the band topology of
nearly flat bands in TBG is the symmetry under space-time
inversion IST. IST is an antiunitary symmetry operator, local
in momentum space satisfying I2ST ¼ þ1, so it acts like a
complex conjugation in momentum space [43]. In the
absence of spin-orbit coupling, either PT or C2zT can be
used to define IST, where P indicates a spatial inversion,
C2z is a twofold rotation about the z axis, and T is time-
reversal. On the other hand, in the presence of spin-orbit
coupling, only C2zT can be used to define IST since
ðPTÞ2 ¼ −1 [43–45]. In an IST-invariant system, we define
a real gauge as

ISTjψ̃nki ¼ jψ̃nki; ð3Þ

where jψ̃nki is a Bloch state. Other possible choices
of real gauges are related to each other by orthogonal
transformations. This gauge condition is equivalent to

-
0 kya

(d)

2

3

-3

0

K MM

0

(c)(a)

t
1

it
2

(b)

M

K

a

FIG. 1. (a) The definition of the hopping amplitudes t1;2 for a
four-band lattice model proposed by Zou et al. [29]. a is the lattice
constant representing the lattice vector for a moiré superlattice of
TBG at magic angle. (b) High-symmetry points in the Brillouin
zone. Γ¼ð0;0Þ, M¼ð2π= ffiffiffi

3
p

a;0Þ, and K¼ð2π= ffiffiffi
3

p
a;2π=3aÞ.

The blue rectangle is the Brillouin zone used to compute the
Wilson loop spectrum. (c) Band structure along high-symmetry
lines. Both of the occupied and unoccupied bands have gapless
Dirac points at K and K0. (d) Wilson loop spectrum for the lower
two bands. The Wilson loop operator is calculated along the ky
direction at fixed kx, as shown by the red arrow in (b). The unit
winding of the spectrum indicates the unit Euler class je2j ¼ 1.
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ISTjũnki ¼ jũnki for the cell-periodic part jũnki ¼
e−ik·r̂jψ̃nki since e−ik·r̂ commutes with IST. Moreover,
the transition function of jψ̃nki is equivalent to that of
jũnki if we define the periodic condition to be jψ̃nkþGi ¼
jψ̃nki and jũnkþGi ¼ eiG·rjũnki, respectively. As is custom-
ary, we investigate the topology of the Bloch states using
their cell-periodic part. In this section, we define a
topological invariant of IST-symmetric two-band systems,
that is, the Euler class, and explain the topological
obstruction for real states arising from it.

A. Euler class

The Euler class e2 is an integer topological invariant for
two real bands, which can be written as a simple flux
integral form [46–48],

e2 ¼
1

2π

I
BZ

dS · F̃12; ð4Þ

where F̃mnðkÞ ¼ ∇k × ÃmnðkÞ and ÃmnðkÞ ¼
hũmðkÞj∇kjũnðkÞi (m, n ¼ 1, 2) are 2 × 2 antisymmetric
real Berry curvature and connection defined by real states
jũnðkÞi in Eq. (3). It is invariant under any SOð2Þ gauge
transformation, which has the form OðkÞ¼ exp½−iσyϕðkÞ�
and satisfies det½OðkÞ� ¼ 1. On the other hand, under an
orientation-reversing transformation with det½OðkÞ� ¼ −1,
which has the form OðkÞ ¼ σz exp½−iσyϕðkÞ�, e2 changes
its sign. Therefore, the Euler class is well defined only for
orientable real states, that is, the states associated only with
OðkÞ with the unit determinant.
The flux integral form of e2 can be connected to

transition functions in the following way. To show this
relation, let us note that the 2D Brillouin zone can be
deformed to a sphere when the real states are orientable
along any noncontractible one-dimensional cycles as far as
the topology of the real states is concerned (see Fig. 2). Then
the sphere can be divided into two hemispheres, the northern
(N) and southern (S) hemispheres, which overlap along the
equator. Along the equator, the real smooth wave functions
juNi and juSi defined on the northern and southern hemi-
spheres, respectively can be connected by a transition
function tNS ¼ huN juSi ¼ exp½−iσyϕNS� ∈ SOð2Þ. It is
straightforward to show that

e2 ¼
1

2π

I
S2
dS · F̃12

¼ 1

2π

Z
N
dS · F̃12 þ

1

2π

Z
S
dS · F̃12

¼ 1

2π

I
S1
dk · ðÃN;12 − ÃS;12Þ

¼ 1

2π

I
S1
dk · ∇kϕNS; ð5Þ

where S1 indicates the circle along the equator. Therefore,
the Euler class e2 is identical to the winding number of the
transition function tNS.
Let us note that Eq. (5) is also equivalent to the definition

of the monopole charge [47,49].

B. Wannier obstruction from the Euler class

Here we show that two real bands with a nontrivial
Euler class suffer from an obstruction to defining exponen-
tially localized Wannier functions respecting IST symmetry.
Below, we prove the contrapositive, that the existence of
exponentially localized IST-symmetric Wannier functions
implies that the Euler class is trivial. Our strategy for the
proof is to start from the IST-symmetric exponentially
localized Wannier representation. Then, we go to the
Bloch representation, find the transformation that makes
IST ¼ K, and finally determine whether a transition func-
tion with a nonzero winding number can arise in this
real basis.
Let us recall some basic facts. Wannier states jwnRi are

defined to be the Fourier transform of the Bloch states:

jwnRi ¼
1ffiffiffiffi
N

p
X
k

e−ik·Rjψnki; ð6Þ

¼ 1ffiffiffiffi
N

p
X
k

eik·ðr̂−RÞjunki: ð7Þ

The Bloch states jψnki are given by the inverse Fourier
transform, given the Wannier states. Because we assume
that the Wannier functions are exponentially localized, its
Bloch state is smooth over the whole Brillouin zone [50].
We first relate the representation of IST symmetry in the

Wannier basis and that in the Bloch basis. Since we are
dealing with the case ðISTÞ2 ¼ þ1, we may take

hwα;i;−RþΔαβ
jISTjwβ;j;Ri ¼ δijδα;ISTβ; ð8Þ

with suitable unit cell translation Δαβ. Here, α, β are
Wyckoff position index and i, j are orbital index (which,

N

S

N S

+

+

+
+

+

+ +

+

k
x

k
y

FIG. 2. Deformation of the Brillouin zone to a sphere. When
the total winding number is nonzero in the Brillouin zone,
Hamiltonian matrix elements are smooth only over local patches
N and S, respectively. When the nontrivial transitions are
restricted to kx ¼ 0 (the black bold line), the boundary of the
Brillouin zone can be contracted to a point so that the Brillouin
zone becomes a sphere.
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in fact, we do not really need for our purpose, because when
IST symmetry is a site symmetry group element, its
representation can be diagonalized in a spinless system).
Also, Δαβ ¼−tβ− tα can easily be found from the action of
IST symmetry in real space, −ðRþ tβÞ ¼ −Rþ Δαβ þ tα.
In the Bloch basis,

ISTjψβ;j;ki ¼
1ffiffiffiffi
N

p
X
R

e−ik·Rjwα;j;−RþΔαβ
i: ð9Þ

Thus, the sewing matrix is

hψα;i;kjISTjψβ;j;ki ¼ e−ik·Δαβδijδα;ISTβ; ð10Þ

where the constraint −ðRþ tβÞ ¼ −Rþ Δαβ þ tα or
Δαβ ¼ −tα − tβ is represented by δα;ISTβ.
If we choose a real basis jψ̃αiki ¼ U†

αi;βjðkÞjψβjki, the
sewing matrix must be equal to δαβ. The transformation
above may not be continuous and periodic in general. Our
task now is to divide the Brillouin zone into two patches
and determine whether the transition matrix for two bands
resulting from two Wannier orbitals can have nontrivial
winding.
The easiest case to consider is when the unit cell is left

invariant under space-time inversion. This requires space-
time inversion to swap the position of the two Wannier
centers. Then, IST ¼ σxK in the complex basis. Under the
constant unitary transformation,

U ¼ 1ffiffiffi
2

p
�
e−3πi=4 e3πi=4

e3πi=4 e−3πi=4

�
; ð11Þ

IST ¼ K as required. Note that there is no need to introduce
patches to define a real basis.
We next consider the case when the unit cell is not left

invariant under the IST symmetry, meaning that the
Wannier centers occupy two different points invariant
under inversion symmetry up to lattice translations. If
we place the inversion center at one of the Wannier centers,
the sewing matrix in the complex basis is�

1 0

0 e−ik·Δαβ

�
: ð12Þ

We can obtain the real basis by taking

U ¼
�
1 0

0 eik·Δαβ=2

�
: ð13Þ

Without loss of generality, we can assume that Δαβ ¼ a1,
where a1;2 are the two unit lattice vectors. Let us para-
metrize the Brillouin zone by 0 ≤ k1; k2 < 1, where k ¼
k1G1 þ k2G2 and G1;2 are the reciprocal lattice vectors.
Then we introduce two patches, N and S, covering 0 ≤
k1 ≤ 1=2 and 1=2 ≤ k1 ≤ 1 ≃ 0, respectively, and define

jψ̃N=S
k i ¼ jψ̃ki for k ∈ N=S. In the case of interest,

the transition function is nontrivial only at k1 ¼ 0:
tNSð0; kyÞ ¼ hψ̃Nð0; k2Þjψ̃Sð0; k2Þi ¼ hψ̃ð0; k2Þjψ̃ð1; k2Þi ¼
U−1ð0; k2ÞUð1; k2Þ ¼ σz. Since det σz ¼ −1, the real states
are not orientable on the Brillouin zone, and the Euler
class cannot not defined. In conclusion, it is not possible
to realize a nontrivial Euler class in the Brillouin zone
with two exponentially localized IST-symmetric Wannier
functions.

IV. FAILURE OF NIELSEN-NINOMIYA THEOREM
DUE TO THE EULER CLASS

In the previous section, we show that the Euler class is a
topological invariant characterizing the Wannier obstruc-
tion for two real bands. Here we show that the Euler class is
the topological invariant that explains the Wannier obstruc-
tion for nearly flat bands in TBG, which was attributed to
the nonzero total winding number in the Brillouin zone.
More explicitly, we show that the Euler class is equivalent
to half the total winding number. To introduce some
notations and set the stage for the discussion that follows,
we first give a short proof of the 2D Nielsen-Ninomiya
theorem, in analogy to the three-dimensional case [51]. Our
main result follows by carefully investigating the failure of
the 2D Nielsen-Ninomiya theorem.

A. Two-dimensional Nielsen-Ninomiya theorem

In this section, we give a short proof of the 2D Nielsen-
Ninomiya theorem that the total winding number is zero in
2D periodic systems and point out what the assumptions
are. Note that we state this theorem by using the winding
number instead of the Berry phase because the Berry phase
is defined only modulo 2π.
Let us take two real basis states jũ1ki and jũ2ki such that

IST is represented by the complex conjugation K (i.e.,
IST¼K), so the IST symmetry condition ISTHðkÞðISTÞ−1¼
HðkÞ requires the matrix elements of the Hamiltonian
HmnðkÞ ¼ hũmkjHðkÞjũnki to be real; that is, HmnðkÞ ¼
H�

mnðkÞ. Therefore,

HðkÞ ¼ rðkÞ cos θðkÞσ1 þ rðkÞ sin θðkÞσ3; ð14Þ

where rðkÞ ≥ 0, σ1 and σ3 are Pauli matrices defined
in the basis fjũ1ki; jũ2kig, and a term proportional
to σ0 is ignored. Let us define a unit vector nðkÞ ¼
½cos θðkÞ; sin θðkÞ� away from points at which rðkÞ ¼ 0.
The winding number of the Hamiltonian along a loop
C is defined to be the winding number of nðkÞ [52]:
NC ¼ ½1=ð2πÞ� HC dk ·∇kθðkÞ. Let Di be a disk enclosing
an ith vortex, so that the total winding number is given by

Nt ¼
1

2π

I
∪i∂Di

dk ·∇kθðkÞ; ð15Þ
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where ∂Di is the boundary of Di. Using the Stokes
theorem, we have

Nt ¼ −
Z
BZ−∪iDi

dS ·∇k ×∇kθðkÞ ¼ 0: ð16Þ

Here, we have made an obvious assumption that the
matrix elements of the two-band Hamiltonian are contin-
uously defined throughout the Brillouin zone. This has two
important implications. The first one is that, when the
matrix elements of the two-band Hamiltonian cannot be
defined continuously in the presence of IST symmetry, a
nonvanishing total winding number is allowed. We discuss
this in the following subsection. The second implication is
that, when the two bands are no longer isolated from the
other bands, the winding number may lose its meaning.
This is discussed further in Sec. VI A.

B. Winding number and the Euler class

Let us now prove that e2 is equal to half the total winding
number of a two-band Hamiltonian. We again consider the
Hamiltonian in Eq. (14).
In the case when the total Berry phase, i.e., the sum of the

Berry phases of the two bands, along any noncontractible
1D cycle in the Brillouin zone is trivial, we can take a
spherical gauge in which we neglect the noncontractible 1D
cycles and instead view the Brillouin zone as a sphere
(Fig. 2). We discuss the case in which the Berry phase is
nontrivial in Sec. VI B
One immediate consequence of the nonvanishing total

winding number is that it is impossible to define continuous
Hamiltonian matrix elements throughout the sphere. Thus,
let us divide the sphere into N and S hemispheres such that
each vortex is located in the interior of either the N or S
hemisphere (Fig. 2). On the equator, we need a transition
function, ONSðϕÞ ∈ SOð2Þ, where ϕ is the azimuthal angle
parametrizing the equator. The two Hamiltonians on the N
and S hemispheres are connected along the equator as

ðHNÞmn ¼ ðONSÞmpðHSÞpqðO†
NSÞqn: ð17Þ

Thus, we must have ONS ¼ exp½−iσyðθS − θNÞ=2�. Before
moving on, note that we may assume that the two bands of
our interest arise as subbands of a lattice Hamiltonian.
Then, this transition matrix is the transition function
between the two subbands of interest. Because the full
lattice Hamiltonian is continuous, any discontinuity of the
projected 2 × 2 Hamiltonian must originate from that of the
basis states of the two subbands. Accordingly, the Euler
class, which is given by the winding number of the
transition function, is equal to

1

4π

I
equator

dk · ð∇kθ
N −∇kθ

SÞ ¼ ðNN þ NSÞ=2; ð18Þ

where NN=S are the sum of the winding number within the
N=S patch. The negative sign in the definition ofNS is there
because the winding number is defined by the counter-
clockwise line integral with respect to the normal direction
of the sphere. In conclusion, we have proved that

e2 ¼ −
1

2
Nt: ð19Þ

Let us note that this is a generalization of the Poincaré-Hopf
theorem [53–55], which relates zeros of a tangent vector
field to the Euler characteristic of the manifold, to rank-two
real Bloch bundles (i.e., two real Bloch states).

V. OFF-DIAGONAL BERRY PHASE

The relation in Eq. (19) allows us to study the Euler class
by investigating band degeneracies which carry nontrivial
winding numbers. However, it is not easy to treat the
winding number with its conventional definition, because it
requires nontrivial transition functions between local
patches when the total winding number in the Brillouin
zone is nonzero. Instead of using the matrix element of the
Hamiltonian, here we develop a new method for calculating
the winding number of vortices by using energy eigen-
states. We show that the winding number of a vortex can be
calculated by using an off-diagonal component of the Berry
connection. Although we focus on IST-symmetric two-
band systems here, the same method can be applied to any
chiral symmetric system (see Appdendix A for details).
Moreover, since the energy eigenstates can be taken to be
smooth everywhere on the Brillouin zone except at the
points of degeneracy under a smooth complex gauge, the
off-diagonal Berry connection can also be smoothly
defined on the punctured Brillouin zone without the need
of introducing patches. For this reason, in this section, we
relax the reality condition ISTjũnki ¼ jũnki, and instead
use a smooth complex gauge to define the off-diagonal
Berry phase. This method will be particularly useful when
we study pair annihilations of vortices in Sec. VI.

A. Sewing matrix and the Berry connection

Let fjunkig be energy eigenstates with energy Enk. In
this basis, the sewing matrix G of the IST operator is
defined by

GmnðkÞ ¼ humkjISTjunki: ð20Þ

This sewing matrix is diagonal when the energy eigenstates
are nondegenerate, because the IST operator does not
change the energy of the state when it is a symmetry
operator. Then,
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GðkÞ ¼
�
eiθ1ðkÞ 0

0 eiθ2ðkÞ

�
: ð21Þ

Equation (20) can be used to show that the Berry
connection,

AmnðkÞ ¼ humkj∇kjunki; ð22Þ

in IST-symmetric systems satisfies

AðkÞ ¼ GðkÞA�ðkÞG−1ðkÞ þGðkÞ∇kG−1ðkÞ: ð23Þ

In a two-band system, or more generally for two subbands
of a larger system, the constraint equation can be exactly
solved on the nondegenerate region. We have

AðkÞ ¼
� − i

2
∇kθ1ðkÞ aðkÞeiχðkÞ

−aðkÞe−iχðkÞ − i
2
∇kθ2ðkÞ

�
; ð24Þ

where χðkÞ ¼ ½θ1ðkÞ − θ2ðkÞ�=2, and we defined
aðkÞ ¼ e−iχðkÞA12ðkÞ, which is the only real parameter
undetermined by the sewing matrix. Here χðkÞ is defined
modulo π because θ1ðkÞ and θ2ðkÞ are defined modulo 2π.
Correspondingly, a definite global sign of aðkÞ is fixed
after choosing the global phase of eiχðkÞ.
Let us emphasize that aðkÞ is the gauge-invariant part of

the off-diagonal Berry connection A12ðkÞ: it is invariant
under diagonal gauge transformations, which do not mix
different energy eigenstates. Under a gauge transformation,

junki → ju0nki ¼ eiζnðkÞjunki; ð25Þ

where n ¼ 1, 2, we have θ0nðkÞ ¼ θnðkÞ − 2ζnðkÞ and
A0

12ðkÞ ¼ e−i½ζ1ðkÞ−ζ2ðkÞ�A12ðkÞ. Then,

a0ðkÞ ¼ A0
12ðkÞe−iχ

0ðkÞ ¼ A12ðkÞe−iχðkÞ ¼ aðkÞ: ð26Þ

B. Winding number from the off-diagonal
Berry connection

Now we show that aðkÞ contains the full information on
the winding number. Let us consider the following eigen-
states of the two-band Hamiltonian in Eq. (14).

ju1ki¼
�
sinϕðkÞ
cosϕðkÞ

�
; ju2ki¼

�−cosϕðkÞ
sinϕðkÞ

�
; ð27Þ

where ϕðkÞ ¼ θðkÞ=2 − π=4. In this choice of gauge,
GðkÞ ¼ 1, and the Berry connection is given by

AðkÞ ¼
�

0 1
2
∇kθðkÞ

− 1
2
∇kθðkÞ 0

�
: ð28Þ

From this expression, we get aðkÞ ¼ 1
2
∇kθðkÞ, such that

I
S1
dk · aðkÞ ¼ 1

2

I
S1
dk ·∇kθðkÞ ¼ NS1π: ð29Þ

Since aðkÞ is invariant under any diagonal gauge trans-
formations, the off-diagonal Berry phase defined byH
S1 dk · aðkÞ in any smooth energy eigenstate basis gives
the desired winding number NS1.
When we consider two subbands of a larger system, the

off-diagonal Berry phase can still capture the winding
number of vortices although it is not quantized in general.
As one can see from ∇k × aðkÞ ¼ F̃12 ≠ 0 in a real
eigenstate basis,

H
S1 dk · aðkÞ is not quantized. However,

the above relation between the off-diagonal Berry phase
and the winding number in Eq. (29) is still valid in the
vicinity of a vortex, where the other bands except the two
bands of our interest contribute to the off-diagonal Berry
phase negligibly. In other words, as a disk D containing a
vortex v shrinks to the vortex site, we haveI

∂D→v
dk · aðkÞ ¼ NðvÞπ; ð30Þ

where NðvÞ is the winding number of a vortex v. This is
consistent with the correspondence between the Euler class
and the winding number we derive above. Consider a
punctured sphere S2p ≡ S2 −

P
i Di, where Di is an infini-

tesimal disk on the sphere containing a vortex vi. Then, in
the limit of vanishing Di, we find

e2 ¼
1

2π

I
S2p

dS · ∇k × aðkÞ

¼ −
1

2π

X
i

I
∂Di

dk · aðkÞ

¼ −
1

2
Nt: ð31Þ

VI. PAIR ANNIHILATION OF VORTICES

In this section, we discuss how a pair annihilation of
vortices can occur. In the previous sections, we describe
how a nonzero Euler class gives a nonzero total winding
number, and how the winding number can be defined in
terms of the off-diagonal Berry connection. A crucial
assumption for achieving a nonzero total winding number
was that the total Berry phase along any noncontractible
cycle must be zero.
To study the effect of nonzero Berry phase, let us note

that it is impossible to consistently choose a definite global
sign of aðkÞ when the total Berry phase is nontrivial along
a loop. Suppose we take a smooth and periodic gauge
around a loop C parametrized by 0 ≤ k < 2π. Then, the
sewing matrix and the Berry connection are also smooth
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and periodic along the cycle. The periodic condition
Gð2πÞ ¼ Gð0Þ gives

eiχð2πÞ ¼ eifθ1ð2πÞ−θ1ð0Þ−½θ2ð2πÞ−θ2ð0Þ�g=2eiχð0Þ

¼ ei½θ1ð2πÞ−θ1ð0Þþθ2ð2πÞ−θ2ð0Þ�=2eiχð0Þ

¼ e−
H
C
dk·TrAeiχð0Þ: ð32Þ

Since Að2πÞ ¼ Að0Þ, we find that

að2πÞ ¼ e
H
C
dk·TrAað0Þ: ð33Þ

Thus, we cannot assign the global sign of aðkÞ unambig-
uously when the total Berry phase is nontrivial. This
implies that a pair creation of two vortices with the same
winding number can occur when the band gap closes and
the nontrivial Berry phase is generated by gap-closing
points. In this section, we describe this mechanism of the
pair creation and annihilation of vortices. We also comment
on the case with nontrivial Berry phase along the non-
contractible 1D cycles in the Brillouin zone.

A. Pair annihilation process

In Fig. 3(a), we show a schematic picture of a part of the
2D Brillouin zone. The orange dots labeled by v1 and v2
represent two vortices between energy bands 1 and 2,
which are the bands we are interested in. Let us assume that
v1 and v2 have the same winding number. We will describe
how v1 and v2 can be pair annihilated when the band gap
between these two bands and another band (band 3) closes
to form additional gap-closing points (Dirac points). Note
that in the viewpoint of bands 1 and 2, such an additional
gap-closing point acts as a π-Berry phase generator in the
sense that the sum of the Berry phases for bands 1 and 2

calculated around a loop enclosing the additional gap-
closing point formed by bands 1 or 2 and the band 3 is π.
Such a π-Berry phase generator is shown as a red dot
in Fig. 3.
According to Eq. (33), aðkÞ changes sign when it circles

around the red dot once, because of the π-Berry phase. For
the purpose of discussing the winding number of vortices,
we must therefore introduce a branch cut, shown as a
dashed line in Fig. 3(a). Across this branch cut, the sign of
both aðkÞ and eiχðkÞ changes, so that A12 is well defined.
We refer to this branch cut as a a Dirac string, in analogy to
the Dirac string that arises from three-dimensional mag-
netic monopoles [56]. As in the three-dimensional case, this
Dirac string also ends when it reaches another π-Berry flux
generator, because the total Berry phase surrounding the
two π-Berry flux generator is 2π, so that the factor eiχðkÞ is
well defined around any curve surrounding them.
To illustrate the most important property of the Dirac

string, suppose that v1 and v2 have the same winding
number with the choice of the Dirac string in Fig. 3(a).
Then, consider a process in which the Dirac string rotates
clockwise to the configuration shown in Fig. 3(b). This is
equivalent to changing the sign of aðkÞ at the points where
the Dirac string sweeps by, so that the winding number of
v1 also changes. One implication of this result is that v1 and
v2 can be annihilated only by circling around the red dot
downwards, as shown in Fig. 3(c). Also, by considering the
reverse process in which the Dirac string is fixed and the
vortices move, one sees that whenever a vortex crosses a
Dirac string, its winding number changes its sign. Thus, if
we consider the annihilation process shown in Fig. 3(d),
the winding number of the vortex v2 changes the sign
upon crossing the Dirac string, before v1 and v2 are pair
annihilated.

B. Instability of vortices in nonorientable cases

Up to now, we have dealt with the case when the Euler
class is well defined by assuming that the total Berry
phase along any noncontractible cycle in the Brillouin
zone is trivial. However, when there is a nontrivial Berry
phase along any noncontractible 1D cycle on the Brillouin
zone torus, and thus the Euler class is ill defined, two
vortices with the same winding number can be pair
annihilated even when band 1 and 2 are well separated
from other bands. The reason why two vortices can be
pair annihilated is basically the same as the previous case
discussed in Sec. VI A. Namely, the nontrivial Berry
phase along a nontrivial cycle implies that there must be a
closed Dirac string along the other noncontractible 1D
cycle of the Brillouin zone torus. Because the winding
number of a vortex changes whenever it crosses a Dirac
string, even if two vortices have the same winding
number at the beginning, after transporting one of the
vortices across the Dirac string, two vortices can be pair
annihilated, as shown in Fig. 3(e).

(a)
v

1
v

2

+ – ++ – ++ + ++

(e)

k
x

k
y ++

(b) (c) (d)

+ +

-
-

FIG. 3. Pair annihilation process in a 2D Brillouin zone. (a) v1
and v2 are the vortices between bands 1 and 2. They are indicated
by orange dots with the þ or − representing their winding
number. The red dot indicates a π-Berry flux generator, which can
be thought of as a vortex between bands 2 and 3. The Dirac string
is represented by the red dashed line. (b) An alternative choice of
the Dirac string. (c) The vortices can only be annihilated by
moving downwards. (d) A vortex reverses its winding number
when it crosses a Dirac string. Thus, the vortices can be
annihilated as shown. (e) Pair annihilation of two vortices with
the same winding number in a Brillouin zone. A Dirac string
along the ky direction indicates the nontrivial Berry phase along
the kx direction, which allows the pair annihilation of the two
vortices.
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For instance, let us consider the two-band lattice model
on a checkerboard lattice proposed in Ref. [57], which falls
exactly into this category. As explained below, this model
contains a single quadratic band crossing point with the
winding number�2 atM ¼ ðπ; πÞ in the BZ. The presence
of a well-defined tight-binding Hamiltonian indicates that
there is no Wannier obstruction for the two bands, and thus
the Euler class of this model should be zero. Naively, the
presence of the band crossing point with the winding
number two seems to be incompatible with the fact that the
Euler class of the system is trivial. Oneway to reconcile this
contradiction is to consider a nontrivial Berry phase along
noncontractible cycles of the BZ. Below, we show that this
is indeed the case; that is, the total winding number is ill
defined due to the π-Berry phase along noncontractible
cycles of the BZ.
The checkerboard lattice is shown in Fig. 4(a). The

relevant tight-binding Hamiltonian with one orbital per
lattice site is

H ¼ −
X
ij

tijc
†
i cj; ð34Þ

where tij ¼ t for nearest-neighbor sites, tij ¼ t0 (t00) for
next-nearest-neighbor sites connected (not connected) by
vertical or horizontal bonds. This spinless model has time-
reversal T symmetry and fourfold rotation C4z symmetry
about the center of the smallest square formed by A (blue)
and B (red) sites. Since the system has C2zT ¼ ðC4zÞ2T
symmetry, the theoretical idea developed in the preceding
sections can be directly applied.
After we Fourier transform the Hamiltonian by taking

into account the atomic positions within the unit cell, we
obtain

HðkÞ ¼ d0ðkÞσ0 þ dxðkÞσx þ dzðkÞσz; ð35Þ

where d0ðkÞ ¼ −ðt0 þ t00Þðcos kx þ cos kyÞ, dxðkÞ ¼
−4t cosðkx=2Þ cosðky=2Þ, and dzðkÞ¼−ðt0−t00Þðcosky−
coskxÞ. It is important to note that this Hamiltonian is real
but not periodic. In contrast, if we take the Fourier
transformation with respect to the position of the unit
cell neglecting the atomic positions in the unit cell,
d0ðkÞ and dzðkÞ remain the same, but we now have
dxðkÞ − idyðkÞ ¼ −ð1þ e−ikx þ e−iky þ e−iðkxþkyÞÞ. Thus,
the Hamiltonian is complex and periodic in this case.
If we choose the real basis in which the winding number

is well defined and expand the Hamiltonian near the M
point, we obtain dx¼−tkxky and dz¼ ½ðt0− t00Þ=2�ðk2x−k2yÞ,
so that the winding number is �2 where the sign
depends on the choice of the parameters. We find
HðkþGiÞ ¼ σzHðkÞσz, where Gi is the reciprocal lattice
vector along either the kx or ky direction. This indicates that
the Hamiltonian is discontinuous at the BZ boundary. Since
detðσzÞ ¼ −1, an orientation reversing transformation is

necessary to glue the Hamiltonian matrix elements at the
BZ boundary.
This nonorientability indicates that the total Berry phase

along the kx and ky directions should be π, which can be
explicitly checked by computing the Berry phase using a
complex smooth basis.
As shown in Sec. VI A, the π-Berry phase along both the

kx and ky directions indicates the presence of Dirac strings
along the two noncontractible cycles of the Brillouin zone
[see Fig. 4(b)]. If the C4z symmetry is broken while C2z is
preserved, the quadratic band crossing point can be split
into two Dirac points and be annihilated when they merge
at X ¼ ðπ; 0Þ or Y ¼ ð0; πÞ after crossing a Dirac string.
This phenomenon is indeed observed in a related tight-
binding model on the checkerboard lattice in Ref. [58].
Let us note that the appearance of the Dirac string is

related to the absence of a C2z-invariant unit cell. If we
Fourier transform a tight-binding Hamiltonian, we have
HðkþGÞ¼V−1ðGÞHðkÞVðGÞ in general, where VαβðkÞ¼
expðik·rαÞδαβ, and α, β are indices labeling the atomic
sites. When detVðGÞ ¼ −1, an odd number of atoms are
displaced by a half-lattice vector from the C2z center, so the
corresponding unit cell is not C2z invariant.

C. Topological phase transition

Let us now explain how the vortex annihilation can be
used to describe the topological phase transition from a
e2 ¼ 1 phase to a e2 ¼ 0 phase. For a minimal description,
we consider a four-band system at half filling, where
the occupied bands (bands 1 and 2) have e2 ¼ 1, and the
unoccupied bands (bands 3 and 4) have e2 ¼ −1, as in the
case shown in Fig. 1. Recalling that an insulator with je2j ¼
1 has a pair of vortices with the same winding number, we
must either annihilate the two vortices or create another pair
of vortices with the opposite winding number, so that the
total winding number of bands 1 and 2 becomes zero. For
simplicity, we discuss only the former case, shown in
Figs. 5(a)–5(e).

(a) (b)

(0,0)

(0, )
( , )

( ,0)

(- , )

( ,- )(- ,- )

A

B

kx

ky

x

y

FIG. 4. Quadratic band crossing model introduced by Sun et al.
[57]. (a) The structure of the checkerboard lattice with two sites in
a unit cell where the blue (red) dot represents A (B) sublattice site.
(b) Low-energy band structure in the Brillouin zone. The orange
dot at M ¼ ðπ; πÞ represents a quadratic band crossing with the
winding number �2. A red dotted line indicates a Dirac string
across which the winding number of a band crossing point
changes the sign.
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Following the convention in the previous section, the
pair of vortices between bands 1 and 2 with the same
winding numbers are labeled by v1 and v2, as shown in
Fig. 5(a). For the phase transition to occur, a pair of vortices
with opposite winding number (v3 and v4) must be formed
between bands 2 and 3 via a band gap closing, as shown in
Fig. 5(b). Note that we have drawn two Dirac strings for
each of the pairs, because in the viewpoint of bands 1 and 2,
v3 and v4 act as π-Berry flux generators, while in the
viewpoint of bands 2 and 3, v1 and v2 act as π-Berry flux
generators. Thus, v1 and v2 can be annihilated by passing
through the Dirac string, as shown in Figs. 5(b) and 5(c).
However, this leaves behind a ring of the Dirac string, as
shown in Fig. 5(c), so that v3 and v4 eventually have the
same winding number as in Fig. 5(d) after v3 crosses the
ring of the Dirac string, which shrinks to a point and
disappears in the end. However, we have focused only on
bands 1, 2, and 3, but we must not forget about the vortices
between bands 3 and 4. When the vortices in bands 3 and 4
go through a similar annihilation process, another Dirac
string forming a ring will be left, as in Fig. 5(c). This will in
turn change the winding number of v3 or v4 in Fig. 5(e).
Thus, v3 and v4 can be annihilated to open up the band gap,
resulting in a trivial insulator.

VII. FRAGILE TOPOLOGY AND
HIGHER-ORDER TOPOLOGY

In Ref. [30], Po et al. have conjectured that the
topological characteristic of two bands having two vortices
with the identical winding number is fragile against adding
topologically trivial bands [59], based on the observation
that the integer winding number of the vortices is defined

only for two bands. Our theory is consistent with this
conjecture in that the Euler class is also defined only for
two bands. However, there is a caveat. Although the Euler
class is defined only for two bands, its parity remains
meaningful even when the number of bands becomes larger
than two due to the additional trivial bands. In fact, the
Euler class modulo 2 is identical to another Z2 topological
invariant, known as the second Stiefel-Whitney class w2,
that is well defined for any number of bands. Namely, if the
Euler class of the two-band model is even (odd), w2 of the
system should remain zero (one) after the inclusion of
additional trivial bands [42]. Such a change of the topo-
logical indices from Z to Z2 can be observed from the
variation of the winding pattern in the Wilson loop
spectrum when additional trivial bands are added
[42,60]. It has been argued in recent studies [42,60–62]
that the fragility of the winding pattern in the Wilson loop
spectrum reflects the fragility of the Wannier obstruction.
Here we show concretely that the nontrivial second Stiefel-
Whitney class (w2 ¼ 1) does not induce a Wannier
obstruction when the number of bands is bigger than
two. However, this does not mean that an insulator with
the nontrivial w2, dubbed a Stiefel-Whitney insulator [42],
is featureless. As shown in Ref. [62], anomalous corner
states can exist in Stiefel-Whitney insulators, which can be
stabilized when additional chiral symmetry is present. We
show that the corner charges are induced by the configu-
ration of the Wannier centers constrained by the nontrivial
second Stiefel-Whitney class.

A. Reduction of winding numbers from Z to Z2

Let us first clarify the meaning that the winding number
of a vortex reduces from Z to Z2 when the number of bands
is increased from two to more than two. The reduction is
due to the ambiguity in the sign of the winding number in
the presence of a Dirac string, which was introduced
before. We show that this puts a global constraint on the
pair creation and annihilation processes of vortices.
For instance, let us consider a two-band system (band 1

and band 2) with two vortices v1 and v2 with the same
winding number. One can add a trivial band (band 0) below
the band minimum of the two-band system. When a band
inversion happens between band 0 and band 1, two new
vortices v3 and v4 with the opposite winding numbers can
be created. Between v3 and v4, a Dirac string exists across
which the winding number of v1 or v2 changes its sign.
Then, v1 and v2 can be pair annihilated after one of them
crosses the Dirac string. If the pair annihilation occurs
across the Brillouin zone boundary as shown in Figs. 6(c)
and 6(d), v3 and v4 also can be annihilated across the other
Brillouin zone boundary. Thus, eventually, each band is
decoupled from other bands without any band crossing in
between. The pair annihilation of v1 and v2, which had the
same winding number in the absence of band 0, indicates
that the integer winding number is not well defined

v
2

v
1

+

+

+ –
v

4

+

+

+ – – –
v

3

– –

(a) (b) (c) (d) (e)

+

FIG. 5. Topological phase transition from e2 ¼ 1 to e2 ¼ 0 by a
pair annihilation of vortices. (a) v1 and v2 are the vortices formed
by two occupied bands (bands 1 and 2). The orange dashed line is
the Dirac string of v1 and v2 in the viewpoint of bands 2 and 3,
where band 3 is the lowest-energy unoccupied band. (b) v3 and v4
are vortices that form when the band gap between the occupied
(bands 1 and 2) and unoccupied band (band 3) closes. The red
dashed line is the Dirac string between v3 and v4 as seen by bands
1 and 2. v1 and v2 can be annihilated as shown, because v2
changes its winding number when it crosses the red dashed line.
(c) Annihilation of v1 and v2 leaves behind a Dirac string as
shown. (d) Because of the Dirac string left behind in (c), the
winding number of v3 changes. (e) It may seem that v3 and v4
cannot annihilate, but this is not the case because processes
similar to those shown in (a)–(c) occur in the unoccupied bands to
leave another loop of a Dirac string (purple), which also changes
the winding number of v3.
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anymore after the addition of band 0. A quantized Berry
phase, which is a Z2 invariant, would be the only remaining
invariant assigned to each vortex.
Interestingly, such pair annihilations of two pairs of

vortices leave behind two Dirac strings, each encircling
a noncontractible cycle in the Brillouin zone. Let us
note that the torus geometry of the Brillouin zone is
essential to complete this process. The appearance of
two orthogonal closed Dirac strings indicates that the
bands 0, 1, and 2 acquire nontrivial Berry phases along
the kx and ky cycles,Φx andΦy, such that bands 0, 1, and 2
have ðΦx;ΦyÞ ¼ ð0; πÞ, ðπ; πÞ, and ðπ; 0Þ, respectively,
after the completion of the pair annihilation process.

B. Absence of the Wannier obstruction

As for the Wannier obstruction, let us note that each
decoupled band after pair annihilation of vortices is
Wannier representable since a single isolated band with
zero Chern number always has a Wannier representation
[63]. In fact, the Wannier representation is allowed even if
the vortices v1 and v2 exist after the addition of the trivial
band 0. This is because the corresponding transition
functions can be diagonalized after a suitable gauge trans-
formation, which mixes energy eigenstates at each k in
general, while keeping the Hamiltonian intact.
Let us note that the Wannier centers for three bands

0, 1, 2 are uniquely determined here. Since the Berry phases
for bands 0, 1, and 2 are ðΦ1;Φ2Þ ¼ ð0; πÞ, ðπ; πÞ, and
ðπ; 0Þ, respectively, the relevant Wannier centers are given
by ð0; a2=2Þ, ða1=2; a2=2Þ, and ða1=2; 0Þ, because
½1=ð2πÞ�ða1Φ1; a2Φ2Þ corresponds to the Wannier center,
where ai¼1;2 are lattice constants. This can be shown as

follows. Let us recall that the Wannier center of the nth
band is related to a Berry connection by

Wn ¼ hn0jr̂jn0i ¼ Vcell

Z
BZ

d2k
ð2πÞ2 An; ð36Þ

where Vcell is the volume of the unit cell and jnRi is the
Wannier state of the nth band Bn. Then, because of the
quantization of the Berry phase,

ðWnÞi ¼ Vcell

Z
dk⊥
2π

�Z
dki
2π

ðAnÞi
�

¼ Vcell

Z
dk⊥
2π

�
ΦiðBnÞ
2π

�
¼ ai

2

ΦiðBnÞ
π

: ð37Þ

Let us note that although the three bands have a Wannier
representation, the second Stiefel-Whitney class is still
nontrivial. This fact can be confirmed by using the Whitney
sum formula [42,46] for the second Stiefel-Whitney class in
the following way. When all the bands are energetically
decoupled, the second Stiefel-Whitney class of the whole
bands B≡ ⊕n Bn (n ¼ 0, 1, 2) satisfies

w2ðBÞ¼
1

π2
X
n≠m

Φ1ðBnÞΦ2ðBmÞ¼4
X
n≠m

ðWnÞ1ðWmÞ2: ð38Þ

From the Berry phases for bands 0, 1, and 2, given by
ðΦ1;Φ2Þ ¼ ð0; πÞ, ðπ; πÞ, and ðπ; 0Þ, one can easily
find w2 ¼ 1.

C. Second-order topology characterized by the
nontrivial second Stiefel-Whitney class

Even though w2 ¼ 1 states are Wannier representable, it
does not mean that there is no physical consequence
associated with them. Let us note that w2 in Eq. (38)
has the form of the electric quadrupole moment qxy [64–66]
as pointed out in Ref. [42]:

w2ðBÞ ¼ 4
X
n≠m

ðWnÞ1ðWmÞ2

¼ 4
X
n;m

ðWnÞ1ðWmÞ2 − 4
X
n

ðWnÞ1ðWnÞ2

¼ 4
X
n

ðWnÞ1ðWnÞ2 ðmod2Þ

¼ 4qxy ðmod2Þ; ð39Þ

where we used Eq. (38) in the first line and considered
trivial total polarization

P
nðWnÞ1 ¼

P
nðWnÞ2 ¼ 0 in the

third line. In fact, anomalous corner states can be induced in
systems with w2 ¼ 1, as shown in Ref. [62].
The presence of corner charges can be understood as

follows [62]. Suppose that a two-dimensional system is
composed of two quantum Hall insulators with Chern

(a)
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y

k
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k
x

k
y

k
y

(b) (c) (d)

k
x

k
y 2

1

+

+

+ –
43

+

+

+ –

FIG. 6. Fragility of vortices in a two-band system (bands 1 and
2) with e2 ¼ 1 against adding one trivial band (band 0) below the
Fermi energy. The added trivial band is assumed to have the
lowest energy level. The box represents the 2D Brillouin zone.
(a) Vortices v1 and v2 with the same winding number formed
between band 1 and band 2. The dashed orange line is the Dirac
string for vortices which may be formed between band 0 and band
1. (b) Pair annihilation of v1 and v2 after a band inversion
between band 0 and band 1. Blue vortices v3 and v4 are pair
created after the band inversion between bands 0 and 1. v1 and v2
can be pair annihilated because the winding number of v2
changes the sign after it crosses the blue Dirac string. (c) The
orange Dirac string extends along a noncontractible cycle after v1
and v2 are pair annihilated. (d) The blue Dirac string also winds a
noncontractible 1D cycle after v3 and v4 are pair annihilated.
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numbers c ¼ 1 and c ¼ −1, respectively, which are related
to each other by IST [Fig. 7(a)]. This system is a Stiefel-
Whitney insulator with w2 ¼ 1, which can be confirmed by
the winding pattern of the Wilson loop spectrum. For
example, the Wilson loop spectrum in Fig. 1(d) is com-
posed of two spectral flows, one going upward and the
other going downward, each of which corresponds to c ¼ 1
and c ¼ −1, respectively. In this particular limit of the
Stiefel-Whitney insulator, two counterpropagating chiral
edge states exist [Fig. 7(a)]. The edge states are fully
gapped after two IST-symmetric mass terms satisfying
m1;2ðθÞ ¼ −m1;2ð−θÞ are added. Each of the two mass
terms has 4Ni¼1;2 þ 2 zeros due to the IST-symmetry
condition, where Ni¼1;2 are non-negative integers, but
the band gap of the edge spectrum 2m ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2

p
is

nonzero because m1 and m2 do not vanish simultaneously
in general. However, when there is additional chiral
symmetry, only one mass term, which we take here as
m1, remains, so the edge band gap closes at 4N1 þ 2 points
(see Appendix D for details, where we reproduce the results
in Ref. [62]). As the points of zero mass are domain kinks,

half charges are localized there. The corner charges are
robust because they are energetically isolated from the bulk
bands, as shown in Fig. 7(c). Even when chiral symmetry is
broken, the corner charges remain localized as long as they
are in the bulk gap.
Alternatively, we can understand the origin of the anoma-

lous corner charges in terms of localized Wannier centers
when the number of occupied bands is bigger than two. For
convenience, let us consider a hexagonal lattice with four
electrons per unit cell. Suppose that atoms are located at the
corners of the hexagon, and each atom has two electrons.
The Wannier centers for four electrons, which are compat-
ible with the lattice symmetry and the conditionw2 ¼ 1, are
then given by (0,0), ð0; a2=2Þ, ða1=2; a2=2Þ, and ða1=2; 0Þ,
respectively, where (0,0) indicates the center of the hexagon.
Because of the nontrivial Wannier centers associated with
the bulk invariant w2 ¼ 1, an even number of fractional
corner charges appear on the edge. Since the location of
corner charges is not constrained by symmetry, they are
located at generic positions, as shown in Fig. 7(d). As long as
IST and chiral symmetries are preserved, the half corner
charges should appear on the edge since the chiral symmetry
requires the corner charges to be in-gap states such that they
cannot merge into the bulk state. Even if extra charges
are added IST symmetrically, the half-integral value of the
corner charges is preserved.

D. Role of additional symmetries

Up to now, we have focused on the role of IST symmetry
on the band topology. Let us now discuss the effect of
additional C2x and C3z symmetries that are present in the
moiré superlattice of twisted bilayer graphene.
Recently, it has been shown in Ref. [67] that the band

topology of twisted bilayer graphene remains fragile even
in the presence of additional symmetries. Let us briefly
recap the idea of Ref. [67] in the context of our theory. C2x
symmetry relates the winding number of the Dirac points at
K and K0 points, as pointed out in Refs. [29,30]. On the
other hand, C3z symmetry pins the vortices at the K and K0
points. Since pair annihilation cannot occur in this case, the
Wannier obstruction of the e2 ¼ 1 phase seems to be stable
in the presence of C3z symmetry. This may sound contra-
dictory to the results of Ref. [67] in which it was explicitly
shown that the Wannier obstruction for nearly flat bands in
twisted bilayer graphene disappears after adding px þ ipy

and px − ipy orbitals at each point of the hexagonal lattice
(the Wyckoff position B). However, in reality, there is no
contradiction because pair annihilation is not required to
have Wanner representation, although pair annihilation of
vortices is the clearest way to show the absence of Wannier
obstruction when only IST symmetry is concerned.
In general, the absence of the Wannier obstruction can be

proved by showing the existence of a transformation that
takes energy eigenstates to other basis states that are
Wannier representable. To illustrate the idea, let us neglect
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+

QAHI (c=-1)

(a) (b)
( )
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m( + ) = -m( )
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(c)
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E
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y

E=0
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-m

-m
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0+  

FIG. 7. Corner states in Stiefel-Whitney insulators (SWI). (a) A
system composed of two copies of quantum anomalous Hall
insulators (QAHI)with two counterpropagating edge states, which
can be considered as a particular example of Stiefel-Whitney
insulators. (b) A Stiefel-Whitney insulator with additional chiral
symmetry. A mass term mðθÞ compatible with IST and chiral
symmetries can open a gap at the edge except at two (mod4)
isolated points. (c) Finite-size spectrum of the chiral-symmetric
Stiefel-Whitney insulator. (d),(e) A schematic describing the
charge distribution for a finite-size Stiefel-Whitney insulator on
the honeycomb lattice without (d) and with (e) a mirror symmetry,
respectively. Mirror symmetry pins corner charges at mirror-
invariant points. Blue dots and links represent localized electric
charges. For charge counting, when a dot or a link is shared by two
unit cells, we assume that each involved unit cell takes a half of the
relevant localized charge. Here the honeycomb lattice with black
dots indicates the finite-size lattice structure whereas the gray
honeycomb lattice underneath describes an array of the hexagonal
unit cells, each of which contains two black dots in themiddle. The
number −1=2 shows the number of localized electrons or the
integrated probability density in the unit cell.
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C2x and C3z symmetries for a moment, and focus on the
Wannier obstruction related with IST symmetry. Without
loss of generality, we can consider the Wannier represen-
tation of IST acting on a set of Wannier states that are
individually invariant under IST. If a Wannier state is not
invariant under IST, it has a partner that is related to it by
IST. In this case, by taking a linear combination of the two
IST-related states, one can construct a bonding and an
antibonding state, each of which is invariant under IST and
exponentially localized. Therefore, when we use IST-
symmetric Wannier states as a basis, the IST operator
can be represented by a diagonal matrix. In momentum
space, this indicates that each Bloch state is also not related
to other Bloch states under IST symmetry. In this case,
according to the Whitney sum formula, the w2 of the whole
system is given by the product of w1 for each state in the IST
diagonal basis [68]. Let us note that although the IST
operator is diagonal in this basis, the corresponding energy
spectrum can be degenerate, possibly with Dirac points
between the bands. TheWhitney sum formula can relate the
total w2 to the w1 of Wannier-representable states, as long
as the basis diagonalizes the IST operator, independent of
the energy spectrum.
Next, let us consider the problem of finding a Wannier

representation for three states B with the total Berry phase
Φ1ðBÞ ¼ Φ2ðBÞ ¼ 0 and the total second Stiefel-Whitney
class w2ðBÞ ¼ 1. Since Φ1ðBÞ, Φ2ðBÞ, and w2ðBÞ are the
only topological constraints to gauge transformations, one
can gauge transform to three independent IST-symmetric
Wannier states with ðΦ1;Φ2Þ ¼ ð0; πÞ, ðπ; πÞ, and ðπ; 0Þ,
which have the same total second Stiefel-Whitney class and
the total Berry phases. In this gauge transformation process,
the final Wannier-representable states are formed by a
linear combination of energy eigenstates, which diagonal-
ize the IST operator. It is not necessary to annihilate vortices
during this process. Thus, the e2 ¼ 1 phase becomes
Wannier representable after adding one trivial band even
without a pair annihilation process. This can be contrasted
to the case of a two-band system with e2 ¼ 1 and zero total
Berry phase where one can never find an IST diagonal basis
compatible with the Whitney sum formula. This is con-
sistent with the fact that a two-band system with e2 ¼ 1 and
zero total Berry phase is not Wannier representable.
On the other hand, in the presence of additional C2x and

C3z symmetries, the relevant symmetry representation at
high-symmetry points as well as the topological constraint
due to C2zT should be matched simultaneously when we
prove the fragile topology of the e2 ¼ 1 phase by adding
trivial bands. Formally, the condition for a fragile band
topology can be represented as ðe2 ¼ 1Þ ⊕ X ¼ Y, where
X and Y indicate sets of Wannier-representable bands. This
process has been done in Ref. [67]. Let us briefly review
some key ideas in Ref. [67]. Figure 8 shows the Wyckoff
positions A, B, and C in the hexagonal unit cell, and
lattice vectors a1 and a2. The Wannier orbitals localized at

A ¼ ð0; 0Þ have w2 ¼ 0 according to the Whitney sum
formula, and those at B ¼ fð1=3; 1=3Þ; ð2=3; 2=3Þg also
have w2 ¼ 0 because they can be adiabatically moved to A
after breaking C3z symmetry while preserving C2zT sym-
metry. Only the Wannier orbitals at C ¼ fð1=2;
0Þ; ð1=2; 1=2Þ; ð0; 1=2Þg have w2 ¼ 1. Thus, the number
of Wannier orbitals located at C in the set Y should be
different from that in the set X by an odd integer because of
thew2 matching condition,w2ðYÞ ¼ w2ðXÞ þ 1. In addition
to this, symmetry representations of C2x and C3z should be
matched at the relevant high-symmetry points in the
momentum space. While it is possible to take X as a
single-band orbital in the absence of C2x and C3z sym-
metries, the symmetry representation matching can increase
the minimum number of bands in X. As shown in Ref. [67],
when the ðe2 ¼ 1Þ phase is the nearly flat bands of twisted
bilayer graphene, the minimal X consists of three orbitals,
which can be chosen to be pz (or s) orbitals at the Wyckoff
position C. Then, the resulting Y is composed of s and p�
(or pz and p�) orbitals at the Wyckoff position A in
addition to pz (or s) orbitals at the Wyckoff position B.
For completeness, we discuss the details of this procedure in
Appendix E.
The additional symmetries also constrain the location of

anomalous corner charges. While C3z symmetry just
requires that corner charges appear C3z symmetrically,
C2x symmetry puts a stronger constraint that corner charges
are located at either C2x- or C2xIST-invariant corners but not
at both. Note that, when both C2x and IST ¼ C2zT are
symmetry operators, C2yT ¼ C2xIST∶ðx; yÞ → ð−x; yÞ is
also a symmetry operator. We thus have two effective
mirror symmetries under M̃x ≡ C2yT and M̃y ≡ C2x. As
shown in Fig. 7(b), one mirror operation changes the sign
of the edge mass whereas the other does not, because the
product M̃xM̃y ¼ IST changes the sign of the edge mass
(see Appendix D for more details). Consequently, anoma-
lous charges will appear at either C2x- or C2xIST-invariant
corners but not at both.
Let us finally discuss the possibility that anomalous

corner charges appear in twisted bilayer graphene.
Figures 9(a) and 9(b) show the two possible energy spectra
which can support localized corner states. As we explained
in Sec. VII C, bands with w2 ¼ 1 can induce corner
charges. In the case of TBG, two bands arising from
any one of the valleys has e2 ¼ 1 in the absence of

1A

2B3C
a1a2

FIG. 8. Wyckoff positions in the hexagonal unit cell.
A ¼ ð0; 0Þ, B ¼ fð1

3
; 1
3
Þ; ð2

3
; 2
3
Þg, and C ¼ fð1

2
; 0Þ; ð1

2
; 1
2
Þ; ð0; 1

2
Þg

in the basis of lattice vectors a1 and a2.
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intervalley coupling. Therefore, by tuning the Fermi level,
corner charges can be induced. Because the two valleys are
time-reversal partners, we expect that the corner charges
derived from two valleys will have the same energy. On the
other hand, in the presence of the approximate chiral
symmetry, the situation shown in Fig. 9(c) would occur.
Then, the localized corner charge cannot exist due to the
hybridization with the bulk bands. To confirm the presence
of corner charges, more sophisticated first-principles band
structure calculation should be performed.

VIII. CONCLUSION

We show that the Euler class of real two-band systems
with IST symmetry is identical to the total winding
number of the band degeneracies between two bands.
Namely, the topological charge of band crossing points
determines the global band topology. We expect that our
theory here can be generalized to a broader class of
systems. Recently, a no-go theorem was proposed in
Ref. [63]: the statement is that Wannier obstruction of a
single band can come only from a nontrivial first Chern
number. This implies that Wannier obstructions originat-
ing from the other topological invariants describing
multiband systems may require unremovable band degen-
eracies. It would be an interesting topic for future studies
to establish the general relationship between the sym-
metry eigenvalues at high-symmetry points, the topologi-
cal charge of band degeneracies, and the global band
topology in crystalline topological materials.
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Note added.—Recently, we found related works [67,69]. In
Ref. [69], based on first-principles calculations, it was
found that the Wilson loop spectrum for nearly flat bands in
twisted bilayer graphene has nontrivial winding, which is
consistent with our conclusion. In Ref. [67], tight-binding
models were constructed explicitly by adding trivial bands
to the two nearly flat bands, which demonstrates the
fragility of the Wannier obstruction for the flat bands.
Additionally, we became aware of related mathematical
studies [55,70,71] in which the relationship between the
topological charges of Dirac andWeyl points and the global
topology is examined in more abstract settings. In particu-
lar, it was also pointed out in Ref. [55] that the total winding
number of vortices is given by the Euler class, based on the
generalized Poincaré-Hopf theorem. An independent study
[72] also recently appeared, where non-Abelian topological
properties of nodal lines in PT-symmetric 3D spinless
fermion systems are systematically studied by using homo-
topy theory. Applying the idea proposed in Ref. [72] to 2D
problems, one can find that the sign reversal of vortices
across a Dirac string proposed in our paper can be
interpreted as a manifestation of the non-Abelian algebra
of topological charges.

APPENDIX A: WINDING NUMBER
IN GENERAL CHIRAL SYMMETRIC SYSTEMS

In the main text, we show that the winding number can
be computed using the off-diagonal Berry phase for IST-
symmetric two bands. Notice that IST-symmetric two-band
Hamiltonians have chiral symmetry when the chemical
potential term, which is irrelevant for the band crossing, is
neglected. Here we show that the same method can be
applied to any chiral symmetric systems.

1. Sewing matrix and the Berry phase

Consider the sewing matrix for chiral symmetry
operator S:

SmnðkÞ≡ humkjSjunki: ðA1Þ

It takes an off-diagonal form,

E
ne

rg
y

E
ne

rg
y

E
ne

rg
y

(a) (c)(b)

FIG. 9. Possible energy spectra which may support corner
charges in twisted bilayer graphene. Shaded gray regions corre-
spond to the bulk bands, where the middle yellow band
corresponds to the nearly flat bands near the charge neutrality.
Corner charges may be (a),(b) in the bulk gap or (c) merged with
the middle band. As each of the middle bands arising from the
two decoupled valley degrees of freedom has e2 ¼ 1, the corner
charge is doubled as compared to Fig. 7. When spin degrees of
freedom are taken into account, the amount of corner charges
should also be doubled further.
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SðkÞ ¼
�

0 s−1ðkÞ
sðkÞ 0

�
; ðA2Þ

in the basis

juki ¼
 
juunocck i
juocck i

!
; ðA3Þ

where sðkÞ ∈ UðNÞ. The Berry connection,

AmnðkÞ ¼ humkj∇kjunki; ðA4Þ

in chiral symmetric systems satisfies

AðkÞ ¼ S−1ðkÞAðkÞSðkÞ þ S−1ðkÞ∇kSðkÞ; ðA5Þ

which shows that

A2ðkÞ ¼ sA1ðkÞs−1 þ sðkÞ∇ks−1ðkÞ ðA6Þ

and

aðkÞ≡ iA12ðkÞsðkÞ ¼ ½iA12ðkÞsðkÞ�† ¼ a†ðkÞ: ðA7Þ

Accordingly, the Berry connection takes the following
form:

AðkÞ ¼
�

A1ðkÞ −iaðkÞs−1ðkÞ
−isðkÞaðkÞ sA1ðkÞs−1 þ sðkÞ∇ks−1ðkÞ

�
;

ðA8Þ

where A1ðkÞ and aðkÞ are undetermined by the sewing
matrix for chiral symmetry.
Under a gauge transformation junki → ju0nki ¼

UmnðkÞjumki, the sewing matrix transforms as

SðkÞ → S0ðkÞ ¼ U†ðkÞSðkÞUðkÞ: ðA9Þ

Accordingly, under a diagonal gauge transformation,

UðkÞ ¼
�
U1ðkÞ 0

0 U2ðkÞ

�
; ðA10Þ

s−1ðkÞ → s0−1ðkÞ ¼ U†
1ðkÞs−1ðkÞU2ðkÞ: ðA11Þ

Since the Berry connection transforms by

A12ðkÞ → A0
12ðkÞ ¼ U†

1ðkÞA12ðkÞU2ðkÞ; ðA12Þ

we get

aðkÞ → a0ðkÞ ¼ U†
1ðkÞaðkÞU1ðkÞ: ðA13Þ

Notice that the matrix trace of any power of aðkÞ is
gauge invariant. It suggests that

H
Sd Tr½adðkÞ� may serve as

a d-dimensional topological invariant.

2. Winding number and the off-diagonal Berry phase

Suppose that the unoccupied and occupied bands are
topologically trivial as a whole. Then there exists a
Hamiltonian which is smooth over the whole Brillouin
zone that describes both the unoccupied and occupied
bands. When the chiral operator is represented by

S ¼
�
1N×N 0

0 −1N×N

�
; ðA14Þ

the chiral symmetric Hamiltonian takes the form of

HðkÞ ¼
�

0 hðkÞ
h†ðkÞ 0

�

¼
 

0 UðkÞPðkÞ
PðkÞU†ðkÞ 0

!
; ðA15Þ

where we used polar decomposition of hðkÞ, where
UðkÞ ∈ UðNÞ and PðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h†ðkÞhðkÞ

p
. The energy

eigenstates on gapped regions are given by

juunoccnk i ¼ 1ffiffiffi
2

p
�
UðkÞjenki

jenki

�
;

juoccnk i ¼
1ffiffiffi
2

p
�
UðkÞjenki
−jenki

�
; ðA16Þ

where jen¼1;…;N;ki are the eigenstates of PðkÞ with
eigenvalues jEnkj, and juunoccnk i and juoccnk i have energies
jEnkj and −jEnkj, respectively.
In this choice of gauge, the Berry connection is given by

AðkÞ ¼
 

1
2
U†ðkÞ∇kUðkÞ ð−iÞ i

2
U†ðkÞ∇kUðkÞ

ð−iÞ i
2
U†ðkÞ∇kUðkÞ 1

2
U†ðkÞ∇kUðkÞ

!

þ
 
hekj∇kjeki 0

0 hekj∇kjeki

!
: ðA17Þ

From this expression, we see that

Tr½aðkÞ� ¼ i
2
Tr½U†ðkÞ∇kUðkÞ� ¼ i

2
∇k log detUðkÞ;

ðA18Þ

such that
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I
S1
dk · Tr½aðkÞ� ¼ 1

2

I
S1
dk ·∇kθðkÞ ¼ Nwπ; ðA19Þ

where detUðkÞ ¼ exp½−iθðkÞ�. This off-diagonal Berry
phase is invariant under gauge transformations which do
not mix the unoccupied and occupied bands. As in the main
text, the sign of the winding number is fixed after we
choose the global sign of Tr½aðkÞ�.
In general, the winding number in (2nþ 1)-dimensional

chiral symmetric systems is given by

Nð2nþ1Þ
w ¼ ð−1Þnn!

ð2nþ 1Þ!πnþ1

I
S2nþ1

d2nþ1kTr½(aðkÞ)2nþ1�:

ðA20Þ

3. Space-time symmetries

Let us investigate the space-time symmetry constraint on
aðkÞ. It will turn out that aðkÞ transforms like a Berry
curvature rather than a Berry connection. We get the same
conclusion for IST-symmetric two bands because they have
effective chiral symmetry if we neglect the chemical
potential.
First, we consider a crystalline symmetry operator G,

where

GmnðkÞ≡ humGkjGjunki: ðA21Þ

It takes the form

GðkÞ ¼
�
g1ðkÞ 0

0 g2ðkÞ

�
ðA22Þ

in the basis

juki ¼
� juunocck i

juocck i

�
; ðA23Þ

where g1;2ðkÞ ∈ UðNÞ. The symmetry constraint for the
Berry connection is given by

AðkÞ¼G−1ðkÞP−1
G ·AðPGkÞGðkÞþG−1ðkÞ∇kGðkÞ;

ðA24Þ

where P−1
G is the point group part of G, and P−1

G .
A indicates the transformation of vector components of
A under the action of G. Then,

AiðkÞ ¼ g−1i ðkÞP−1
G ·AiðPGkÞgiðkÞ þ g−1i ðkÞ∇kgiðkÞ;

ðA25Þ

where A1 ≡ A11 and A2 ≡ A22, and

A12ðkÞ ¼ g−11 ðkÞP−1
G ·A12ðPGkÞg2ðkÞ: ðA26Þ

Because ½S;G� ¼ 0 requires that

GðkÞSðkÞ ¼ SðGkÞGðkÞ; ðA27Þ

so that

s−1ðkÞ ¼ g−11 ðkÞs−1ðPGkÞg2ðkÞ; ðA28Þ

we get

aðkÞ ¼ g−11 ðkÞP−1
G · aðPGkÞg1ðkÞ

¼ g−12 ðkÞP−1
G · aðPGkÞg2ðkÞ: ðA29Þ

Next, we consider the time-reversal symmetry operator
T, where

BmnðkÞ≡ hum−kjTjunki: ðA30Þ

It takes the form

BðkÞ ¼
�
b1ðkÞ 0

0 b2ðkÞ

�
ðA31Þ

in the basis

juki ¼
� juunocck i

juocck i

�
; ðA32Þ

where b1;2ðkÞ ∈ UðNÞ. The symmetry constraint for the
Berry connection is given by

Að−kÞ¼−BðkÞA�ðkÞB−1ðkÞ−BðkÞ∇kB−1ðkÞ: ðA33Þ

Then,

Aið−kÞ¼−biðkÞA�
i ðkÞb−1i ðkÞ−biðkÞ∇kb−1i ðkÞ; ðA34Þ

where A1 ≡ A11 and A2 ≡ A22, and

A12ð−kÞ ¼ −b1ðkÞA�
12ðkÞb−12 ðkÞ: ðA35Þ

Because ½S; T� ¼ 0 requires that

BðkÞS�ðkÞ ¼ Sð−kÞBðkÞ; ðA36Þ

so that

s−1ð−kÞ ¼ b1ðkÞðs−1Þ�ðkÞb−12 ðkÞ; ðA37Þ

we get
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að−kÞ ¼ b1ðkÞa�ðkÞb−11 ðkÞ
¼ b2ðkÞa�ðkÞb−12 ðkÞ: ðA38Þ

Let us finally comment that PT ¼ K and S ¼ σy anti-
commutes in the PT-symmetric two-band model whereas
we have assumed that S commutes with space-time
symmetries in this section.

APPENDIX B: PAIR ANNIHILATION OF
VORTICES IN TERMS OF MONOPOLE

NODAL LINES

In the main text, we explain the pair annihilation process
of vortices by introducing the Dirac string. It is possible to
give this pair annihilation process an alternative description
in terms of a nodal line with a monopole charge in 3D.

1. Topological phase transition

Let us consider a four-band system with two occupied
bands (bands 1 and 2) and two unoccupied bands (bands 3
and 4), which are now in 3D space.Moreover, let us suppose
that the band crossing between bands 2 and 3 forms a
monopole nodal line at EF. One immediate physical
consequence arising from the monopole charge of the nodal
line is that another nodal line formed between bands 1 and 2
should be linked with the monopole nodal line as shown in
Ref. [42]. Because of this linking structure, a sphere
wrapping the monopole nodal line should cross the other
nodal line below EF at two points, as shown in Figs. 10(a)–
10(d). Considering the wrapping sphere as a 2D BZ, the
crossing between the sphere and the nodal line below EF
indicates the Dirac points formed between two occupied
bands. Since the monopole charge is identical to the Euler
class when the number of occupied bands is two [42], the
wrapping sphere exactly corresponds to a 2D insulator
with e2 ¼ 1 having two vortices with the same winding
number between the two occupied bands. Note that in
Figs. 10(a)–10(d), we have also drawn a purple line next
to the orange line, to indicate that the gap closing points
formed by the unoccupied bands (bands 3 and 4), for which
the same comments apply as those for the occupied bands.
Also, the points at which the orange (purple) line crosses the
sphere corresponds to the vortices between bands 1 and 2
(bands 3 and 4) in the 2D insulator. Then, we see that for the
occupied bands to become trivial, the orange line and the
purple line should leave the sphere before the red loop does.
The trajectories of the crossing points between the sphere
and the three nodal lines (orange, red, purple) correspond to
the process shown in Figs. 5(a)–5(d).

2. Stability of vortices on sphere

In Sec. VII, we show that the e2 ¼ 1 phase is fragile
because the presence of an additional trivial band allows the
pair annihilation of vortices. Here, we show that the pair
annihilation process cannot occur if the Brillouin zone has a

spherical geometry. Since all loops are contractible
on a sphere, Berry phase should always be trivial. On a
sphere, a pair annihilation of vortices with the same
winding number formed between bands 1 and 2 necessarily
leads to a pair creation of other vortices with the
same winding number between another pair of bands
(for instance, between bands 0 and 1), as shown in
Figs. 5(a)–5(d). This is related to the stable linking structure
of monopole nodal lines in the 3D Brillouin zone, as
illustrated in Figs. 10(e)–10(g).

APPENDIX C: TOPOLOGICAL PHASE
TRANSITION IN THE PRESENCE OF

SPIN-ORBIT COUPLING

Up to now we have focused on the case without spin-
orbit coupling. Even in the presence of spin-orbit coupling,
however, IST ¼ C2zT acts like a complex conjugation
satisfying ðC2zTÞ2 ¼ þ1, so it can protect vortices in the
absence of inversion P symmetry. In a recent work [44], it
was shown that pair creation and pair annihilation of Dirac
points can mediate a topological phase transition between a
normal insulator and a quantum spin Hall insulator in spin-
orbit coupled noncentrosymmetric systems with T and C2z
symmetries. In the course of a topological phase transition,
the trajectory of Dirac points forms a closed loop surround-
ing time-reversal-invariant momenta (TRIM) an odd num-
ber of times, as shown in Fig. 11(a). This pair creation and

v
2

v
1

v
4

v
1

v
3

v
2

v
4

v
3

v
6

v
5

v
4

v
3

v
2

v
1

(a) (b) (c) (d)

(e) (f) (g)

FIG. 10. Description of the vortex-antivortex pair creation and
annihilation in the view of nodal lines. (a)–(d) The same process
in the point of view of monopole lines in three dimensions. The
orange (purple) line is the band crossing points between occupied
(unoccupied) bands. The red line is the band crossing points
between bands 2 and 3. The sphere can be thought of as the
Brillouin zone in Figs. 5(a)–5(e). (e)–(g) Stability of vortices on a
sphere against adding a trivial band. The blue, orange, and red
lines are formed between band 0 and band 1, between band 1 and
band 2, and between band 2 and band 3, respectively. (e) Vortices
v1 and v2 with the same winding number. (f) Pair creation of v3
and v4. v1 and v2 can be pair annihilated after crossing the Dirac
string existing between vortices v3 and v4. (g) After the pair
annihilation of v1 and v2. The resulting v3 and v4 have the same
winding number.
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pair annihilation processes can also be understood in terms
of the winding number changes across a Dirac string, as
described below. Such an alternative description is possible
due to the equivalence between the second Stiefel-Whitney
class and the Fu-Kane-Mele invariant in the system, as
explained in detail in Appendix C 2.

1. Topological phase transition

For convenience, let us suppose that the system is
composed of two occupied bands and two unoccupied
bands, although the topological phase transition is well
defined when the number of bands is larger. Because of
time-reversal symmetry, occupied bands are always degen-
erate at TRIM. Then in the 3D space ðkx; ky; mÞ including a
tuning parameter m controlling the phase transition, the
Kramers degeneracies form four straight nodal lines along
the m direction, as shown in Fig. 11(b). If a normal
insulator with e2 ¼ 0 and a topological insulator with e2 ¼
1 exist for m < m1 and m ¼ m2 > m1, respectively, the
trajectory of Dirac points corresponds to the intersection
between the red nodal line and the constant m planes in
Fig. 11(b) as m is tuned in the range m1 < m < m2.
Because of the straight nodal lines from Kramers degen-
eracies, any nodal loop, representing the trajectory of Dirac

points, centered at a TRIM should be a monopole line due
to the linking structure [42]. Then, the shape of the
trajectory of Dirac points reflects the correspondence
between the closed trajectory of vortices and the relevant
change of the topological invariant.
Explicitly, let us explain how the winding number

transition is related to the closed trajectory of gap-closing
points. Consider a transition from a normal insulator with
e2 ¼ 0 to a quantum spin Hall insulator with e2 ¼ 1, and
assume, for simplicity, that the band structure of the normal
insulator has no degeneracy other than the Kramers
degeneracy. Then, e2 ¼ 0 indicates that the total winding
number of the Kramers degenerate points below the Fermi
energy EF should be zero, as shown in Fig. 11(c). When the
band gap closes and vortices are pair created at the
momentum k and −k, Dirac strings connecting each pair
of vortices are also generated [Fig. 11(d)]. Let us note that
both C2z and T require that the winding number of
vortices at k and −k is equal. As the Dirac strings follow
the trajectory of the vortices, they eventually form a
closed loop around a TRIM after the pair annihilation of
vortices [Fig. 11(e)]. Then, the Dirac string can be
removed after flipping the sign of the winding number
of the Kramers degenerate point encircled by the Dirac
string [Fig. 11(f)]. Because of the sign change, the total
winding number of Kramers degenerate points becomes
two. This indicates the change of the topological invariant
e2 from zero to one.

2. Equivalence of the second Stiefel-Whitney
class and the Fu-Kane-Mele invariant

The Wilson loop method implies that the second Stiefel-
Whitney class is identical to the Z2 topological variant,
because they are characterized by the same pattern of the
Wilson loop spectral flow. Here we provide another proof
of the equivalence using the Euler class and the Fu-Kane-
Mele invariant. Our proof here goes parallel with the
derivation of the relation between the second Stiefel-
Whitney class and inversion eigenvalues, presented in
Supplemental Material of Ref. [42].
We first notice that the total Berry phase of the occupied

bands is always nontrivial in this system because the Berry
phase is quantized to be a multiple of π due to the C2zT
symmetry, but T further requires it be a multiple of 2π
because energy bands form Kramers pairs [44]. Therefore,
the occupied states are always orientable in a real gauge, so
we take transition functions belonging to the special
orthogonal group. Furthermore, we consider only two
occupied bands because we can block diagonalize
the sewing matrix B into 2 × 2 blocks by lifting the
accidental degeneracy of occupied bands without loss of
generality.
Let us take a real gauge: C2zTjũnki ¼ jũnki. Time-

reversal symmetry imposes a further constraint on energy
eigenstates by
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FIG. 11. Topological phase transition between a normal insu-
lator (NI) and a quantum spin Hall insulator (TI) in spin-
orbit-coupled noncentrosymmetric systems with C2z and T
symmetries. (a) Trajectory of Dirac points (or vortices) in the
intermediate gapless phase. (b) A nodal line, representing the
trajectory of Dirac points in the 3D space ðkx; ky; mÞ, where m
denotes a tuning parameter. The nodal line (red) encircles the
Kramers degenerate lines (orange) an odd number of times.
(c)–(f) Change of the winding number of the Kramers degenerate
points above and below the Fermi energy EF. The vortices of
Dirac points at EF and Kramers degenerate points are shown in
red and orange, respectively. The � sign shows the local winding
number of vortices. Dashed lines in (d) and (e) are Dirac strings
across which the winding number of a Kramers degenerate point
changes its sign. The total winding number of Kramers degen-
erate points below EF (and also above EF) changes from zero in
(c) to two in (f).
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TjuBnki ¼ BAB
mnðkÞjuAm−ki; ðC1Þ

where BðkÞ ∈ Oð2Þ is the sewing matrix for time reversal,
and A and B denotes the local patch on which the states are
smoothly defined.
In fact, the sewing matrix B belongs to SOð2Þ. In

general, as the real occupied states are not smooth over
the whole 2D Brillouin zone, the sewing matrix also is not
smooth. The sewing matrix defined on C andD patches are
related to the one defined on A and B patches as

BCDðkÞ ¼ (tACð−kÞ)−1BABðkÞtBDðkÞ; ðC2Þ

where A and C covers −k, and B and D covers k,
and tAB and tCD are the transition functions defined
by juCn−ki¼tACmnð−kÞjuAm−ki and juDnki¼tBDmn ðkÞjuBmki.
Since we required all the transition functions be
orientation preserving, the above relation shows that
the determinant of the sewing matrix is uniform:
detBCD ¼ detðtACÞ−1 detBAB det tBD ¼ detBAB. Because
B ¼ �iσy at time-reversal-invariant momenta, such that
detB ¼ 1 at TRIM, the sewing matrix belongs to SOð2Þ
everywhere on the Brillouin zone.
The symmetry constraint on the Berry connection and

curvature,

ÃðkÞ ¼ −BTðkÞÃð−kÞBðkÞ − BTðkÞ∇kBðkÞ;
F̃ðkÞ ¼ BTðkÞF̃ð−kÞBðkÞ: ðC3Þ

reduce to

ÃðkÞ þ Ãð−kÞ ¼
�

0 −∇kϕðkÞ
∇kϕðkÞ 0

�
;

F̃ðkÞ ¼ F̃ð−kÞ; ðC4Þ

where

BðkÞ ¼
�

cosϕðkÞ sinϕðkÞ
− sinϕðkÞ cosϕðkÞ

�
: ðC5Þ

Because the Fu-Kane-Mele invariant Δ is defined by the
change of a 1D quantity, the time-reversal polarization PT ,
let us first investigate the 1D topological invariant.
Consider a time-reversal-invariant 1D sub-Brillouin zone,
which includes two TRIM, Γ1 and Γ2. We can take a real
smooth gauge there because the first Stiefel-Whitney class
is trivial; i.e., the total Berry phase is trivial in complex
smooth gauges as explained above. On the time-reversal-
invariant 1D Brillouin zone, we observe from symmetry
conditions that

I
dk · Ã12ðkÞ ¼

Z
Γ2

Γ1

dk · ½Ã12ðkÞ þ Ã12ð−kÞ�

¼ −
Z

Γ2

Γ1

dk · ∇kϕðkÞ

¼ i log
PfBðΓ2Þ
PfBðΓ1Þ

mod2π

¼ 2πPT mod2π; ðC6Þ

where we use the definition of the time-reversal polariza-
tion in the last step [73]. This integral is defined only
modulo 2π because a gauge transformation can change its
value by 2π times an integer [74].
Now we return to the original 2D Brillouin zone. Let us

take a real gauge where the occupied states are smooth over
the region including the half Brillouin zone 0 ≤ kx ≤ π.
The Fu-Kane-Mele invariant Δ is defined as the time-
reversal polarization pump from kx ¼ 0 to kx ¼ π, i.e.,
Δ ¼ PTðπÞ − PTð0Þ, so

Δ ¼ 1

2π

�
i log

PfBðπ; πÞ
PfBðπ; 0Þ − i log

PfBð0; πÞ
PfBð0; 0Þ

�

¼ 1

2π

I
dkyÃ12;yðπ; kyÞ −

1

2π

I
dkyÃ12;yð0; kyÞ

¼ 1

2π

Z
π

0

dkx

Z
π

−π
dkyF̃12;zðkx; kyÞ

¼ 1

4π

Z
π

−π
dkx

Z
π

−π
dkyF̃12;zðkx; kyÞ

¼ 1

2
e2 ¼

1

2
w2 mod1; ðC7Þ

where we used F̃ð−kÞ ¼ F̃ðkÞ in the fourth line. This
shows the equivalence of the (two times) Fu-Kane-Mele
invariant Δ and the second Stiefel-Whitney class w2.

APPENDIX D: PROTECTION AND
CHARACTERIZATION OF THE
SECOND-ORDER TOPOLOGY

Recently, Wang et al. have proposed in Ref. [62] that the
anomalous corner charges are induced by the nontrivial
second Stiefel-Whitney class. Here, we review the idea in
Ref. [62] and discuss the effect of mirror and chiral
symmetries. Then, we establish the relation between the
second Stiefel-Whitney class and the nested Wilson loop
[64,65] employed in Ref. [62] to capture the existence of
the anomalous corner charges.

1. Mirror and chiral symmetries

For concrete discussion on the role of mirror and chiral
symmetries, let us derive the presence of corner charges in
Stiefel-Whitney insulators by reproducing the results
in Ref. [62].
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Consider a disk geometry with the radius R shown in
Fig. 7(b) for simplicity. For the sake of studying an
anomalous surface spectrum, it is enough to consider the
low-energy effective Hamiltonian of the IST-symmetric
doubled Chern insulator given by

H0ðrÞ ¼ −Γ1i∂x − Γ2i∂y þMðrÞΓ3; ðD1Þ

where Γ1 ¼ τx, Γ2 ¼ τyσy, Γ3 ¼ τz, and IST ¼ K. We take
M > 0 in the insulator and M < 0 in the surrounding
environment. In polar coordinates,

H0ðr; θÞ ¼ −Γ1ðθÞi∂r − Γ2ðθÞr−1i∂θ þMðrÞΓ3; ðD2Þ

where Γ1ðθÞ¼cosθΓ1þsinθΓ2 and Γ2ðθÞ¼−sinθΓ1 þ
cosθΓ2. The surface degrees of freedom are given by
projecting the matrices under PðθÞ ¼ 1

2
½1þ iΓ1ðθÞΓ3�,

and Hedge
0 ≡ −ðPΓ2PÞR−1i∂θjr¼R describes the two oppo-

sitely propagating chiral edge states [76–78].
Next, we consider perturbations to the Hamiltonian. The

terms that serve as edge mass are

Hmðr; θÞ ¼ m4ðr; θÞΓ4 þm5ðr; θÞΓ5

þm24ðr; θÞΓ24ðθÞ þm25ðr; θÞΓ25ðθÞ; ðD3Þ

where Γ4 ¼ τyσx, Γ5 ¼ τyσz, Γ2;j¼4;5ðθÞ ¼ −iΓ2ðθÞΓj. One
can easily see that all the matrices Γ4, Γ5, Γ24ðθÞ,
and Γ25ðθÞ anticommute with Γ2ðθÞ and commute with
PðθÞ. IST symmetry H�

mðr; θÞ ¼ Hmðr; θ þ πÞ imposes a
constraint

mIðθ þ πÞ ¼ −mIðθÞ ðD4Þ

for all mI ¼ m4, m5, m24, and m25.
The edge Hamiltonian is given by representing PΓ5P ¼

−PΓ24ðθÞP, PΓ4P ¼ PΓ25ðθÞP, and PΓ2P as σ̃x, σ̃, and σ̃z,
respectively:

HedgeðθÞ ¼ m̃1ðθÞσ̃x þ m̃2ðθÞσ̃y − R−1i∂θσ̃z; ðD5Þ

where HedgeðθÞ≡Hedge
0 þPHmPjr¼R, m̃1ðθÞ ¼ m4ðR; θÞþ

m25ðR; θÞ, and m̃2ðθÞ ¼ m5ðR; θÞ −m24ðR; θÞ. Each of the
mass terms m̃1 and m̃2 vanishes at least at even number of
times due to the IST-symmetry constraint m̃i¼1;2ðθ þ πÞ ¼
−miðθÞ, but this does not require that the edge band gap
closes, because the two mass terms do not simultaneously
vanish in general. However, if we require chiral symmetry
SðHþHmÞS−1¼−ðHþHmÞ, where S ¼ cos ηΓ4 þ sin ηΓ5,
only one edge mass term remains. Let us consider the case
with η ¼ 0. Then, m4 ¼ m25 ¼ 0, such that m̃2 ¼ 0. In this
case, the only remaining mass m̃1 should vanish at an even
number of angles. The domain kink therefore induces
localized corner charges [see Fig. 7(b)].

Let us consider mirror symmetry in addition to IST and S
symmetries. The mirror symmetry operator that gives

MyH0ðθÞM−1
y ¼ H0ð−θÞ ðD6Þ

is represented in the form of My ¼ cos χΓ24 þ sin χΓ25.
When χ ¼ 0, My anticommutes with S ¼ Γ4, and

m5ð−θÞ ¼ þm5ðθÞ;
m24ð−θÞ ¼ þm24ðθÞ; ðD7Þ

and when χ ¼ π, My commutes with S ¼ Γ4, and

m5ð−θÞ ¼ −m5ðθÞ;
m24ð−θÞ ¼ −m24ðθÞ: ðD8Þ

Thus, the mirror operator imposes that the edge mass flips
sign at mirror-invariant corners only when it commutes
with the chiral symmetry operator. In addition, note that
MyIST∶ðx; yÞ → ð−x; yÞ acts like Mx in the real space.
Combining the constraints given by My and IST, one finds
that

m5ðπ=2 − θÞ ¼ −m5ðπ=2þ θÞ;
m24ðπ=2 − θÞ ¼ −m24ðπ=2þ θÞ; ðD9Þ

when χ ¼ 0, and

m5ðπ=2 − θÞ ¼ þm5ðπ=2þ θÞ;
m24ðπ=2 − θÞ ¼ þm24ðπ=2þ θÞ; ðD10Þ

when χ ¼ π. Corner charges are localized at either My-
invariant corners or atMx-invariant corners but not at both.

2. Tight-binding model

The model introduced in Ref. [62] has the following
form.

H ¼ sin kxΓ1 þ sin kyΓ2 þ ð−1þ cos kx þ cos kyÞΓ3

þm1Γ14 þm2Γ15 þm3Γ24 þm4Γ25; ðD11Þ

where we defined three real Γ matrices,

Γ1 ¼ τx; Γ2 ¼ τyσy; Γ3 ¼ τz; ðD12Þ

and two pure imaginary Γ matrices,

Γ4 ¼ τyσx; Γ5 ¼ τyσz; ðD13Þ

and the other generators of real matrices are then
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Γ14 ¼ τzσx; Γ15 ¼ τzσz;

Γ24 ¼ −σz; Γ25 ¼ σx;

Γ34 ¼ −τxσx; Γ35 ¼ −τyσz: ðD14Þ

The Hamiltonian is symmetric under

P ¼ Γ3; T ¼ Γ3K: ðD15Þ

PT ¼ K symmetry requires the Hamiltonian be real.
In Ref. [62], anomalous in-gap states were demonstrated

with parameters m1 ¼ 0.3, m3 ¼ 0.4, and m2 ¼ m4 ¼ 0.2.
Let us note that this set of parameters is very close to the
mirror and chiral symmetric parameters. When m1 ¼ m3

and m2 ¼ m4, the Hamiltonian Eq. (D11) has chiral S and
two mirror Mxþy∶ðx; yÞ → ð−y;−xÞ and Mx−y∶ðx; yÞ →
ðy; xÞ symmetries in addition to spatial inversion and time-
reversal symmetries. To see this, let us rewrite the above
Hamiltonian as

H ¼ 1

2
ðsin kx þ sin kyÞðΓ1 þ Γ2Þ

þ 1

2
ðsin kx − sin kyÞðΓ1 − Γ2Þ

þ ð−3þ cos kx þ cos kyÞΓ3

− iðΓ1 þ Γ2Þðm1Γ4 þm2Γ5Þ: ðD16Þ

In this form, one can see that it is symmetric under

Mxþy ¼
iffiffiffiffiffiffiffiffiffi
2m2

p ðΓ1 þ Γ2Þðm1Γ4 þm2Γ5Þ;

Mx−y ¼
iffiffiffi
2

p
m2

ðΓ1 − Γ2Þðm1Γ4 −m2Γ5Þðm1Γ4 þm2Γ5Þ;

S ¼ 1ffiffiffiffiffiffi
m2

p ðm1Γ4 þm2Γ5Þ; ðD17Þ

wherem2 ¼ m2
1 þm2

2.M
2
xþy ¼ M2

x−y ¼ S2 ¼ 1, andMxþy,
Mx−y, and S all commute with time reversal T.
According to the analysis in the previous section, corner

charges are accumulated at the Mx−y-invariant corners
when m1 ¼ m3 and m2 ¼ m4. This is consistent with
our calculations in Figs. 12(a) and 12(b). Also, if we
choose parameters m1 ¼ −m3 and m2 ¼ −m4, corner
charges are accumulated at Mxþy-invariant corners, as
shown in Figs. 12(c) and 12(d) since then the role of
Mxþy andMx−y is interchanged. The corner states carry half
charges as shown in Fig. 12(e). Those in-gap states
disappear when chiral symmetry is broken [see Fig. 12(f)].

3. Nested Wilson loop method

The nested Wilson loop method, originally proposed in
Refs. [64,65], was used in Ref. [62] as a diagnostic for
anomalous corner charges induced from the bulk topology.

Let us briefly recap the idea as follows. First, one calculates
the Wilson loop operator along the ky direction for a given
momentum kx. Here, kx and ky are arbitrary two indepen-
dent momenta that parametrize the 2D Brillouin zone.
Then, its phase eigenvalues Θ’s (so-called Wilson bands)
are calculated as a function of kx. The spectrum is gapped
in general except for possible crossings on the Θ ¼ 0 or
Θ ¼ π lines, because only the crossings on the Θ ¼ 0 and
Θ ¼ π lines are protected by IST symmetry [42] (see
Fig. 13). Therefore, one can separate the Wilson bands
into two groups, B1 and B2, that are centered at Θ ¼ 0 and
Θ ¼ π, respectively, and separated by a gap in between.
The choice of B1 and B2 is not unique, and the number of
bands in a group can vary depending on the choice.
However, the topological characteristic of each group
B1, B2 is independent of the choice. Then we can pick a
particular group Bi (i ¼ 1, 2), and calculate their determi-
nant of the Wilson loop along kx, i.e., the exponentiation of
the Berry phase for Bi along kx:
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FIG. 12. Corner charges in model Eq. (D11). Finite-size
calculations are done by transforming the momentum space
Hamiltonian into a square lattice tight-binding model, which
has 20 × 20 unit cells. (a),(b) Mxþy-symmetric case. m1 ¼ m3 ¼
0.4 andm2 ¼ m4 ¼ 0.2:μ ¼ 0.01 at ðx; yÞ ¼ ð1; 1Þ. (c),(d)Mx−y-
symmetric case. m1 ¼ −m3 ¼ 0.4 and m2 ¼ −m4 ¼ 0.2:μ ¼
0.01 at ðx; yÞ ¼ ð20; 0Þ. In (a) and (c), the Fermi level is assumed
to be positive such that both corner charges are occupied.
(e) Accumulated electrons near the corner ðx; yÞ ¼ ð1; 1Þ in
(a). It is calculated from

Pxc
x¼1

Pxc
y¼1 ρðx; yÞ − hρðx; yÞi, where

ρðx; yÞ is the number of electrons in the unit cell at ðx; yÞ, and
hρðx; yÞi ¼ 2. (f) In the absence of mirror symmetry. m1 ¼ 0.1,
m3 ¼ 0.4, and m2 ¼ m4 ¼ 0.2. No in-gap states appear in
this case.
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detW2ðBiÞ ¼ exp½iΦxðBiÞ�: ðD18Þ

It was suggested that this determinant of the “nested Wilson
loop” is −1 (þ1) when an anomalous corner charge is (is
not) present. Let us note that this method can be used in the
cases when the number of bands is bigger than two because
the Wilson loop spectrum is not gapped in general for two
bands. See Fig. 1(d) in the main text as an example of a
gapless Wilson loop spectrum for two bands.
Nowwe show how the nestedWilson loop is related to the

second Stiefel-Whitney class, which is responsible for the
appearance of the anomalous corner charges. More specifi-
cally, let us clarify (i) which block of Wilson bands (B1, or
B2, or both) should be chosen to determine the second
Stiefel-Whitney class w2 and (ii) whether it is possible to
determine w2 directly from the pattern of the Wilson loop
spectrum without additional computation of the nested
Wilson loop. Notice that decomposing the Wilson bands
into two blocks B1 and B2 corresponds to decomposing the
transition functions into two blocks, because the Wilson
loop operator is equivalent to the transition functions in a
parallel-transport gauge [42]. Then, according to the
Whitney sum formula [42,46], the total Stiefel-Whitney
class w2ðB1 ⊕ B2Þ can be determined by the topological
invariants of each block as

w2ðB1⊕B2Þ¼w2ðB1Þþw2ðB2Þ

þ 1

π2
½ΦxðB1ÞΦyðB2ÞþΦxðB2ÞΦyðB1Þ�:

ðD19Þ

First, let us choose B1 to determine detW2ðB1Þ ¼
exp½iΦxðB1Þ�. Notice that ΦyðB1Þ ¼ 0 since B1 is centered
atΘ ¼ 0, andw2ðB1Þ ¼ 0 since it is given by the number of
the Wilson band crossings at the Θ ¼ π line [42]. Then we
have

w2ðB1 ⊕ B2Þ ¼ w2ðB2Þ −
i
π2

log ½detW2ðB1Þ�ΦyðB2Þ:
ðD20Þ

In fact, w2ðB2Þ and detW2ðB1Þ can be further related to
each other in some cases. In order to investigate all possible
patterns of Wilson loop spectra with w2ðB1 ⊕ B2Þ ¼ 1, as
shown in Fig. 13, let us recall that the second Stiefel-
Whitney class can be determined by the Wilson loop
spectrum as follows [42].

(i) When Φy ¼ 0, it is given by the number of crossing
points on the Θ ¼ π line [Figs. 13(a)–13(c)].

(ii) When Φy ¼ π, it is given by the number of crossing
points on the Θ ¼ 0 line if the number of bands is
odd [Fig. 13(d)], whereas it is undetermined by the
spectrum if the number of bands is even [Fig. 13(e)].

(iii) Furthermore, the Berry phase along the kx direction
Φx can be determined by the parity of the total
number of crossing points on both the Θ ¼ 0 and
Θ ¼ π lines. For instance, Φx ¼ 0 in Fig. 13(a)
[Φx ¼ π in Fig. 13(b)] because there are even (odd)
crossing points in total.

(iv) However, the Berry phase Φx is indeterminate when
there are flat Wilson bands at Θ ¼ 0 or π, as in
Figs. 13(c)–13(e).

Basically the same rule can be applied to a subset of
Wilson bands, B1 or B2. Keeping the above rules in mind,
let us consider the following two cases.
(1) When ΦyðB2Þ ¼ 0, corresponding to the cases

shown in Figs. 13(a)–13(c), we also have w2ðB2Þ ¼
1 because of the single crossing point on the Θ ¼ π
line. Then w2ðB1 ⊕ B2Þ ¼ 1 does not depend on
detW2ðB1Þ. Let us determine detW2ðB1Þ by inspect-
ing the evolution pattern of the Wilson bands in B1

and compare it with w2ðB1 ⊕ B2Þ ¼ 1. Notice that
detW2ðB1Þ ¼ −1 and þ1 in Figs. 13(a) and 13(b),
respectively, since it can be determined by the number

(a)

kx

-
-

(e)

kx

-
-

(c)

kx

-
-

(d)

kx

-
-

(b)

kx

-
-

FIG. 13. Wilson loop spectra with the nontrivial second Stiefel-
Whitney class (w2 ¼ 1). ΘðkxÞ is the phase eigenvalue of the
Wilson loop operator calculated along the ky direction at a fixed
kx. In each panel, a blue box indicates the block B1 of Wilson
bands centered at the Θ ¼ 0 line whereas the rest of the
Wilson bands form the other block B2 centered at the Θ ¼ π
line, each of which can be used to compute the nested
Wilson loop W2ðBiÞ (i ¼ 1, 2) along the kx direction.
(a) ðΦx; ΦyÞ ¼ ð0; 0Þ, detW2ðB1Þ ¼ detW2ðB2Þ ¼ −1.
(b) ðΦx;ΦyÞ¼ðπ;0Þ, detW2ðB1Þ ¼ þ1, detW2ðB2Þ ¼ −1.
(c) ðΦx;ΦyÞ¼ð0;0Þ or ðπ; 0Þ, detW2ðB1Þ¼�1, detW2ðB2Þ ¼
−1. (d) ðΦx;ΦyÞ ¼ ð0; πÞ or ðπ; πÞ, detW2ðB1Þ ¼ −1,
detW2ðB2Þ ¼ �1. (e) ðΦx;ΦyÞ ¼ ð0; πÞ or ðπ; πÞ,
detW2ðB1Þ ¼ −1, detW2ðB2Þ ¼ 1. Here, Φx and Φy are the
Berry phases for the whole bands (usually the whole occupied
bands) along the kx and ky directions, respectively. In (a)–(c)
where Φy ¼ 0, w2 can be determined by detW2ðB2Þ whereas in
(d),(e) where Φy ¼ π, w2 can be determined by detW2ðB1Þ.
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of the crossings on theΘ ¼ 0 line; that is, detW2 ¼ 1
(−1)when the number is even (odd) [42].However, in
the case shown in Fig. 13(c), detW2ðB1Þ cannot be
determined simply by looking at the shape of the
Wilson band in B1. When there is a flat Wilson band
on the Θ ¼ 0 line, detW2ðB1Þ should be determined
directly via numerical computation.
Therefore, we find that although w2ðB1 ⊕ B2Þ ¼

1 is fixed for all the cases shown in Figs. 13(a)–13(c),
detW2ðB1Þ varies depending on the shape of the
Wilson bands in B1. So one cannot establish any
relationship between w2ðB1 ⊕ B2Þ and detW2ðB1Þ.
However, by using the other block B2, one can see
that detW2ðB2Þ ¼ −1 in all the three cases shown in
Figs. 13(a)–13(c). Thus we conclude that when
ΦyðB1 ⊕ B2Þ ¼ 0, w2ðB1 ⊕ B2Þ can be determined
by detW2ðB2Þ. This is basically because both are
given by the parity of the crossing points at Θ ¼ π in
the non-nested Wilson loop spectrum. Namely,
w2ðB1 ⊕ B2Þ ¼ 0 (1) indicates detW2ðB2Þ ¼ 1
(−1), whereas detW2ðB1Þ is not a meaningful
quantity.

(2) When ΦyðB2Þ ¼ π, corresponding to the
cases shown in Figs. 13(d) and 13(e),
w2ðB2Þ ¼ 0 as the Wilson bands in B2 do not
cross, so w2ðB1 ⊕ B2Þ ¼ −ði=πÞ logðdetW2Þ. Thus,
detW2ðB1Þ ¼ −1 gives w2ðB1 ⊕ B2Þ ¼ 1 in these
cases. In Fig. 13(d), detW2ðB1Þ ¼ −1 because of
the odd number of Wilson band crossings on the
Θ ¼ 0 line. On the other hand, in Fig. 13(e),
detW2ðB1Þ cannot be determined by the shape of
the Wilson bands, so it should be directly calculated
numerically. Therefore, we find that when
ΦyðB1 ⊕ B2Þ ¼ π, w2ðB1 ⊕ B2Þ can be determined
by detW2ðB1Þ; that is, w2ðB1 ⊕ B2Þ ¼ 0 (1) indi-
cates detW2ðB1Þ ¼ 1 (−1). It is straightforward to
show that detW2ðB2Þ is an irrelevant quantity in
this case.

In conclusion, the determinant of the nested Wilson loop
is equivalent to the second Stiefel-Whitney class in all cases
shown in Fig. 13. However, depending on the total Berry
phase ΦyðB1 ⊕ B2Þ, a different block of Wilson bands
should be used to determine w2ðB1 ⊕ B2Þ. Specifically,
when ΦyðB1 ⊕ B2Þ is 0 (π), B2 (B1) should be used to
determine detW2 from the evolution pattern of the Wilson
bands in the block. Let us note that, in the case shown in
Fig. 13(e), w2 cannot be determined simply by the shape of
the (non-nested) Wilson loop spectrum, so the nested
Wilson loop should be numerically calculated to get w2.
In practice, however, there is an alternative way. We can
avoid the case Fig. 13(e) by calculating the Wilson loop
spectrum along a different direction (along kx or along
kx þ ky). Then w2 can be determined directly by the pattern
of the Wilson loop spectrum without additional numerical
calculations of the nested Wilson loop.

APPENDIX E: FRAGILITY OF e2 = 1 PHASE IN
THE PRESENCE OF ADDITIONAL

SYMMETRIES

As we discuss in Sec. VII D, the presence of C3z can fix
the positions of the Dirac points. In such cases, it is no
longer possible to prove the fragility of the e2 ¼ 1 phase by
pair annihilating the Dirac points. Instead, we should solve
the fragility equation ðe2 ¼ 1Þ ⊕ X ¼ Y, where X and Y
are the sets of Wannier-representable bands. To do this, let
us organize the symmetry content, the representation
content, and w2 of an atomic insulator into a vector with
seven components:

½C3zΓ ¼ 1; C3zΓ ¼ e�2πi=3; C3zK ¼ 1; C3zK

¼ e�2πi=3; C2xΓ ¼ 1; C2xΓ ¼ −1; w2�: ðE1Þ

The first six components of this vector represent the
number of bands with the specified C3z or C2x eigenvalues
at the specified high-symmetry points, while the last
component of the vector contains the value of w2. For
example, in the case of the nearly flat bands of TBG, whose
symmetry and topology are captured by the lower two
bands of the Hamiltonian given in Eq. (1), we have

ðe2 ¼ 1ÞTBG ¼ ½2; 0; 0; 2; 1; 1; 1�: ðE2Þ

Let us denote an atomic insulator with orbital O at the
Wyckoff position W by ðW;OÞ. For the minimal atomic
insulators, we have [67]

ðA; sÞ ¼ ½1; 0; 1; 0; 1; 0; 0�;
ðA; pzÞ ¼ ½1; 0; 1; 0; 0; 1; 0�;
ðA; p�Þ ¼ ½0; 2; 0; 2; 1; 1; 0�;
ðB; sÞ ¼ ½2; 0; 0; 2; 2; 0; 0�;

ðB; pzÞ ¼ ½2; 0; 0; 2; 0; 2; 0�;
ðB; p�Þ ¼ ½0; 4; 2; 2; 2; 2; 0�;
ðC; sÞ ¼ ½1; 2; 1; 2; 2; 1; 1�;

ðC; pzÞ ¼ ½1; 2; 1; 2; 1; 2; 1�:

Using the fact that w2 is a Z2 quantity, one finds that the
minimal solutions are [67]

ðe2 ¼ 1ÞTBGþðC;pzÞ¼ ðA;sÞþðA;p�ÞþðB;pzÞ ðE3Þ

and

ðe2 ¼ 1ÞTBG þ ðC; sÞ ¼ ðA; pzÞ þ ðA; p�Þ þ ðB; sÞ: ðE4Þ

There is no solution to the fragility equation if X consists of
one or two bands.
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1805.06906.

[23] H. K. Pal, On Magic Angles and Band Flattening in Twisted
Bilayer Graphene, arXiv:1805.08803.

[24] M. Ochi, M. Koshino, and K. Kuroki, Possible Correlated
Insulating States in Magic-Angle Twisted Bilayer Graphene
under Strongly Competing Interactions, Phys. Rev. B 98,
081102 (2018).

[25] M. Fidrysiak, M. Zegrodnik, and J. Spałek, Unconventional
Topological Superconductivity and Phase Diagram for a
Two-Orbital Model of Twisted Bilayer Graphene, Phys.
Rev. B 98, 085436 (2018).

[26] A. Thomson, S. Chatterjee, S. Sachdev, and M. S. Scheurer,
Triangular Antiferromagnetism on the Honeycomb Lattice
of Twisted Bilayer Graphene, Phys. Rev. B 98, 075109
(2018).

[27] F. Guinea and N. R. Walet, Electrostatic Effects and Band
Distortions in Twisted Graphene Bilayers, Proc. Natl. Acad.
Sci. U.S.A. 115, 13174 (2018).

[28] Y.W. Choi and H. J. Choi, Strong Electron-Phonon Cou-
pling, Electron-Hole Asymmetry, and Nonadiabaticity in
Magic-Angle Twisted Bilayer Graphene, Phys. Rev. B 98,
241412(R) (2018).

[29] L. Zou, H. C. Po, A. Vishwanath, and T. Senthil,
Band Structure of Twisted Bilayer Graphene: Emergent
Symmetries, Commensurate Approximants, and Wannier
Obstructions, Phys. Rev. B 98, 085435 (2018).

[30] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil,
Origin of Mott Insulating Behavior and Superconductivity
in Twisted Bilayer Graphene, Phys. Rev. X 8, 031089
(2018).

[31] M. Koshino, N. F. Q. Yuan, M. Ochi, K. Kuroki, and L. Fu,
Maximally Localized Wannier Orbitals and the Extended
Hubbard Model for the Twisted Bilayer Graphene, Phys.
Rev. X 8, 031087 (2018).

[32] N. F. Q. Yuan and L. Fu, Model for Metal-Insulator Tran-
sition in Graphene Superlattices and Beyond, Phys. Rev. B
98, 045103 (2018).

[33] J. Kang and O. Vafek, Symmetry, Maximally Localized
Wannier States, and Low-Energy Model for the Twisted
Bilayer Graphene Narrow Bands, Phys. Rev. X 8, 031088
(2018).

[34] J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C. Neto,
Graphene Bilayer with a Twist: Electronic Structure, Phys.
Rev. Lett. 99, 256802 (2007).

[35] R. Bistritzer and A. H. MacDonald,Moiré Bands in Twisted
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