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When an extended system is coupled at its opposite boundaries to two reservoirs at different
temperatures or chemical potentials, it cannot achieve a global thermal equilibrium and is instead driven
to a set of current-carrying nonequilibrium states. Despite the broad relevance of such a scenario to metallic
systems, there have been limited investigations of the entanglement structure of the resulting long-time
states, in part due to the fundamental difficulty in solving realistic models for disordered, interacting
electrons. We investigate this problem by carefully analyzing two “toy” models for coherent quantum
transport of diffusive fermions: the celebrated three-dimensional, noninteracting Anderson model, and a
class of random quantum circuits acting on a chain of qubits, which exactly maps to a diffusive, interacting
fermion problem. Crucially, the random circuit model can also be tuned to have no interactions between the
fermions, similar to the Anderson model. We show that the long-time states of driven noninteracting
fermions exhibit volume-law mutual information and entanglement, both for our random circuit model and
for the nonequilibrium steady state of the Anderson model. With interactions, the random circuit model is
quantum chaotic and approaches local equilibrium, with only short-range entanglement. These results
provide a generic picture for the emergence of local equilibrium in current-driven, quantum-chaotic
systems, and also provide examples of stable, highly entangled, many-body states out of equilibrium. We
discuss experimental techniques to probe these effects in low-temperature mesoscopic wires or ultracold
atomic gases.
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I. INTRODUCTION

Uncovering general principles that describe the entan-
glement structure of quantum many-body systems is a
fundamental challenge in statistical mechanics and quan-
tum information science [1]. In the ground state of local
Hamiltonian systems, the entanglement entropy often
satisfies an “area law,” whereby the entropy of a subregion
scales with the area of its boundary [2–5]. Single eigen-
states with finite energy density above the ground state
typically exhibit extensive entanglement entropy [6–8];
however, the mutual information of finite-temperature,
thermal Gibbs (thus, mixed) states still exhibits an area
law [4]. The existence of such area laws allows a rich set of
analytical and numerical tensor network techniques to be
used to characterize and classify these states [9–11].
Although area laws for the mutual information are typical

of thermal mixed states, any modification that drives the
system out of equilibrium allows for potential violations.
A common nonequilibrium scenario consists of an

extended system coupled to two reservoirs with different
chemical potentials, which drives currents in the system.
The analog of thermalization in these systems is the
approach to local equilibrium at long times. Motivated
by recent developments in the understanding of thermal-
ization and many-body localization in closed quantum
many-body systems [8,12], we revisit this class of
current-driven open quantum systems with the goal of
determining the entanglement structure of the long-time
density matrix of the system. Our results hold the most
physical significance for disorderedmetallic systems, where
one can identify four length scales governing the qualitative
features of this nonequilibrium transport problem: the elastic
mean free path l, the phase-coherence length lφ, the
electron-electron energy relaxation length lee, and the
electron-phonon scattering length lep. In a typical metal
at low temperatures, l < lφ < lee < lep [13].
Rather than attempting to analyze realistic models for

disordered, interacting electrons, we instead focus our
investigations on two “toy” models: the three-dimensional,
noninteracting Anderson model in the diffusive phase [14],
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and a class of random quantum circuits acting on a chain of
qubits, which exactly map to a many-fermion system. The
current-driven Anderson model is expected to qualitatively
capture the properties of mesoscopic disordered metals in
the regime L ≪ lφ, where L is the length of the driven
system.
In this article, we show that the long-time density matrix

for driven noninteracting fermions is characterized by
volume-law mutual information and entanglement, in
distinct contrast to the entanglement properties at equilib-
rium. This result should generally apply to driven systems
in the regime l ≪ L ≪ lφ. Our results thus provide
examples of physical systems where volume-law entangle-
ment can be sustained, and possibly harnessed, despite
strong coupling of the system to external reservoirs. We
discuss experimental methods to probe these effects in
transport experiments on mesoscopic wires or ultracold
Fermi gases. In our random circuit models, we can also add
interactions and show the crossover to area-law entangle-
ment as L exceeds lφ, showing that such quantum chaotic-
driven systems stay closer to local equilibrium than do the
noninteracting fermion models.
Many-body physics models based on random quantum

circuits have recently attracted interest in high-energy
[15–17] and quantum condensed matter physics [18–22]
because they exhibit the quantum chaotic dynamics and
rapid scrambling characteristic of interacting many-body
systems while still retaining a simple enough structure to
allow controlled calculations of various measures of entan-
glement and chaos. In the context of our work, the random
circuit model we introduce is advantageous because it
provides an analytically tractable realization of key quali-
tative features of the entanglement structure of these
current-driven diffusive systems. We study a generalization
of these models where the interaction is tunable, allowing
us to explore both the noninteracting fermion regime
L ≪ lφ, the strongly chaotic regime L ≫ lφ, and the
crossover between these regimes.
An additional, seemingly unrelated, aspect of the random

circuit model is that it has a strong connection to an exactly
solvable, classical, boundary-driven, stochastic lattice gas
model for diffusion called the symmetric-simple-exclusion
process (SSEP) [23,24]. Thus, our results also provide
insights into the emergence of classical hydrodynamics
from interacting quantum many-body systems.
The paper is organized as follows: In Sec. II, we give a

more detailed overview of the main results. In Sec. III, we
present a detailed analysis of the random circuit model,
including its operator-spreading dynamics, phase diagram,
and entanglement properties. In Sec. IV, we discuss some
natural extensions of the random circuit model to higher
dimensions and to more than two states per site. In Sec. V,
we analyze the mutual information in the current-driven
Anderson model using a scattering-state approach and
compare these results to a scattering-state analysis of the

random circuit. In Sec. VI, we show that signatures of the
volume-law entangled phase of the random circuit also
show up in intermediate-time dynamics following a quan-
tum quench. In Sec. VII, we discuss a method to experi-
mentally probe signatures of the volume-law entanglement
in transport through mesoscopic wires or ultracold Fermi
gases. We present our conclusions in Sec. VIII. In the
Appendixes, we present several useful technical results.
See Appendix A for an overview.

II. SUMMARY OF MAIN RESULTS

As described in the Introduction, the two main results in
this paper are (i) the discovery that noninteracting, current-
driven, diffusive fermion models exhibit extensive mutual
information and entanglement, and (ii) the development of a
simple physical picture for how interactions effectively
decohere these correlations and recover the expected
area-law scaling of local equilibrium. The essential argu-
ments underlying these results are based on universal
properties of operator-spreading dynamics and entropy
production in open systems and, thus, should apply to a
wide range of physical systems and models. To provide
deeper insight into our results, we systematically analyze the
behavior and phenomenology of three different classes of
models that exhibit these universal features: random quan-
tum circuits, noninteracting Anderson models, and weakly
interacting, disorderedmetals. In this section,we summarize
our findings for each of these classes of models.
The general setup we consider is shown in Fig. 1(a) and

consists of a system with a global conservation law (either
magnetization or particle number) in contact with two
thermodynamic reservoirs at different chemical potentials.
The chemical potential bias leads to steady-state currents in
the long-time limit. At long times and wavelengths, the
models we consider have an effective hydrodynamic
description (derived below) for the average value of the
conserved quantity nðr; tÞ given by the diffusion equation

∂
∂t nðr; tÞ ¼ D̃∇2nðr; tÞ; ð1Þ

where D̃ is the scaled diffusion constant and r is a
d-dimensional position vector scaled so that x ¼ 0 or 1
corresponds to the longitudinal position of the left or right
reservoir. When subject to the boundary condition
nðrÞjx¼0 ¼ nL and nðrÞjx¼1 ¼ nR, this equation has the
steady-state solution shown in Fig. 1(b):

nðrÞ ¼ nLð1 − xÞ þ nRx: ð2Þ

This average profile, however, gives no information about
correlations and the entanglement structure in the long-time
states. To more systematically investigate the entropy and
entanglement properties of such current-driven quantum
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systems, we analyze the models discussed above and
shown schematically in Figs. 1(c)–1(d).

A. Random circuit model

In the random circuit model [see Fig. 1(c)], our system is
a spin-1=2 chain of L sites with the z component of the
magnetization of the spins being the “charge” that is
conserved and that is being transported by the current.
The dynamics are generated by a sequence of total spin-z
conserving, randomly chosen, nearest-neighbor unitary
operations, i.e., quantum gates, applied at each time step,
with no correlations between time steps. Whenever a gate
operates on a boundary spin, that boundary spin is
immediately swapped with a “fresh” (uncorrelated) spin
from the adjacent infinite reservoir; this is how the system
is coupled to the reservoirs. The unitary operations in the
local two-site basis j↑↑i; j↑↓i; j↓↑i; j↓↓i take the form
[21,22]

U ¼

0
BBB@

Uþ 0 0 0

0 Uud Url 0

0 Ulr Udu 0

0 0 0 U−

1
CCCA: ð3Þ

The coefficients in U are chosen according to a two-
parameter family of random distributions that we describe
in Sec. III. One can understand the time evolution under the

random circuit as a stochastic process whereby in each time
step a Hamiltonian for the system is randomly chosen from
a given distribution and applied for a fixed length of time.
The average dynamics of this class of random circuit
models are diffusive because (i) we choose the sites where
we apply the gates with a uniform probability and (ii) uni-
tarity constrains jUrlj ¼ jUlrj. As a result, at each time step,
the local spin density always has equal probability of
hopping to the left or right. Because of the diffusive
transport to the memoryless reservoirs, the long-time
density matrix for a given circuit realization is insensitive
to its initial conditions and converges to a particular time-
dependent mixed state that we call a “nonequilibrium
attracting state” (NEAS), in analogy to the nomenclature
of a nonequilibrium steady state (NESS) for driven time-
independent systems.
More precisely, after N ¼ Lt random gates are applied

(note that we scale time t so that L gates of the circuit are
applied in one unit of time), we can describe the action of
the random circuit on the initial density matrix of the
system ρI by a linear operator acting on the space of density
matrices:

MtðρIÞ ¼ TrresðULt � � �U1ρI ⊗ ρresU
†
1 � � �U†

LtÞ
¼ TrresðULtMt−δtðρIÞ ⊗ ρLRresU

†
LtÞ; ð4Þ

where δt ¼ 1=L, Ui are the randomly chosen unitary gates
at each time step that include the SWAPs with fresh
reservoir spins, ρres is the initial many-body density matrix
of the reservoir, Trresð·Þ denotes a partial trace over the
reservoirs, and ρLRres ¼ ρmL

⊗ ρmR
is the two-site density

matrix of the fresh reservoir spins that can become
entangled with the system by Ui. Here, we have defined

ρmL=R
¼

� 1
2
þmL=R 0

0 1
2
−mL=R

�
; ð5Þ

where mL=R are the magnetizations of the left/right reser-
voirs. For t much larger than the diffusive transit time
through the system, i.e., the Thouless time τTh ¼ L2=D, the
action of Mt takes the form

MtðρIÞ ¼ ρNEASðtÞTr½ρI�; ð6Þ

where ρNEASðtÞ depends on the history of the circuit but is
independent of ρI in the limit of long time. We choose the
model so that the average NEAS density matrix over
random circuit realizations is the same for all values of
the parameters. Interestingly, this average density matrix
can be found from the known solution for the NESS of the
classical stochastic lattice gas model that goes by the name
of the SSEP [24]. The entropy and mutual information of
the NESS for SSEP have been shown to have only
subextensive deviations from local equilibrium [25,26].

Fluctuations:Reservoir Reservoir

Current

(a) Average density(b)

Metallic disordered wire
Random 
circuit

Unitary with U(1) 
spin-z conservation
SWAP

(c)
(d)

FIG. 1. (a) Current-driven model that we consider, where two
reservoirs are held at fixed chemical potentials and the bulk
dynamics conserves the total density. (b) The average local density
will generically be linear in position, but the total von Neumann
entropy may have an extensive (“volume-law”) deviation from
local equilibrium (LE). (c) Schematic of the random circuit model,
which exhibits quantum chaotic behavior for some parameter
regimes. The interaction with reservoir is produced by a SWAP
gate that acts immediately after any other gate is applied to the
boundary spin and swaps the boundary spin state with a fresh spin
state from the reservoir. (d) We also consider the diffusive regime
of noninteracting fermions in a random potential in 3D and find
that they display a similar volume-law entanglement structure as
the noninteracting fermion regime of the random circuit model.
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As there is no energy conservation for the random
circuit, local equilibrium is simply given by the product-
state density matrix with the same average magnetization
profile as Eq. (2),

ρLE ¼ ⊗
L

i¼1
ρmi

; ρmi
¼

�
1

2
þmi

�
ui þ

�
1

2
−mi

�
di;

ð7Þ

mi ¼ mL

�
1 −

i
Lþ 1

�
þmR

i
Lþ 1

; ð8Þ

where ui ¼ ð1þ σzi Þ=2 and di ¼ ð1 − σzi Þ=2 denote pro-
jections of each site i onto spin up or down.
Despite this uniform average behavior, we find three

qualitatively different regimes of behavior for the instanta-
neous NEAS ρNEASðtÞ when we investigate the deviation of
its von Neumann entropy SðρÞ ¼ −Tr½ρ log ρ� from SðρLEÞ,

ΔS≡ SðρLEÞ − SðρNEASÞ; ð9Þ

where the overbar denotes an average over realizations of
the random circuit. As we show below, the generic behavior
of the random circuit model is strongly interacting and
quantum chaotic. In this quantum chaotic regime, we show
that the scaling of ΔS with the length of the system L is
subextensive. As a result, the NEAS is, as one might
expect, close to local equilibrium. For certain limiting
values of the parameters of the model, however, we obtain
two other fine-tuned phases whose entropy deviates exten-
sively from local equilibrium, i.e., ΔS ∝ L. One of these
special phases corresponds to a classical deterministic
dynamics, while the other maps to noninteracting diffusive
fermions.
The emergence of a volume-law scaling for ΔS coincides

with nonchaotic dynamics in each of these two special
phases. However, we find that their mutual information
and entanglement properties have dramatically different
behavior. Here, the mutual information between two regions
A and B is defined in terms of the von Neumann entropy as
IðA∶BÞ≡ SðρAÞ þ SðρBÞ − SðρABÞ, whereρC is the reduced
density matrix on region C. To study the entanglement, we
use an entanglement measure appropriate for mixed states
known as the logarithmic negativity [27,28]. We remark that
similar to the area law for themutual information, recently an
area law for the logarithmic negativity was proved for
thermal-equilibrium Gibbs states [29].
In one of these two nonchaotic phases, the mutual

information and logarithmic negativity exactly vanish. In
this phase, the extensive deviation of the entropy from local
equilibrium already appears in the instantaneous magneti-
zation profile of the system, i.e., single-site correlation
functions. The properties of this phase, as well as many
aspects of its crossover to the quantum chaotic phase, can
be understood using a completely classical description of

the spin dynamics. In the other phase, we observe both
volume-law mutual information and logarithmic negativity
of the NEAS density matrix. This phase can be more easily
understood after transforming into a fermion representation
of the spins via a Jordan-Wigner transformation, where it
has a description in terms of noninteracting fermions whose
average dynamics are diffusive. This mapping motivates us
to search for a similar volume-law mutual information in
the three-dimensional Anderson model, which is a para-
digmatic model for diffusive, noninteracting particles. We
give a more complete picture for the nonequilibrium
dynamics that govern the emergence of these three phases
in Sec. III.

B. Anderson model

As mentioned in the Introduction, the volume-law
entanglement phase of the random circuit has some key
qualitative similarities with current-driven disordered
Anderson models. The Anderson model we consider is a
three-dimensional (3D) tight-binding model with quenched
disorder governed by the Hamiltonian

H ¼ t0
X
hiji

c†i cj þ
X
i

Vic
†
i ci; ð10Þ

where ci is a fermion operator on site i, t0 is the hopping,
the first sum is over nearest-neighbor sites of a cubic lattice,
and Vi is a random potential on each site. We draw Vi from
a uniform distribution between �W=2. In 1D and 2D, any
amount of disorder localizes the eigenstates, while in 3D,
this model has a metal-insulator transition nearWc ≈ 16.5t0
[30–32]. One distinction between the Anderson model and
the random circuit is that the Anderson model is also
subject to energy conservation. In fact, it is known from
theoretical studies using semiclassical Boltzmann equa-
tions [33–35] and experimental measurements [36] that, for
disordered wires of length l ≪ L ≪ lee, the local energy
distribution function strongly deviates from local equilib-
rium. Thus, the question we address in the context of the
Anderson model is how the entanglement structure for the
NESS density matrix within a single disorder realization
compares to the disorder-averaged density matrix. We
focus on the metallic regime 0 < W < Wc in this work
since we are interested in diffusive systems.
Wemodel the driven problemby taking a finite disordered

region connected at its two ends to ballistic leads that are
otherwise identical to the central region. The correlations in
the NESS are determined by the properties of the scattering
states in a narrow energy range (up to thermal broadening)
between the chemical potentials of the two leads. There are
two sources of correlations that then give rise to the mutual
information: First, there is the range in energy difference
overwhich the scattering-statewave functions are correlated
in the disordered region. This energy scale is simply set by
the Thouless energy, which is the inverse of the diffusive
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transit time through the disordered region ETh ¼ ℏD=L2
x,

where D is the diffusion constant and Lx is the longitudinal
length of the disordered region (assumed to be nearly equal
to the transversewidthL) [37,38]. Crucial to the existence of
the diffusive phase in 3D is that for large L and Lx, the
Thouless energy is much larger than the average level
spacing of about 1=L2Lx that the disordered region would
have if it were isolated [38]. In the context of the NESS, this
scaling implies that the eigenfunctions of the open system
are significantlymodified due to the coupling to the leads. In
addition to these energy correlations, there are also corre-
lations between different transverse scattering channels.
Accounting for both these types of contributions, we find
that we recover the volume-law scaling of the mutual
information predicted from the random circuit model.
Note that this effect is absent in equilibrium because the
scattering states originating from each lead are then equally
populated and interfere with each other to cancel the long-
range correlations present in the eigenfunctions. For a
ballistic conductor biased at its two ends, a simple calcu-
lation shows that there is no similar buildup of volume-law
mutual information in theNESS.Weprovide amore detailed
analysis of the Anderson model in Sec. V.

C. Disordered metals

An intriguing implication of the above results is that the
volume-law entangled phase observed in the random circuit
model and the Anderson model should also arise in current-
driven disordered metals in the “mesoscopic” regime
l ≪ L ≪ lφ. In Sec. VI, we further explore the connection
between our results and interacting, disordered electron
systems by considering the quench dynamics of an initial
state with a large step in the density profile. We provide
qualitative arguments that, for weak interactions, the reduced
density matrix over the diffusive length scale

ffiffiffiffiffiffi
Dt

p
will

similarly exhibit volume-law scaling of entanglement until a
crossover timescale set by the inelastic scattering rate. In
Sec. VII, we describe an approach based on single-particle
interference experiments to directly probe these effects in
mesoscopic wires or atomic Fermi gases [39].

D. Relation to prior work

Here, we review some prior related work on boundary-
driven classical and quantum problems. For classical
versions of this class of current-driven, nonequilibrium
problems, a large body of work has been devoted to
deriving emergent hydrodynamic descriptions of hard-core
stochastic lattice gases [23,24]. In this case, rigorous
arguments have been formulated, showing that the entropy
for a large class of these models converges to local
equilibrium (up to subextensive corrections) [25,26]. At
the same time, it has been found that, even in one
dimension, these boundary-driven classical systems exhibit
behavior traditionally associated with critical models at

equilibrium, such as power-law correlations and sponta-
neous symmetry breaking [40–43], making them a rich
avenue for investigation. Studies of quantum versions of
these current-driven problems have mainly focused on
integrable or free-fermion models [44–51]. Adding inte-
grability-breaking terms or interactions to these lattice
models generally leads to diffusive dynamics at long times,
unless the system is in a many-body localized phase
[52–56]. Other work has aimed at finding efficient tensor
network descriptions of the steady states of these models
based on the assumption that they satisfy an area law or
have an integrable structure [57–61]. A related quench
problem considers two identical many-body systems at
different temperatures or chemical potentials suddenly
brought into contact and allowed to evolve [62–64]. For
integrable models, the steady state is nonthermal [65–68].
In some cases, it has been shown that there is a logarithmic
violation of the area law for the mutual information [69]
and entanglement [70–74] for this type of quench problem.
In the case of the 3DAnderson model, to our knowledge,

the presence of these extensive correlations in the NESS of
the current-driven problem has not been previously dis-
cussed in the literature. There is a large body of work
studying shot-noise correlations of disordered mesoscopic
systems [75–77]; however, the presence of such correla-
tions between spatially separated leads follows directly
from current conservation and does not provide direct
information about the mutual information or entanglement.
For free-fermion or Luttinger-liquid leads connected by a
time-varying quantum point contact, there is a coincidental
relation between the full counting statistics of the current
and growth of entanglement entropy in the leads [78,79].
These studies, however, considered a spatially zero-
dimensional region between the leads, finding logarithmic
growth of entanglement entropy in the time direction,
and did not consider steady-state properties. Other related
work has considered the wave-function entanglement in the
Anderson model (i.e., entanglement entropy of the system
with a single occupied eigenstate) [80] and the ground-state
entanglement entropy of random spin chains [81,82],
finding a logarithmic scaling with system size.

III. RANDOM CIRCUIT MODEL

In this section, we systematically analyze the nonequili-
brium quantum dynamics and phenomenology of the
random circuit model. To tune between the three phases
in this model, we draw the nearest-neighbor random gates
defined in the local two-site basis j↑↑i; j↑↓i; j↓↑i; j↓↓i as

U ¼

0
BBB@

Uþ 0 0 0

0 Uud Url 0

0 Ulr Udu 0

0 0 0 U−

1
CCCA; ð11Þ
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according to a two-parameter measure dμ over three gate
sets μ0;1;2:

dμ ¼ ð1 − p1 − p2Þdμ0 þ p1dμ1 þ p2dμ2; ð12Þ

where the probabilities p1;2 satisfying p1 þ p2 ≤ 1 are our
tuning parameters. With probability p1, we apply a “non-
interacting fermion” (NIF) gate. These NIF gates are then
chosen as follows: We choose ϕ0 with uniform probability
between ½0; 2π� and fixUþ ¼ U�

− ¼ eiϕ0 . The central 2 × 2
matrix is then drawn from the Haar random ensemble on
SU(2). More explicitly, it takes the form

�
Uud Url

Ulr Udu

�
¼
�

eiϕ1 cosθ=2 eiϕ2 sinθ=2

−e−iϕ2 sinθ=2 e−iϕ1 cosθ=2

�
; ð13Þ

with ϕ1;2 chosen uniformly between ½0; 2π� and θ chosen in
the interval ½0; π� with probability density sin θ.
When acting only on nearest neighbors, such a circuit

can be efficiently simulated using a fermion representation
of the qubits obtained by a Jordan-Wigner transformation
[83]. In this case, the spin density is mapped to the fermion
density. These NIF gates are the only ones that perform a
“partial swap,” where all four Url; Ulr; Uud; Udu are non-
zero. With probability p2 ≤ ð1 − p1Þ, we apply a random
unitary chosen as follows: With equal probability, we
choose a gate from one of the two “interaction gate” sets
that produce interactions between the fermions:

U1 ¼ eiϕ1u1u2 þ eiϕ2u1d2 þ eiϕ3d1u2 þ d1d2; ð14Þ

U2 ¼ eiϕ1u1u2 þ eiϕ2l1r2 þ eiϕ3r1l2 þ d1d2; ð15Þ

where ui and di are projectors onto up and down spins,
respectively, and ri ¼ σþi and li ¼ σ−i are single-site
raising and lowering operators. Once one of these two
gate sets is chosen, we then choose the ϕi with uniform
probability in the interval ½0; 2π�. Note that these interaction
gates do not perform partial swaps, which implies that
states in the z basis are mapped to a single state in the z
basis. Finally, with probability 1 − p1 − p2, we apply either
an iSWAP gate (Uþ ¼ U− ¼ 1, Uud ¼ Udu ¼ 0, and
Ulr ¼ Url ¼ i so that it is in the NIF class) or the identity
operation with equal probability. This last set of gates
produces neither interactions nor partial swaps.
As described in Sec. II, this random circuit does not

produce a time-independent steady state in the long-time
limit but rather induces a distribution over NEASs. A more
rigorous proof of this result is provided by three general
theorems in Appendix B. The physical argument under-
lying the theorems is rather straightforward: Because of the
diffusive transport in the system arising from swap and
partial swap gates, after a time much greater than L2 (Lþ 1
gates of the random circuit occur in one unit of time), the
trajectory of each spin within the system has almost

certainly involved a swap with a reservoir, which has no
memory of the initial state within the system. The ensemble
of circuits, or the ensemble of all times for a single circuit,
produces a probability density PðρNEASÞ over the NEAS
density matrices ρNEAS that depends on the parameters p1

and p2.
An important feature that we have designed into this

family of models is that the circuit-averaged density matrix
ρ̄≡ R

dρNEASPðρNEASÞρNEAS is independent of p1 and p2.
To see this independence, one can first derive an equation
of motion for the average density matrix of the system at
time t,

ρ̄t ¼
Z

dνEνðρ̄t−δtÞ; ð16Þ

where δt ¼ 1=L is the minimal time step in this discrete
model, EνðρÞ ¼ TrresðUνρ ⊗ ρLRresU

†
νÞ is a linear operator on

the space of density matrices (often referred to as a
quantum channel; see Appendix B) for a single time step
of the random circuit, and dν is a measure over all allowed
gates in the random circuit that accounts for the random-
ness in the choice of sites to apply the gate, as well as the
randomness of the two-site unitary. Recall that ρLRres ¼
ρmL

⊗ ρmR
is the density matrix of the two fresh reservoir

spins that can become entangled with the system byUν [see
Eq. (5)]. The quantum channel for the whole circuit,
defined in Eq. (4), is given by the composition of a long
sequence of independently chosen Eν. Since Eν is a linear
operator and the late-time probability distribution for the
density matrix is independent of time, we can average both
sides of Eq. (16) over PðρNEASÞ to obtain the steady-state
equations for the average density matrix,

ρ̄ ¼
Z

dνEνðρ̄Þ: ð17Þ

Because of the random phases, the transport, and the swaps
with the reservoirs, it is easy to show, using Eq. (17), that all
off-diagonal terms in the density matrix average to zero
such that

ρ̄ ¼
X
fτig

Pðτ1;…; τLÞ ⊗
L

i¼1
½τiui þ ð1 − τiÞdi�; ð18Þ

where τi ∈ f0; 1g is a pseudospin variable for site i.
Moreover, the probability measure PðτÞ satisfies the same
steady-state equation as the SSEP [24]

dPðτÞ
dt

¼
X
fσig

Wσ
τPðσÞ ¼ 0: ð19Þ

We give the full expression for the transition matrix Wσ
τ

and review some basic properties of SSEP in Appendix C.
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This model is exactly solvable using a translationally
invariant matrix-product-state (MPS) representation for
PðτÞ, with a bond dimension equal to L [84]. The diverging
bond dimension in this solution is needed to account for
the long-range correlations induced by the currents with a
translationally invariant MPS. The average spin current
between two sites satisfies Fick’s law and is given by
Ji ¼ hui − uiþ1i ¼ δ=ðLþ 1Þ, where δ ¼ mL −mR,
h·i≡ Tr½ρ·�, and the overbar denotes averages over
PðρNEASÞ or, equivalently, time averages.
The central results for the random circuit model can be

summarized via the phase diagram shown in Fig. 2(a),
while the key features of the bulk dynamics in the three
phases are illustrated in Figs. 2(b)–2(d). In Table I. we list
some of their defining characteristics. Since these three
phases all have the same average ρ̄, they cannot be
distinguished by any simple time-averaged measurements.
But they do differ qualitatively in their PðρNEASÞ, which
can be seen by the scaling of the instantaneous total entropy
and mutual information of the NEAS. Alternatively, time-
resolved measurements of two-point functions will

generically distinguish these three phases. We outline an
interferometric approach in Sec. VII that can be used to
directly probe the nontrivial correlations that contribute to
the mutual information.
These phases are further distinguished by the rate of

entropy production in the reservoirs following a quench. If
the system starts, for example, in a pure product state with
zero entropy, the initial entropy production due to coupling
to the reservoirs is diffusive (∼

ffiffi
t

p
) in phases I and II, while

it is ballistic ð∼tÞ in phase III. But if the initial density
profile is different from that of the NEAS, the final entropy
production in phase III is diffusive, as this profile diffu-
sively approaches that of the NEAS.

A. Operator spreading and emergence
and violation of local equilibrium

Before describing our derivation of the phase diagram,
we first give an “informal” general picture for the quantum
dynamics in this model. We then provide a heuristic
description of the entanglement structure and the emer-
gence or not of local equilibrium in each of the three
phases.
To gain some intuitive understanding of the action of the

three gate sets introduced in Eq. (12) on the qubits, it is
more convenient to work in a fermion representation of the
spins after a Jordan-Wigner transformation

cj ¼ eiπ
P

j−1
m¼0

ujσ−j ; c†j ¼ eiπ
P

j−1
m¼0

ujσþj ; ð20Þ

where cjðc†jÞ is a fermionic annihilation (creation) operator
acting on site j. In this representation, the gates in μ0 only
induce discrete hopping of the fermions between sites,
which leads to diffusive transport of the fermion density
(i.e., magnetization) since the position of the gate is also
chosen randomly. In μ1, we allow “partial swaps” of the
qubits, which, in the fermion representation, can break up
local fermion density operators ni ¼ c†i ci into creation and
annihilation operators that act on different sites, but we
forbid gates that induce interactions between the fermions.
In μ2, the gates are allowed to induce random phases on
each state of the fermion occupations, which generates
interactions between the fermions, but there are no partial
swaps in μ2. These gates allow the operators c†i and ci to
generate local density operators ni ¼ c†i ci by mapping, for
example, ci → ciniþ1, but they do not break up the local

Local 
equilibrium

FIG. 2. (a) Phase diagram for small δ as a function of
probabilities p1 and p2 determining the distribution of random
unitaries in the random circuit. We find three distinct phases in the
thermodynamic limit. Phase I is realized along the entire p1 ¼ 0
axis. Phase II is realized for p2 ¼ 0 and p1 > 0. Turning on
p1 > 0 always destabilizes phase I, as indicated by the schematic
“flow lines,” obtained by scaling up the system size for fixed
values of the parameters (see Sec. III C for a precise analysis of
the crossovers). Similarly, turning on p2 > 0 in phase II causes a
“flow” to phase III. (b) Phase I has a mapping to a classical hard-
core lattice gas with discrete hopping. (c) In phase II, both the
spin and the coherences move and spread diffusively. (d) In phase
III, the coherences spread ballistically at the butterfly speed vB,
rapidly reaching the boundaries where they are “decohered” by
the reservoirs (see Sec. III A).

TABLE I. Properties defining the three phases. Here, IðL∶RÞ for ρ̄ is bounded by logL. In phases II and III, the
results are derived only for small δ.

Transport Operator spreading Entropy production ΔS IðL∶RÞ
I Diffusive/Fick’s law Diffusive

ffiffi
t

p
Volume 0

II 00 Diffusive
ffiffi
t

p
Volume Volume

III 00 Ballistic t →
ffiffi
t

p
Area Area
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density operators. By combining gates from μ1 and μ2, one
can generate any two-qubit unitary that conserves the total
fermion number.
One of our motivations for distributing the gates accord-

ing to Eq. (12) is based on the fact that ballistic operator
spreading, which is associated with fast scrambling and
quantum chaos, only emerges in a two-step process that
requires both p1 and p2 to be nonzero. The general picture
for operator spreading in high-temperature quantum cha-
otic spin models without a conservation law was developed
in Refs. [18–20]. More recently, these results were gener-
alized to the case with a conservation law [21,22], where it
was found that during the evolution induced by the random
circuit, an initially nontrivial local operator Oi at site i can
be decomposed into two components: a conserved com-
ponent that spreads diffusively with the diffusion constant
D and a nonconserved component distributed across an
exponentially growing number of operator strings. Each
operator string has a maximum length and number of
nontrivial operators that scales as vBt, where vB is the
butterfly velocity. Stated more precisely, we decompose the
time-evolved operator into a complete operator basis
formed by tensor product “strings” of operators from the
set fI; n; c; c†g,
OiðtÞ ¼ Oc

i ðtÞ þOnc
i ðtÞ ¼

X
Sc

aScSc þ
X
Snc

aSncSnc; ð21Þ

where Sc are operator strings composed of tensor products
of I and n operators only, and Snc consists of all other
operator strings. The ballistic spreading of the front is
determined by the dynamics of Onc

i . To describe the
qualitative features of the operator-spreading process, we
first define a coarse-grained density of local density and
creation operators,

noðx; tÞ ¼
1

Δ

X
jy−xj<Δ

X
fSnc∶Sync¼ng

jaSnc j2; ð22Þ

coðx; tÞ ¼
1

Δ

X
jy−xj<Δ

X
fSnc∶Sync¼cg

jaSnc j2; ð23Þ

where Δ ≫ 1 is the coarse-graining scale. At the “front” of
the spreading operator, each of these components is at a low
density, which allows us to neglect nonlinearities in their
dynamics. The linear hydrodynamics for these two fields
has to take the form

dno
dt

¼ D
d2no
dx2

− r1no þ 2r2co; ð24Þ

dco
dt

¼ D
d2co
dx2

þ r1no; ð25Þ

where r1 ∼ p1 and r2 ∼ p2 are the rates for generating
creation and local density operators, respectively. These

equations describe a runaway process whereby the non-
interacting fermion gates from μ1 break up density oper-
ators into creation and annihilation operators, which then
allows the generation of more density operators through the
application of the interaction gates from μ2. Because of the
constant application of swap gates, the diffusion constant is
always order one in these random circuits, but, for small p1

and p2, Eqs. (24) and (25) predict the scaling of the
butterfly velocity as

v2B ∼Dminð ffiffiffiffiffiffiffiffiffiffi
p1p2

p
; p2Þ: ð26Þ

The asymmetry between p1 and p2 arises from the fact that
the partial swaps in μ1 only move operators but do not
produce new operators, while the interactions in μ2 can
make new density operators. To derive the scaling in
Eq. (26), we thus have to consider the limits of small p1

and p2 separately. For p2 ≪ p1, the front is a region that
has diffusing c and c† operators but an underpopulation of
n operators. By diffusion, if the front is moving with vB, the
width of the front is about D=vB. Thus, the total net rate of
n production over the front is about p2D=vB, and this has to
supply the needed n operators to advance the front,
implying p2D=vB ∼ vB or v2B ∼Dp2. In the opposite limit
of p1 ≪ p2, the front is a region where the n operators are
diffusing, but there is an underpopulation of c and c†

operators. The p2 process uses these c operators to make
the n operators at the needed rate, which gives
p2coD=vB ∼ vB. The p1 process breaks up the n operators
into c and c† operators in this region at the rate needed to
advance the front, which gives p1DvB ∼ covB. Dividing
these two equations, we get c2o ∼ p1=p2 and v4B ∼D2p1p2.
For either p1 or p2 equal to zero, the butterfly velocity is
exactly zero, which is the origin of the two distinct
nonchaotic phases described in the Introduction.
We now move to the description of the long-time

behavior of the current-driven problem with open bounda-
ries. The crucial feature of the quantum chaotic phase for
finite p1 and p2 (phase III) is the presence of ballistic
operator spreading, whereas the operator spreading is
diffusive in phases I and II, where p1 ¼ 0 and p2 ¼ 0,
respectively. This separation of timescales between the
spreading of correlations and the diffusion of the conserved
charge leads to a simple heuristic picture for the emergence
of local equilibrium, which is illustrated in Figs. 3(a)–3(b).
Because of the action of the partial swaps in phases II
and III, the system’s NEAS density matrix is constantly
“emitting” nonconserved operatorsOnc at a rate per site that
scales as the square of the current J2 ∼Dδ2=L2 (where δ is
the end-to-end difference of the local magnetization, and L
is the length of the system). In phase III, these non-
conserved operators spread ballistically at speed vB and
thus only “live” for a time of about L=vB before they reach
a boundary and are “absorbed” (decohered) by that
reservoir [see Fig. 3(a)], implying that they can only
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accumulate to a density on the order of Dδ2=LvB. Since
these nonconserved operators are needed to preserve the
unitary evolution in the bulk, when they are quickly lost to
the reservoir and remain at a low density, the deviation
ΔS ¼ SðρLEÞ − SðρNEASÞ remains small.
Understanding the volume-law deviation of the entropy

from local equilibrium in the other two phases requires
separate consideration: In phase I, the argument above no
longer applies because the absence of partial swaps implies
that the NEAS has a zero rate for “emitting” nonconserved
operators. In this case, the extensive deviation from local
equilibrium is encoded in the single-site spin densities: In
the NEAS, each site came most recently from one of the
two reservoirs, and it still has the same spin density.
In phase II, the “emission” process is present, but the
nonconserved operators spread only diffusively; thus, they
live for a time of about L2=D and build up to a constant
density in the thermodynamic limit on the order of δ2 [see
Fig. 3(b)]. We find that this finite density of nonconserved
operators leads to a volume-law deviation of the entropy,
mutual information, and entanglement away from local
equilibrium.

B. Phase diagram

In this section, we describe our derivation of the phase
diagram for the NEAS as a function of p1 and p2 with

many of the technical details underlying this analysis
provided in the Appendixes.

1. Phase I: Discrete hopping limit

For p1 ¼ 0, we can see, by inspection, that diagonal
product states of the form

ρτ ¼ ⊗
L

i¼1
½τiρmL

þ ð1 − τiÞρmR
� ð27Þ

are NEASs of the random circuit, where τi is a pseudospin
variable that keeps track of whether a given density
operator was originally inserted from the left or right
reservoir. The attracting nature of these states arises
because the random phases for the gates in Eq. (14) do
not affect this type of product state, while the SWAPs
simply rearrange the configuration of on-site density
matrices. If the initial state has any off-diagonal coherences
in this u, d basis, they will diffuse to the boundaries and
“disappear” into the reservoirs. The dynamics within the
NEAS manifold can then be mapped to SSEP, where
ρmL=mR

maps to a pseudospin-up or pseudospin-down state
at a given site and the pseudospin reservoirs are fully
polarized. This result allows us to characterize the entire
distribution function of the NEASs through the relation
PðρτÞ ¼ PðτÞ for PðτÞ satisfying Eq. (19) with δ ¼ 1. Note
that this case is perhaps an unconventional perspective on
classical SSEP, which is typically formulated as an intrinsi-
cally stochastic and dissipative process. Instead, we view
the dynamics as produced by one particular circuit, and for
finite L, for that specific circuit, there is a unique time-
dependent absorbing state ρτðtÞ.
We can find the average entropy of the NEASs by noting

that

SðρτÞ ¼ NLSðρmL
Þ þ NRSðρmR

Þ; ð28Þ

where NL is the total number of pseudospin-up states of the
chain andNR ¼ L − NL is the number of pseudospin-down
states. Because of the pseudospin z inversion symmetry,
NL ¼ NR ¼ L=2. Considering the antisymmetric case
mL ¼ −mR ¼ δ=2 and comparing to local equilibrium,
we find, after averaging Eq. (28) over circuits, the vol-
ume-law correction

ΔS ¼ SðρLEÞ − SðρτÞ

¼ L
2
−

L
2δ

ð1 − δ2Þtanh−1ðδÞ þOðL0Þ: ð29Þ

In the limit δ → 1, the NEAS approaches a pure state, and
this deviation reaches its maximum possible value.

(b)(a)

FIG. 3. Operator dynamics in the open system. (a) In the
quantum chaotic phase III, initially local operators generate
highly entangled nonconserved operators Onc that spread ballis-
tically at the butterfly velocity vB. These correlations are encoded
in extensive operator strings, which are decohered at the
boundary in a time of about L=vB. Such processes only contribute
a subextensive amount to the mutual information and entangle-
ment in ρNEASðtÞ because their production rate, given by an
Ohm’s law of dissipation J2 ∼Dδ2=L2, is not enough to
compensate for their short lifetime. (b) In the noninteracting
fermion phase II, an initially local density operator can be split
into a nonlocal pair of fermion operators. This pair lives for a
diffusive time in the system τTh ¼ L2=D before one of these
operators reaches the boundary, where it becomes decohered by
the reservoir. Such nonlocal correlations give rise to the extensive
mutual information and entanglement in ρNEASðtÞ since their
production rate J2 ∼Dδ2=L2 is sufficiently fast compared to their
lifetime τTh.
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2. Phase II: Diffusive noninteracting fermions

For p2 ¼ 0, the NEASs have exact representations as
Gaussian fermionic states because the dynamics are equiv-
alent to that of noninteracting fermions, and, in the fermion
representation, the reservoirs are clearly Gaussian states.
Such states are uniquely determined by their two-point
function [85–87]:

Gij ¼ Tr½ρc†i cj�; ð30Þ

SðρÞ ¼ −Tr½ðI −GÞ logðI −GÞ� − Tr½G logG�; ð31Þ

where ci are fermion annihilation operators [see Eq. (20)].
The operators ci spread diffusively in this random circuit,
leading to diffusive spreading of both the spin density ni ¼
c†i ci and the coherences c†i cj for i ≠ j [see Fig. 2(c)].
Again, any non-Gaussian features of the initial state will
diffuse to the boundaries and disappear into the reservoirs,
leaving the Gaussian NEAS at long times. The presence of
the log of the two-point function makes it difficult to
compute the average entropy. For simplicity, we restrict
ourselves to antisymmetric reservoirs mL ¼ −mR ¼ δ=2
and small δ, which allows us to expand the log by
transforming into an eigenbasis of G at each instance of
time,

SðρNEASÞ ≈ −2Tr½Ḡ log Ḡ� − 2Tr½δG2�; ð32Þ

where δG ¼ G − Ḡ. Since Ḡ is just given by the linear
magnetization profile, the first term is the entropy of local
equilibrium, while the second term accounts for the
deviations arising from additional correlations and is
determined by the covariance matrix

Aij ≡ ½δG2�ij ¼ ð1 − δijÞjhc†i cjij2 þ δijðhnii2 − hnii2Þ:
ð33Þ

To solve for Aij, we work in the scaling limit ðL → ∞Þ for
p1L2 ≫ 1 and only compute the lowest-order correction in
a 1=L expansion. Defining the coordinates x ¼ i=L and
y ¼ j=L, we introduce the variables aðx; yÞ ¼ AxL;yLþ1

and hðxÞ ¼ AxL;xL. The restriction to nearest-neighbor
gates implies that, away from the diagonal x ¼ y, aðx; yÞ
satisfies a diffusion equation with boundary conditions
aðx; 1Þ ¼ að0; yÞ ¼ 0. Integrating out the hðxÞ variable,
one finds that aðx; yÞ has a constant source term along the
diagonal given by −2J2Lδðx − yÞ ¼ −2δ2δðx − yÞ=L. This
diffusion problem has the solution (for x < y)

aðx; yÞ ¼ xð1 − yÞ
L

δ2 þOðL−2Þ þOðδ4Þ: ð34Þ

The deviation from local equilibrium can be expressed
perturbatively in δ as

ΔS ≈ 4L2

Z
1

0

dy
Z

y

0

dxaðx; yÞ ¼ δ2

6
L; ð35Þ

which has a volume-law correction away from both local
equilibrium and the average entropy of phase I. We can also
compute the mutual information of two sections of the
chain cut at a point z ∈ ð0; 1Þ,

IðL∶RÞ ¼ δ2z2ð1 − zÞ2LþOðL0Þ þOðδ4Þ: ð36Þ

In sharp contrast to the p1 ¼ 0 solution, we find that the
NEASs have a volume-law scaling of the mutual informa-
tion, indicating that these states are highly correlated.
For mixed states, the mutual information is not a direct

measure of entanglement as it can be dominated by
classical correlations [5]. In Sec. III D, we explicitly show
that the NEAS density matrix has volume-law entangle-
ment for sufficiently large δ by computing a lower bound
on the logarithmic negativity. When measured according to
the fermionic logarithmic negativity recently introduced by
Shapourian, Shiozaki, and Ryu [88], we find that this
volume-law scaling persists down to arbitrarily small δ.
This result establishes that the NEAS density matrix is
driven to a nonseparable state in the large-L limit. Thus, the
volume-law deviation of the entropy in phase II arises
from entanglement and nonlocal correlations, while the
deviation in phase I arises from “classical,” single-site
magnetizations.

3. Phase III: Quantum chaotic

For nonzero values of p1 and p2, the dynamics in the
bulk are quantum chaotic as discussed in Sec. III A. Recall
that the effective butterfly velocity vB, which measures
the speed of the ballistic operator front, scales as
v2B ∼minð ffiffiffiffiffiffiffiffiffiffi

p1p2

p
; p2Þ, while the diffusion constant for

conserved quantities is identical for all values of p1 and
p2. The calculation of the average entropy in this region is
more difficult than in phases I and II because this random
circuit does not map to an integrable model. To approach
the calculation analytically, we instead work perturbatively
in δ. This method allows us to expand log ρNEAS ¼ logðρ̄þ
ρNEAS − ρ̄Þ to derive an expression for the average entropy
similar to Eq. (32),

ΔS ≈ 2L−1ðTr½ρ2NEAS� − Tr½ρ̄2�Þ; ð37Þ

which reduces the computation of the average entropy to
the easier task of computing the average purity. The details
of this calculation are described in Appendix E, while we
give a brief summary here, with more details provided in
the discussion of the crossover behavior in Sec. III C. The
approach we take is to first derive exact steady-state
equations for the average replicated density matrix
ρNEAS ⊗ ρNEAS. The solution to these equations can then
be mapped to the NESS of a fictitious six-species stochastic
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lattice gas model, which we refer to as the abcmodel. Here,
the a particles represent the off-diagonal coherences of the
density matrix, while the b and c particles represent
different types of density-density correlations. To solve
this model, we use the ansatz that the n-point connected
correlation functions of ρNEAS ⊗ ρNEAS have a scaling as
δn=Ln−1 or smaller. This type of scaling is well known for
SSEP and can be proved exactly for phases I and II. Using
this ansatz, for p1;2L2 ≫ 1, the lowest-order correction to
the entropy deviation from local equilibrium is given by

ΔS ¼ α1δ
2

Lp1

þ α2δ
2

Lp2

þOðδ4Þ þOðL−2Þ; ð38Þ

where α1 ¼ ð3 − p1Þ, α2 ¼ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2=ð2 − p2Þ

p
are order-

one constants computed from the perturbative solution to
the abc model (see Appendix E). As a result, the average
entropy is given by that of local equilibrium in the large-L
limit. This behavior is similar to SSEP, where the leading-
order L0 term in ΔS at small δ scales as δ4. We can bound
the higher-order corrections to ΔS since SðρLEÞ ≥ Sðρ̄Þ ≥
SðρNEASÞ and Sðρ̄Þ is equal to SðρLEÞ up to a constant
correction [25,26]. To second order in δ and for
p1;2L2 ≫ 1, we find that the mutual information between
two halves of the chain has the scaling

IðL∶RÞ ¼ α3δ
2

L2p3=2
2

þOðδ4Þ þOðL−3Þ; ð39Þ

where α3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − p2Þ

p
is computed from the abc model.

Based on our analysis, we suspect that PðρNEASÞ is
concentrated near ρ̄, whose mutual information is bounded
by logL for large δ, but further analysis is required to make
more definitive statements about the mutual information at
large values of δ.

C. Crossovers between phases

Here, we carefully analyze the finite-size scaling of the
crossovers between each phase to gain further insight into
the relevant length scales that describe the NEASs.
Conveniently, we have an analytic description of the entire
phase diagram for this model using the perturbative
solution to the abc model for ρNEAS ⊗ ρNEAS introduced
in Appendix E. Essentially, to second order in δ, the
average replicated density matrix for antisymmetric reser-
voirs (mL ¼ −mR) is entirely determined by six correlation
functions: the average magnetization profile huii, the
average connected spin-spin correlations τij ≡ huiuji−
huii huji, and the average fluctuations

hi ≡ huii2 − huii2; ð40Þ

bij ≡ hhuiuji2ic þ hhuidji2ic; ð41Þ

Bij ≡ hhuiuji2ic − hhuidji2ic; ð42Þ

aij ≡ jhσþi σ−j ij2; ð43Þ

where hhABi2ic ≡ hABi2 − hAi2 hBi2 denote the connected
correlations defined with respect to the single-site fluctua-
tions. For antisymmetric reservoirs, these correlations are
invariant under δ → −δ, which sends ui → di and vice
versa. The average connected spin-spin correlation is
known exactly from the mapping of ρ̄ to the NESS of
SSEP and is given by (see Appendix C):

τij ¼ −
iðLþ 1 − jÞ
LðLþ 1Þ2 δ2: ð44Þ

We define the scaled variables x≡ i=L and y≡ ðj − 1Þ=L;
then, expanding to lowest order in 1=L and second order
in δ, we find that these correlation functions satisfy a set of
diffusion equations away from the diagonal x ¼ y,

h00ðxÞ ¼ 4p1L2

3 − p1

δJ2ðxÞ − 2δ2; ð45Þ

∇2aðx; yÞ ¼ 4p2L2

2 − p2

aðx; yÞ; ð46Þ

∇2bðx; yÞ ¼ 4p1L2

3 − p1

bðx; yÞ; ∇2Bðx; yÞ ¼ 0; ð47Þ

where δJ2ðxÞ≡ hðxÞ þ Bðx; xÞ − aðx; xÞ − τðx; xÞ gives
the corrections to the current fluctuations as compared to
local equilibrium. In terms of these variables, we can
compute the entropy and mutual information as

ΔS ¼ 2L
Z

1

0

dxhðxÞ

þ 4L2

Z
1

0

dy
Z

y

0

dx½aðx; yÞ þ 2bðx; yÞ�; ð48Þ

IðL∶RÞ ¼ 4L2

Z
1

z
dy

Z
z

0

dx½aðx; yÞ þ 2bðx; yÞ�: ð49Þ

The boundary conditions are such that all the connected
correlation functions vanish for x or y equal to 0 or 1. There
is also a set of boundary conditions on the diagonal, which
mix these different functions and result in a nontrivial
steady state. The boundary condition for the coherences
takes the form

ð∂x − ∂yÞaðx; yÞjx¼y ¼
4p1L
6 − 3p2

�
δ2

2L2
þ δJ2ðxÞ

�
; ð50Þ

which provides a microscopic justification for the heuristic
picture outlined in Sec. III A, where we argued that the
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action of the partial swaps leads to nonconserved operators
being generated at a rate per site proportional to the average
current fluctuations. From Eq. (50), we find that there is an
additional source term δJ2ðxÞ, which accounts for the
deviations of the current fluctuations from local equilib-
rium and has to be found self-consistently. The full
expressions for the diagonal boundary conditions for
bðx; yÞ and Bðx; yÞ are given in Appendix E. Solving these
equations, we find that bðx; yÞ is only nonzero at order δ4

for all values of p1 and p2. Our expectation from SSEP is
that the δ4 corrections scale with a higher power of L,
which would imply that these density-density fluctuations
only give rise to an area-law correction to the entropy and
mutual information. The field Bðx; yÞ ∼ δ2=L has a non-
trivial dependence on p1 and p2, but this field gives no
direct contribution to the entropy at second order in δ.
Using these coupled diffusion equations, we can obtain a

quantitative picture for the crossover behavior. The results
are summarized in Fig. 4. In panel (a), we identify the
crossover boundaries between the three phases as deter-
mined by the scaling of ΔS and IðL∶RÞ, while panel
(b) schematically shows the functional behavior of both
quantities in the crossover from (A) phase I to II, (B) phase
II to III, and (C) phase III to I.
Phase I to II crossover.—The phase I to II crossover is

distinct from those to phase III because all operators spread
diffusively in both phases, so ballistic operator spreading
does not play a role. Instead, one can understand the
crossover solely in terms of the dynamics of diffusive
noninteracting fermions. In phase I, the fermion operators
that have an expectation value in the NEAS are predomi-
nantly paired into density operators ni ¼ c†i ci. Once
injected into the system from one of the reservoirs, these
operators live for a time on the order of the Thouless time
τTh ¼ L2=D before escaping back out to the reservoirs.
However, if a partial swap gate acts on this operator within
τTh, then ni will break up into a pair of creation and
annihilation operators. These operators then evolve inde-
pendently in the system before escaping to the reservoir.
Their common origin from the initially local density
operator gives rise to the transient long-range entanglement
in the system. In phase II, this is in fact the dominating
physics as the density operators are almost immediately
broken up into pairs of independent creation and annihi-
lation operators once they enter the system. Based on this
argument, we expect the crossover to occur for p1L2 ∼ 1.
We can verify this scaling directly using Eqs. (45) and

(50). For p1L2 ≪ 1, Eq. (45) has the approximate solution

hðxÞ ≈ xð1 − xÞδ2; ð51Þ

which, unlike local equilibrium, leads to order L0 current
fluctuations δJ2ðxÞ instead of L−2. Thus, despite the small
value of p1, these large current fluctuations allow the partial

swaps to drive coherences on the diagonal at a rate per site
of about p1,

ð∂x − ∂yÞaðx; yÞjx¼y ¼
4p1L
6 − 3p2

δ2xð1 − xÞ: ð52Þ

This diagonal boundary condition leads to the scaling
aðx; yÞ ∼ p1L and IðL∶RÞ ¼ βðp1; p2Þp1δ

2L3 for an
order-one constant βðp1; p2Þ, which implies the emergence
of the volume-lawmutual information asp1L2 approaches 1.
Remaining in phase I, but increasing p2L2 above 1, this
scaling becomes instead IðL∶RÞ ¼ βðp1; p2Þp1δ

2=p3=2
2 ,

which leads to the black-diagonal crossover boundary for
the mutual information shown in Fig. 4(a).
We now return to the description of the phase I to II

crossover on the phase II side (p1L2 ≫ 1). Unlike the
phase I side, the current fluctuations in this regime are close
to their value in local equilibrium. Away from order 1=

ffiffiffiffiffi
p1

p
sites near the boundary, they are given by

(a)

(b)

FIG. 4. (a) Crossover boundaries for the NEAS phase diagram
for small δ. Dotted lines denote mutual information crossovers,
dashed lines denote crossovers in the von Neumann entropy, and
the pink boundary denotes the crossover from diffusive to
ballistic coupling to the reservoirs. Here, 0 < ðα; βÞ < 1 are
the scaling exponents for ΔS and IðL∶RÞ, respectively. The
exponents ϵ and γ denote the crossover values for the scaling
exponents and take continuous values between 0 and 1. The L−4=3

scaling for the mutual information arises because the long-range
correlations that contribute to the mutual information are more
strongly suppressed than the single-site density fluctuations that
only contribute to ΔS. (b) Schematic behavior of the entropy
deviation density and the mutual information density for the three
cuts in parameter space labeled in panel (a).
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δJ2ðxÞ ≈ 3δ2

2p1L2
−

δ2

2L2
: ð53Þ

Inserting this into Eq. (50) implies that the diagonal source
term for aðx; yÞ becomes independent of p1, which reflects
the fact that the density operators are quickly broken up by
the partial swaps within the Thouless time. Although the
current fluctuations are weak in this regime, the rapid
application of the p1 gates allows the coherences to build
up to the large density needed to recover the volume-law
mutual information.
Phase II to III crossover.—Because of its broader

physical significance to disordered metallic systems, the
physical picture underlying the phase II to III crossover is
discussed in more detail in Sec. VI. Since the butterfly
velocity scales as

ffiffiffiffiffi
p2

p
in this regime, there is a natural

crossover scale defined by the value of p2 for which
L=vB ∼ τTh, which suggests that the crossover occurs when
p2L2 ∼ 1. This is readily verified using Eq. (46), which
shows that when p2L2 ≫ 1, the aðx; yÞ is exponentially
damped away from the diagonal. The entropy deviation and
mutual information in this regime are given by Eqs. (38)
and (39), which determine the boundaries shown in
Fig. 4(a).
Phase I to III crossover.—The phase I to III crossover,

which occurs in the regime p1 < p2, is distinct from the
other two crossovers because the system can no longer be
treated as noninteracting or weakly interacting fermions in
the crossover regime. Moreover, because of the weak
scaling of the butterfly velocity as ðp1p2Þ1=4 in this regime,
the ballistic operator spreading can play a secondary role in
determining the properties of the NEAS crossover. This
feature of the phase I to III crossover follows from a similar
argument that was used in describing the phase I to II
crossover. Since the partial swaps are needed to break up
the single-site density operators, the action of the p1 gates
is crucial to realizing local equilibrium; however, for
p1L2 ≪ 1, the probability of the partial swaps acting
before the density operators are diffusively exchanged with
the reservoirs is small. The distinction from the phase I to II
crossover is that the ballistic operator spreading can lead to
a rapid dissipation of the nonconserved operators to the
reservoirs even for p1L2 ∼ 1. In fact, according to our
expression for the butterfly velocity, this overdamping of
the coherences persists until p1p2L4 ∼ 1. Of course, for
too-small values of p1, our derivation of vB no longer
applies because the entire system reaches the NEAS after
application of about L3 gates (note that this is the number of
gates applied to the system within a Thouless time
τTh ¼ L2=D); however, p1L3 ∼ 1 is still a much smaller
scale than the crossover scale set by the Thouless time
of p1L2 ∼ 1.
This overdamping of the nonconserved operators moti-

vates us to consider an approximate description of the
phase I to III crossover in which we model decoherence

induced by the reservoir as an instantaneous measurement
of the density matrix in the z basis after each unitary is
applied. In this simplified model, the density matrix always
remains in a diagonal mixed state such that the dynamics
have an effective classical description. More specifically,
each time step of the random circuit is replaced by a
randomly chosen operation on the diagonal components
of the nearest-neighbor density matrices that, with prob-
ability 1 − p1, applies either the identity or SWAP oper-
ation and, with probability p1, applies a transition matrix
that is the identity except when acting on the operators
fuidiþ1; diuiþ1g, where it takes the form�

cos2ðθ=2Þ sin2ðθ=2Þ
sin2ðθ=2Þ cos2ðθ=2Þ

�
; ð54Þ

where θ is a random variable drawn from ½0; π� with
probability density sin θ. The average replicated density
matrix for this model is described by the same abc model
as the random circuit, with the restriction that configura-
tions with a particles are no longer allowed. As a result, to
second order in δ, ρ ⊗ ρ is characterized in terms of the
correlation functions huii, τij, hi, bij, and Bij. Furthermore,
these correlations satisfy the same equations of motion as
the random unitary circuit with the constraint aðx; yÞ ¼ 0.
While both models exhibit the same crossover scale at
p1L2 ∼ 1, we can gain some physical intuition by consid-
ering the simpler model without coherences. For p1 ¼ 0,
we have the same result as for the random unitary circuit—
that PðρNEASÞ can be found from the NESS for SSEP. On
the other hand, for large values of p1, the stochasticity
induced by allowing finite θ implies that even a single
realization of the NEAS will be close to the NESS of SSEP.
In this case, the Thouless time is the only relevant timescale
in the problem since all the dynamics are diffusive, which
forces the crossover scale to be p1L2 ∼ 1.

D. Volume-law entanglement in phase II

In this section, we show that the entanglement in phase II
follows a volume-law scaling using our analytic solution
for the covariance matrix and exact numerical simulations
of the long-time evolution of the random circuit. The von
Neumann entropy and mutual information are not direct
measures of entanglement for mixed-state density matrices.
Although a variety of entanglement measures for mixed
states have been introduced [1], these measures are gen-
erally harder to compute than the von Neumann entropy
because of the difficulty of distinguishing entanglement in
many-body systems from nonlocal, classical correlations,
which, for mixed states, can also be generated by local
operations and classical communication (LOCC) between
the two regions. One efficiently computable measure of
entanglement in the Hilbert space dimension is the
logarithmic negativity EðρÞ, which was originally intro-
duced by Vidal and Werner [27] and later proven to be an
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entanglement monotone under LOCC by Plenio [28]. Note
that EðρÞ has the property that, if it is nonzero, then the
density matrix is nonseparable (i.e., entangled) between the
two regions. In bosonic or spin systems, EðρÞ is naturally
defined using the partial transpose operation,

hiA; jBjρTA jlA; kBi≡ hlA; jBjρjiA; kBi; ð55Þ

where matrix elements are taken with respect to a separable
orthonormal basis for regions A and B. The logarithmic
negativity is

EðρÞ≡ log kρTAk; ð56Þ

where kAk≡ Tr½
ffiffiffiffiffiffiffiffiffi
A†A

p
� is the trace norm. Here, EðρÞ is a

measure of the strength and number of negative eigenvalues
of ρTA and is an upper bound on the entanglement of
distillation EDðρÞ. Note that EDðρÞ is a more fundamental
measure of entanglement defined as the maximum number
of near-perfect singlet states that can be generated from
multiple copies of ρ with LOCC on A and B. Although our
underlying physical system in the random circuit model is a
spin system, the logarithmic negativity for two adjacent
regions in the original spin representation is equal to the
logarithmic negativity of the fermions obtained after a
Jordan-Wigner transformation [89]. Since we have an exact
representation of the NEAS density matrix in phase II in
terms of a Gaussian fermionic state, it is natural to ask
whether we can directly compute the logarithmic negativity
using this representation.
For fermionic systems, a partial transpose operation can

be defined analogously to Eq. (55); however, it has the
property that the partial transpose of a fermionic Gaussian
state may not be Gaussian, which makes the logarithmic
negativity generally intractable to compute for large sys-
tems, even for these simple fermionic states [89]. On the
other hand, it was argued by Shapourian, Shiozaki, and
Ryu that a more natural definition of the logarithmic
negativity for fermions is in terms of a partial time-reversal
operation on subsystem A [88,90]. We refer to this measure
as EfðρÞ to distinguish it from EðρÞ. Unlike the partial
transpose, this operation maps fermionic Gaussian states to
fermionic Gaussian states, making it efficiently computable
in the number of fermions. Furthermore, for fermionic
Gaussian states, it can be shown that it is an upper bound on
the logarithmic negativity EðρÞ ≤ EfðρÞ þ log

ffiffiffi
2

p
[89,91].

Several efficiently computable lower bounds on EðρÞ for
Gaussian states were also introduced by Eisert, Eisler, and
Zimborás [91]. Here, we use the lower bound ElðρÞ
introduced by these authors for Gaussian states that
conserve particle number: Tr½ρc†i c†j � ¼ Tr½ρcicj� ¼ 0 [see
Sec. IV B of Ref. [91] for a definition of ElðρÞ].
To compute the upper and lower bounds for the time-

averaged logarithmic negativity in phase II, we use the fact

that all fourth- and higher-order correlations of the matrix
elements of the two-point functionGij scale as δ4 or higher.
This method allows us to sample random realizations of the
NEAS two-point function by treating Gij as independent,
normally distributed, random variables with mean Ḡij and
variance Aij [see Eq. (33)]. Using this approach to sample
from the NEAS, we are able to compute Ef;lðρÞ for up to
several thousand sites, which allows an accurate determi-
nation of the coefficient for the volume-law term in Ef;lðρÞ
as a function of δ. The results are shown in Fig. 5, where we
compare this direct sampling approach for L ¼ 103 sites to
exact simulations of the NEAS two-point function for
realizations of the random circuit with p1 ¼ 1, p2 ¼ 0, and
L ¼ 50 sites. We find good agreement between the two
independently computed coefficients up to δ ≈ 0.75.
Interestingly, EfðρÞ exhibits volume-law scaling for any
nonzero δ, which shows that the NEAS density matrix
remains nonseparable in the scaling limit. On the other
hand, ElðρÞ is exactly zero up until δ ¼ 0.5, at which point
a clear volume-law scaling emerges. The sharp behavior of
the lower bound suggests that the system may undergo a
phase transition with increasing δ from a weakly entangled
state to a volume-law entangled state. However, we expect
that the actual behavior of EðρÞ is more like EfðρÞ, which
exhibits a crossover to the volume-law scaling for any
nonzero δ. Finally, we remark that it was recently proven
that thermal mixed states of equilibrium spin models obey
an area law for the logarithmic negativity [29]. Thus,
similar to the observed volume-law mutual information,
this volume-law scaling of EðρÞ is a manifestly nonequili-
brium effect.

0 0.25 0.5 0.75 1
0

0.1

0.2

0 0.25 0.5 0.75 1
0

0.1

0.2

FIG. 5. Upper EfðρÞ and lower ElðρÞ bounds for the loga-
rithmic negativity per unit length in phase II, with p1 ¼ 1 and
p2 ¼ 0. The upper bound is equal to the fermionic logarithmic
negativity [88]. Solid lines are for L ¼ 103 sites computed by
randomly sampling the fermionic two-point function of the
NEAS, which is valid for small δ. Circles are computed from
an exact simulation of the NEAS two-point function for the
random circuit with L ¼ 50 sites. The volume-law coefficient for
EfðρÞ is nonzero for any δ > 0, while the volume-law coefficient
of ElðρÞ is nonzero only for δ > 0.5.
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E. Entropy production following a quench

The discussion so far concerned average properties of
each phase in the long-time limit. It is also interesting to
consider the explicit time dynamics of this model, where
the effects of the ballistic operator spreading in the quantum
chaotic region should be more manifest. Here, we make a
qualitative argument that, starting from an initial state that
differs extensively in entropy from the NEAS, the ballistic
operator spreading directly appears in the entropy produc-
tion rate in the reservoirs following a quench into the
chaotic phase.
For a quench into phase I or II, all operators spread

diffusively, implying that the system’s net entropy change,
which is only due to the reservoirs, will grow following the
quench as

ffiffi
t

p
until it saturates on a timescale of order L2. In

contrast, in phase III, any deviations from the NEAS can
produce operators that spread ballistically to the boundary,
so initially the increase in entropy can grow linearly in t.
This fast entropy production will saturate on a timescale of
order L=vB as the system is brought to a local equilibrium.
But if the magnetization profile in this initial local
equilibrium is extensively away from the steady state, then
at later times, diffusive spin transport is required for further
entropy increase, leading to a crossover in time to diffusive
relaxation of the local equilibrium state, which then finally
approaches a NEAS by a timescale of order L2.

IV. EXTENSIONS OF THE RANDOM
CIRCUIT MODEL

Two natural extensions of the random circuit model are
to consider higher-dimensional lattices, with the left and
right boundaries of the lattice coupled to reservoirs, or to
allow each site to also be coupled to a qudit with local
Hilbert space dimension q, which acts as a local bath for the
qubit. The closed system dynamics for the qudit model was
studied in Ref. [21] by replacing Uþ and U− in the
definition of the two-qubit unitaries in the bulk [see
Eq. (11)] by two independent Haar random unitaries acting
on the qudits. The central 2 × 2 matrix was replaced by a
Haar random unitary acting on the 2q2-dimensional space
spanned by j↑↓i ⊗ jnn0i and j↓↑i ⊗ jnn0i, where n and n0
represent the state of the qudit on the two sites.
In the qudit model in arbitrary spatial dimensions, phase

I still naturally appears by forbidding partial swaps of the
state of the qubit. However, adding any finite probability p1

for partial swaps results in quantum chaotic dynamics even
for p2 ¼ 0, which drives the system to local equilibrium
(phase III, see Fig. 6). Effectively, the qudits act as a
quantum chaotic bath, which can rapidly dissipate entropy
into the reservoirs through ballistic operator spreading. For
higher-dimensional lattices of qubits with finite p2, phase I
and phase III are naturally realized for p1 ¼ 0 and any
nonzero p1, respectively. Furthermore, for p2 ¼ 0 beyond
1D, there is no longer a mapping of the random circuit to a

system of noninteracting fermions, and the operator spread-
ing becomes ballistic for any finite value of p1. In this case,
we expect that the system directly realizes phase III even
along the p2 ¼ 0 axis. The entropy and mutual information
properties of the qudit models and the higher-dimensional
qubit models can be studied analytically using extensions
of the abcmodel discussed in Appendix E. Although we do
not expect the higher-dimensional random circuit models to
naturally realize phase II, one can consider explicit non-
interacting fermion models in higher dimensions to realize
this phase, one example of which is discussed in Sec. V.

V. NONINTERACTING ANDERSON MODEL

The presence of the volume-law mutual information in
phase II arises from the diffusive spreading of the fermions
that were produced by a Jordan-Wigner transformation of
the spins. It is then natural to ask whether a similar effect
occurs in a paradigmatic model for diffusive fermions: the
Anderson model in 3D, with the Hamiltonian

H ¼ t0
X
hxyi

c†xcy þ
X
x

Vxc
†
xcx; ð57Þ

where t0 is the hopping, the first sum is over nearest-
neighbor sites of a simple cubic lattice, and Vx is a random
potential on each site. We draw Vx from a uniform
distribution between �W=2. In 3D, this model has a
metal-insulator transition near Wc=t ≈ 16.5 [30–32]. We
focus on the diffusive regime 0 < W < Wc. Similar to the
averaging over random unitaries in the circuit model, this
model has characteristic disorder-averaged properties. For
example, the disorder-averaged density-density response
function in 3D at small ðk;ωÞ is dominated by a diffusive
pole

χðk;ωÞ ∼ 4πν

Dk2 − iω
; ð58Þ

where, in this section, the overbar denotes a disorder
average, D is the diffusion constant, and ν is the density
of states, with the fluctuations of these diffusive modes well
described by a nonlinear sigma model [92].

FIG. 6. Expected NEAS phase diagram as a function of the
partial swap probability p1 for the random circuit model in higher
spatial dimensions or with an additional qudit at each site in
arbitrary dimensions [21], which acts like a local bath for the
qubit. Although phase I is preserved for p1 ¼ 0, there is no
noninteracting fermion regime (phase II) in these models, and we
expect that the system immediately becomes quantum chaotic
and achieves local equilibrium (phase III) for any finite p1.
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A. Entropy from scattering states

To determine the entanglement structure of the NESS for
this Anderson model in contact with two reservoirs, we use
a description of the eigenstates of the system in terms of
scattering states [75,93,94], as shown in Fig. 7. The leads
are taken to be ballistic conductors with the same
Hamiltonian as the disordered region but with no random
potential: Vi ¼ 0. The incoming scattering states at a given
energy E in transverse channel n are defined by a set of
fermion operators anαðEÞ whose wave function satisfies the
boundary condition that it is an incoming plane wave in
lead α and channel n. These operators have the correlation
functions

han†α ðEÞamβ ðE0Þi ¼ δðE − E0ÞδαβδmnσαðEÞ; ð59Þ

σαðEÞ ¼
1

eðE−μαÞ=T þ 1
; ð60Þ

where μα is the chemical potential of lead α and T is the
temperature, which, for simplicity, we take to be the same
in the two leads. The outgoing operators bnαðEÞ are related
to these incoming operators through the S matrix.
As in phase II, the reduced density matrix for the

disordered region is entirely determined by the two-point
function. Defining the wave function of the incoming
scattering states

ϕn
αðr; EÞ≡ hrjan†α ðEÞj0i; ð61Þ

the two-point function inside the wire is

hc†xcyi ¼
X
n

Z
dE½δσðEÞϕn�

L ðx; EÞϕn
Lðy; EÞ

þ σRðEÞ
X
α

ϕn�
α ðx; EÞϕn

αðy; EÞ�; ð62Þ

where δσ ¼ σLðEÞ − σRðEÞ is the difference in the Fermi
functions of the two leads and the scattering states are
normalized to have unit current in the leads [95]. The term
proportional to δσ gives the nonequilibrium contribution to
the two-point function. The excess fermion density in the
wire due to the bias (assuming δμ≡ μL − μR > 0, and
taking as our equilibrium reference the state when μ ¼ μR
in both leads) is given by

δnðxÞ ¼
X
n

Z
dEδσðEÞjϕn

Lðx; EÞj2: ð63Þ

After disorder averaging, δnðxÞ will have the linear ramp
profile discussed in Sec. II.
Similar to phase II, we can compute the corrections to the

entropy by expanding the two-point function around its
disorder average. The correction to the entropy of a given
subregion A will then be approximately equal to [see
Eq. (32)]

ΔSA ≈ 2
X
x;y∈A

jhc†xcyij2 −nðxÞ2δxy; ð64Þ

which depends on the disordered average wave-function
correlations between different channels and energies. We
parametrize these correlations by introducing the function

Φnm
A ðE;ΔÞ ¼

X
x;y∈A

ϕn�
L ðx; EÞϕm

L ðx; Eþ ΔÞ

× ϕn
Lðy; EÞϕm�

L ðy; Eþ ΔÞ
−
X
x∈A

jϕn
Lðx; EÞj2 jϕm

L ðx; Eþ ΔÞj2 : ð65Þ

In the limit where δμ; T ≪ t0 ∼W, over the range of
energies that contribute to the NESS, Φnm

A ðE;ΔÞ will only
depend on the energy difference Δ. Taking the weakly
driven limit δμ ≪ T ≪ t0 ∼W to compare to the random
circuit, this allows us to approximate the entropy deviation
from the disorder-averaged reduced-density matrix for
region A as

ΔSA ≈
2δμ2

T

X
nm

Z
dΔΦnm

A ðμR;ΔÞ: ð66Þ

The scaling ofΔSA with the geometry of A is determined by
several factors. First, from the definition of the scattering
states, the wave-function amplitude scales as ϕn

Lðx; EÞ∼
1=L, where we have taken the two transverse linear
dimensions of the leads and the diffusive region to be L.
Assuming A is a finite fraction of the diffusive region,
which is of length Lx, the sum over x and y involves on the
order of L2

xL4 terms, which implies Φnm
A ðμR; 0Þ ∼ L2

x. As
we argued in Sec. II, the energy range over which the
scattering-state wave functions change on the length scale
Lx is given by the Thouless energy ETh ∼ 1=L2

x, which
allows us to represent ΔS as

ΔSA ≈
2t0δμ2

TL2
x

X
nm

Φnm
A ðμR; 0Þ

Z
dϵsAðμR; ϵÞ; ð67Þ

sAðμR; ϵÞ ¼
P

nmΦnm
A ðμR; ϵtL−2

x ÞP
nmΦnm

A ðμR; 0Þ
; ð68Þ

Diffusive BallisticBallistic

Incoming

Outgoing Incoming

Outgoing

FIG. 7. Incoming and outgoing scattering states for a disor-
dered wire with mean free path l. Here, Lx is the longitudinal
length of the wire, and L is the transverse width.

MICHAEL J. GULLANS and DAVID A. HUSE PHYS. REV. X 9, 021007 (2019)

021007-16



where sðμR; ϵÞ is independent of Lx in the scaling limit but
will depend on the aspect ratio L=Lx of the diffusive region.
For diffusive wires in the regime L ≪ Lx, the transmission
through the wire satisfies the “isotropy” condition [96],
which states that the wave functions in different transverse
channels are completely uncorrelated at each transverse
slice of the wire. This assumption permits analytic treat-
ments of the transmission and conductance through
the wire using random matrix theory (RMT) [93]. For
the scaling analysis of the entropy, this would imply that the
sum over n and m can be reduced to a single sum over n,
leading to an area-law scaling with ΔSA independent of Lx
in this Lx ≫ L regime. However, in the regime L ∼ Lx, this
isotropy condition is known to break down [97], which
allows additional correlations that violate the area-law
scaling.
Using numerical solutions of the scattering-state wave

functions based on the transfer matrix method [30–32,95],
we have confirmed that there is indeed a volume-law
scaling of the mutual information of two halves of the
wire when the diffusive region has an aspect ratio of 1. Our
numerical results are summarized in Fig. 8. We consider a

wire on a cubic lattice of size ðLþ 2Þ × L × L with
periodic boundary conditions in the transverse direction
and strong disorder W ¼ 8t0, but still well within the
metallic phase (Wc ≈ 16.5t0). We parametrize the average
mutual information between two regions as

IðA∶BÞ ≈ ν2t0δμ2

T
fABðμRÞL2

Z
dϵiABðμR; ϵÞ; ð69Þ

iABðμR; ϵÞ ¼
P

nmΔΦnm
ABðμR; ϵtL−2

x ÞP
nmΔΦnm

ABðμR; 0Þ
; ð70Þ

ΔΦnm
AB ¼ Φnm

AB −Φnm
A −Φnm

B ; ð71Þ

fABðμRÞ ¼
2

L2
xL2

X
nm

ΔΦnm
ABðμR; 0Þ; ð72Þ

where iABðμR; ϵÞ converges to a single function of ϵ that is
independent of L in the large-L limit.
Taking A=B equal to the left/right half of the central

L × L × L cube of the wire, Fig. 8(a) shows the scaling of
jiABðμR; ϵÞj with L, demonstrating that it quickly converges
to a universal curve. The converged function for iABð0; ϵÞ is
well fit by a Gaussian decay e−ϵ

2=2σ2 at small values of ϵ
with σ ≈ 5 but then changes sign and crosses over to a
power-law tail that is well fit by ϵ−3=2 over this range of ϵ.
We note that a similar crossover at the Thouless energy to
an ϵ−d=2 tail has been observed in the spectral statistics of
small metallic particles in dimension d [98]. For the
parameters used in Fig. (8), we find that the integral of
iABð0; ϵÞ over ϵ is approximately equal to 4. The overall
scaling of the mutual information with L is set by the term
fAB, which is shown in Fig. 8(b). Fitting to fAB ¼ aLþ b,
we determine the coefficients

a ≈ 0.021; b ≈ 0.038; ð73Þ

consistent with an overall volume-law scaling for the
mutual information. We leave a direct calculation of the
logarithmic negativity EðρÞ for future work. However,
because of the similar structure of the fermionic two-point
function of this model with phase II in the random circuit,
we expect that the NESS will similarly exhibit a volume-
law scaling for entanglement.

B. Scattering-state correlations in the random circuit

In the case of the 3D Anderson model, we saw that the
volume-law mutual information arose from “hidden” cor-
relations between different transverse channels of the
scattering states. Here, we show that a similar effect occurs
in phase II of the random circuit model.
For the random circuit, we do not have an identical

notion of a scattering state as in extended Hamiltonian
systems. Instead, we define our scattering states to be the
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FIG. 8. (a) Energy correlation function jiABð0; ϵÞj for the
mutual information between two halves of the central L×L×L
region of an ðLþ 2Þ × L × L wire with t ¼ 1 and W ¼ 8t0 for
400 realizations of disorder. The approximate zero in the absolute
value is due to a sign change. (b) Finite-size scaling of fAB, which
determines the overall scaling of the mutual information. Param-
eters as in panel (a) with 1000 disorder realizations for each value
of L. Error bars denote �3 standard deviations.
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set of all reservoir operators at t ¼ 0. Running the circuit
forward in time, these reservoir operators will diffuse into
and eventually out of the system on a timescale of about L2.
At any instant of the circuit, we thus have an over-complete
set of operators given by the order L2 reservoir operators
that are still present and diffusing in the system. We can
roughly understand the evolution of the probability ampli-
tude of a single reservoir operator by coarse graining its
evolution to a diffusion equation. In this case, it satisfies a
standard diffusion equation with absorbing boundaries.
Using the method of images, this diffusion problem has
the solution at early times

jϕðx; τÞj2 ∼ x

τ3=2L2
e−x

2=4Dτ; τ ≪ 1; ð74Þ

where τ ¼ n=L2 and x ¼ i=L are rescaled time n and space
i variables, respectively. At late times, the dynamics are
dominated by the slowest diffusive mode that satisfies the
boundary condition that it vanishes at the edges,

jϕðx; τÞj2 ∼ sin πx
L2

e−π
2Dτ; τ ≫ 1: ð75Þ

Thus, we see that the scattering states spread across the
system on the diffusive timescale and have an amplitude of
about 1=L before eventually leaking back out to the
reservoirs.
Similar to Hamiltonian systems, we define an incoming

scattering-state wave function using the backward time
evolution of the system operators,

cni ¼
X
l

ϕi
lðn −mÞcml ; ð76Þ

where cml are the operators at time step m < n including
both the system and the reservoir. Evolving sufficiently far
backward in time that ϕi

lðn −mÞ only has sizable overlap
with the reservoir, we can express the two-point function in
the system as

hcn†i cnj i ¼
X
l∈Res

ϕi�
l ðn −mÞϕj

lðn −mÞhcm†
l cml i; ð77Þ

where, similar to the Anderson model, we use the fact that
scattering states in the reservoir are in an uncorrelated
product state at negative times. For i ¼ j, we see that
Eq. (77) is a sum of order L2 terms with an amplitude of
about 1=L2, and thus we find that the density in the system
is always order one, as expected. For i ≠ j, we can use the
identity

fcn†i ; cnjg ¼ 0 ¼
X
l∈Res

ϕi�
l ðn −mÞϕj

lðn −mÞ ð78Þ

to rewrite the coherences for antisymmetric reservoirs as

hcn†i cnj i ¼ δ
X
l∈Left

ϕi�
l ðn −mÞϕj

lðn −mÞ: ð79Þ

We immediately see that at equilibrium (δ ¼ 0), the
coherences vanish as expected. For finite δ, we naively
have a sum over L2 terms with random phases and
amplitude 1=L2, which would result in the scaling

jhcn†i cnj ij2 ∼ δ2=L2: ð80Þ

Such a scaling would lead to an area law for the
mutual information, in sharp contrast to what we found
in Sec. III B 2 in Eq. (34). The resolution to this paradox is
similar to the effect we found for the 3D Anderson model,
where the volume law arose due to the presence of
correlations between transverse channels. In the case of
the random circuit, the volume-law mutual information is
recovered because of correlations between reservoir wave
functions that persist over a finite time.

VI. APPROACH TO LOCAL EQUILIBRIUM
FOLLOWING A QUENCH

In this section, we go beyond the scenario of the
boundary-driven system considered in most of this work
to qualitatively consider the implication of our results for
the time dynamics of interacting diffusive systems when the
initial density profile has deviations from equilibrium. For
weak interactions, either in the random circuit or in
disordered metals, the butterfly velocity is parametrically
smaller than other characteristic scales for the diffusive
dynamics. For the random circuit, the diffusion constant is
set by the lattice spacing and the rate at which the unitaries
act, while the butterfly velocity is reduced by a factor offfiffiffiffiffi
p2

p
according to Eq. (26). In a weakly interacting diffusive

metal, the diffusion constant is determined by the elastic
scattering rate and the mean free path, while vB ∼

ffiffiffiffiffiffiffiffiffi
Dγin

p
,

where γin is the inelastic scattering rate due to interactions
[99,100]; here, we consider the case where the elastic
scattering rate is large compared to γin. Using the mapping
of the local random circuit to diffusive fermions, we can
interpret the parameter p2 as the analog of γin. As we now
argue, this parametric separation between operator spread-
ing dynamics and the diffusive dynamics leads to a large
window of space and time where the system will display
strong deviations from local equilibrium with a similar
structure to the volume-law mutual information phase of
the NEASs.
As a thought experiment, we imagine a quench experi-

ment in the random circuit model whereby we prepare the
left and right halves of the chain in initial mixed-product-
state diagonal density matrices with different magnetiza-
tions mL=R ¼ ð1� δÞ=2 on the left/right half. At time
scales much larger than the Thouless time, the magnetiza-
tion will relax to either equilibrium if the system is not
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driven or to the NEAS if it is driven; however, in either
case, the early-time dynamics on the diffusive length scale
will display behavior reminiscent of the boundary-driven
system. Letting the step in the magnetization occur at
x ¼ 0, the diffusion length lD ≡ ffiffiffiffiffiffi

Dt
p

then sets the length
scale for the diffusive smoothing of the magnetization step.
For weak interactions, the diffusion length is large com-
pared to vBt at early times, and crossover length and
timescales,

lin ≡D=vB; τin ≡D=v2B; ð81Þ

are set by lDðtÞ ¼ vBt. For t ≪ τin, we can neglect the
effects of the ballistic operator spreading in describing
features on the scale lD; thus, the quench dynamics will
behave similarly to the volume-law mutual information
phase (phase II) of a boundary-driven system with L ∼ lD.
On the other hand, for t ≫ τin, the operator spreading will
have scrambled most of the information originally encoded
on the length scale lD over a much larger range on the order
of vBt. Thus, the system will appear to be in local
equilibrium, similar to phase III of the boundary-driven
system. Note that in the random circuit model, the elastic
mean free path is on the order of a single lattice spacing,
which implies that diffusion is well defined down to this
scale. This case should be contrasted with the strongly
interacting regime for diffusive metals, where the inter-
actions can lead to a renormalization of the diffusion
constant. In that context, τin can instead be identified with
a microscopic equilibration time τeq, which then provides a
constraint on the renormalization group flow by implying
the existence of an upper bound on the diffusion constant
D≲ v2Bτeq [101].
As shown in Fig. 9(a), the initial step in density will

broaden diffusively over a length lD so that the instanta-
neous current density near the origin at time t will scale as
J ∼ δ=lD. Defining the reduced density matrix at time t
over the region between�x as ρðx; tÞ, the entropy deviation
from local equilibrium is

ΔSðx; tÞ≡ S½ρLEðx; tÞ� − S½ρðx; tÞ�: ð82Þ

From our analysis of the boundary-driven system, we then
have the result that for times much less than τin, the entropy
deviation for x ¼ lD will scale as

ΔSðlD; tÞ ∼ δ2lD; t ≪ τin: ð83Þ

Thus, we expect the system exhibits volume-law deviations
from local equilibrium on this length scale. On the other
hand, for times much longer than τin but short compared to
the Thouless time, the situation is analogous to phase III of
the boundary-driven system, so we will only have area-law
deviations from local equilibrium, Fig. 9(b).
From this picture, we can also develop some intuitive

understanding for the finite-size scaling that sets the
crossover with increasing p2 from phase II to phase III
for the NEAS of the boundary-driven system. In this case,
the Thouless time τTh ¼ L2=D imposes a cutoff on the time
dynamics, which suggests that the crossover occurs pre-
cisely when τTh ∼ τin. This observation implies that the
crossover function for the NEAS density matrices starting
from phase II will be a universal function of p2L2 in the
scaling limit. This scaling is directly verified in Sec. III C.

VII. EXPERIMENTAL SIGNATURES

In this section, we outline an experimental approach,
suitable for mesoscopic wires or ultracold Fermi gases [39],
to probe two-site coherences in the NEAS. When the sites
are separated by a distance much greater than l, this
measurement is an indirect probe of the long-range entan-
glement in the system.
The idealized setup is shown in Fig. 10 and consists of

four essential components: (i) a disordered 3D metallic
system being driven by a chemical potential bias (here, we
focus on energy-conserving systems at a fixed temper-
ature), (ii) two 1D channels connected to the wire via
tunable, tunneling barriers, (iii) a coherent beam splitter
[102–105], and (iv) a pair of current or charge sensors.
Referring to the length scales ðl;lφ;lee;lepÞ introduced in
the Introduction, our analysis of the random circuit model
implies that achieving volume-law entanglement in the
NEAS requires a wire of length l ≪ L ≪ lφ. In typical
metals, these length scales are (50 nm, 1 μm, 10 μm,
10 mm) [13,106]; thus, the regime of interest is easily
achievable and, in fact, has been directly probed in an
experiment conceptually similar to the one we propose here
[36]. In atomic Fermi gases, the strength of interactions are
tunable via a Feshbach resonance [107], which would allow
one to scan lφ for a fixed length of the channel.
For simplicity, we focus on a measurement approach

where the tunneling to the two 1D channels is turned off
while the system is driven to its steady state by the bias.
After a sufficiently long time, the tunneling barriers are

(a) (b)

Local 
equilibrium

Volume law 
entanglement

FIG. 9. (a) Quench dynamics for a diffusive system with weak
interactions and a single conserved quantity, initially with a step
profile in the conserved quantity. The step broadens diffusively
and, on short timescales compared to the inelastic scattering time
τin ¼ D=v2B, the system will exhibit the long-range coherence and
entanglement characteristic of phase II of the boundary-driven
system. (b) Deviation of the entropy from local equilibrium
ΔSðlD; tÞ at the diffusion length, showing the crossover from
volume to area law near t ∼ τin.
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lowered, allowing current leakage into the two 1D chan-
nels. To avoid interaction effects in the channel, we
consider the limit of weak tunneling into the channels as
compared to the transit time through the beam-splitter
device. We assume the left and right 1D channels to be
connected to single sites L and R of the wire, respectively.
Taking a beam splitter with reflection coefficient r and
transmission coefficient t, the current in the left or right
meter will be proportional to

IL ∝ jrj2hψ†
LψLi þ jtj2hψ†

RψRi þ 2Re½r�thψ†
LψRi�; ð84Þ

IR ∝ jtj2hψ†
LψLi þ jrj2hψ†

RψRi þ 2Re½t�rhψ†
LψRi�: ð85Þ

For a balanced beam splitter (i.e., jrj2 ¼ jtj2 ¼ 1=2), we
then have the result that

IL − IR ∝ 2Re½ðr�t − t�rÞhψ†
LψRi�: ð86Þ

Thus, by tuning the transmission and reflection phases of
the beam splitter (e.g., by varying the path length or
tunneling barriers), it becomes possible to directly measure
the coherence between two sites of the wire for a static
disorder potential.
The setup discussed here demonstrates that these long-

range coherences are physically accessible in a transport
experiment. A more detailed analysis of this measurement
scheme is beyond the scope of this work. In general, these
effects should be most easily observed in diffusive wires
with a short elastic mean free path. In addition, one can
consider geometries that use multiple channels and beam
splitters to enhance the total detected current difference. An
alternative approach is to consider driven, time-dependent
systems in a 1D or quasi-1D system similar to the random
circuit model.

VIII. CONCLUSION

While systems in thermodynamic-equilibrium Gibbs
states have extensive von Neumann entropy, they usually
satisfy area laws for their entanglement entropy or mutual
information. On the other hand, any modification that
drives the system out of equilibrium allows for potential
violations of this behavior. In this paper, we investigated a
common nonequilibrium scenario consisting of an
extended system coupled at its two ends to reservoirs at
different chemical potentials, leading to current-carrying
nonequilibrium attracting states (NEASs) in the long-time
limit. The analog of thermalization for these current-driven
systems is the approach to local equilibrium. For a family
of random circuit models, we found that the ballistic
operator spreading associated with quantum chaos is
crucial for the emergence of local equilibrium in these
models. As our argument in favor of local equilibrium is
rather general, it will be interesting to test these ideas in
quantum chaotic Hamiltonian or Floquet driven systems. In
addition, given that we found the mutual information of the
NEASs in the quantum chaotic region is consistent with an
area law, it is likely that these states can be well approxi-
mated using a matrix product representation, allowing a
rich set of analytical and numerical techniques to be applied
to further characterize these states.
A more surprising result is that, in one of the nonchaotic

phases (phase II), we found that the system is driven
towards a highly entangled state with a volume-law mutual
information and logarithmic negativity between two halves
of the chain. We showed that this phase captures important
qualitative features of the entanglement structure of the
current-driven 3D Anderson model. As a result, we expect
signatures of this phase to appear in a wide variety of
metallic systems on mesoscopic length scales and time-
scales. We discussed an experimental approach applicable
to mesoscopic wires or ultracold Fermi gases where one
could directly probe these effects. More generally, this
behavior demonstrates the ability to stabilize a high degree
of entanglement in nonequilibrium systems with limited
fine-tuning of the evolution. Determining other conditions
under which one can achieve such a strong violation of
local equilibrium is a promising direction for future
research. Finally, one is naturally led to ask whether such
large deviations of the entropy away from local equilibrium
or extensive entanglement can be harnessed as a thermo-
dynamic resource or for applications in quantum informa-
tion science. For example, we showed in Sec. VII that the
long-range coherences in the NEAS could be transformed
into a current difference between two 1D channels, which
can be directly used to perform work.
Future theoretical work on the Anderson model could

investigate the behavior of the NESS entanglement
across the metal-insulator transition, where, naively,
one expects a crossover to an area-law scaling due to

Beam splitter

Current 
sensors

NEAS

Tunable 
barriers

1D channels

3D wire

FIG. 10. Idealized experiment to probe the long-range coher-
ences of a current-driven disordered fermionic system at fixed
temperature T with a chemical potential bias. The channel is
taken to either be formed from a 3D metallic wire or a 3D
disordered potential landscape in an atomic Fermi gas. After the
system reaches the NEAS, tunable tunneling barriers into 1D
channels are opened to allow an interferometric measurement of
the long-range coherence in the wire for a specific realization of
the disorder.
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the localization of the wave functions. Using the mapping
of disorder-averaged Anderson models to supersymmetric
field theories [92], it will be interesting to understand how
the volume-law mutual information of the NESS emerges
in the corresponding field theoretic description.
Another interesting avenue of investigation for the

random circuit models is to better understand their con-
nection to classical boundary-driven stochastic lattice
gases. In particular, it may be fruitful to investigate a
boundary-driven random circuit model with a true phase
transition. One prominent example in the classical case is
the asymmetric simple exclusion process (ASEP) in which
the particles have unequal probabilities of hopping left or
right [24]. Naively, such a model would need to break
unitarity in the random circuit; however, it may be possible
to engineer chiral transport using ladder systems. A related
question to explore is the role of dissipation in the bulk of
the system, which can be easily incorporated in the random
circuit model by allowing dissipative quantum channels.
We gave one such example in Sec. III C as an effective
model for the crossover from the discrete hopping limit of
the random circuit (phase I) to the quantum chaotic phase
(phase III).
In the context of open quantum systems, our work

introduces the concept of NEAS density matrices to the
description of the long-time behavior of nonequili-
brium open systems with noise or time dependence in
their parameters. In time-independent systems, there
is a natural classification of NESSs into those described
by low-entropy mixtures of a few pure states and high-
entropy mixed states, with the latter often having an
effective thermal description at long wavelengths [108].
Extending this classification program to the description of
NEASs may prove a rich direction of research.
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Note added in the proof.—Recently, we became aware of
two related papers [109,110]. Reference [109] extends the
analysis of boundary-driven 3D Anderson models to
consider the entanglement scaling across the localization
transition. Reference [110] introduces another class of
stochastic, noninteracting fermion models whose average
dynamics reduce to the SSEP and whose NEASs have
similar properties to phase II of the random circuit model
studied in this work.

APPENDIX A: OVERVIEW OF APPENDIXES

The Appendixes are organized as follows: In
Appendix B, we present several general theorems that
prove the existence of a set of NEAS density matrices for
the local random circuit model. In Appendix C, we review
some basic properties of the SSEP, which describes the
time-averaged behavior of the random circuit model.
In Appendix D, we provide more details for the analysis
of the scaling limit in phase II. In Appendix E, we derive a
compact representation of the replicated density matrix that
describes both the quantum chaotic phase III and the
crossovers between the three phases. In Appendix F, we
present an analysis of the von Neumann entropy of an open
random circuit without charge conservation. For a zero
entropy reservoir, we find that the entropy of the system is
reduced by one bit, on average, compared to the infinite-
temperature state.

APPENDIX B: STATIONARY RANDOM
QUANTUM CIRCUITS

In this Appendix, we establish some basic facts about the
long-time behavior of random quantum circuits coupled to
reservoirs. This analysis demonstrate that the models
considered in this paper have an attractive ensemble of
density matrices in the long-time limit, which we refer to as
nonequilibrium attracting states (NEASs).
For a given d-dimensional quantum system, an associ-

ated quantum channel Eð·Þ is defined as a trace-preserving,
completely positive linear map that acts on the set of d × d
complex matrices MdðCÞ. Every quantum channel has a
representation in terms of a collection of Kraus operators Ek

satisfying
P

rK
†
rKr ¼ I such that the density matrix of the

system is transformed as [111]

EðρÞ ¼
X
r

KrρK
†
r : ðB1Þ

In this work, we are interested in characterizing fixed points
Eð·Þ, defined as

F ssðEÞ ¼ fDensity matrices ρss∶EðρssÞ ¼ ρssg: ðB2Þ

Since the set of density matrices is a compact, convex set in
Rn for n ¼ d2 − 1, Brouwer’s fixed-point theorem implies
that every quantum channel has at least one fixed point.
Some sufficient conditions for ρss to be unique are
described in Ref. [111].
We consider families of quantum channels Eσð·Þ, where

σ is a random variable with probability measure dσ that
takes on a possibly infinite set of values. If we introduce an
additional measure dν on F ssðEσÞ (e.g., determined by the
distribution of initial states), this naturally induces a
distribution of steady-state density matrices ρσν with
measure dσdν.
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In the language of quantum channels, random circuits
are defined as a sequence of independent random variables
σ ¼ ðσ1;…; σnÞ such that

MnðρÞ ¼ Eσn∘ � � � ∘ Eσ1ðρÞ; ðB3Þ

where the Eσi are assumed to be drawn from identical
distributions of random quantum channels. We focus on
stationary random circuits defined by the property that
limn→∞MnðXÞ ¼ ρσTrðXÞ, with a probability that con-
verges to 1, where ρσ is a density matrix that is independent
of the initial state X for all X ∈ MdðCÞ. Such stationary
random circuits have the convenient property that, for
sufficiently large n,Mnð·Þ induces a unique distribution of
density matrices ρν with measure dν, which is stationary in
the sense that EσðρνÞ is also distributed with measure dν.
This property leads to the steady-state equations for the
average replicated density matrices

ρ ⊗ � � � ⊗ ρ ¼
Z

dσ
Z

dνEσðρνÞ ⊗ � � � ⊗ EσðρνÞ: ðB4Þ

For a given distribution of quantum channels Eσ , the
following two theorems are useful in determining whether
the associated random circuitMnð·Þ is stationary. First, we
prove that a wide class of random circuits are in fact
stationary:
Theorem B.1. Let Mnð·Þ be a random circuit that

satisfies the following properties: (i) There exists m ∈ N
such that, with finite probability, Mmð·Þ has a one-dimen-
sional set of fixed points, and (ii) Mn is almost surely
diagonalizable for every n. Then, Mnð·Þ is a stationary
random circuit.
Proof.—Condition (i) implies that the quantum channel

Mnð·Þ has a one-dimensional set of fixed points with a
probability that converges to 1 with increasing n. For a
given sequence σ of sufficiently large length, we denote the
fixed point as ρσ. Condition (ii) implies that we can then
almost surely represent Mnð·Þ as

Mn ¼ Pσ
∞ þ

Xd2−1
k¼1

λσkP
σ
k; ðB5Þ

where λσk are the eigenvalues of Mnð·Þ with magnitude
strictly less than 1, Pσ

k are projectors into the eigenspaces,
Pσ
∞X ¼ ρσTrðXÞ for all X ∈ MdðCÞ, and Pσ

∞ þP
kP

σ
k ¼ I.

Note that the second term in Eq. (B5) is always traceless
when acting on X ∈ MdðCÞ due to the fact that Mnð·Þ
preserves the trace. This condition implies that

Pσ0
∞

X
k

λσkP
σ
k ¼ 0; ðB6Þ

for all σ ¼ ðσ1;…; σnÞ and σ0 ¼ ðσ01;…; σ0nÞ.
Now, consider the limit as q → ∞ of the quantum

channels,

M̂qn ¼ P
μq
∞ þ

X
k

λ
μq
k P

μq
k P

μq−1
∞ þ

Yq
l¼1

X
k

λμlk Pμl
k ; ðB7Þ

where μl ¼ ðσðl−1Þnþ1;…; σlnÞ. Denote by λμlmax ¼
maxkðjλμlk jÞ the maximum magnitude of the eigenvalues;
now

����Y
q

l¼1

X
k

λμlk Pμl
k

����
∞
≤
Yq
l¼1

����X
k

λμlk Pμl
k

����
∞
¼

Yq
l¼1

λμlmax; ðB8Þ

where kAk∞ is the magnitude of the maximum eigenvalue
of A. The rhs is a strictly decreasing sequence of positive
real numbers, which must converge to zero as q → ∞.
Applying condition (ii) to Mqnð·Þ with σ ¼ ðσ1;…; σqnÞ
almost surely results in the identities

Pσ
∞ ¼ P

μq
∞ þ

X
k

λ
μq
k P

μq
k P

μq−1
∞ ; ðB9Þ

X
k

λσkP
σ
k ¼

Yq
l¼1

X
k

λμlk Pμl
k : ðB10Þ

Now, since the maximal eigenvalue λσmax converges to zero,
this implies the convergence with probability 1,

lim
n→∞

MnðρÞ ¼ ρσ: ðB11Þ

The following theorem and a weakened version, both
proved in Ref. [111], are helpful in determining whether a
given Mn satisfies condition (i) of Theorem B.1.
Theorem B.2. Let E∶MdðCÞ → MdðCÞ be a quantum

channel with Kraus decomposition Eð·Þ ¼ P
iKi · K

†
i .

Denote by Km ≡ SpanfQm
k¼1Kikg the complex linear span

of all degree-m monomials of Kraus operators forming
Enð·Þ. Then, the following are equivalent: (1) For all density
matrices ρ the limit limk→∞EkðρÞ exists; is independent
of ρ and is given by a positive-definite density matrix
ρ∞. (2) There exists an m ∈ N such that, for all
n ≥ m, Kn ¼ MdðCÞ.
The modified version of this theorem has the weaker

condition that we are only guaranteed the existence of an
n ∈ N such that Kn ¼ MdðCÞ. In this case, the limit
limk→∞EkðρÞ exists; it is independent of ρ, but it is given
by a positive-semidefinite density matrix ρ∞. This version
of the theorem applies to the restricted region of the phase
diagram with p1 ¼ 0, where, for δ ¼ 1, the NEASs are
given by pure states, i.e., rank-one density matrices.

APPENDIX C: SYMMETRIC SIMPLE
EXCLUSION PROCESS

Here, we review some basic properties of the SSEP [24].
The master equation for SSEP takes the form (see also
Eq. (19))
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dPðτÞ
dt

¼
X
fσig

Wσ
τPðσÞ ðC1Þ

The transition matrix Wσ
τ can be decomposed into two

single-site boundary operators and L − 1 two-site operators
in the bulk,

Wσ
τ ¼ ½RL�σ1τ1 ⊗ I þ ½RR�σLτL ⊗ I þ

XL−1
i¼1

½Wi�σiσiþ1
τiiþ1

⊗ I; ðC2Þ

where, in the local basis f11; 01; 10; 00g, Wi is equal to an
effective hopping matrix

Wi ¼

0
BBB@

0 0 0 0

0 −1=2 1=2 0

0 1=2 −1=2 0

0 0 0 0

1
CCCA; ðC3Þ

while the boundary transition matrices for antisymmetric
reservoirs take the form

RL=R ¼ 1

4

�−1� δ 1� δ

1 ∓ δ −1 ∓ δ

�
: ðC4Þ

This model has an exact solution in terms of a matrix-
product-state (MPS) representation. Specifically,

Pðτ1;…; τLÞ ¼ hUjAτ1 � � �AτL jVi; ðC5Þ

where AL=R are infinite-dimensional matrices and jU;Vi
are vectors that satisfy the algebraic equations

½AL; AR� ¼ 2ðAL þ ARÞ; ðC6Þ

jVi ¼
�
−
1þ δ

4
AL þ 1 − δ

4
AR

�
jVi; ðC7Þ

hUj ¼ hUj
�
−
1þ δ

4
AR þ 1 − δ

4
AL

�
: ðC8Þ

From these relations, it directly follows that Eq. (C5)
satisfies Eqs. (19) and (C1). This algebra can be used to
efficiently compute the probability amplitude of any
configuration by recursively reducing the number of Aτi
matrices in the representation of Pðτ1;…; τLÞ from L to
zero. Explicit representations of these matrices are given in
Ref. [84]. The one- and two-point connected correlation
functions for i < j are given by [24]

hτii ¼
1þ δ

2
− δ

i
Lþ 1

; ðC9Þ

τij ¼ −
iðLþ 1 − jÞ
ðLþ 1Þ2L δ2; ðC10Þ

where τij ≡ hτiτji − hτiihτji. Note that the two-point
function is negative due to the repulsive hard-core inter-
actions between particles. In the scaling limit, the con-
nected three-point function also has a simple form
(x < y < z)

τðx; y; zÞ ¼ −2
xð1 − 2yÞð1 − zÞ

L2
δ3: ðC11Þ

APPENDIX D: SCALING LIMIT FOR PHASE II

In this Appendix, we provide more details of the
derivation of the volume-law correction to the average
entropy and mutual information for the noninteracting
fermion random circuit. First, we note that the free-fermion
gates acting on sites k and kþ 1 obey the relation

Uc†i U
† ¼

X
j

Vijc
†
j ; ðD1Þ

where Vij acts as the identity on most sites except when j is
equal to k or kþ 1, in which case it is a Haar randommatrix
on Uð2Þ with probability p1, permutes sites k and kþ 1
with probability ð1 − p1Þ=2 due to the action of the iSWAP,
or is the identity with probability ð1 − p1Þ=2. The action of
the reservoir can also be simply accounted for by combin-
ing the action of the unitary gate, swapping with the
reservoir, and tracing over the reservoir into a Kraus
operator acting on the density matrix; however, in the
scaling limit (L → ∞), a detailed consideration of the
boundary operators is not necessary to lowest order in
1=L as they only serve to set boundary conditions on the
course-grained correlation functions.
In deriving time-evolution equations for the covariance

matrix,

Aij ≡ ð1 − δijÞjhc†i cjij2 þ δijðhnii2 − hnii2Þ; ðD2Þ

one finds that circuit averaging will couple Aij to density-

density fluctuations hniihnji for i ≠ j. However, since
every NEAS is a Gaussian fermionic state, we can use
Wick’s theorem to find a relation between the density-
density correlations and Aij using the mapping of ρ̄ to
SSEP,

hninji ¼ hnii hnjiþhτiτjic
¼ hc†i cic†jcji ¼ hniihnji − jhc†i cjij2; ðD3Þ

where hτiτjic is given in Eq. (C10). Using the definition of
Aij, we find that the average density-density correlations
are given by
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hniihnji − hnii hnji ¼ Aij þ τij: ðD4Þ

From our solution for Aij ¼ −τij, we find that these
correlations exactly vanish to lowest order in 1=L.
Denoting averages over random circuits with an overbar,

the time-evolution equations for the covariance matrix
elements are given by

hc†i1ci2ihc†i3ci4iðtþδtÞ

¼
X
k;fmlg

Z
dμ
L
Vkσ
i1m1

V�kσ
i2m2

Vkσ
i3m3

V�kσ
i4m4

hc†m1
cm2

ihc†m3
cm4

iðtÞ;

ðD5Þ

where Vkσ
ij acts on sites k and kþ 1 and dμ is the

probability measure for the randomly chosen set of gates
on that site. To compute this average, we can use standard
formulas for Haar averages of tensor products of matrices
on UðnÞ [19]. In particular, for a given k, when il and ml
are all equal to either k or kþ 1, we have the identityZ

dμVkσ
i1m1

V�kσ
i2m2

Vkσ
i3m3

V�kσ
i4m4

¼ p1

3

�
δi1i2δi3i4δm1m2

δm3m4
þ δi1i4δi2i3δm1m4

δm2m3

−
1

2
ðδi1i4δi2i3δm1m2

δm3m4
þ δi1i2δi3i4δm1m4

δm2m3
Þ
�

þ 1 − p1

2

�Y4
l¼1

δilml
þ

Y4
l¼1

Fkkþ1
ilml

�
; ðD6Þ

where Fkkþ1 is a permutation matrix for sites k and kþ 1.
On the other hand, if only a pair of il indices are equal to k
or kþ 1 (e.g., i1 and i3), we instead have the identityZ

dμVkσ
i1m1

V�kσ
i2m2

Vkσ
i3m3

V�kσ
i4m4

¼ 1

2

�Y4
l¼1

δilml
þ Fkkþ1

i1m1
Fkkþ1
i3m3

δi2m2
δi4m4

�
: ðD7Þ

Using these relations together with Eq. (D3), we find the
steady-state equations for the covariance matrix in the bulk
2 ≤ i ≤ L − 2 and iþ 2 ≤ j ≤ L − 1,

0 ¼ −
�
1

2
þ p1

6

�
Aii þ

�
1

4
−
p1

12

�
ðAi−1i−1 þ Aiþ1iþ1Þ

þ p1

3
ðAiiþ1 þ Ai−1iÞ

þ δ2

2ðLþ 1Þ2 −
2iðLþ 1Þ − 2i2 − 1

6LðLþ 1Þ2 δ2p1; ðD8Þ

0 ¼ −
�
1

3
þ 2p1

9

�
Aiiþ1 þ

p1

18
ðAii þ Aiþ1iþ1Þ

þ 1

6
ðAi−1iþ1 þ Aiiþ2Þ þ

2iL − 2i2 þ L
18LðLþ 1Þ2 δ2p1; ðD9Þ

0 ¼ −
1

2
Aij þ

1

8
ðAi−1j þ Aiþ1j þ Aij−1 þ Ai;jþ1Þ: ðD10Þ

Before examining the steady-state solutions for finite p1,
it is constructive to examine their behavior for p1 ¼ 0,
where we have an analytic solution for the NEAS density
matrices and their probability distribution. In this case, we
see that Aii decouples from Aiiþ1, which becomes undriven.
As a result, Aij ¼ 0 for j ≠ i, and we are left with a discrete
diffusion equation for Aii,

Ai−1i−1 − 2Aii þ Aiþ1iþ1 ¼ −
2δ2

ðLþ 1Þ2 : ðD11Þ

We define hðxÞ ¼ AxL;xL, which, in the scaling limit,
satisfies the boundary conditions hð0Þ ¼ hð1Þ ¼ 0, leading
to the solution

hðxÞ ¼ xð1 − xÞδ2 þOðL−1Þ: ðD12Þ
An alternative derivation of this result is to use the mapping
of PðρτÞ to SSEP with fully pseudospin-polarized reser-
voirs to write

hnii2 ¼
�
1þ δ

2

�
2

hτii þ
�
1 − δ

2

�
2

ð1 − hτiiÞ; ðD13Þ

where hτii ¼ 1 − i=ðLþ 1Þ, which agrees with Eq. (D12)
in the scaling limit after subtracting hnii2. Using this
solution to compute the correction to the entropy, we find

SðρLEÞ − SðρτÞ ¼
δ2

3
LþOðL0Þ þOðδ3Þ; ðD14Þ

which agrees with Eq. (29) expanded to order δ2.
For finite p1, the solution to the steady state exhibits

crossover behavior in the scaling limit because the Aij

correlations are now sourced by the current along the
diagonal. To solve for Aij, we first invert the steady-state
solution of Eq. (D8) and find

Aii ¼
ffiffiffiffiffi
p1

3

r X
j

e−λji−jjðAjjþ1 þ Aj−1jÞ

þ 3ðLþ 1Þ − 2iðLþ 1 − iÞp1

2LðLþ 1Þ2p1

δ2; ðD15Þ

where cosh λ ¼ ð3þ p1=3 − p1Þ. This expression is valid
in the bulk up to exponentially small corrections on the
order of e−λL. Notice that the second term is nonperturba-
tive in p1, which is consistent with the nonanalytic
behavior we find in the entropy and mutual information.
Defining aðx; yÞ ¼ AxL;yLþ1, we can rewrite the first
term as
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ffiffiffiffiffi
p1

3

r X
j

e−λji−jjðAjjþ1 þ Aj−1jÞ

≈ 4aðx; xÞ þ 3

L2p1

ð∂x þ ∂yÞ2aðx; yÞjx¼y: ðD16Þ

Inserting this identity into Eq. (D9) leads to the coarse-
grained diffusion equation for aðx; yÞ,

∇2a ¼ −
2δðx − yÞ

L
½δ2 þ ð∂x þ ∂yÞ2a�: ðD17Þ

The second term on the rhs contributes an OðL−2Þ
correction to aðx; yÞ, which is why we neglected it in
the discussion in the main text.

APPENDIX E: AVERAGE REPLICATED
DENSITY MATRIX IN CHAOTIC

PHASE III—abc MODEL

In this Appendix, we solve for the one- and two-point
correlation functions of the time-averaged replicated den-
sity matrix ρNEAS ⊗ ρNEAS perturbatively in δ and L−1.
Using the ansatz that the higher-order connected correlation
functions scale with higher powers of δ, these correlation
functions then allow us to compute the deviations of the
average entropy and mutual information away from ρ̄. As
discussed in the main text, we find that the entropy
converges to that of local equilibrium, while the mutual
information obeys an area law to second order in δ.
To describe the dynamics of the NEAS ρν, we first deco-

mpose the state into a complete set of orthogonal, Hermitian
operators S normalized according to TrðSS0†Þ ¼ δSS0 ,

ρν ¼
X
S

aνSS; aνS ¼ TrðρνS†Þ: ðE1Þ

The random channels that make up the random circuit map
the state ρν to a different NEAS EσðρνÞ. Defining the
coefficients eσSS0 by

EσðSÞ ¼
X
S0
eσSS0S

0; ðE2Þ

the density matrix is updated as

EσðρνÞ ¼
X
SS0

eσSS0a
ν
S0S: ðE3Þ

Then, the average moments in the NEASs satisfy

aνS1 � � � aνSn ¼
X
S0i

eσS1S01
� � � eσSnS0n aνS01 � � � a

ν
S0n
: ðE4Þ

As a result, the matrix ρ⊗n
NEAS is given by the NESS of a

stochastic process in the space of operator strings with the
transition matrix WSS0 ¼ eσS1S01

� � � eσSnS0n − δSS0 [19].

To compute the average entropy and mutual information
to lowest order in δ, it is sufficient to have access to only the
doubled matrix ρNEAS ⊗ ρNEAS. To solve for this operator,
we first reduce to a subset of the full Hilbert space that

describes the NEASs. Unitarity of the bulk dynamics
implies that ρ2 evolves with the same average dynamics
as ρ. This implies that ρ2NEAS has only diagonal compo-
nents in the local z basis, placing constraints on which
second-order moments aSaS0 are allowed to be nonzero. In
particular, the only allowed operator string pairs ðSS0Þ at each
site are one of the following six pairs:�

S

S0

�
¼

�
…l…r…u…d…u…d…

…r…l…u…d…d…u…

�
; ðE5Þ

where the single-site operators are taken as u ¼
ð1þ σzÞ=2, d ¼ ð1 − σzÞ=2, l ¼ σ−, and r ¼ σþ. This
simplification reduces the size of the Hilbert space needed
to represent ρNEAS ⊗ ρNEAS from 16L to 6L.
To describe the dynamics in this basis, we make a formal

mapping of each of these on-site operator pairs to one of
three classes of spin-1=2 particles: a↑ ¼ ðlrÞ; a↓ ¼ ðrlÞ;
b↑ ¼ ðuuÞ; b↓ ¼ ðddÞ; c↑ ¼ ðudÞ, and c↓ ¼ ðduÞ. It is further
convenient to make a Jordan-Wigner transformation on
the li and ri operators, which leads to an anticommutation
relation for the a and c particles. We can then map the
solution for ρ ⊗ ρ to the NESS of a six-species symmetric
exclusion process in the space ðμs11 ;…; μsNN Þ, where
μi ∈ fa; b; cg, si ∈ f↑;↓g. We can evaluate the transition
matrix in this representation following a similar approach as
for the NIF random circuit, making use of standard formulas
for averages over Haar random unitaries. We find that the
amplitude of each configuration PL evolves according to

dPLðμsÞ
dt

¼
X
σ

Wσ
μsPLðσÞ: ðE6Þ

The two-site transition matrix in the bulk is a 6 × 6 × 6 × 6
tensor with nonzero entries,

W0¼

0
BBBBBBBBB@

−1
2
−γ1

1
2
−γ1 γ1 γ1 γ1 γ1

1
2
−γ1 −1

2
−γ1 γ1 γ1 γ1 γ1

γ1 γ1 −1
2
−γ1

1
2
−γ1 −γ1 −γ1

γ1 γ1
1
2
−γ1 −1

2
−γ1 −γ1 −γ1

γ1 γ1 −γ1 −γ1 −1
2
−γ1

1
2
−γ1

γ1 γ1 −γ1 −γ1 1
2
−γ1 −1

2
−γ1

1
CCCCCCCCCA
;

ðE7Þ

Wasbs0 ¼ Wbscs0 ¼
�− 1

2
1
2

1
2

− 1
2

�
;

Wascs0 ¼
�− 1þγ2

2
1−γ2
2

1−γ2
2

− 1þγ2
2

�
; ðE8Þ

where γ1 ≡ p1=6, γ2 ≡ p2, W0 acts in the subspace
fb↑b↓; b↓b↑; c↑c↓; c↓c↑; a↑a↓; a↓a↑g, and Wμsνs0 acts in
the subspace fμsνs0 ; νs0μsg. The left boundary transition
matrix isRL ¼ Rbc

L ⊕ Ra
L, where the matrix elements ofRbc

L
in the basis fb↑; b↓; c↑; c↓g are
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Rbc
L ¼

0
BBBBBB@

−p2
dð12 þ γ1Þ − pdpu p2

uð12 − γ1Þ p2
u
2
þ γ1pdpu

p2
u
2
þ γ1pdpu

p2
dð12 − γ1Þ −p2

uð12 þ γ1Þ − pdpu
p2
d
2
þ γ1pdpu

p2
d
2
þ γ1pdpu

pdpu
2

þ γ1p2
d γ1p2

u þ pdpu
2

− 1
2
þ pdpuð1 − 2γ1Þ 0

pdpu
2

þ γ1p2
d γ1p2

u þ pdpu
2

0 − 1
2
þ pdpuð1 − 2γ1Þ

1
CCCCCCA
; ðE9Þ

where pu ¼ ð1þ δÞ=2 and pd ¼ ð1 − δÞ=2. The matrix
elements of Ra

L in the basis fa↑; a↓g are

Ra
L ¼

�−1=2 0

0 −1=2

�
: ðE10Þ

The right boundary transition matrix RR can be obtained by
switching pd and pu in the expressions for RL.
From these expressions, we see that the interacting gates

effectively induce a dissipative interaction between a and c
particles. This result can be understood intuitively because
the interactions effectively couple the off-diagonal corre-
lations of the fermions to density-density fluctuations,
which damp out the off-diagonal terms. Alternatively,
the presence of these dissipative terms can be understood
using the arguments given in the main text, whereby the
nonconserved operators spread ballistically to the reser-
voirs where they are decohered, which leads to a dissipation
term in the bulk.
There are several helpful identities to keep in mind when

working with this representation for ρNEAS ⊗ ρNEAS. First,
the fact that Tr½ρ� ¼ 1 is reflected by the identity

1 ¼ Tr½ρNEAS�2 ¼
X

fμsii ∶μi∈fb;cgg
PLðμs11 ;…; μsLL Þ: ðE11Þ

This conservation law is explicitly preserved by the bulk
and boundary transition matrices. Similarly, we can express
the average purity as

Tr½ρ2NEAS� ¼
X

fμsii ∶μi∈fa;bgg
PLðμs11 ;…; μsLL Þ: ðE12Þ

The average purity is preserved by the bulk transition
matrices, which are associated with unitary dynamics;
however, purity is not conserved by the boundary matrices.
These boundary terms conserve the total number of b and c
particles to preserve probability but give rise to pure
damping of the a particles. The reduced density matrices
for a subset of sites A ¼ fi1;…; ing ⊂ f1;…; Lg have the
representation

ρANEAS ⊗ ρANEAS ¼
X

fμ
sij
ij

∶ij∈Ag
PAðμsÞ ⊗

n

j¼1
μ̂
sij
ij
; ðE13Þ

PAðμsi1i1 ;…; μ
sin
in
Þ ¼

X
fμsii ∶i∈Ac;μi∈fb;cgg

PLðμsÞ; ðE14Þ

where Ac is the complement of A, ρA ¼ TrAc ½ρ�, and μ̂sii
denotes the single-site operator in the doubled space
corresponding to the label μsii .
In order to map the dynamics of PL to a classical

stochastic lattice gas, one requires that PL ≥ 0 for all
configurations of the particles. By definition, positivity
of PL is guaranteed for configurations that contain only a
and b particles and only b and c particles; however, any
configuration that contains a mixture of a and c particles is
allowed to have negative weight. This fact should provide
sufficient warning to the reader to avoid literally interpret-
ing the dynamics of the abc model as a classical stochastic
lattice gas. On the other hand, for the problem at hand and
sufficiently small values of δ, we find that PL does not have
negative weight configurations in the large-L limit. Thus,
our analysis provides an a posteriori justification for the
interpretation of the abc model as a classical stochastic
lattice gas, but we do not assume the positivity of PL in the
analysis below.
To compute quantities such as the entropy, purity, or

mutual information, it is obviously sufficient to have access
to arbitrarily high-order correlation functions. In the case of
the NIF random circuit, we took advantage of the fact that
the NEASs are Gaussian fermionic states to represent the
entropy in terms of two-point functions. For the full
interacting problem, such a simplification is no longer
possible. Instead, we take advantage of the fact that the only
correlations in the system are perturbatively suppressed in
the current J ∼ δ=L. This fact allows us to make an
expansion of the NEAS density matrices around product
states,

ρNEAS ¼ ⊗
L

i¼1
ρi þ

X
l<m

⊗
i≠l;m

ρi ⊗ δρlm

þ
X

l<m<k

⊗
i≠l;m;k

ρi ⊗ δρlmk þ � � � ; ðE15Þ

where the δρl1…ln are defined recursively as the deviation
of the reduced density matrix on sites l1;…;ln from the
cluster expansion. This property implies that any partial
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trace over δρl1…ln is zero. Due to the fact that the NEASs
for δ ¼ 0 are product states, each of these terms must be at
least order δ.
To illustrate the validity of such an expansion for this

class of current-driven problems, we consider a few
examples, focusing on the case of the NIF random circuit
for p2 ¼ 0. For the NESS of SSEP represented as a
density matrix, one can show that these connected
correlation functions satisfy the scaling [24]

δρl1…ln ∼
δn

Ln−1 : ðE16Þ

For the discrete hopping random circuit, we see that
δρl1…ln ¼ 0 for all n. In the case of the NIF random
circuit, the mutual information between two halves of the
chain satisfies a volume law; thus, we know these states
contain significant long-range correlations. Nevertheless,
we now argue that the expansion in Eq. (E15), which
occurs in the original spin basis instead of the fermionic
basis, is still valid. In phase II, we found that the off-
diagonal matrix elements of δρlm scale, with high
probability, as δ=

ffiffiffiffi
L

p
, while the diagonal elements scale

as δ2=L2. To evaluate the scaling of the higher-order
connected correlation functions, we can use the repre-
sentation of ρ as a Gaussian fermionic state and Wick’s
theorem to relate these correlations to the two-point
functions. For example, the nonzero connected three-
point functions for i < j < k have the scaling for the off-
diagonal correlations

δhriljuki≡ hriljuki − hriljihuki ¼ −GikGkj ∼ δ2=L;

ðE17Þ

while the connected correlations on the diagonal scale as

δhuiujuki ¼ 2Re½GkiGijGjk� ∼ δ3=L3=2: ðE18Þ

More generally, we find that the off-diagonal connected
correlation functions of length n, for n even, scale as
δn=2=Ln=2, while, for n odd, they scale as
δðnþ1Þ=2=Lðnþ1Þ=2. For the diagonal connected correlations,
we instead find the scaling δn=Ln=2. Finally, we remark
that an important feature of the class of NEASs we
consider is that every density matrix in the ensemble has
no correlations between states with different total z
angular momentum. This result implies that the single-
site density matrices ρi have no off-diagonal compo-
nents. When evaluating the purity to order δ2, we can
represent

Tr½ρ2NEAS�

¼ Tr

��
⊗
L

i¼1
ρi þ

X
l<m

⊗
i≠l;m

ρi ⊗ δρlm

�
2
�
þOðδ3Þ

¼
Y
i

Tr½ρ2i � þ 2
X
l<m

Y
i≠l;m

Tr½ρ2i �Tr½ρlρmδρlm�

þ
X
l<m

Y
i≠l;m

Tr½ρ2i �Tr½δρ2lm� þOðδ3Þ: ðE19Þ

Here, we were able to drop several terms because of the
scaling,

Tr½ρlρmδρlm�Tr½ρl0ρm0δρl0m0 � ∼ δ4=L4; ðE20Þ

Tr½ρlρmρnδρlmn� ∼ δ3=L3=2; ðE21Þ

Tr½ρlρmρnρkδρlmnk� ∼ δ4=L2: ðE22Þ

These scalings follow because multiplication by the
single-site density matrices does not map off-diagonal
terms of δρl1���ln onto the diagonal, while the diagonal
components have the scaling δρlm ∼ δ2=L2 and
δρlmk ∼ δ3=L3=2. Thus, despite the volume-law mutual
information in phase II, quantities such as the entropy and
mutual information can be computed with access only to
nonextensive correlation functions of ρNEAS and without
knowledge of the Gaussian fermionic structure of the
NEASs. The error in the nth order truncation scales as δn.
For the quantum chaotic phase, it is more convenient to

apply the ansatz in Eq. (E15) to ρNEAS ⊗ ρNEAS instead of
each instance of the random circuit. This is because the
averaging over random circuits can induce correlations
even between product-state density matrices. For example,
for p1 ¼ 0, the NEASs are pure product states, while
PðρNEASÞ encodes all the long-range correlations of the
symmetric simple exclusion process (see Appendix C).
Based on Eq. (E12) and the symmetries of the problem

for mL ¼ −mR, to compute the average purity, we need to
find the correlation functions

b̄si ≡ Pfigðbsi Þ; ðE23Þ

δb↑ij ≡ Pfi;jgðb↑i ; b↑j Þ − b̄↑i b̄
↑
j ; ðE24Þ

δb0ij ≡ Pfi;jgðb↑i ; b↓j Þ − b̄↑i b̄
↓
j ; ðE25Þ

aij ≡ Pfi;jgða↑i ; a↓j Þ: ðE26Þ

These correlation functions are subject to several math-
ematical constraints. Conservation of probability implies
that

2c̄i þ b̄↑i þ b̄↓i ¼ 1; ðE27Þ
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where c̄i ≡ Pfigðcsi Þ is independent of s by the definition of
the c particles. A second constraint can be found using the
fact that tracing over the second replica reduces the doubled
density matrix to ρ̄. For the single-site density matrices, this
implies

b̄↑i þ c̄i ¼ hτii ¼
1þ δ

2
− δ

i
Lþ 1

; ðE28Þ

where we made use of Eq. (C9). Expanding in δ, the single-
site correlation functions take the form

b̄↑i ¼ 1

4
þ δfi þ δ2gi þOðδ3Þ; ðE29Þ

b̄↓i ¼ 1

4
− δfi þ δ2gi þOðδ3Þ; ðE30Þ

which follows because sending δ → −δmaps b̄↑i → b̄↓i . We
can use Eq. (E28) to constrain all the terms with odd powers
of δ in this sum. In particular, the only nonzero term with an
odd power of δ is

fi ¼
1

2
−

i
Lþ 1

; ðE31Þ

which is an exact result.
We can derive similar constraints for the two-point

functions. First, they are symmetric under the mapping
δ → −δ. This constraint implies that the only unique two-
point functions are

δb↑ij; δb0ij; δc↑ij; δc0ij; δbcij; aij; ðE32Þ

where δcsij is defined analogously to δbsij and δbcij ¼
Pfi;jgðbsi ; cs0j Þ − b̄si c

s0
j for all s and s0. Tracing over one of

the sites gives the identities

δbcij ¼ −
1

2
ðδb↑ij þ δb0ijÞ; ðE33Þ

δb↑ij þ δb0ij ¼ δc↑ij þ δc0ij: ðE34Þ

Tracing over one of the replicas similar to Eq. (E28) then
leads to the relations

δc↑ij ¼ δb0ij þ τij; ðE35Þ

δc0ij ¼ δb↑ij − τij: ðE36Þ

As a result of these constraints, to lowest order in δ, the
unknown correlation functions are gi, δb

0;↑
ij , and aij.

It is convenient to work in scaled coordinates and define
the variables

hðxÞ≡ δ2ðgLx − f2LxÞ; ðE37Þ

aðx; yÞ≡ aLxLyþ1; ðE38Þ

bðx; yÞ≡ δb↑LxLyþ1 þ δb0LxLyþ1; ðE39Þ

Bðx; yÞ≡ δb↑LxLyþ1 − δb0LxLyþ1; ðE40Þ

τðx; yÞ≡ τLxLyþ1: ðE41Þ

A direct calculation to lowest order in 1=L and second
order in δ shows that these variables satisfy independent
diffusion equations away from the diagonal (x ¼ y),

h00ðxÞ ¼ −2δ2 þ 8γ1L2

1 − 2γ1

× ½hðxÞ þ Bðx; xÞ − aðx; xÞ − τðx; xÞ�; ðE42Þ

∇2aðx; yÞ ¼ 4γ2L2

2 − γ2
aðx; yÞ; ðE43Þ

∇2bðx; yÞ ¼ 8γ1L2

1 − 2γ1
bðx; yÞ; ∇2Bðx; yÞ ¼ 0: ðE44Þ

These variables are mixed by the boundary conditions on
the diagonal,

ð∂x−∂yÞaðx;yÞjx¼y

¼ 4γ1δ
2

Lð2−γ2Þ
þ 8γ1L
2−γ2

½hðxÞþBðx;xÞ−aðx;xÞ−τðx;xÞ�;

ðE45Þ
�
1−2γ1
4L

ð∂x−∂yÞbðx;yÞ−
γ1
L
ð∂xþ∂yÞ½Bðx;yÞþaðx;yÞ�

�
x¼y

¼−
γ1
L
h0ðxÞþγ1δ

2

L2
ð1−2xÞ−γ1bðx;xÞ; ðE46Þ

�
1

4L
ð∂x − ∂yÞBðx; yÞ −

γ1
L
ð∂x þ ∂yÞ½Bðx; yÞ þ aðx; yÞ�

þ γ1
L2

∂x∂yBðx; yÞ þ
γ1
2L2

ð∂x þ ∂yÞ2aðx; yÞ
�
x¼y

¼ γ1

�
Bðx; xÞ þ aðx; xÞ − τðx; xÞ − hðxÞ

−
h0ðxÞ
L

þ δ2

2L2
ð1 − 4xÞ

�
þ 1 − 5γ1

4L2
h00ðxÞ: ðE47Þ

The boundary conditions at the edges of the sample are
hð0Þ ¼ hð1Þ ¼ 0 and að0; yÞ ¼ aðx; 1Þ ¼ bð0; yÞ ¼
bðx; 1Þ ¼ Bð0; yÞ ¼ Bðx; 1Þ ¼ 0.
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For p1 ¼ p2 ¼ 0, these equations have the solution

hðxÞ ¼ δ2xð1 − xÞ; Bðx; xÞ ¼ 2τðx; xÞ; ðE48Þ
and aðx; yÞ ¼ bðx; yÞ ¼ 0. The crossover to phase II
starting from p2 ¼ 0 occurs at p1L2 ≫ 1. In this limit,
Eqs. (E42)–(E45) lead to the same solution we found
in Sec. III B 2 and Appendix D using the fermion
representation

aðx; yÞ ¼ −τðx; yÞ; hðxÞ ¼ ð1 − 2γ1Þδ2
4γ1L2

− τðx; xÞ;

ðE49Þ
where hðxÞ deviates from this solution only in a region of
order p−1=2

1 sites near the boundaries. Solving for Bðx; yÞ
and bðx; yÞ using Eqs. (E46) and (E47) gives the solutions

Bðx; yÞ ¼ τðx; yÞ; bðx; yÞ ¼ 0: ðE50Þ
The crossover to phase III beginning in phase II occurs for
p2L2 ≫ 1, where the exponential decay of aðx; yÞ off the
diagonal implies that aðx; xÞ is constant except over order
p−1=2
2 sites near the boundaries. Similar to phase II, we find

the solution

Bðx; xÞ ¼ τðx; xÞ: ðE51Þ

Solving for the other components in phase III (i.e.,
p1;2L2 ≫ 1) gives the solutions

hðxÞ ¼
�
1 − 2γ1
4γ1

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2ð2 − γ2Þ

p �
δ2

L2
; ðE52Þ

aðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2ð2 − γ2Þ

p δ2

L2
e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2γ2=2−γ2Þ

p
Lðy−xÞ; ðE53Þ

and bðx; yÞ ¼ 0. Away from the boundaries, Eqs. (E51)–
(E52) provide a complete description of ρNEAS ⊗ ρNEAS to
second order in δ and lowest order in 1=L.
The average deviation of the entropy from local equi-

librium and the mutual information between the left and
right halves of the chain for p1;2L2 ≫ 1 are then given by

ΔS ¼ 2L
Z

1

0

dxhðxÞ þ 4L2

Z
1

0

dy
Z

y

0

dxaðx; yÞ

¼ α1δ
2

Lp1

þ α2δ
2

Lp2

; ðE54Þ

IðL∶RÞ ¼ 4L2

Z
1

1=2
dy

Z
1=2

0

dxaðx; yÞ ¼ α3δ
2

L2p3=2
2

: ðE55Þ

Here, the coefficients αi are all order one and take the
explicit values

α1 ¼ 3 − p1; α2 ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2

2 − p2

s
; ðE56Þ

α3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2 − p2Þ

p
: ðE57Þ

Consequently, the average entropy and mutual information
of the NEAS density matrices are equal to those of local
equilibrium in the scaling limit.

APPENDIX F: OPEN RANDOM QUANTUM
CIRCUIT WITHOUT CONSERVATION

To compare to the random circuit with conservation
laws studied in the main text, here we analyze an open
random circuit without conservation laws acting on a
spin chain with one end of the chain coupled to a zero-
entropy, spin-polarized reservoir. In this case, we find
that the NEASs have, on average, one bit of entropy less
than the infinite-temperature state. This result can be
understood intuitively because, as the reservoir becomes
entangled with the system, it is also injecting known
pure states. As shown in Fig. 11, this reduces the
entropy of the system by one bit, which is spread
nonlocally across the entire chain due to the chaotic
dynamics in the bulk.
The random circuit is composed of Haar random two-

qubit unitaries Uμ
iiþ1 acting on each pair of nearest

neighbors. After a unitary is applied on site 0, this site
is swapped with a spin from the reservoir. We can write the
combined action of the unitary gate on sites 0 and 1 and
the swap with the reservoir as a quantum channel acting on
the reduced density matrix ρ for sites 1;…; L,

2 4 6 8
0

2

4

6

8
Infinite temperature
Open Haar-random: Numerics
Large L analytics
Numerics
Large L solution

FIG. 11. Average purity of the NEASs for the open random
circuit without charge conservation coupled to a zero-temperature
reservoir. The entropy is, on average, reduced by one bit
compared to the infinite-temperature state in the large-L limit.
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Eμ
1ðρÞ ¼ TrR;0½UR0

swapU
μ
01ρ ⊗ j↑↑ih↑↑jUμ†

01U
R0
swap�

¼
X
r

Kμ
1rρK

μ†
1r ; ðF1Þ

where UR0
swap is a two-qubit swap operator acting on the

reservoir and site 0. The two Kraus operators Kμ
1r are given

by the 2 × 2 submatrices

Uμ
01 ¼

�Kμ
1↑ �

Kμ
1↓ �

�
; ðF2Þ

where the basis is written as f↑↑;↑↓;↓↑;↓↓g. For the
other sites, there is no interaction with the reservoir, and
the quantum channels associated with each unitary have the
representation Eμ

i ðρÞ ¼ Uμ
i−1iρU

μ†
i−1i, i ¼ 2;…; L. Similar

to the case analyzed in the main text, this random circuit
evolves to a set of NEASs in the long-time limit.
The time-averaged density matrix is simply given by the

infinite-temperature state ρ̄ ¼ 2−LI; however, since the
reservoir has zero entropy, we do not expect the higher-
order moments of ρ to be at infinite temperature. We can

evaluate the average purity by noting that ρ2 is also
proportional to I, which implies that the second-order
moments of the density matrix coefficients satisfy

aSaS0† ∝ δSS0 : ðF3Þ

For this problem, we can then write the second-order
moment equations in the form

jaSj2 ¼
X
S0
WSS0 jaS0 j2: ðF4Þ

Further simplifications are possible by noting that, due to
the symmetry of the problem, the average populations of
strings with Si ¼ X, Y, Z are equal in the NEASs. This
result allows us to represent each S → 01001… by binary
strings, where 0 or 1 denotes whether a given site has a
trivial or nontrivial operator [19]. In this case, the local
Hilbert space for the strings is mapped to a pseudospin 1=2,
and the transition matrix takes the form

W ¼ R ⊗ I þ
XL−1
i¼1

Wi ⊗ I; R ¼
�
1 0

b 1 − d

�
; ðF5Þ

Wi ¼

0
BB@

1 0 0 0

0 1=3 1=3 1=3

0 1=3 1=3 1=3

0 1=3 1=3 1=3

1
CCA; ðF6Þ

where R acts on site 1 in the basis f0; 1g and Wi acts on
sites i and iþ 1 in the basis f00; 01; 10; 11g. The birth and

death rates of the nontrivial strings on site 1 are given by
b ¼ 0.2 and d ¼ 0.6, respectively.

The operator ρ2 is fully determined by its trace,

ρ2 ¼ I
22L

�
1þ

X
S

jaSj2
�
: ðF7Þ

Because of the mixing induced by the boundary, the
populations p1 ¼

P
Sja1Sj2 and pμ ¼

P
SjaμSj2 have to

be treated separately. We can write down a reduced Markov
chain describing only the populations p1 ¼

P
Sja1Sj2,

pμ ¼
P

SjaμSj2, and the population in the identity
string p0,

d
dt

0
B@

p0

pμ

p1

1
CA ¼

0
B@

0 0 0

b −d − ϵ bþ ϵ

0 ϵ −ϵ

1
CA
0
B@

p0

pμ

p1

1
CA: ðF8Þ

This Markov chain describes the process whereby the
trivial string gives birth to a nontrivial operator at site 1.
This operator then spreads throughout the system, leading
to a finite mixing with p1 due to evolution underW1 at rate
ϵ ∼ 1=3. The strings with a nontrivial operator at site 1 die
at rate d and can be born from the nontrivial operator strings
with the identity at site 1 at rate b. The steady state is
independent of ϵ,

ðp0; pμ; p1Þ ¼
�
1;

b
d − b

;
b

d − b

�
¼ ð1; 1=2; 1=2Þ: ðF9Þ

The average purity is given by

−log2ðTr½ρ2�Þ ¼ ðL − 1Þ; ðF10Þ

which shows that the NEASs have, on average, one bit of
entropy less than the infinite-temperature state. We have
checked that this analysis gives excellent agreement with
numerics on small chains (see Fig. 11). There are small
finite-size corrections due to the fact that there is a slightly
higher probability of the information bit being lost at site
one, but these decay exponentially with L.
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