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Bianisotropy is common in electromagnetism whenever a cross-coupling between electric and magnetic
responses exists. However, the analogous concept for elastic waves in solids, termed as Willis coupling, is
more challenging to observe. It requires coupling between stress and velocity or momentum and strain
fields, which is difficult to induce in non-negligible levels, even when using metamaterial structures. Here,
we report the experimental realization of a Willis metamaterial for flexural waves. Based on a cantilever
bending resonance, we demonstrate asymmetric reflection amplitudes and phases due to Willis coupling.
We also show that, by introducing loss in the metamaterial, the asymmetric amplitudes can be controlled
and can be used to approach an exceptional point of the non-Hermitian system, at which unidirectional zero
reflection occurs. The present work extends conventional propagation theory in plates and beams to include
Willis coupling and provides new avenues to tailor flexural waves using artificial structures.
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I. INTRODUCTION

Metamaterials, constructed with artificially designed
microstructures, have been employed and developed in
electromagnetism [1,2], acoustics [3–7], thermodynamics
[8,9], and mechanics [10–12] to give unique properties
beyond those provided by natural and composite materials.
Such a concept has recently been extended to elastic waves
in solids [13–17]. Compared to acoustic waves, the addi-
tional degrees of freedom in polarizations states require
more sophisticated dispersion engineering [18–20] and
also lead to nontrivial mode matching at interfaces.
Metamaterials are found particularly useful as a tool to
explore the physics behind this complexity. For example,
for in-plane waves, a transmodal Fabry-Pérot (FP) con-
dition is found necessary for maximum mode conversion

between longitudinal and shear modes [21]. For flexural
waves [22,23], evanescent modes can be used to modify
surface impedance for obtaining higher transmission than
structures in acoustics [24].
Peculiarly, classical elastic wave equations, i.e., Hooke’s

law together with Newton’s second law, are not form
invariant under a spatial coordinate transformation [25,26],
suggesting that we are currently exploring an unnecessarily
limited palette of material properties. For example, an
introduction of rotation modulus in Hooke’s law [27] is
found necessary to describe biological composites such as
wet bones [28]. This is called a Cosserat solid or a micro-
polar medium and has been recently constructed using a
metamaterial approach [29]. Another attempt is the proposal
to realize Willis media [30]. These media introduce new
constitutive terms not only in Hooke’s law but also in
Newton’s second law [31–35]. These terms,which introduce
coupling between stress and velocity and between momen-
tum and strain, are typically small perturbations and are
difficult to realize. Currently, a similar modification to both
equations was experimentally introduced in airborne acous-
tics [36–38], and a strategy to induce strongWillis coupling
in suitably designed acoustic metamaterials was theoreti-
cally introduced [39]. The acoustic wave equations, when
Willis coupling is considered, can be written in analogy to
the electromagnetic scenario, and the additional constitutive
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terms correspond to bianisotropy in electromagnetism
[40–43]. These developments indicate that Willis media
for elastic waves in solid may become practical through the
notion of metamaterials, although the exact microstructural
design has yet to be determined.
In this work, we consider the situation when a Willis

medium is used to construct a plate or a beam for flexural
wave propagation. Such a reduced version from three to
two dimensions facilitates analysis and an intuitive under-
standing of Willis coupling. Plates and beams are actually
common in a wide range of length scales from building
structures to micromechanical systems. Their theories can
be traced back to the 1950s to 1980s in a series of works
from Kirchhoff-Love plate theory to extensions with
rotary and shear deformations, and from isotropic to
anisotropic plates and beams [44,45]. However, further
extension to include Willis coupling to plate or beam
theory is deemed necessary to open new directions in this
field of research. The special responses offered by
artificially tunable Willis coupling, including asymmetric
reflection amplitudes and exceptional points, open an
unexplored territory for ultrasonic nondestructive evalu-
ation, seismic metamaterials for earthquake protection,
and microsensor technology [14,22,46–48].

II. WILLIS PLATE AND BEAM THEORY

We start from a Willis medium, with a constitutive
relation in its most general form [33]:

σij ¼ Cijklεkl − ω2Sijkuk;

pj ¼ −iωSkljεkl − iωρijui; ð1Þ

where C and ρ are the stiffness and density tensors, ω is the
radial frequency, and i, j, k are indices iterating the spatial
coordinates. The additional S term in Hooke’s law, the
Willis coupling coefficient, couples stress σ to displace-
ment u, and the same term (due to reciprocity) in Newton’s
second law couples momentum p to strain ε. Suppose that
we now construct a plate (z ¼ −h=2 to h=2) from this
medium. By integrating Eq. (1) along z (zeroth moment),
we have

Qx ¼ 2μhεxz − ω2hτuz;

Pz ¼ −2iωhτεxz − iωρzzhuz: ð2Þ

We assume flexural wave propagation along the x
direction (∂y → 0, uy ¼ 0). Equation (2) relates the shear
force Qx ¼

R
σxzdz and the total momentum Pz ¼

R
pzdz

to uz and εxz. μ and ρzz are recognized as the effective shear
modulus (Cxzxz in the bulk) and density along z for the
plate. The additional constant τ (it is actually Sxzz in the
bulk) is a Willis coupling term. For plate theory, we actually
need to integrate up to the first moment (

R
zdz) of Eq. (1)

and the equation of motion, yielding

∂2
xðD∂zεxxÞ þ

h3ω2

12
∂xðϱxx∂zuxÞ ¼ ∂xQx ¼ −iωPz; ð3Þ

which has the same form in Mindlin plate theory [44], but
now with Willis coupling terms in Qx and Pz to describe
propagation of ux and uz. D is the bending stiffness of the
plate [49]. The second term involving ϱxx, the effective
density along x, refers to rotary motion, which can be
neglected when the plate is sufficiently thin. Furthermore, if
we use the Willis material to construct a narrow beam
(confining the width of the plate in the y direction), Eq. (2)
stays exactly the same with the same values of coefficients
while Eq. (3) keeps the same form but with the values of D
and ϱxx renormalized from a plate to a beam version (see
Appendix A for more details). Therefore, Eqs. (2) and (3)
describe wave propagation along the x direction for a Willis
plate or beam although we have not yet designed the
mechanism to generate the required Willis coupling. We
note that there is another Willis coupling term in the first
moment [which will appear inside the two brackets in
Eq. (3)], but its effect is much smaller in our designed
metamaterial; see the κ term for details in Appendix A.

III. METAMATERIAL DESIGN WITH
WILLIS COUPLING

As the Willis coupling term τ comes from Sxzz of the
bulk, a necessary condition to have nonzero τ is broken
mirror symmetry in the x direction. Figure 1(a) shows the
unit cell of the metamaterial plate designed by perforating
slots in a background acrylic plate. The inner disk is
connected to the matrix by two thin ribs, either along the y
direction (as a reference case without Willis coupling in the
next section) or both connected to the back interface (as in
the case with Willis coupling). Various dimensions of the
structure are listed in the caption. In the latter case, there
is a cantilever bending resonance for the central disk at
around 14.5 kHz [50], designed to implement a strong
Willis coupling: when there is a constant force Fz applied
along the z direction on both the front and back interfaces, a
typical simulated displacement profile uz around the
resonating frequency is shown as the color map. The back
interface, being dragged by the disk, has a smaller
magnitude of displacement than the front interface. This
asymmetry gives rise to nonzero Willis coupling between
Pz (equivalent to Fz) and εxz in Eq. (2).
This asymmetry of the displacement field is connected to

asymmetric reflection. Suppose that 5 unit cells are cascaded
and embedded in the background beam. The forward and
backward reflection amplitudes, rf and rb, are obtained by
full-wave simulations (finite element method) from 7 to
12 kHz (corresponding to wavelengths from 28.1 to
21.2 mm) and are plotted in Fig. 1(b). As the metamaterial
is reciprocal, we have equal transmission t in both directions
and, hence, the same magnitude of reflection amplitude if the
material is lossless: jrfj2 ¼ 1 − jtj2 ¼ jrbj2. The asymmetry
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of reflection shows up only in the phase and becomes most
prominent at 7.7 and 11.0 kHz, in which Fabry-Pérot
resonances [51] for elastic waves occur at the reflection
amplitude dips. If we add a material loss (by adding 5% of
the real part of Young’s modulus to the imaginary part), the
magnitude of the reflection amplitudes becomes asymmetric
as well, as shown in Fig. 1(c).
The asymmetry in reflection can be understood in terms of

the Willis coupling parameter. First, we define an effective
mediummodel of our structure from the eigenmode profiles
(see Appendix B for details). The normalized bending
stiffness D̃ ¼ D=D0, normalized density ρ̃ ¼ ρ=ρ0, and
normalized Willis coupling parameter τ̃ ¼ ðτ=μÞðω2=k0Þ

are plotted in Fig. 1(d). These are the minimal set of
dimensionless parameters for our case to describe the
metamaterial with an effective medium model. D0, ρ0,
and k0 are the corresponding bending stiffness, density,
and wave number for the background beam. Then, the
transfer matrix can be formulated numerically from
the effective medium with thickness of 5 unit cells. The
reflection amplitudes (for the lossy case) obtained from the
effective medium are then plotted in Fig. 1(e) as theory
results, showing similar behavior to full-wave simulation. In
the long-wavelength limit, the transfer matrix can be
simplified analytically, giving rise to a difference of reflec-
tion amplitudes rf − rb ≈ −τ̃k0le−ik0l, where l is the total
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FIG. 1. Symmetry breaking in reflection and Willis metamaterial. (a) Symmetric metamaterial is changed into the Willis one by
breaking mirror symmetry. For this Willis material, a0 ¼ 5.0 mm, h0 ¼ 2.0 mm, r1 ¼ 0.45a0, r2 ¼ 0.25a0, and d ¼ 0.5 mm, with
orientation angles of two thin ribs 150° and 210°, respectively. The displacement field uz is plotted by loading force Fz (shown as black
arrows). The field of uz on the two end surfaces is also presented by blue arrows. The Willis material is assembled as a metamaterial
layer in a thin beam. Forward (backward) plane wave is incident into the left (right) side of the beam. (b) Amplitudes jrj and phases
argðrÞ of reflected waves from both sides for lossless material (density ρ0 ¼ 1190 kg=m3, Young’s modulus E0 ¼ 2.95 GPa, and
Poisson ratio ν0 ¼ 0.29) obtained from finite element method (FEM). (c) Amplitudes jrj and phases argðrÞ of reflected waves for lossy
material [Young’s modulus turns into E0 ¼ 2.95ð1 − 0.05iÞ GPa]. (d) Effective parameters at different frequencies. (e) Theoretical
values of reflection amplitudes jrj and phases argðrÞ for lossy material obtained from the effective medium in (d). In (b), (c), and (e), the
solid (dashed) lines correspond to the case of forward (backward) incident waves.
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thickness of the metamaterial (see Appendix C for details).
This provides a qualitative understanding of the contribution
of the Willis coupling to asymmetric reflection. When we
turn off τ̃ by setting it to zero, the reflection amplitudes
become the same for both directions as expected (results not
shown). In addition, we obtain similar wave propagation
behaviors and effective parameters for Willis materials in a
structured plate [50], indicating that the present design
works not only in beams but also in platelike structures.

IV. EXPERIMENTAL VERIFICATION OF
WILLIS PROPERTIES

A series of experimental studies have been performed to
demonstrate Willis coupling and the resultant asymmetric
reflection. Figure 2(a) shows the photographs of two exper-
imental samples, with geometric dimensions listed in the
caption.The topone showsour designedWillismaterialwhile
the bottom one shows a symmetric metamaterial. Several unit
cells for either structure are 3D printed (using a Stratasys
Objet30 Pro 3D printer, based on photopolymerization) as a
structured beam with length, width, and thickness 280.0, 5.0,
and 2.0 mm, respectively. OBJET VEROBLUE RGD840
(acrylic) is chosen as the printing material, with measured
Young’s modulus E0 ¼ 2.95ð1 − 0.04iÞ GPa, Possion’s
ratio ν0 ¼ 0.29, and density ρ0 ¼ 1190 kg=m3. A five-cycle
tone burst with the central frequency of 10 kHz is defined in a
signal generator channel of a scanning laser vibrometer
(Polytec PSV-400). After the amplification of a power

amplifier (KH 7602M), the pulse signal transfers to a piezo-
electric transducer to generate flexural plane waves from the
left (forward) or the right (backward) directions. Blue tack
is attached on both ends of each beam as absorbers to
diminish reflected waves. The out-of-plane displacement
field (160 mm length in the central area, with a spatial
resolution of 2.0 mm) is scanned by a laser vibrometer. After
the fast Fourier transform (FFT), the wave field at each
frequency is obtained and used to further extract the trans-
mission and reflection spectrum (see Appendix D for details).
Figure 2(b) shows the reflection amplitudes given by the

Willis material, shown by the blue and red symbols for 5
and 3 unit cells, respectively. The reflection amplitude
(jrbj) in the backward direction is smaller than the one (jrfj)
in the forward direction. Such an asymmetry is most
prominent near the FP resonances: the reflection dips at
7.6 and 11.0 kHz for the 5-unit-cell sample, where the
difference of the reflection amplitude Δjrj ¼ jrfj − jrbj
reaches to local maximums 0.10 and 0.18, and at 9.0 kHz
for the 3-unit-cell sample, where the difference reaches to
0.08. This indicates that our system actually exhibits a
certain amount of material loss (as assumed in Sec. III). The
multiple reflections near the FP condition within the unit
cells forces the waves to interact more strongly with the
bending cantilever resonance, and, hence, the asymmetry in
amplitude becomes larger. On the contrary, the gray
symbols in the same figure show the forward and backward
reflection amplitude for a similar structure (but symmetric),
in which no asymmetric reflection occurs. The observed
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FIG. 2. Experimental testing of asymmetric reflection and extraction of Willis coupling. (a) Photograph of Willis and symmetric
metamaterials. (b),(c) The experimentally tested and simulated reflected amplitude of different cases, respectively. For the symmetric
material, r1 ¼ 0.4a0, d ¼ 0.4 mm, orientation angles of the two thin ribs being set along the y direction. Other geometric and material
parameters are same as the Willis case. (d)–(f) The theoretical (solid lines) and experimental (symbols) values of the even scattering
coefficient see, the odd scattering coefficient soo, and the cross-coupling scattering coefficient sc of the Willis metamaterial.
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asymmetry in reflection also agrees well with full-wave
simulation results, shown in Fig. 2(c). For example, the
Willis material with 3 unit cells exhibits the same FP dip
at 8.6 kHz with quantitative agreement Δjrj ¼ 0.09 to the
experiment.
As we have measured the complex transmission and

reflection coefficients for excitation from both sides, we
can reveal Willis coupling directly by plotting the even and
odd scattering coefficients. Similar to the case of electro-
magnetic metamaterials [52,53], materials without bianiso-
tropy only convert even (odd) inputs to even (odd) scattered
waves (termed as see and soo). The Willis coupling here

contributes a cross-coupling between even input and odd
output or equivalently between odd input and even output
(termed as sc, it represents seo ¼ −soe with the same
amplitude but a minus sign from reciprocity [32,33]).
Figures 2(d)–2(f) show the even scattering coefficient see,
the odd scattering coefficient soo. and the cross-coupling
scattering coefficient sc. First, the scattering matrix (param-
eters t, rf, and rb) can be either measured from experiment
for a beam sample with only one unit cell or obtained from
theory: the scattering matrix resultant from the effective
medium in Fig. 1(d). Then, the even and odd scattering
coefficients can be obtained by linearly combining the
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FIG. 3. Tunable asymmetry by loading lossy porous rubber. (a) Schematic of adding loss by attaching soft porous rubber patches to the
metamaterial layer. (b) Measured amplitudes of the reflected waves jrj with and without porous rubber patches. (d) Eigenvalues of the S
matrix at different frequencies for a 5-unit Willis metamaterial layer, with soft porous rubber patches attached on surfaces. Green arrows
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matrix elements (see Appendix E for details). In our case, a
nonzero cross-coupling scattering coefficient sc [approxi-
mated by −0.1þ ð0.24 − 0.04fÞi, with f being the fre-
quency in kHz] directly reveals the effective “bianisotropy”
given by Willis materials. Moreover, due to symmetry
breaking, the bending cantilever resonance can now be
excited by both even and odd inputs, giving rise to soo and
see. On the contrary, sc becomes zero if a mirror symmetric
structure is used for testing.

V. TUNABLE ASYMMETRY BY VARYING
THE LOSS COEFFICIENT

Next, we show that the degree of asymmetry and also the
frequencies (the FP dips) where the asymmetry occurs can
be easily tuned by loading additional materials with loss to
the Willis metamaterial. Here, soft porous silicon rubber
synthesized by thermal polymerization [54] is pasted onto
the upper and lower surfaces of the metamaterial layer
(with 5 unit cells), as schematically shown in Fig. 3(a).
Figure 3(b) shows the experimental reflection amplitudes
for metamaterials with soft porous rubbers (with thickness
of 2 mm and porosity of 12%). Apart from tuning the loss,
the pasted porous rubber largely changes the band structure
and eigenmodes of the metamaterial, which leads to a
different set of effective material parameters. As a result, a
FP dip is observed at 10.24 kHz. Furthermore, when an
appropriate amount of loss is added to the metamaterial, the
reflection dip actually approaches zero (for one direction),
yielding the so-called unidirectional zero reflection (UZR)
[50]. For the case with two porous rubber sheets loaded,
the reflection dip in the forward direction attains a value of
0.004, very close to zero, while the reflection amplitude
in the other direction is around 0.128. The quality of the
UZR can also be visualized by examining the eigenvalues
of the scattering matrix S (truncated to 2 × 2 for propa-
gating modes) in the complex plane. For a non-Hermitian
system, like the one at hand, the eigenvalue degeneracy of
the scattering matrix is called the exceptional point of the
system and a UZR occurs exactly at that point [53]. As
shown in Fig. 3(c), trajectories against the frequency for
both eigenvalues of S first move towards each other,
approaching the exceptional point at 10.24 kHz, and then
split again with increasing frequency. If we can tune the
loss in a finer degree than the current experiment, it is
possible to further improve the quality by bringing the two
trajectories even closer to each other [50]. On the contrary,
we also plot the eigenvalues of S for the case with only
one unit cell (without the porous rubber sheet loading) in
Fig. 3(d). In this case, loss is reduced, and it does not
support FP resonances to create large asymmetry in
reflection amplitudes. In such a case, the eigenvalues are
nondegenerate and are located near the unit circle corre-
sponding to the lossless case.
In fact, the loading of porous rubber sheets can be

an effective way to tune not only the UZR frequency position

but also the degree of reflection asymmetry, on both the
amplitude difference Δjrj ¼ jrfj − jrbj and the phase differ-
enceΔϕ ¼ argðrf=rbÞ. Figure 3(e) shows themeasuredΔjrj,
which changes from positive to negative by the additional
loading of porous rubber sheets. Such a change occurs over a
wide frequency bandwidth as well. Figure 3(f) shows the
phase difference between the two directions. Δϕ becomes
large and can cover the whole 2π range. This is due to the
current employment of the FP resonance in creating the
asymmetry combined with the UZR (the most extreme
asymmetry from an exceptional point) for the two-sheets
case, different from the demonstrated airborne-acoustic
bianisotropy with Δϕ < π=6 [37], and further illustrates a
nontrivial feature of our lossy Willis materials.

VI. DISCUSSION

By extending conventional plate and beam theory with
the introduction of Willis materials, we have designed
and experimentally realized effective bianisotropy in a
Willis metamaterial for elastic waves using a cantilever-
type resonating structure. The metamaterial induces
cross-coupling between shear force and vertical displace-
ment of the plate, or equivalently between vertical
momentum and shear strain. The present design works
for flexural waves on both platelike and beamlike
structures. The effective medium parameters, including
the Willis coupling, are confirmed through experimental
measurements of the asymmetric reflection amplitudes in
the forward and backward propagation directions. Unlike
previous studies on acoustic bianisotropic materials, not
only asymmetric phases but also asymmetric amplitudes
of reflection are observed due to the presence of loss,
whose effect is further magnified through a combination
of the cantilever bending resonance and a FP resonance.
Interestingly, by incorporating an appropriate amount of
loss, we have demonstrated the most asymmetric case in
which the reflection amplitude goes to zero in one
direction. Unidirectional zero reflection is achieved when
approaching the exceptional point of the scattering matrix
if the metamaterial is interpreted as a non-Hermitian
system. Together with the demonstrated tunability of the
responses (asymmetric reflection amplitudes, phases, and
frequency dips), the proposed metamaterials operating at
the exceptional point can be applied to realize high-Q
sensors [55,56], tunable metasurfaces, and asymmetric
wave front control [57]. Elastic bianisotropy for flexural
waves can be generalized to Lamb waves for intermodal
conversion control, to Rayleigh waves in seismology for
earthquake protection of civil buildings, or to obtain high
transmission efficiency [14,46,58–61]. The demonstration
of a Willis metamaterial can also be used as a typical
prototype to design transformation elastic devices, as for
its original motivation, to construct an elastic wave cloak
based on form-invariant transformations of elastic wave
equations [25,46,62].
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APPENDIX A: FIRST-ORDER WILLIS PLATE
AND BEAM THEORY

When a Willis medium, with ℳy and ℳz mirror
symmetry, is in the form of a thin plate of thickness h,
we take σzz ≅ 0. Equation (1) can then be rewritten as.

�
σxz

σyz

�
¼
�
Cxzxz 0

0 Cyzyz

��
2εxz

2εyz

�
−ω2

�
Sxzz
0

�
uz;

pz¼−iωðSxzz2εxzþρzzuzÞ;0
B@
σxx

σyy

σxy

1
CA¼ ½CðpÞ�

0
B@

εxx

εyy

2εxy

1
CA−ω2½SðpÞ�

�
ux
uy

�
;

�
px

py

�
¼−iω

8<
:½SðpÞ�T

0
B@

εxx

εyy

2εxy

1
CAþ½ρðpÞT �

�
ux
uy

�9=
;; ðA1Þ

where ½CðpÞ�, ½SðpÞ�, and ½ρðpÞT � have matrix elements
renormalized from the bulk constitutive parameters to
the plate ones [indicated by superscript (p)]. For a thin
plate, we only need to consider up to the first two moments
of the above equations. Integrating the first two equations
in Eq. (A1) by

R
dz and integrating the last two equations

by
R
zdz gives Eq. (2) and

Mxx ¼ D∂zεxx − ω2
h3

12
κ∂zux;

Nx ¼ − iωh3

12
κ∂zεxx − iωh3

12
ϱxx∂zux; ðA2Þ

whereMxx ¼
R
zσxxdz,Nx ¼

R
zpxdz;κ ¼ SðpÞxxx, ϱxx ¼ ρðpÞxx ,

and D ¼ h3CðpÞ
xxxx=12 is called the bending stiffness. The

coefficients CðpÞ
xxxx, SðpÞxxx, and ρðpÞxx for the plate can be

expressed in terms of the bulk parameters through

CðpÞ
xxxx ¼ Cxxxx − ðCxxzzÞ2=Czzzz;

SðpÞxxx ¼ Sxxx − CxxzzSzzx=Czzzz;

ρðpÞxx ¼ ρxx þ ω2ðSzzxÞ2=Czzzz:

We have also used ∂y → 0 and uy ¼ 0 in writing Eqs. (2)
and (A2) as the constitutive relationship for a flexural wave
propagating along the x direction on the plate. We note that
in deriving Eq. (A2), we have taken the approximation that
the field quantities being odd functions in z are linear in z.
On the other hand, the even (in-z) field quantities are
assumed to be constant in z. It can be further improved by
using a quadratic function in z so that an additional shear
correction multiplication factor appears in front of μ, for
example. Here, we have not employed such a higher-order
correction, for brevity, as it will not affect the form.
If the Willis medium is in the form of a narrow beam of

width b in the y direction, Eq. (A1) is further modified by
taking σyy ≅ 0, as

σxz ¼ Cxzxz2εxz − ω2Sxzzuz;

pz ¼ −iωðSxzz2εxz þ ρzzuzÞ;
σxx ¼ CðbÞ

xxxxεxx − ω2SðbÞxxxux;

px ¼ −iωðSðbÞxxxεxx þ ρðbÞxx uxÞ; ðA3Þ
for the flexural wave propagating on the narrow beam along

the x direction. The coefficients CðpÞ
xxxx, S

ðpÞ
xxx, and ρðpÞxx are

further renormalized from the plate to the beam version
through

CðbÞ
xxxx ¼ CðpÞ

xxxx − ðCðpÞ
xxyyÞ2=CðpÞ

yyyy;

SðbÞxxx ¼ SðpÞxxx − CðpÞ
xxyyS

ðpÞ
yyx=C

ðpÞ
yyyy;

ρðbÞxx ¼ ρðpÞxx þ ω2ðSðpÞyyxÞ2=CðpÞ
yyyy:

The first two moments of Eq. (A3) then give the
constitutive relationship for the beam: exactly the same as
Eq. (2) and another equation of the same form as Eq. (A2)
except κ ¼ SðbÞxxx, ϱxx ¼ ρðbÞxx , D ¼ h3CðbÞ

xxxx=12 being
changed from the plate to the beam version. For isotropic
material with Young’s modulus E and Poisson’s ratio ν as a
trivial example, the above formulation gives bending stiff-
ness as h3E=12=ð1 − ν2Þ for a plate and h3E=12 for a beam.
Again, we have not employed shear correction factor by
approximating the even field quantities to be simply constant
in y. The form of Eq. (A2) stays the same for either a plate or
a beam although the values of the coefficients change. We
will use Eq. (A2) interchangeably for both aWillis plate and
a Willis beam.
On the other hand, the wave equations for flexural waves

along the x direction on a plate (in the level of Mindlin plate
theory) or along a narrow beam (in the level of Timoshenko
beam theory) [44] share a common form as

∂xMxx ¼ Qx − iωNx;

∂xQx ¼ −iωPz; ðA4Þ
regardless of whether the constitutive relationship has or
does not have Willis terms. It can be obtained either by
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taking moments (in z) from the bulk wave equations or by
Hamilton’s principle on the plate Lagrangian

R
Ldz for a

plate or
R
Ldydz for a beam with Lagrangian density

L ¼ ðpi∂tui − εijσijÞ=2. It is noted that Eqs. (A2) and (A4)

will lead to Eq. (3) if we omit the Willis coupling term κ.
Together with the geometric relation εij ¼ 1

2
ð∂jui þ ∂iujÞ,

we can express the governing equations [Eqs. (2), (A2),
(A4)) in a combined form as

−iΠ∂x

0
BBBB@

uz
∂zux
Mxx

Qx

1
CCCCA ¼

2
66666666666664

hω2

�
ρzz þ

τ2ω2

μ

�
0 0

τω2

μ

0
h3ω2

12

�
ϱxx þ

h3κ2ω2

12D

�
h3κω2

12D
−1

0
h3κω2

12D
1

D
0

τω2

μ
−1 0

1

hμ

3
77777777777775

0
BBB@

uz
∂zux
Mxx

Qx

1
CCCA; ðA5Þ

with

Π ¼

2
66664

0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

3
77775:

APPENDIX B: EFFECTIVE MATERIAL
PARAMETERS RETRIEVAL METHOD

From Eq. (A5), we can obtain the dispersion
relationship as

Dk2 þ hω2ðμρzz þ τ2ω2Þ
ρzzω

2 − k2μ
¼ h3ω2ϱxx

12
; ðB1Þ

where k is the wave number. It is noted that κ does not go
into the dispersion relationship. Based on Eq. (B1), the
field of ∂zux can be expressed as

∂zux ¼ αfeikx þ βfe−Kx þ αbe−ikx þ βbeKx; ðB2Þ

where αf=αb and βf=βb are the amplitudes of the propa-
gating and evanescent waves in the forward and backward
direction, respectively, and

k2 ¼ ω
ffiffiffi
Γ

p þ Δ
24Dμ

; K2 ¼ ω
ffiffiffi
Γ

p − Δ
24Dμ

; ðB3Þ

with Γ¼ 576Dhμ2ðρzzþω2τ2=μÞþω2ðh3μϱxx−12DρzzÞ2
and Δ ¼ ðh3μϱxx þ 12DρzzÞω2. By neglecting the shear
and rotary effects by supposing μ → ∞ and ϱxx → 0 [44],
we have k ¼ K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0zzhω2=D4

p
, with ρ0zz ¼ ρzz þ ω2τ2=μ.

On the interface between two different media, Eq. (A5)

suggests the continuity of dimensionless quantities uzk0,
∂zux, Mxx=ðD0k0Þ, and Qx=ðD0k20Þ, where the subscript
“0” is the values in the background medium. Thus, the
continuity matrix M may be written as

M¼

2
6664

inþτ̃
n2

n−τ̃
n2

−inþτ̃
n2

−n−τ̃
n2

1 1 1 1

inD̃− κ̃ D̃ −nD̃− κ̃ D̃ −inD̃− κ̃ D̃ nD̃− κ̃ D̃

−n2D̃ n2D̃ −n2D̃ n2D̃

3
7775;

ðB4Þ

with the continuous value of Mfαf;βf;αb;βbg on the
interface, where D̃¼D=D0 is dimensionless bending stiff-
ness, τ̃ ¼ ðτ=μÞðω2=k0Þ and κ̃ ¼ ½ðκh3Þ=ð12DÞ�ðω2=k0Þ
are dimensionless Willis coupling terms, and ρ̃ ¼ ρ0zz=ρ0 ¼
n4D̃ is the dimensionless density with n ¼ k=k0.
Equation (B4) gives us a way to calculate the effective

medium parameters of the metamaterial. Specifically, the
eigenmodes at different values of k are obtained from full-
wave simulations and the effective fields can be obtained by

uz ¼
1

A

Z
uzðy; zÞdA;

∂zux ¼
1

A

Z
∂zuxðy; zÞdA;

Mxx ¼
h
A

Z
zσxxðy; zÞdA;

Qx ¼
h
A

Z
σxzðy; zÞdA; ðB5Þ

where the integrations are performed on the cross section
of the unit cell, with area A and perpendicular to the wave
propagation direction in x. Then the effective material
parameters can be obtained based on Eq. (B4) by
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D̃ ¼ δ

D0k2
;

ρ̃ ¼ k2δ
ρ0hω2

;

κ̃ ¼ − k2

k0δ
ReðMxx=∂zuxÞ;

τ̃ ¼ − k2δ
k0

Reðuz=∂zuxÞ
ReðQx=∂zuxÞ

; ðB6Þ

with δ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif½ImðMxx=∂zuxÞReð−Qx=∂zuxÞ�=½Imðuz=∂zuxÞ�g
p

.
Figure 4 shows the simulated results of the effective
parameters when Eq. (B6) is applied on a propagating
eigenmode solved from COMSOL MULTIPHYSICS. In the
long-wavelength limit, ρ̃ → 0.6matches the analytic value
given by the filling fraction. Additionally, both dimen-
sionless Willis coupling terms κ̃ and τ̃ are nearly zero at
low frequencies. As expected, the amplitude of the zeroth-
order Willis coupling τ̃ is much larger than the first-order
Willis coupling κ̃ and shows significant values in the range
of 7 to 12 kHz.

APPENDIX C: ASYMMETRIC REFLECTION
OF THE WILLIS METAMATERIAL

Comparing the first and third columns of M in
Eq. (B4), we can find different eigenmodes in the
positive and negative directions, leading to asymmetric
wave propagation behaviors. For flexural waves inci-
dent from the background medium to a metamaterial
layer with length l, the total transfer matrix T can be
written as

T ¼ M−1
0 MNM−1M0; ðC1Þ

where M0 is the continuity matrix of the background
medium, and

N ¼

2
66664

eikl 0 0 0

0 e−kl 0 0

0 0 e−ikl 0

0 0 0 ekl

3
77775; ðC2Þ

with fαf;L; βf;L; αb;L; βb;LgT ¼ Tfαf;R; βf;R; αb;R; βb;RgT .
Subscripts L and R indicate the left and right sides of
the system. Then the scattering matrix Ŝ in terms of ∂zu
with fαf;R;βf;R;αb;L;βb;LgT ¼ Ŝfαf;L;βf;L;αb;R;βb;RgT can
be easily obtained. If only the propagating modes are
considered, the 4×4 scattering matrix Ŝ turns into a 2 × 2
one. Considering that ∂zux ≅ −∂xuz in a thin beam, we
have uz ¼ ði=kÞαfeikx þ ð1=KÞβfe−Kx − ði=kÞαbe−ikx−
ð1=KÞβbeKx. Thus, the 2 × 2 scattering matrix with respect
to the displacement field uz should be

S ¼
�

Ŝ11 −Ŝ13
−Ŝ31 Ŝ33

�
e−ik0l ¼

�
tf rb
rf tb

�
; ðC3Þ

where the term e−ik0l is to eliminate the reference phase by
setting the origin at the center of the metamaterial layer,
and tf ¼ tb due to the reciprocity. For a normal back-
ground medium τ̃0 ¼ κ̃0 ¼ 0, we have

rf − rb ¼ ðκ̃ − τ̃Þk0le−ik0l ≈ −τ̃k0le−ik0l ðC4Þ

in the long-wavelength limit. It is obvious that rf ¼ rb if
the metamaterial is symmetric with τ̃ ¼ 0.
After obtaining the effective material parameters based

on Appendix B, we theoretically calculate the reflection of
the system. As shown in Fig. 5, exactly the same amplitude
but different phases are observed for the lossless case. Two
dips of jrj are located at 7.5 and 10.8 kHz, respectively,
which excellently agrees with the simulated results shown
in Fig. 1(b). For the lossy case of the modulus, the material

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

Freq (kHz)

FIG. 4. Dimensionless effective parameters of the Willis
metamaterial with respect to the frequency.

0

1

111098 127

2π

0

Freq (kHz)

A
rg

(r
)

|r
|

Theory, losslessForward

Forward

FIG. 5. Theoretical values of reflection amplitude jrj and phase
argðrÞ from both sides for the lossless case obtained from
effective medium.
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parameters should be changed accordingly to be complex
values. As shown in Fig. 1(e), with 5% loss of the modulus,
both the reflection amplitude and phase are different
now, especially around the two dips. jrbj is also observed
much smaller than jrfj at about 7.5 kHz. The agreement
between theoretical values and the simulated results [shown
in Fig. 1(c)] shows the rationality of the present theory and
the retrieved effective medium parameters.

APPENDIX D: CALCULATION OF
SCATTERING COEFFICIENTS

Once the frequency-domain wave field is tested, we first
suppose that the wave pattern can be described as w1 ¼
α eikx þ β e−ikx and w2 ¼ γ eikx þ δ e−ikx on the incident
side and the transmitted side, respectively. Here, the wave is
supposed to propagate along the x direction, and the origin
is set at the center of the metamaterial layer. Then the
complex coefficients α, β, γ, and δ can be calculated by data
fitting of the wave pattern at each frequency, for both the
forward and backward case. Thus, the scattering matrix is
determined by

S ¼
�
tf rb
rf tb

�
¼

�
γf γb

βf βb

�
·

�
αf αb

δf δb

�−1
;

where subscripts f and b correspond to forward and
backward incident waves, respectively.
To numerically compute the scattering matrix S using

COMSOL MULTIPHYSICS, perfect matched layers (PML) are
used on both ends of the beam, and plane waves are
generated in the forward and backward directions, respec-
tively, to generate the field pattern. Then, similar processes
as the experiments are used to calculate the scattering
matrix. It is noted that the complex coefficient δ is zero due
to the perfect absorption of waves by the PML. Therefore,
we have tfðbÞ ¼ ½γfðbÞ=αfðbÞ� and rfðbÞ ¼ ½βfðbÞ=αfðbÞ�.

APPENDIX E: PHYSICAL MEANING
OF THE SCATTERING COEFFICIENTS

Figure 6 illustrates the physical meaning of the scattering
coefficients. In general, even (odd) inputs will lead to even
see (odd soo) scattering coefficients. However, due to the
symmetric breaking effects in the present work, the cross-
coupling scattering coefficient sc ¼ seo ¼ −soe between
even input and odd output or vice versa. Thus, we have

S ¼
�
t rb
rf t

�
¼ 1

2

�
2þ see þ soo see − soo þ 2sc
see − soo − 2sc 2þ see þ soo

�
:

ðE1Þ

Namely,

see ¼ t − 1þ rb þ rf
2

;

soo ¼ t − 1 − rb þ rf
2

;

sc ¼
rb − rf

2
: ðE2Þ

It is readily seen that for normal metamaterials with mirror
symmetry, sc ¼ ½ðrb − rfÞ=2� ¼ 0.
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