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By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166Er and
164Dy support a state with supersolid properties, where a spontaneous density modulation and a global
phase coherence coexist. This paradoxical state occurs in a well-defined parameter range, separating the
phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton
mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side.
Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed
analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its
density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning,
starting from a stable condensate, we observe that 166Er and 164Dy exhibit a striking difference in the
lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in
166Er the supersolid behavior survives only a few tens of milliseconds, we observe coherent density
modulations for more than 150 ms in 164Dy. Building on this long lifetime, we demonstrate an alternative
path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.
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I. INTRODUCTION

Supersolidity is a paradoxical quantum phase of matter
where both crystalline and superfluid order coexist [1–3].
Such a counterintuitive phase, featuring rather antithetic
properties, has been originally considered for quantum
crystals with mobile bosonic vacancies, the latter being
responsible for the superfluid order. Solid 4He has long
been considered a prime system to observe such a phe-
nomenon [4,5]. However, after decades of theoretical and
experimental efforts, an unambiguous proof of superso-
lidity in solid 4He is still missing [6,7].
In search of more favorable and controllable systems,

ultracold atoms emerged as a very promising candidate,
thanks to their highly tunable interactions. Theoretical
works point to the existence of a supersolid ground state
in different cold-atom settings, including dipolar [8]

and Rydberg particles [9,10], cold atoms with a soft-
core potential [11], or lattice-confined systems [7].
Breakthrough experiments with Bose-Einstein condensates
(BECs) coupled to light have recently demonstrated a state
with supersolid properties [12,13]. While in these systems
indeed two continuous symmetries are broken, the crystal
periodicity is set by the laser wavelength, making the
supersolid incompressible.
Another key notion concerns the close relation between a

possible transition to a supersolid ground state and the
existence of a local energy minimum at large momentum
in the excitation spectrum of a nonmodulated superfluid,
known as the roton mode [14]. Since excitations corre-
sponding to a periodic density modulation at the roton
wavelength are energetically favored, the existence of this
mode indicates the system’s tendency to crystallize [15]
and it is predicted to favor a transition to a supersolid
ground state [4,5,9].
Remarkably, BECs of highly magnetic atoms, in which

the particles interact through the long-range and anisotropic
dipole-dipole interaction (DDI), appear to gather several
key ingredients for realizing a supersolid phase. First,
as predicted more than 15 years ago [16,17] and recently
demonstrated in experiments [18,19], the partial attraction
in momentum space due to the DDI gives rise to a roton
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minimum. The corresponding excitation energy, i.e., the
roton gap, can be tuned in the experiments down to
vanishing values. Here, the excitation spectrum softens
at the roton momentum and the system becomes unstable.
Second, there is a nontrivial interplay between the trap
geometry and the phase diagram of a dipolar BEC. For
instance, our recent observations have pointed out the
advantage of axially elongated trap geometries (i.e., cigar
shaped) compared to the typically considered cylindrically
symmetric ones (i.e., pancake shaped) in enhancing the
visibility of the roton excitation in experiments. Last but
not least, while the concept of a fully softened mode is
typically related to instabilities and disruption of a coherent
quantum phase, groundbreaking works in the quantum-gas
community have demonstrated that quantum fluctuations
can play a crucial role in stabilizing a dipolar BEC [20–26].
Such a stabilization mechanism enables the existence,
beyond the mean-field instability, of a variety of stable
ground states, from a single macrodroplet [22,24,27] to
striped phases [28], and droplet crystals [29]; see also
related works [30–33]. For multidroplet ground states,
efforts have been devoted to understanding if a phase
coherence among ground-state droplets could be estab-
lished [28,29]. However, previous experiments with 164Dy
have shown the absence of phase coherence across the
droplets [28], probably due to the limited atom numbers.
Droplet ground states, quantum stabilization, and dipolar

rotons have caused a huge amount of excitement with very
recent advancements adding key pieces of information to
the supersolid scenario. The quench experiments in an
166Er BEC at the roton instability have revealed out-of-
equilibrium modulated states with an early-time phase
coherence over a timescale shorter than a quarter of the
oscillation period along the weak-trap axis [18]. In the same
work, it has been suggested that the roton softening
combined with the quantum stabilization mechanism
may open a promising route towards a supersolid ground
state. A first confirmation came from a recent theoretical
work [34], considering an Er BEC in an infinite elongated
trap with periodic boundary conditions and tight transverse
confinement. The supersolid phase appears to exist within a
narrow region in interaction strength, separating a roton
excitation with a vanishing energy and an incoherent
assembly of insulating droplets. Almost simultaneously,
experiments with 162Dy BECs in a shallow elongated trap,
performing a slow tuning of the contact interaction,
reported on the production of stripe states with phase
coherence persisting up to half of the weak trapping period
[35]. More recently, such observations have been con-
firmed in another 162Dy experiment [36]. Here, theoretical
calculations showed the existence of a phase-coherent
droplet ground state, linking the experimental findings to
the realization of a state with supersolid properties. The
results on 162Dy show, however, transient supersolid prop-
erties whose lifetime is limited by fast inelastic losses

caused by three-body collisions [35,36]. These realizations
raise the crucial question of whether a long-lived or
stationary supersolid state can be created despite the
usually non-negligble atom losses and the crossing of a
discontinuous phase transition, which inherently creates
excitations in the system.
In this work, we study both experimentally and theo-

retically the phase diagram of degenerate gases of highly
magnetic atoms beyond the roton softening. Our inves-
tigations are carried out using two different experimental
setups producing BECs of 166Er [22,37] and of 164Dy [38]
and rely on a fine-tuning of the contact-interaction strength
in both systems. In the regime of interest, these two atomic
species have different contact-interaction scattering lengths
as, whose precise dependence on the magnetic field is
known only for Er [18,22,39], and different three-body-loss
rate coefficients. Moreover, Er and Dy possess different
magnetic moments μ and masses m, yielding the dipolar
lengths, add ¼ μ0μ

2m=12πℏ2, of 65.5a0 and 131a0, respec-
tively. Here, μ0 is the vacuum permeability, ℏ ¼ h=2π the
reduced Planck constant, and a0 the Bohr radius. For both
systems, we find states showing hallmarks of supersolidity,
namely, the coexistence of density modulation and global
phase coherence. For such states, we quantify the extent of
the as parameter range for their existence and study their
lifetime. For 166Er, we find results very similar to the one
recently reported for 162Dy [35,36], both systems being
limited by strong three-body losses, which destroy the
supersolid properties in about half of a trap period.
However, for 164Dy, we have identified an advantageous
magnetic-field region where losses are very low and large
BECs can be created. In this condition, we observe that the
supersolid properties persist over a remarkably long time,
well exceeding the trap period. Based on such a high
stability, we finally demonstrate a novel route to reach the
supersolid state, based on evaporative cooling from a
thermal gas.

II. THEORETICAL DESCRIPTION

As a first step in our study of the supersolid phase in
dipolar BECs, we compute the ground-state phase diagram
for both 166Er and 164Dy quantum gases. The gases are
confined in a cigar-shaped harmonic trap, as illustrated in
Fig. 1(a). Our theory is based on numerical calculations of
the extended Gross-Pitaevskii equation [40], which
includes our anisotropic trapping potential, the short-range
contact and long-range dipolar interactions at a mean-field
level, as well as the first-order beyond-mean-field correc-
tion in the form of a Lee-Huang-Yang (LHY) term
[18,22–24,27]. We note that, while both the exact strength
of the LHY term and its dependence on the gas character-
istics are under debate [18,19,25,31,41], the importance of
such a term, scaling with a higher power in density, is
essential for stabilizing states beyond the mean-field
instability [18,25,41]; see also Refs. [8,42–44].
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Our theoretical results are summarized in Fig. 1. By
varying the condensed-atom number N and as, the phase
diagram shows three very distinct phases. To illustrate
them, we first describe the evolution of the integrated in situ
density profile nðyÞ with fixed N for varying as, Fig. 1(b).
The first phase, appearing at large as, resembles a regular
dilute BEC. It corresponds to a nonmodulated density
profile of low peak density and large axial size σy exceed-
ing several times the corresponding harmonic oscillator
length (ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωy

p
); see Fig. 1(e) and the region

denoted BEC in Figs. 1(f) and 1(g). The second phase
appears when decreasing as down to a certain critical value,
a�s . Here, the system undergoes an abrupt transition to a
periodic density-modulated ground state, consisting of an
array of overlapping narrow droplets, each of high peak
density. Because the droplets are coupled to each other via a
density overlap, later quantified in terms of the link strength
S, particles can tunnel from one droplet to a neighboring
one, establishing a global phase coherence across the cloud;
see Fig. 1(d). Such a phase, in which periodic density
modulation and phase coherence coexist, is identified as
the supersolid (SSP) one [10,34]; see the SSP region in
Figs. 1(f) and 1(g). When further decreasing as, we observe
a fast reduction of the density overlap, which eventually
vanishes; see Fig. 1(c). Here, the droplets become fully
separated. Under realistic experimental conditions, it is
expected that the phase relation between such droplets
cannot be maintained; see later discussion. We identify this
third phase as the one of an insulating droplet (ID) array

[27,28,45]; see the ID region in Figs. 1(f) and 1(g). For low
N, we find a single droplet of high peak density, as in
Refs. [24,27]; see dark blue region in Fig. 1(f). Generally
speaking, our calculations show that the number of droplets
in the array decreases with lowering as or N. The existence
of these three phases (BEC, SSP, ID) is consistent with
recent calculations considering an infinitely elongated
Er BEC [34] and a cigar-shaped 162Dy BEC [36], illustrat-
ing the generality of this behavior in dipolar gases.
To study the supersolid character of the density-modu-

lated phases, we compute the average of the wave function
overlap between neighboring droplets S. As an ansatz to
extract S, we use a Gaussian function to describe the wave
function of each individual droplet. This is found to be an
appropriate description from an analysis of the density
profiles of Figs. 1(b)–1(d); see also Ref. [46]. For two
droplets at a distance d and of identical Gaussian widths σy
along the array direction, S is simply S ¼ expð−d2=4σ2yÞ.
Here, we generalize the computation of the wave function
overlap to account for the difference in widths and
amplitudes among neighboring droplets. This analysis
allows us to distinguish between the two types of modu-
lated ground states, SSP and ID in Figs. 1(f) and 1(g).
Within the Josephson-junction picture [47–49], the tunnel-
ing rate of atoms between neighboring droplets depends on
the wave function overlap, and an estimate for the single-
particle tunneling rate can be derived within the Gaussian
approximation [46]; see also Ref. [40]. The ID phase
corresponds to vanishingly small values of S, yielding
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FIG. 1. Phase diagram of an 166Er and a 164Dy dipolar BEC in a cigar-shaped trap. (a) Illustration of the trap geometry with atomic
dipoles oriented along z. (b) Integrated density profile as a function of as for an 166Er ground state of N ¼ 5 × 104. In the color bar, the
density scale is upper limited to 4 × 104 μm−1 in order to enhance the visibility in the supersolid regime. (c)–(e) Exemplary density
profiles for an insulating droplet state (ID) at as ¼ 49a0, for a state with supersolid properties (SSP) at 51a0, and for a BEC at 52a0,
respectively. (f),(g) Phase diagrams for 166Er and 164Dy for trap frequencies ωx;y;z ¼ 2π × ð227; 31.5; 151Þ and 2π × ð225; 37; 135Þ Hz,
respectively. The gray color identifies ground states with a single peak in nðyÞ of large Gaussian width, σy > 2ly. The dark blue region
in (f) shows the region where nðyÞ exhibits a single sharp peak, σy ≤ 2ly, and no density modulation. The red-to-blue color map shows S
in the case of a density-modulated nðyÞ. In (g) the color map is upper limited to use the same color code as in (f) and to enhance visibility
in the low-N regime. The inset in (g) shows the calculated density profile for 164Dy at N ¼ 7 × 104 and as ¼ 91a0.
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tunneling times extremely long compared to any other
relevant timescale. In contrast, the supersolid phase is
identified by a substantial value of S, with a correspond-
ingly short tunneling time.
As shown in Figs. 1(f) and 1(g), a comparative analysis

of the phase diagram for 166Er and 164Dy reveals similarities
between the two species (see also Ref. [36]). A supersolid
phase is found for sufficiently high N, in a narrow region
of as, upper bounded by the critical value as�ðNÞ. For
intermediate N, a�s increases with increasing N. We note
that, for low N, the nonmodulated BEC evolves directly
into a single droplet state for decreasing as [50]. In this
case, no supersolid phase is found in between; see also
Refs. [24,27]. Despite the general similarities, we see that
the supersolid phase for 164Dy appears for lower atom
number than for Er and has a larger extension in as. This is
mainly due to the different add and strength of the LHY
term. We note that, at large N and for decreasing as, Dy
exhibits ground states with a density modulation appearing
first in the wings, which then progresses inwards until a
substantial modulation over the whole cloud is established
[51]; see inset of Fig. 1(g). In this regime, we also observe
that a�s decreases with increasing N. These types of states
have not been previously reported and, although challeng-
ing to access in experiments because of the large N, they
deserve further theoretical investigations.

III. EXPERIMENTAL SEQUENCE
FOR 166Er AND 164Dy

To experimentally access the above-discussed physics, we
produce dipolar BECs of either 166Er or 164Dy atoms. These
two systems are created in different setups and below we
summarize the main experimental steps; see also Ref. [40].
Erbium.—We prepare a stable 166Er BEC following

the scheme of Ref. [18]. At the end of the preparation,
the Er BEC contains about N ¼ 8 × 104 atoms at
as ¼ 64.5a0. The sample is confined in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð227; 31.5; 151Þ Hz. A homogeneous magnetic field
B polarizes the sample along z and controls the value of as
via a magnetic Feshbach resonance (FR) [18,22,40]. Our
measurements start by linearly ramping down as within
20 ms and waiting an additional 15 ms so that as reaches its
target value [40]. We note that ramping times between 20
and 60 ms have been tested in the experiment and we do not
record a significant difference in the system’s behavior.
After the 15-ms stabilization time, we then hold the sample
for a variable time th before switching off the trap. Finally,
we let the cloud expand for 30 ms and perform absorption
imaging along the z (vertical) direction, from which we
extract the density distribution of the cloud in momentum
space, nðkx; kyÞ.
Dysprosium.—The experimental procedure to create a

164Dy BEC follows the one described in Ref. [38]; see also

Ref. [40]. Similarly to Er, the Dy BEC is also confined in a
cigar-shaped optical dipole trap and a homogeneous
magnetic field B sets the quantization axis along z and
the value of as. For Dy, we will discuss our results in
terms of magnetic field B, since the as-to-B conversion is
not well known in the magnetic-field range considered
[25,40,41,52]. In a first set of measurements, we first
produce a stable BEC of about N ¼ 3.5 × 104 condensed
atoms at a magnetic field of B ¼ 2.5 G and then probe the
phase diagram by tuning as. Here, before ramping the
magnetic field to access the interesting as regions, we
slowly increase the power of the trapping beams within
200 ms. The final trap frequencies are ωx;y;z ¼ 2π ×
ð300; 16; 222Þ Hz. After preparing a stable BEC, we ramp
B to the desired value within 20 ms and hold the sample for
th [40]. In a second set of measurements, we study a
completely different approach to reach the supersolid state.
As discussed later, here we first prepare a thermal sample at
a B value where supersolid properties are observed and then
further cool the sample until a transition to a coherent
droplet-array state is reached. In both cases, at the end
of the experimental sequence, we perform absorption
imaging after typically 27 ms of time-of-flight (TOF)
expansion. The imaging beam propagates horizontally
under an angle α of ≈45° with respect to the weak axis
of the trap (y). From the TOF images, we thus extract
nðkY; kzÞ with kY ¼ cosðαÞky þ sinðαÞkx.
A special property of 164Dy is that its background

scattering length is smaller than add. This allows us to
enter the supersolid regime without the need of setting B
close to a FR, as is done for 166Er and 162Dy, which
typically causes severe atom losses due to increased three-
body-loss coefficients. In contrast, in the case of 164Dy, the
supersolid regime is reached by ramping B away from the
FR pole used to produce the stable BEC via evaporative
cooling, as the as range of Fig. 1(g) lies close to the
background as reported in Ref. [52]; see also Ref. [40]. At
the background level, three-body-loss coefficients below
1.3 × 10−41 m6 s−1 have been reported for 164Dy [25].

IV. DENSITY MODULATION AND
PHASE COHERENCE

The coexistence of density modulation and phase coher-
ence is the key feature that characterizes the supersolid
phase and allows us to discriminate it from the BEC and ID
cases. To experimentally probe this aspect in our dipolar
quantum gases, we record their density distribution after a
TOF expansion for various values of as across the phase
diagram. As for a BEC in a weak optical lattice [53] or for
an array of BECs [54–56], the appearance of interference
patterns in the TOF images is associated with a density
modulation of the in situ atomic distribution. Moreover, the
shot-to-shot reproducibility of the patterns (in amplitude
and position) and the persistence of fringes in averaged
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pictures, obtained from many repeated images taken under
the same experimental conditions, reveals the presence of
phase coherence across the sample [56].
Figure 2 exemplifies snapshots of the TOF distributions

for Er, measured at three different as values; see
Figs. 2(a)–2(c). Even if very close in scattering length,
the recorded nðkx; kyÞ shows a dramatic change in behavior.
For as ¼ 54.7ð2Þa0, we observe a nonmodulated distribu-
tion with a density profile characteristic of a dilute BEC.
When lowering as to 53.8ð2Þa0, we observe the appearance
of an interference pattern in the density distribution,
consisting of a high central peak and two almost symmetric
low-density side peaks [57]. Remarkably, the observed
pattern is very reproducible with a high shot-to-shot
stability, as shown in the repeated single snapshots and
in the average image [Figs. 2(b) and 2(e)]. This behavior
indicates a coexistence of density modulation and global
phase coherence in the in situ state, as expected in the
supersolid phase. This observation is consistent with
our previous quench experiments [18] and with the recent
162Dy experiments [35,36]. When further lowering as to
53.3ð2Þa0, complicated patterns develop with fringes
varying from shot to shot in number, position, and
amplitude, signaling the persistence of in situ density
modulation. However, the interference pattern is com-
pletely washed out in the averaged density profiles
[Fig. 2(f)], pointing to the absence of a global phase

coherence. We identify this behavior as the one of
ID states.
Toy model—To get an intuitive understanding of the

interplay between density modulation and phase coherence
and to estimate the role of the different sources of
fluctuations in our experiment, we here develop a simple
toy model, which is inspired by Ref. [56]; see also
Ref. [40]. In our model, the initial state is an array of
ND droplets containing in total N atoms. Each droplet is
described by a one-dimensional Gaussian wave function
ψ iðyÞ of amplitude αi, phase ϕi, width σi, and center yi. To
account for fluctuations in the experiments, we allow αi,
di ¼ yi − yi−1, and σi to vary by 10% around their expect-
ation values. The spread of the phases ϕi among the
droplets is treated specially as it controls the global phase
coherence of the array. By fixing ϕi ¼ 0 for each droplet or
by setting a random distribution of ϕi, we range from full
phase coherence to the incoherent cases. Therefore, the
degree of phase incoherence can be varied by changing the
standard deviation of the distribution of ϕi.
To mimic our experiment, we compute the free evolution

of each individual ψ i over 30 ms, and then compute the
axial distribution nðy; tÞ ¼ jPiψ iðy; tÞj2, from which we
extract the momentum distribution nðkyÞ, also accounting
for the finite imaging resolution [40]. For each computation
run, we randomly draw ND values for ϕi, as well as of σi,
di, and αi, and extract nðkyÞ. We then collect a set of nðkyÞ
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FIG. 2. Coherence in the interference patterns: measurement and toy model. (a)–(c) Examples of single TOF absorption images at
th ¼ 5 ms for 166Er at as ¼ f54.7ð2Þ; 53.8ð2Þ; 53.3ð2Þga0, respectively. Corresponding average pictures for 100 images obtained under
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LONG-LIVED AND TRANSIENT SUPERSOLID BEHAVIORS … PHYS. REV. X 9, 021012 (2019)

021012-5



by drawing these values multiple times using the same
statistical parameters and compute the expectation value,
hnðkyÞi; see Figs. 2(j)–2(l). The angled brackets denote the
ensemble average.
The results of our toy model show large similarity with

the observed behavior in the experiment. In particular,
while for each single realization one can clearly distinguish
multipeak structures regardless of the degree of phase
coherence between the droplets, the visibility of the
interference pattern in the averaged nðkyÞ survives only
if the standard deviation of the phase fluctuations between
droplets is small (roughly, below 0.3π). In the incoherent
case, we note that the shape of the patterns strongly varies
from shot to shot. Interestingly, the toy model also shows
that the visibility of the coherent peaks in the average
images is robust against the typical shot-to-shot fluctua-
tions in droplet size, amplitude, and distance that occur in
the experiments; see Figs. 2(j) and 2(k).
Probing density modulation and phase coherence.—To

separate and quantify the information on the in situ density
modulation and its phase coherence,we analyze themeasured
interference patterns in Fourier space [36,58–60]. Here, we
extract two distinct averaged density profiles, nM and nΦ.
Their structures at finite y spatial frequency (i.e., in Fourier
space) quantify the two abovementioned properties.
More precisely, we perform a Fourier transform (FT) of

the integrated momentum distributions nðkyÞ denoted
F ½n�ðyÞ. Generally speaking, modulations in nðkyÞ induce
peaks at finite spatial frequency, y ¼ y�, in the FT norm,
jF ½n�ðyÞj; see Figs. 2(g)–2(i) and 2(m)–2(o). Following the
above discussion (see also Refs. [56,61]), such peaks in an
individual realization hence reveal a density modulation of
the corresponding in situ state, with a wavelength roughly
equal to y�. Consequently, we consider the average of the
FT norm of the individual images, nMðyÞ ¼ hjF ½n�ðyÞji, as
the first profile of interest. The peaks of nM at finite y then
indicate the mere existence of an in situ density modulation
of roughly constant spacing within the different realiza-
tions. As the second profile of interest, we use the FT
norm of the average profile hnðkyÞi, nΦðyÞ ¼ jF ½hni�ðyÞj.
Connecting to our previous discussion, the peaks of nΦ at
finite y point to the persistence of a modulation in the
average hnðkyÞi, which we identified as a hallmark for a
global phase coherence within the density-modulated state.
In particular, we point out that a perfect phase coherence,
implying identical interference patterns in all the individual
realizations, yields nM ¼ nΦ and, thus, identical peaks
at finite y in both profiles. We note that, by linearity, nΦ
also matches the norm of the average of the full FT
of the individual images, i.e., nΦðyÞ ¼ jhF ½n�ðyÞij; see
also Ref. [40].
Figures 2(g)–2(i) and 2(m)–2(o) demonstrate the sig-

nificance of our FT analysis scheme by applying it
to the momentum distributions from the experiment
[Figs. 2(d)–2(f)] and the momentum distributions from

the toy model [Figs. 2(j)–2(l)], respectively. As expected,
for the BEC case, both nM and nΦ show a single peak at
zero spatial frequency, y ¼ 0, characterizing the absence of
density modulation, Fig. 2(g). In the case of phase-coherent
droplets, Fig. 2(e), we observe that nM and nΦ are
superimposed and both show two symmetric side peaks
at finite y, in addition to a dominant peak at y ¼ 0; see
Fig. 2(h). In the incoherent droplet case, we find that, while
nM still shows side peaks at finite y, the ones in nΦ wash
out from the averaging, Figs. 2(f), 2(i), 2(l), and 2(o). For
both coherent and incoherent droplet arrays, the toy-model
results show behaviors matching the above description,
providing a further justification of our FT analysis scheme;
see Figs. 2(j)–2(o). Our toy model additionally proves two
interesting features. First, it shows that the equality
nM ¼ nΦ, revealing the global phase coherence of a
density-modulated state, is remarkably robust to noise in
the structure of the droplet arrays; see Figs. 2(j) and 2(m).
Second, our toy model, however, shows that phase fluc-
tuations across the droplet array on the order of 0.2π
standard deviation are already sufficient to make nΦ and
nM deviate from each other; see Figs. 2(k) and 2(n). The
incoherent behavior is also associated with strong varia-
tions in the side peak amplitude of the individual realiza-
tions of jF ½n�j, connecting, e.g., to the observations
of Ref. [36].
Finally, to quantify the density modulation and the

phase coherence, we fit a three-Gaussian function to both
nMðyÞ and nΦðyÞ and extract the amplitudes of the
finite-spatial-frequency peaks, AM and AΦ, for both dis-
tributions, respectively. Note that for a BEC, which is a
phase-coherent state, AΦ will be zero since it probes
only finite-spatial-frequency peaks; see Figs. 2(g)–2(i)
and 2(m)–2(o).

V. CHARACTERIZATION OF THE
SUPERSOLID STATE

We are now in the position to study two key aspects,
namely, (i) the evolution of the density modulation and
phase coherence across the BEC-supersolid-ID phases and
(ii) the lifetime of the coherent density-modulated state in
the supersolid regime.
Evolution of the supersolid properties across the phase

diagram.—The first type of investigation is conducted with
166Er since, contrary to 164Dy, its scattering length and
dependence on the magnetic field has been precisely
characterized [18,22]. After preparing the sample, we ramp
as to the desired value and study the density patterns as well
as their phase coherence by probing the amplitudes AM
and AΦ as a function of as after th ¼ 5 ms. As shown in
Fig. 3(a), in the BEC region (i.e., for large as), we observe
that both AM and AΦ are almost zero, evidencing the
expected absence of a density modulation in the system. As
soon as as reaches a critical value a�s , the system’s behavior
dramatically changes with a sharp and simultaneous
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increase of both AM and AΦ. While the strength of AM
and AΦ varies with decreasing as—first increasing then
decreasing—we observe that their ratio AΦ=AM remains
constant and close to unity over a narrow as range below a�s
of ≳1a0 width; see the inset of Fig. 3(a). This behavior
pinpoints the coexistence in the system of phase coherence
and density modulation, as predicted to occur in the
supersolid regime. For ðas − a�sÞ < −1a0, we observe that
the two amplitudes depart from each other. Here, while the
density modulation still survives with AM saturating to a
lower finite value, the global phase coherence is lost with
AΦ=AM < 1, as expected in the insulating droplet phase.
Note that we also study the evolution of AΦ and AM in
164Dy, but as a function of B, and find a qualitatively similar
behavior.
To get a deeper insight on how our observations compare

to the phase-diagram predictions (see Fig. 1), we study the
link strength S as a function of as; see Fig. 3(b). Since S
quantifies the density overlap between neighboring drop-
lets and is related to the tunneling rate of atoms across the
droplet array, it thus provides information on the ability of

the system to establish or maintain a global phase coher-
ence. In this plot, we set S ¼ 0 in the case where no
modulation is found in the ground state. At the BEC-to-
supersolid transition, i.e., at as ¼ a�s , a density modulation
abruptly appears in the system’s ground state with S taking
a finite value. Here, S is maximal, corresponding to a
density modulation of minimal amplitude. Below the
transition, we observe a progressive decrease of S with
lowering as, pointing to the gradual reduction of the
tunneling rate in the droplet arrays. Close to the transition,
we estimate a large tunneling compared to all other relevant
timescales. However, we expect this rate to become vanish-
ingly small, on the sub-Hertz level [40], when decreasing
as 1–2a0 below a�s. Our observation also hints at the smooth
character of the transition from a supersolid to an ID phase.
The general trend of S, including the extension in as

where it takes nonvanishing values, is similar to the as
behavior of AM and AΦ observed in the experiments [62].
We observe in the experiments that the as dependence at
the BEC-to-supersolid transition appears sharper than at
the supersolid-to-ID interface, potentially suggesting a
different nature of the two transitions. However, more
investigations are needed since atom losses, finite temper-
ature, and finite-size effects can affect, and in particular
smoothen, the observed behavior [64–66]. Moreover,
dynamical effects, induced by, e.g., excitations created at
the crossing of the phase transitions or atom losses during
the time evolution, can also play a substantial role in the
experimental observations, complicating a direct compari-
son with the ground-state calculations. The time dynamics
as well as a different scheme to achieve a state with
supersolid properties is the focus of the remainder of
the paper.
Lifetime of the supersolid properties.—Having identified

the as range in which our dipolar quantum gas exhibits
supersolid properties, the next central question concerns the
stability and lifetime of such a fascinating state. Recent
experiments on 162Dy have shown the transient character of
the supersolid properties, whose lifetime is limited by
three-body losses [35,36]. In these experiments, the phase
coherence is found to survive up to 20 ms after the density
modulation has formed. This time corresponds to about half
of the weak-trap period. Stability is a key issue in the
supersolid regime, especially since the tuning of as, used to
enter this regime, has a twofold consequence on the
inelastic loss rate. First, it gives rise to an increase in
the peak density [see Figs. 1(b)–1(d)] and, second, it may
lead to an enhancement of the three-body-loss coefficient.
We address this question by conducting comparative

studies on 166Er and 164Dy gases. These two species allow
us to tackle two substantially different scattering scenarios.
Indeed, the background value of as for 166Er (as well as for
162Dy) is larger than add. Thus, reaching the supersolid
regime, which occurs at add=as ≈ 1.2–1.4 in our geometry,
requires us to tune B close to the pole of a FR. This tuning
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FIG. 3. Supersolid behavior across the phase diagram. Mea-
sured side peak amplitudes, AΦ (circles) and AM (squares), with
their ratio in inset (a), and calculated link strength S (b) as a
function of as − a�s for 166Er. For nonmodulated states, we set
S ¼ 0 in theory and AΦ=AM ¼ 0 in experiment (crosses in inset).
In the inset, open and closed symbols correspond to AΦ=AM >
0.8 and ≤ 0.8, respectively. In the experiments, we probe the
system at a fixed th ¼ 5 ms. Horizontal error bars are derived
from our experimental uncertainty in B, vertical error bars
corresponding to the statistical uncertainty from the fit are smaller
than the data points. The measured and calculated critical
scattering lengths are a�s ¼ 54.9ð2Þa0 and 51.15a0, respectively
[62]. The numerical results are obtained for the experimental trap
frequencies and for a constant N ¼ 5 × 104 [63].
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also causes an increase of the three-body-loss rate. In
contrast, 164Dy realizes the opposite case with the back-
ground scattering length smaller than add. This feature
brings the important advantage of requiring tuning B away
from the FR pole to reach the supersolid regime. As we
describe below, this important difference in scattering
properties leads to a strikingly longer lifetime of the
164Dy supersolid properties with respect to 166Er and to
the recently observed behavior in 162Dy [35,36].
The measurements proceed as follows. For both 166Er

and 164Dy, we first prepare the quantum gas in the stable
BEC regime and then ramp as to a fixed value in the
supersolid regime for which the system exhibits a state of
coherent droplets (i.e., AΦ=AM ≈ 1); see previous discus-
sion. Finally, we record the TOF images after a variable th
and we extract the time evolution of both AΦ and AM.
The study of these two amplitudes will allow us to answer
the question of whether the droplet structure—i.e., the
density modulation in space—persists in time whereas
the coherence among droplets is lost (AM > AΦ → 0) or
if the density structures themselves vanish in time
(AM ≈ AΦ → 0).
As shown in Fig. 4, for both species, we observe that AΦ

and AM decay almost synchronously with a remarkably
longer lifetime for 164Dy [Fig. 4(b)] than 166Er [Fig. 4(a)].

Interestingly, AΦ and AM remain approximately equal
during the whole time dynamics; see insets of Figs. 4(a)
and 4(b). This behavior indicates that it is the strength of the
density modulation itself and not the phase coherence
among droplets that decays over time. Similar results have
been found theoretically in Ref. [67]. We connect this
decay mainly to three-body losses, especially detrimental
for 166Er, and possible excitations created while crossing
the BEC-to-supersolid phase transition [40]. For compari-
son, the inset of Fig. 4(a) shows also the behavior in the ID
regime for 166Er, where AΦ=AM < 1 already at short th and
remains so during the time evolution [40].
To get a quantitative estimate of the survival time of

the phase-coherent and density-modulated state, we fit a
simple exponential function to AΦ and extract tΦ, defined
as the 1=10 lifetime; see Fig. 4. For 166Er, we extract
tΦ ¼ 38ð6Þ ms. For th > tΦ, the interference patterns
become undetectable in our experiment and we recover
a signal similar to the one of a nonmodulated BEC state [as
in Figs. 2(a) and 2(d)]. These results are consistent with
recent observations of transient supersolid properties in
162Dy [35]. For 164Dy, we observe that the coherent density-
modulated state is remarkably long-lived. Here, we find
tΦ ¼ 152ð13Þ ms.
The striking difference in the lifetime and robustness of

the supersolid properties between 166Er and 164Dy becomes
even more visible when studying tΦ as a function of as
(B for Dy). As shown in Fig. 5, tΦ for Er remains
comparatively low in the investigated supersolid regime
and slightly varies between 20 and 40 ms. Similarly to the
recent studies with 162Dy, this finding reveals the transient
character of the state and opens the question of whether a
stationary supersolid state can be reached with these
species. On the contrary, for 164Dy we observe that tΦ
first increases with B in the range from 1.8 G to about
1.98 G. Then, for B > 1.98 G, tΦ acquires a remarkably
large and almost constant value of about 150 ms over a
wide B range. This shows the long-lived character of the
supersolid properties in our 164Dy quantum gas. We note
that over the investigated range, as is expected to monoto-
nously increase with B [40]. Such a large value of tΦ
exceeds not only the estimated tunneling time across
neighboring droplets but also the weak-axis trap period,
which together set the typical timescale to achieve global
equilibrium and to study collective excitations.

VI. CREATION OF STATES WITH SUPERSOLID
PROPERTIES BY EVAPORATIVE COOLING

The long-lived supersolid properties in 164Dy motivate us
to explore an alternative route to cross the supersolid phase
transition, namely, by evaporative cooling instead of
interaction tuning. For this set of experiments, we have
modified the waists of our trapping beams in order to
achieve quantum degeneracy in tighter traps with respect to

0 40 80 120
th  (ms)

0

1

2

3

4

5

x103

(a)

(b)

x102

4

8

12

A
A

M

0

A
A

M

164Dy

166Er

th  (ms)
0

0

1

A
 /A

M

60 120

th  (ms)
0 4 8 12

0

1

A
 /A

M

16

FIG. 4. Time evolution of the supersolid properties. Amplitudes
AΦ (circles) and AM (squares) in the supersolid regime as a
function of the holding time in trap for (a) 166Er at 54.2ð2Þa0 and
for (b) 164Dy at 2.04 G. The solid lines are exponential fits to the
data. The insets show the time evolution of AΦ=AM for the above
cases (filled triangles), and, for comparison, in the ID regime
(empty triangles) for Er at as ¼ 53.1ð2Þa0 (a).

L. CHOMAZ et al. PHYS. REV. X 9, 021012 (2019)

021012-8



the one used for condensation in the previous set of
measurements. In this way, the interference peaks in the
supersolid region are already visible without the need to
apply a further compression of the trap since the side-
to-central-peak distance in the momentum distribution
scales roughly as 1=lz [18]. Forced evaporative cooling
is performed by reducing the power of the trapping beams
piecewise linearly in subsequent evaporation steps until a
final trap with frequencies 2π × ð225; 37; 134Þ Hz is
achieved. During the whole evaporation process, which
has an overall duration of about 3 s, the magnetic field is
kept either at B ¼ 2.43 G, where we observe long-lived
interference patterns, or at B ¼ 2.55 G, where we produce
a stable nonmodulated BEC. We note that these two B
values are very close without any FR lying in between [40].
Figure 6 shows the phase transition from a thermal cloud

to a final state with supersolid properties by evaporative
cooling. In particular, we study the phase transition by
varying the duration of the last evaporation ramp, while
maintaining the initial and final trap-beam power fixed.
This procedure effectively changes the atom number and
temperature in the final trap while keeping the trap
parameters unchanged, which is important to not alter
the final ground-state phase diagram of the system. At the
end of the evaporation, we let the system equilibrate and
thermalize for th ¼ 100 ms, after which we switch off the
trap, let the atoms expand for 26.5 ms, and finally perform
absorption imaging. We record the TOF images for differ-
ent ramp durations, i.e., for different thermalization times.
For a short ramp, too many atoms are lost such that the
critical atom number for condensation is not reached, and
the atomic distribution remains thermal; see Fig. 6(a).

By increasing the ramp time, the evaporative cooling
becomes more efficient and we observe the appearance of a
bimodal density profile with a narrow and dense peak at the
center, which we identify as a regular BEC; see Fig. 6(b).
By further cooling, the BEC fraction increases and the
characteristic pattern of the supersolid state emerges; see
Figs. 6(c) and 6(d). The observed evaporation process
shows a strikingly different behavior in comparison
with the corresponding situation at B ¼ 2.55 G, where
the usual thermal-to-BEC phase transition is observed; see
Figs. 6(i)–6(l).
We finally probe the lifetime of the supersolid properties

by extracting the time evolution of both the amplitudes AΦ
and AM, as previously discussed. We use the same
experimental sequence as the one in Fig. 6(d)—i.e., 300-
ms duration of the last evaporation ramp and 100 ms of
equilibration time—and subsequently hold the sample in
the trap for a variable th. As shown in Fig. 7(a), we observe
a very long lifetime with both amplitudes staying large and
almost constant over more than 200 ms. At longer holding
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time, we observe a slow decay of AΦ and AM, following the
decay of the atom number. Moreover, during the dynamics,
the ratio AΦ=AM stays constant. The long lifetime of
the phase-coherent density modulation is also directly
visible in the persistence of the interference patterns in
the averaged momentum density profiles [similar to
Fig. 2(e)], both at intermediate and long times; see
Figs. 7(b) and 7(c), respectively. For even longer th, we
cannot resolve anymore interference patterns in the TOF
images. Here, we recover a signal consistent with a regular
BEC of low N.
Achieving the coherent droplet phase via evaporative

cooling is a very powerful alternative path to supersolidity.
We speculate that, for instance, excitations, which might be
important when crossing the phase transitions by inter-
action tuning, may be small or removed by evaporation
when reaching this state kinematically. Other interesting
questions, open to future investigations, are the nature of
the phase transition, the critical atom number, and the role
of noncondensed atoms.

VII. CONCLUSIONS

For both 166Er and 164Dy dipolar quantum gases, we have
identified and studied states showing hallmarks of super-
solidity, namely, global phase coherence and spontaneous
density modulations. These states exist in a narrow scatter-
ing-length region, lying between a regular BEC phase and a
phase of an insulating droplet array. While for 166Er,
similarly to the recently reported 162Dy case [35,36], the
observed supersolid properties fade out over a compara-
tively short time because of atom losses, we find that 164Dy
exhibits remarkably long-lived supersolid properties.
Moreover, we are able to directly create stationary states

with supersolid properties by evaporative cooling, demon-
strating a powerful alternative approach to interaction
tuning on a BEC. This novel technique provides prospects
of creating states with supersolid properties while avoiding
additional excitations and dynamics. The ability to produce
long-lived supersolid states paves the way for future
investigations on quantum fluctuations and many-body
correlations, as well as of collective excitations in such
an intriguing many-body quantum state. A central goal of
these future investigations lies in proving the superfluid
character of this phase, beyond its global phase coherence
[7,34,68–70].
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Note added.—Recently, we became aware of related works
reporting theoretical studies of the ground-state phase
diagram [71,72].
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