
 

Proof of the Bulk-Edge Correspondence through a Link between
Topological Photonics and Fluctuation-Electrodynamics

Mário G. Silveirinha*

University of Lisbon-Instituto Superior Técnico and Instituto de Telecomunicações,
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The bulk-edge correspondence links the Chern topological numbers with the net number of
unidirectional states supported at an interface of the relevant materials. This fundamental principle is
perhaps the most consequential result of topological photonics, as it determines the precise physical
manifestations of nontrivial topological features. Even though the bulk-edge correspondence has been
extensively discussed and used in the literature, it seems that in the general photonic case with dispersive
materials it has no solid mathematical foundation and is essentially a conjecture. Here, I present a rigorous
physically-motivated demonstration of this fundamental principle by showing that the thermal fluctuation-
induced light-angular momentum spectral density in a closed cavity can be expressed in terms of the
photonic gap Chern number, as well as in terms of the net number of unidirectional edge states. In
particular, I highlight the rather fundamental connections between topological numbers in Chern-type
photonic insulators and the fluctuation-induced light momentum.
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I. INTRODUCTION

Topological matter and topological systems can have
rather exotic properties and very unusual physics. In
particular, systems with a broken time-reversal symmetry
(Chern-type insulators) are usually characterized by a
topological index known as the Chern number [1–9]. In
the fermionic case, the Chern number determines the
quantized Hall conductivity of a 2D electron gas in the
zero-temperature limit [10–14].
One of the most significant and far-reaching results in

topological photonics is the so-called “bulk-edge corre-
spondence” [3,5,15]. This fundamental principle links the
Chern invariants of two photonic insulators with the net
number of unidirectional edge states supported by an
interface of the two materials. A recent work reported a
proof of the bulk-edge correspondence for a bosonic
Bogoliubov–de Gennes Hamiltonian over a tight-binding
Hilbert space [16]. However, notwithstanding that the bulk-
edge correspondence has been extensively discussed and
used in the recent literature, it seems that so far, for

photonic crystals formed by dispersive materials, it has
no solid mathematical foundation and is mainly a con-
jecture (see a discussion in Ref. [8]). Indeed, the arguments
in favor of the bulk-edge correspondence are mainly
heuristic, e.g., that a continuous transformation of one
photonic “mirror” into another topologically distinct mirror
requires closing the band gap, and that thereby a material
interface must support edge states. Alternatively, they rely
on analogies with the electronic case, for which there are
compelling physical reasons to avow that the bulk-edge
correspondence holds [10,12], and mathematical deriva-
tions for some two-dimensional systems [17–20]. However,
given the different nature of fermionic and bosonic systems,
the extrapolation of the condensed-matter arguments to
optics is at least questionable. Furthermore, the analogies
between electronics and optics are typically valid in a
limited quasimomentum range, e.g., in the framework of
some tight-binding approximation limited to some section
of the Brillouin zone, whereas the topological invariants are
determined by the global properties of the Hamiltonian.
Some photonic systems may be mapped onto either a
single-particle fermionic system (see Refs. [21,22]) or
possibly onto a Bogoliubov–de Gennes lattice model
[16] in the entire Brillouin zone. The use of the bulk-edge
correspondence is evidently justified in such cases, but
these are arguably the exceptions rather than the rule.
Different from most studies of topological photonics, the

configuration under analysis here consists of topological
material enclosed in a cavity [Fig. 1(a)]. In closed systems
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the edge states are forced to circulate around the cavity
walls, and this may lead to novel physical effects. In
the recent work Ref. [23], I showed that the thermal
fluctuation-induced light-angular momentum density per
unit of area is precisely quantized in the photonic-insulator
cavity, and that its “quantum” is determined by the net
number of unidirectional edge states circulating around
the cavity. This rather universal property holds even when
the system has no topological classification. In particular, in
nonreciprocal platforms the thermal equilibrium condition
is compatible with a persistent energy circulation in closed
orbits [23–26].
The quantization of the fluctuation-induced angular

momentumcanbe explained in a simple and intuitivemanner.
Specifically, it may be observed that in the band gaps of the
bulk region the allowed photonic states are necessarily edge
waves; thus the topological cavity may be regarded as a
circular multimode transmission line [Fig. 1(b)]. As it is well
known, thermal and quantum fluctuations can induce energy
flows in a transmission line terminated with resistive loads
[27]. For a system in thermal equilibrium, the power
transported by a certain traveling wave ispωdω, with pω ¼
ET;ω=2π the power spectral density, ET;ω themean energy of
a quantum-harmonic oscillator at temperature T
(ET;ω≈kBT when ℏω ≪ kBT), and dω is the relevant
bandwidth [27]. The light-angular momentum can be
found by integrating the Abraham angular momentum
density, r × S=c2 with S the Poynting vector, over the cavity
volume. Evidently, for a circular line the fluctuation-induced
light-angular momentum per mode (Lmode

T;ω dω) is deter-
mined by the spectral density Lmode

T;ω ¼ �ð1=c2Þpω2Atot ¼
�ð1=c2ÞðET;ω=πÞAtot. The þ (−) sign is chosen for waves

traveling in the anticlockwise (clockwise) direction and
Atot is the cavity cross-sectional area. In the reciprocal
case, the number of traveling waves propagating in the
anticlockwise and clockwise directions is identical; hence
the net fluctuation-induced angular momentum vanishes:
LT;ω=Atot ¼ 0. In contrast, in a nonreciprocal system the
number of edge states circulating in the two directionsmay be
different. Thereby, the net angular momentum density
is given by LT;ω=Atot ¼ Nð1=c2ÞðET;ω=πÞ and is fully
determined by the net number N of edge states circulating
in the anticlockwise direction, which is the result of
Ref. [23]. In Ref. [23], the bulk-edge correspondence was
used to link the angularmomentumquantum (N) with the gap
Chern number.
Here, I follow precisely the inverse path. It is

demonstrated—never making use of the bulk-edge
correspondence–—that there is an intimate connection
between the Chern number and the fluctuation-induced
Abraham angular momentum. In particular, both the Chern
number and the angular momentum spectral density can be
expressed in terms of an integral of the photonic Green
function along a semistraight line parallel to the imaginary
frequency axis [28]. By exploiting this connection, I show
that in a band gap the angular momentum quantum is the
Chern number. This result together with the theory of
Ref. [23] establish the formal link between the Chern
number and the net number of unidirectional edge states,
and thereby demonstrate the bulk-edge correspondence in
photonics. I numerically illustrate the application of the
developed concepts to a gyrotropic photonic crystal cavity.
In short, the key idea that drives the analysis of this

article is that the Chern number is determined by the Green
function of a system terminated with periodic boundaries,
while the fluctuation-induced angular momentum density is
determined by the Green function of a cavity terminated
with opaque-type walls, i.e., walls impenetrable by the
electromagnetic radiation. In a photonic band gap, the two
Green functions are essentially identical in the bulk region.
I prove that, due to this property, the Chern number and the
fluctuation-induced angular momentum are profoundly
related.
The article is organized as follows. In Sec. II, I present a

quick overview of the topological classification of photonic
platforms using the system Green function [28] and of the
Hamiltonian-type description of a dispersive photonic
system (e.g., a topological cavity). Both the fluctuation-
induced angular momentum and the Chern number can be
written either in terms of the normal modes of the equivalent
Hamiltonian or, alternatively, in terms of the system Green
function. The two different formalisms are used in my
analysis. In Sec. III, it is demonstrated that the Green
function boundary conditions (periodic versus “opaque”)
play a critical role in the Chern number calculation. In
Sec. IV, the angular momentum expectation is related to the
system Green function, and in particular it is shown that its

closed boundary

closed boundary

(a) (b)

FIG. 1. (a) Representative geometry of the system under study.
The bulk region is periodic along the x and y directions
[MðrÞ ¼ Mðrþ aiûiÞ, with a1; a2 the spatial periods along x
and y]. The structure cross section has area Atot ¼ L1 × L2 and
generally encompasses many elementary cells of the associated
photonic crystal. The system is closed along z so that the energy
is forced to flow along directions parallel to the xoy plane. In this
study there are two cases of interest: (i) the fields satisfy opaque-
type (e.g., perfectly electric conducting) boundary conditions at
the lateral walls (not shown) and (ii) the fields satisfy periodic
boundary conditions at the lateral walls. (b) For opaque-type
lateral walls, the photonic insulator cavity is equivalent to a
circular one-dimensional transmission line.

MÁRIO G. SILVEIRINHA PHYS. REV. X 9, 011037 (2019)

011037-2



spectral density is given by an integral of the Green function
over a semistraight line parallel to the imaginary frequency
axis. The proof that the Chern number is the angular
momentum quantum is given in Sec. V. The bulk-edge
correspondence is formally demonstrated in Sec. VI and is
applied to a photonic crystal cavity. A short summary of the
main findings is given in Sec. VII.

II. TOPOLOGICAL CLASSIFICATION

The topological classification of Chern-type photonic
materials is typically based on the normal modes (eigen-
states) of the problem. The Maxwell equations, on their
own, do not provide for a Hermitian-type description of
dispersive systems [1,2,28–30]. However, the electrody-
namics of lossless systems can be modeled by a generalized
(augmented) problem of the form [28–30]

L̂ ·

0
BBB@

f

Qð1Þ

Qð2Þ

� � �

1
CCCA

|fflfflfflfflffl{zfflfflfflfflffl}
Q

¼ i
∂
∂t

0
BBB@
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1
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·

0
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Qð2Þ

� � �
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0
BBB@

j

0

0

� � �

1
CCCA

|fflfflfflfflffl{zfflfflfflfflffl}
jg

: ð1Þ

The state vector Q ¼ ð f Qð1Þ � � � QðαÞ � � � ÞT
depends on the electromagnetic fields f ¼ ðE H ÞT
and on additional variables (QðαÞ) which represent the
internal degrees of freedom of the material response
[1,2,28–33]. Both f and QðαÞ are six-component vectors.
Furthermore, j ¼ ð je jm ÞT is a six-vector with the
electric and magnetic current densities. The operator L̂
is an integro-differential operator of the form

L̂ðr;−i∇Þ ¼ L̂0ðrÞ þ

0
B@

N̂ 0 � � �
0 0 � � �
� � � � � � � � �

1
CA;

with N̂ ¼
�

0 i∇ × 13×3
−i∇ × 13×3 0

�
: ð2Þ

The precise definition of the multiplication operator
L̂0ðrÞ can be found in Refs. [28–30]. It depends on the
poles and residues of the 6 × 6material matrixM that links
the frequency domain fields as follows:

�
D

B

�
¼

�
ε0ε̄ðr;ωÞ 1

c ξ̄ðr;ωÞ
1
c ζ̄ðr;ωÞ μ0μ̄ðr;ωÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mðr;ωÞ

·

�
E

H

�
: ð3Þ

For completeness, I admit that the material response
may be bianisotropic; i.e., the magnetoelectric response
terms ξ̄, ζ̄ may be nontrivial. Moreover, in Eq. (1) the
matrix M∞ stands for the asymptotic high-frequency
response of the material, M∞ ¼ limω→∞Mðr;ωÞ. The
operator Ĥgðr;−i∇Þ ¼ M−1

g ðrÞ · L̂ðr;−i∇Þ is Hermitian
with respect to the weighted inner product [28–30]

hQBjQAi≡
Z
V

1

2
Q�

B ·MgðrÞ ·QAd3r: ð4Þ

The integration is over the volume of the relevant “cavity”.
The topological classification of a periodic system is

typically done by introducing a Berry curvature. The Berry
curvature depends explicitly on the Bloch eigenmodes,
QnkðrÞ ¼ Q̃nkðrÞeik·r, of the augmented problem, with
k ¼ kxx̂þ kyŷ the wave vector and the periodic envelope
Q̃nk satisfying

Ĥgðr;−i∇þ kÞ · Q̃nk ¼ ωnkQ̃nk; ð5Þ

where ωnk represents the eigenfrequency.
The system may be fully three dimensional: it must be

periodic along the x and y directions, and closed along the z
direction; for example, it may be a lossless waveguide-type
structure terminated with opaque-type boundaries at the
planes z ¼ d and z ¼ 0 (the top and bottom waveguide
walls), d being the height of the waveguide [see Fig. 1(a)].
Assuming the normalization hQnkjQnki ¼ 1, the Berry
curvature of the nth band is [34]

F nk ¼ i½h∂1Q̃nkj∂2Q̃nki − h∂2Q̃nkj∂1Q̃nki�: ð6Þ

In the above, ∂i ¼ ∂=∂ki (i ¼ 1, 2) with k1 ¼ kx and
k2 ¼ ky. The gap Chern number is the integral of the Berry
curvature over the first Brillouin zone (BZ):

C ¼ 1

2π

ZZ
BZ

d2k
X
n∈F

F nk: ð7Þ

The summation is over all the “filled” photonic bands
(F) below the gap (ωnk < ωgap), with ωgap some frequency
in the relevant band gap. In a band gap the propagation
along directions parallel to the xoy plane is forbidden. Note
that the modes and band structure depend on the boundary
conditions on the top and bottom walls, and hence the band
gaps do also. In particular, the top and bottom walls cannot
support edge states in a band gap. In photonic systems the
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summation must include both positive- and negative-
frequency branches, because the sum of the Chern numbers
of negative-frequency bands may be nonzero [28,35,36].
Importantly, the topological classification of a photonic

system can be done without a detailed knowledge of the
photonic band structure or of the Bloch waves, and without
introducing a gauge-dependent Berry potential [28,37].
Indeed, the gap Chern number can be simply expressed as
an integral in the complex frequency plane of the photonic
Green function Ḡðr; r0;ωÞ, as follows [28,38]:

C ¼ 1

Atot
Re

Zωgapþi∞

ωgap

dωfðωÞ; ð8Þ

fðωÞ¼
ZZ

dVdV 0½trf∂2N̂ · Ḡðr;r0;ωÞ ·∂1N̂ ·∂ωḠðr0;r;ωÞg

−1↔ 2�; ð9Þ

with ∂ω ≡ ∂=∂ω, trf� � �g is the trace operator, and ∂iN̂
stands for the 6 × 6 matrix

�
0 −ûi × 13×3

ûi × 13×3 0

�
;

with ûi a unit vector along the ith direction. The term
“1 ↔ 2” stands for the first term in rectangular brackets
with the indices “1” and “2” interchanged. This notation
will be used throughout the article. It is worth pointing out
that in the electronic case the Chern number is also
determined by the fermionic Green function [39]. The
integration in Eq. (8) is along the section of the straight line
Refωg ¼ ωgap (parallel to the complex frequency imagi-
nary axis) in the upper half plane (“Re” is the real-part
operator). The Chern number can also be written as an
integral along a line Refωg ¼ ωgap [28], but in the present
study it is more useful to restrict the integration path to the
upper half plane. The volume integrals are over the entire
cavity, which encompasses many elementary cells of the
associated photonic crystal. Moreover, it is implicit that
the cavity walls perpendicular to the x and y directions (i.e.,
the lateral walls) are terminated with periodic boundary
conditions. The transverse cross section of the cavity has
area Atot ¼ L1 × L2 and the identity Eq. (8) holds in the
limit Atot → ∞, so that the structure becomes unbounded in
the x and y directions. By definition, the frequency domain
photonic Green function Ḡðr; r0;ωÞ satisfies

N̂ · Ḡðr;r0;ωÞ¼ωMðr;ωÞ · Ḡðr;r0;ωÞþ i1δðr− r0Þ; ð10Þ

with 1≡ 16×6 and periodic boundary conditions over the
lateral walls.

III. BOUNDARIES MATTER

The Chern number written as in Eq. (7) depends on the
Berry curvature, and thereby on the Bloch eigenmodes
envelopes. Thus, it is essential that the considered system is
periodic in the x and y directions. In contrast, Eq. (8) gives
the Chern number in terms of the photonic Green function.
As previously mentioned, it is implicit [and necessary so
that Eqs. (7) and (8) give the same result] that the system
Green function satisfies periodic boundary conditions over
the cavity lateral walls [28].
Is the value of C given by Eq. (8) in the limit Atot → ∞

sensitive to the boundary conditions enforced on the lateral
walls? For example, suppose that the lateral walls are taken
as perfect electric conductors (PEC). Will the value of C
change in the limit of an infinitely large (Atot → ∞) cavity,
compared to the case wherein the boundary conditions are
periodic?
To address these questions, first I note that the bulk

photonic crystal does not support any states for a frequency
in the integration path (Refωg ¼ ωgap, Imfωg ≥ 0).
Indeed, both in the band gap and for complex-valued
frequencies there are no propagating waves and thereby
standing waves cannot be formed in the cavity; it is
underlined that the top and bottom walls cannot support
any type of edge states in a band gap because the band
structure takes into account the effect of these boundaries.
This indicates that the Green function value must be nearly
unaffected by the lateral wall’s boundary conditions when
the observation and source points (r; r0) are interior to the
cavity. Thus, at first sight it seems that the integral in the
right-hand side of Eq. (8) should be insensitive to the lateral
boundary conditions.
Surprisingly, it is shown in Appendix A that this

heuristic understanding is wrong. In particular, for a non-
trivial topology one has

CBerry ¼ Cp ≠ 0 ¼ CPEC; ð11Þ

where CBerry is calculated with Eq. (7), Cp with Eq. (8) with
periodic boundary conditions, and CPEC also with Eq. (8)
but with PEC boundary conditions. I will say that the lateral
walls are “opaque” when it is possible to guarantee that the
value of C calculated with Eq. (8) vanishes. It is shown in
Appendix A that if the boundary conditions ensure that the
parameters (in the following x1 ≡ x and x2 ≡ y andQn;Qm
are generic state vectors)

RðjÞ ¼1

i
½hĤgQnjxjjQmi−hQnjĤgxjjQmi� ðj¼1;2Þ; ð12Þ

vanish, i.e., that

RðjÞ ¼ 0 ðfor opaque-type lateral wallsÞ; ð13Þ
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then the lateral walls are opaque. Note that because Ĥg is a
Hermitian operator, one might think that RðjÞ ¼ 0 is a
universally valid property. However, as discussed in
Appendix A, such an understanding is wrong and for
periodic-type boundaries RðjÞ ≠ 0. Besides the PEC walls
already mentioned, another simple example of an opaque-
type boundary is the case of perfect magnetic conductor
walls. As further detailed in Appendix A, the physical
reason for the dissimilar results in Eq. (11) is that for
opaque-type boundaries the flux of the Poynting vector
must vanish at each individual lateral wall. In contrast,
periodic boundaries are cyclic (reentrant) and hence the
Poynting vector flux may be nontrivial at each individual
wall.
When the Green function satisfies opaque-type boundary

conditions, the integral in Eq. (8) vanishes, notwithstanding
that the Green function in the interior of the cavity is
coincident, for all purposes, with the Green function
calculated with periodic boundary conditions for which
the integral evaluates to Cp ¼ CBerry, which generally is
nonzero.
Something dramatic must happen at the opaque-type

boundaries to justify the dissimilar result Eq. (11). The
simplest way of explaining why the contribution of the
boundary region can be comparable to that of the bulk-
volumetric region in Eq. (8) is that the integrand has some
singularity when either the observation or the source points
approach the boundary. On physical grounds, the resonant
response can occur only for real-valued frequencies. Thus,
the most sensible way to justify Eq. (11) is that for opaque-
type boundaries the system supports natural modes with
ωn ≈ ωgap. Since bulk states are not allowed (as previously
noted, edge states on the top and bottom walls are also not
allowed), the relevant natural modes are necessarily edge
states propagating attached to the lateral walls. In other
words, opaque-type boundaries must close the band gap of
the bulk region. Thus, the previous analysis indicates that a
topologically nontrivial photonic system (CBerry ≠ 0) termi-
nated with opaque-type boundary conditions must support
edge states on the lateral walls. This is the first encounter
with the bulk-edge correspondence principle. Later, the
outlined arguments will be made rigorous.

IV. ANGULAR MOMENTUM

Let me now consider a nontrivial Chern-type insulator
cavity with opaque-type lateral walls. For now, it is
assumed that the system is perfectly isolated from the
external environment so that there is no dissipation; i.e.,
both the cavity walls and the topological material are
lossless. Furthermore, it supposed that the electromagnetic
fields have no quanta, so that the system is in the ground
state (“quantum vacuum”). A discussion of the thermal
states in a weakly dissipative cavity is presented in
Sec. V B.

The unidirectional nature of the edge states in topologi-
cal materials implies that the fluctuation-induced light may
be characterized by a nontrivial angular momentum. This
property was first discussed in Ref. [24], where it was
argued that topological systems in equilibrium with a
thermal bath (or in the quantum vacuum state) may enable
the circulation of a electromagnetic energy in closed orbits.
Furthermore, such an effect can in principle be observed in
other nonreciprocal (but not necessarily topological) sys-
tems [23,25,26,40].
Importantly, it was demonstrated in Ref. [23] that in the

continuum limit (Atot → ∞) the spectral density of the
Abraham light-angular momentum (LT;ω) in a closed cavity
in equilibrium with a thermal reservoir at temperature T
satisfies

LT;ω

Atot
¼ ET;ω

1

c2π

X
ωm¼ω

sm;

with ET;ω ¼ ℏω
2

coth
� ℏω
2kBT

�
; ð14Þ

the mean energy of a quantum-harmonic oscillator at
temperature T [41]. This is the result discussed in the
Introduction and heuristically justified using an analogy
with a circular transmission line. In particular, the formula
holds with T ¼ 0 in the quantum vacuum case when the
material and the cavity walls are lossless. The finite
temperature result assumes vanishingly small (but nonzero)
material absorption, e.g., in the cavity walls (see Sec. V B).
It is implicit that at the frequency of interest the system does
not support bulk states (electromagnetic band gap). The
sum in Eq. (14) is over all the edge modes and simply
counts the difference between the number of edge modes
associated with an anticlockwise power flow (sm ¼ þ1)
and the number of edge modes associated with a clockwise
power flow (sm ¼ −1). The enunciated result is universal:
it holds independently if the system is topological or not. In
particular, the angular momentum spectral density per unit
of area due to thermal or quantum fluctuations is quantized
in units of ET;ω=ðc2πÞ [23].
Equation (14) links the angular momentum spectral

density with the number of edge states. This suggests that
for topological systems LT;ω may be directly written in
terms of the topological Chern number [23]. Next, I
develop the theoretical formalism necessary to prove that
that is indeed the case.

A. Classical states

There are two relevant light momenta: the Abraham
momentum (kinetic momentum of light) and the
Minkowski momentum (canonical momentum of light)
[40,42–44]. This article uses the Abraham formalism, which
leads to a quantization of the angular momentum spectral
density in the topological cavity. The fluctuation-induced
Minkowski angular spectral density is not quantized. For
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discussion on the detailed meaning of each momenta, see
Refs. [40,44].
The Abraham (kinetic) light momentum in the cavity is

determined by ð1=c2Þ R dVS, where S ¼ RefE ×H�g is
the Poynting vector of a complex-valued field [40,42,43].
From Appendix A, the ith component of the momentum
can be written as [Eq. (A5)]

1

c2
ûi ·

Z
dVS ¼ hQj 1

c2
∂iĤgjQi; ð15Þ

where ∂iĤg¼½∂=∂ki�½Ĥgðr;−i∇þkÞ�. Thus, ð1=c2Þ∂kĤg

may be understood as the Abraham momentum operator.
FromAppendixA, in the photonic case ∂kĤg is independent
of the wave vector. Then, it follows that the (kinetic) angular
momentum operator is L̂ ¼ ð1=c2Þr × ∂kĤg (the nomen-
clature of Ref. [45] is adopted here). In particular, the z
component of the angular momentum (perpendicular to the
plane of propagation) of a given state vector Q is

Lz ¼ hQjL̂zjQi ¼ 1

c2
hQjx1∂2Ĥg − x2∂1ĤgjQi: ð16Þ

The angular momentum can be expressed explicitly in
terms of the electromagnetic fields as L¼ð1=c2ÞR dVr×S
[23]. The angular momentum of light is extensively
discussed in Refs. [45–48]. As further detailed in
Appendix A, ∂kĤg is given by the commutator of the
position operator and the pseudo-Hamiltonian: ∂kĤg ¼
ð1=iÞ½r; Ĥg� [Eq. (A4)]. Thus, the angular momentum may
also be written as

Lz ¼
1

c2
ihQjx1Ĥgx2 − x2Ĥgx1jQi: ð17Þ

B. Quantum vacuum state

In a lossless dispersive material cavity the electromag-
netic field can be quantized by letting each normal classical
mode become a quantum harmonic oscillator [49]. The
angular momentum of the quantum vacuum (hLziT¼0þ) can
be easily found noting that the energy stored in the nth
mode is determined by the zero-point energy E0;ωn

¼

ℏjωnj=2. Hence, adding up the contributions of all
(positive-frequency) modes one finds that the expectation
of the light angular momentum in the cavity is

hLziT¼0þ ¼
X
ωn>0

E0;ωn
LðnÞ;

with LðnÞ ≡ i
c2

hQnjx1Ĥgx2 − x2Ĥgx1jQni
hQnjQni

: ð18Þ

It is supposed that the modes are normalized such that
hQnjQmi ¼ δn;m. Note that hQjQi gives the stored energy
[28,30], and thus the parameter LðnÞ has units of angular
momentum per Joule. Similar to Ref. [24], it is simple to
show that Eq. (18) can be directly obtained from the
fluctuation-dissipation theorem using a modal expansion of
the system Green function.
In open systems, the total light-angular momentum may

depend on the origin of the coordinate axes [45].
Importantly, for a closed cavity the expectation of the total
light momentum vanishes (even though locally the light
momentum density is generally nontrivial [24]). Indeed, for
opaque-type walls (RðiÞ ¼ 0), Eq. (A6) shows that a generic
cavity mode satisfies

hQnj∂iĤgjQni ¼ 0 ði ¼ 1; 2Þ: ð19Þ

Combining this result with Eq. (16), it follows that LðnÞ is
origin independent. Thereby, the expectation of Lz, i.e., of
the total angular momentum, is also origin independent.
I introduce a (unilateral) quantum vacuum angular

momentum spectral density Lω, such that hLziT¼0þ ¼R∞
0 dωLω. Clearly, it has the modal expansion [23]:

Lω ¼ E0;ω

X
ωn>0

LðnÞδðω − ωnÞ: ð20Þ

Using the fluctuation-dissipation theorem [41] with
T ¼ 0þ (which is applicable to the ground state of lossless
closed systems; see Ref. [24]), it is proven in Appendix B
that Lω can alternatively be written in terms of the system
Green function of the lossless cavity:

Lω ¼ −E0;ω
1

c2
1

π
Re

�Z
dVtrfḠðr; r;ωÞ · ðx1∂2N̂ − x2∂1N̂Þgjωþ0þi

�
: ð21Þ

C. “Partial” angular momentum

It is useful to introduce a partial quantum vacuum
angular momentum, LzðωgÞ, including only the contribu-
tions of the modes with ωn > ωg > 0. Since the zero-point
energy of a harmonic oscillator is E0;ω ¼ ℏjωj=2, the partial
angular momentum is given by [compare with Eq. (18)]

LzðωgÞ≡
X
ωn>ωg

ℏωn

2
LðnÞ; ð22Þ

Clearly, the quantum vacuum angularmomentum satisfies
hLziT¼0þ ¼−R∞

0þ dωg½dLz=dωg�¼Lzðωg¼0þÞ. Thus, the
spectral density is
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Lω ¼ − dLz

dωg
ðωÞ: ð23Þ

By integrating the fluctuation-dissipation theorem result
Eq. (21) in the interval ωg < ω < þ∞, one obtains, after
performing a Wick rotation centered at ω ¼ ωg, the
following alternative formula for LzðωgÞ:

LzðωgÞ ¼ − 1

c2
ℏ
2π

Re

�Z
dV

Zωgþi∞

ωgþ0þi

dω

× ω trfḠðr; r;ωÞ · ðx1∂2N̂ − x2∂1N̂Þg
�
: ð24Þ

The integration path is along the section of the straight line
Refωg ¼ ωg in the upper half plane.
Interestingly, the partial angular momentumLzðωgÞ can be

expressed in terms of the function f defined by Eq. (9).
Specifically, for a cavitywithopaque-type lateralwalls onehas

LzðωgÞ ¼
1

c2
−ℏ
4π

Re
Z

ωgþi∞

ωg

dωω2fðωÞ: ð25Þ

I present two independent derivations of this formula: in
Appendix C using the fluctuation-dissipation theorem result
[Eq. (24)] and in Appendix D using the modal expansion
Eq. (22). SinceLzðωg ¼ 0þÞ represents the quantum vacuum
angular momentum expectation, it follows that hLziT¼0þ can
bewritten as an integral of the systemGreen function over the
imaginary frequency axis. This is analogous to Casimir’s
theory where the zero-point energy of a system is determined
by an integral over “imaginary” frequencies [50,51]. The
angular momentum expectation is manifestly independent of
the coordinate system origin.

D. Cavity with periodic lateral walls

Up to now, in this section it was assumed that the lateral
walls of the cavity are opaque. However, Eqs. (23) and (25)
can be readily extended (from a mathematical standpoint)
to a cavity terminated with periodic boundaries. Does the
result calculated with Eqs. (23) and (25) in the limit of an
infinitely large (Atot → ∞) cavity depend on the Green
function boundary conditions when ω lies in a band gap of
the bulk region? Similar to Sec. III, it turns out that even

though Lω is determined by a volume integral, it critically
depends on the boundary conditions. Specifically, it is
shown in Appendix D that for periodic lateral boundaries,

Lωjω¼ωgap
¼ 0 ðperiodic boundariesÞ; ð26Þ

when ωgap is in a band gap of the bulk region. In contrast,
for opaque-type walls typically one has Lωjω¼ωgap

≠ 0

[Eq. (14)]. Equation (26) is consistent with the fact that
the bulk material does not support any states in the band
gap and, hence, its angular momentum density must vanish.

V. QUANTIZED ANGULAR MOMENTUM
SPECTRAL DENSITY

A. Quantum fluctuations

Let us introduce CLω defined such that the expectation of
the quantum vacuum angular momentum spectral density
per unit of area satisfies

Lω

Atot
¼ − 1

πc2
E0;ωCLω: ð27Þ

The function CLω is dimensionless, and from Eqs. (23) and
(25) it may be generally written as

CLω ¼ −1
2ω

d
dωg

	
1

Atot
Re

Zωgþi∞

ωg

dωω2fðωÞ


: ð28Þ

Clearly, the value of CLω depends critically on the Green
function boundary conditions. Let Ḡp be the Green
function calculated with periodic boundaries and let Ḡo
be the Green function calculated with the relevant opaque-
type boundaries (e.g., PEC boundaries). As discussed in
Sec. III, for observation and source points interior to the
cavity, one has

Ḡpðr; r0;ωÞ ≈ Ḡoðr; r0;ωÞ; ð29Þ
when Refωg is in a band gap of the bulk region.
Furthermore, the larger Imfωg > 0, the better the approxi-
mation, because the Green function becomes more local-
ized in space for a large Imfωg. Let us denote flðωÞ the
function defined by Eq. (9) with Ḡ ¼ Ḡl, l ¼ p, o. Then, in
the limit Atot → ∞, it is possible to write

CLωjω¼ωgap
¼ −1

2ωgap

d
dωgap

	
1

Atot
Re

Zωgapþi∞

ωgap

dωfoðωÞω2




¼ −1
2ωgap

d
dωgap

�
1

Atot
Re

Zωgapþi∞

ωgap

dω½foðωÞ − fpðωÞ�ω2

�

≈
−1

2ωgap

d
dωgap

�
ω2
gap

1

Atot
Re

Zωgapþi∞

ωgap

dω½foðωÞ − fpðωÞ�
�
: ð30Þ
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The second identity is a consequence that the term with
the periodic Green function vanishes [see Eq. (26)], while
the third identity is due to the fact that for Atot → ∞ one can
safely assume that foðωÞ ≈ fpðωÞ in the integration path,
except in the immediate vicinity of the real-frequency axis
where ω ≈ ωgap [52]. But from the results of Sec. III and

Eq. (8), it is known that ð1=AtotÞRe
R ωgapþi∞
ωgap dωfoðωÞ ¼ 0

(the Chern number vanishes with opaque-type boundaries),

whereas ð1=AtotÞRe
R ωgapþi∞
ωgap dωfpðωÞ ¼ C, with C the

system Chern number (calculated with periodic boundaries
and Atot → ∞). These results imply that CLωjω¼ωgap

¼
½1=ð2ωgapÞ�½d=ðdωgapÞ�½ω2

gapC�. The Chern number C is
independent of ωgap. Therefore, one finally obtains

CLωjω¼ωgap
¼ C ðin a gap of the bulk statesÞ: ð31Þ

Thus, in agreement with Ref. [23], I conclude that the
quantum fluctuation-induced angular momentum in a
topological system is precisely quantized. Its “quantum”
is exactly the gap Chern number. It is underlined that the
derivation of Eq. (31) is fully independent of Ref. [23].

B. Thermal fluctuations

The results of Sec. IV B can be readily generalized to
weakly dissipative systems, e.g., a cavity filled with the
topological material with the cavity walls slightly absorp-
tive. Such systems are coupled to the external environment
(e.g., through the cavity walls) and hence support thermal
states. The thermal states of weakly dissipative systems can
be studied perturbatively simply by considering that the
mean energy of the nth mode is ET;ω. For example, the
angular momentum expectation at temperature T is
hLziT ≈

P
ωn>0ET;ωn

LðnÞ, with LðnÞ evaluated using the
modes of the corresponding idealized lossless cavity (with
perfectly reflecting walls). Within this approximation, the
spectral density [Eq. (20)] should evidently be replaced by
LT;ω ≈ ET;ω

P
ωn>0L

ðnÞδðω − ωnÞ. Thereby, it follows that
in the outlined conditions LT;ω=ET;ω is independent of the
temperature and, in particular, LT;ω=ET;ω ≈ Lω=E0;ω.
Thereby, from Eqs. (27) and (31), the thermally induced
angular momentum per unit of area is also quantized in
units of ET;ω=ðc2πÞ:

LT;ω

Atot
¼ − 1

πc2
ET;ω: ð32Þ

VI. PROOF OF THE BULK-EDGE
CORRESPONDENCE

Combining Eq. (32) with Eq. (14) (derived in Ref. [23]),
one sees that in a topological system the gap Chern number
is linked to the net number of unidirectional edge states as

C ¼ −X
ωm¼ω

sm: ð33Þ

Thus, the Chern number of the bulk region determines
precisely the net number of edge modes circulating around
the lateral “opaque-type” walls of the closed cavity. In
particular, a nontrivial Chern number implies the emer-
gence of unidirectional gapless edge modes. For a positive
(negative) gap Chern number the unidirectional modes
propagate clockwise (anticlockwise) with respect to the
z axis.
This result may be further generalized to give the number

of edge modes propagating at the interface of two topo-
logical materials: the bulk-edge correspondence. To that
end, I consider the geometry depicted in Fig. 2, which
shows a cavity half filled with two photonic insulators (the
two materials share a photonic band gap). The cavity lateral
walls are assumed opaque. Let C1 and C2 be the gap Chern
numbers for material 1 and 2, respectively. Equation (33)
implies that C1 and C2 determine the number of modes
propagating in the clockwise direction around the cavity
walls (see Fig. 2). Hence, the number of modes propagating
at the interface of the two materials (along the þx1
direction) must be precisely C2 − C1, i.e., the gap Chern
number difference.
The reason why this needs to be so is that otherwise the

system would be unstable and a steady state could not be
reached. Indeed, suppose that the net number of unidirec-
tional modes propagating at the interface of the two
materials is different from C2 − C1. In this situation, for
one of the junction points (let us say point B of Fig. 2) the
number of edge modes arriving at the junction is larger than
the number of edge modes propagating away from the
junction. Since the system response is linear, this implies
that it would be possible to choose the complex amplitudes
of the incident waves in such a way that the edge waves
propagating away from the junction are not excited. But

FIG. 2. Illustration of the bulk-edge correspondence principle.
A cavity (terminated with “opaque-type” lateral walls) is filled
with two photonic insulators. The points A and B represent the
two junctions.
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then, since by assumption there is no loss and there are not
scattering channels available, the energy incident in the
junction must remain stored in it. Hence, it is impossible to
reach a stationary state for a time-harmonic excitation: the
energy stored at the junction grows linearly with time
similar to a lossless LC circuit excited at the resonance.
Physically this is not acceptable, and hence the net number
of unidirectional edge modes propagating at the interface of
the two materials must be precisely C2 − C1. This concludes
the proof of the bulk-edge correspondence principle.
To illustrate the application of the developed theory, I

consider a two-dimensional photonic crystal (the condition
∂=∂z ¼ 0 is enforced) formed by square-shaped nonrecip-
rocal inclusions organized in a square lattice with period a
[Fig. 3(a)]. The inclusions stand in air and are spaced by d.
Furthermore, the analysis is restricted to transverse-mag-
netic polarized waves with nontrivial field components Hz,
Ex, Ey. The inclusion’s electric response is assumed to be
gyrotropic with the same dispersion model as a lossless
magnetized plasma [53] (e.g., a magnetized semiconductor
[54]), ε̄ ¼ εt1t þ εaẑ ⊗ ẑþ iεgẑ × 1, with

εt¼ 1− ω2
p

ω2−ω2
c
; εa¼ 1−ω2

p

ω2
; εg ¼

1

ω

ωcω
2
p

ω2
c−ω2

; ð34Þ

and 1t ¼ x̂ ⊗ x̂þ ŷ ⊗ ŷ. In the above, ωp is the plasma
frequency, ωc ¼ −qB0=m is the cyclotron frequency
(positive when the magnetic field is oriented along þz),

q ¼ −e is the electron charge, and m is the electron
effective mass [53].
The structural parameters of the photonic crystal are a ¼

ð2π=5Þðc=ωpÞ and d ¼ 0.1a. For ω ≪ ωp. the air gaps are
deeply subwavelength, and hence, in the long-wavelength
limit it seems reasonable to approximate the photonic
crystal by a continuum with the same permittivity as the
inclusions, as illustrated in Fig. 3(a). This approximation
greatly simplifies the calculation of the band structure and
of the gap Chern numbers. In order that the electromagnetic
continuum is topological, it is necessary to impose a high-
frequency spatial cutoff kmax [29]. For the physical reasons
discussed in detail in Ref. [15], the spatial cutoff should be
taken on the order of kmax ≈ 1=d. The photonic band
structure obtained with the continuum approximation is
depicted in Fig. 3(b) (solid blue lines) for ωc ¼ �0.8ωp. As
shown, there are two band gaps and the corresponding gap
Chern numbers are indicated in the insets. The Chern
number calculation is done as in Ref. [28] and takes into
account the contribution of the negative-frequency bands
[not shown in Fig. 3(b)].
Next, I focus on the low-frequency band gap for which

the continuum approximation is arguably more accurate. Its
gap Chern number is Cgap;1 ¼ −sgnðB0Þ ¼ −sgnðωcÞ, and
thus it is topologically nontrivial. Hence, if the material is
paired with a PEC boundary, the bulk-edge correspondence
predicts that there is a single edge state propagating along
the þx direction. To confirm this prediction, I used the
continuum approximation to compute the edge state’s

p

x pk c

B

B

k d

a

d

(a) (b)

FIG. 3. (a) Geometry of a two-dimensional photonic crystal formed by square-shaped gyrotropic-material inclusions organized in a
square lattice. For sufficiently low frequencies the photonic crystal may be regarded as a continuum with a spatial frequency cutoff kmax.
(b) Band structure of material (solid blue lines) and dispersion of the edge states in the first band gap for (i) a gyrotropic-PEC interface
(dot-dashed green line) and (ii) gyrotropic-gyrotropic interface with the materials biased with magnetic fields oriented in opposite
directions (dot-dashed green line and dashed black line). The band structure, the edge-state dispersions, and the gap Chern numbers
(indicated in the insets) are found using the continuum approximation.
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dispersion. The spatial cutoff kmax is taken into account
using the spatially dispersive model described in Ref. [15].
The calculated dispersion (for a material biased with
B0 > 0 and ωc ¼ 0.8ωp) is plotted with a green dotted
line in Fig. 3(b), and yields the unidirectional gapless
edge mode.
It is also interesting to analyze the case in which

two topologically distinct plasmas are paired to form
an interface [inset of Fig. 3(b)]. In this scenario, the top
region (y > 0) is biased with B0 > 0 (ωc ¼ þ0.8ωp)
and the bottom region (y < 0) is biased with B0 < 0
(ωc ¼ −0.8ωp). The gap Chern number difference is
now −1 − 1 ¼ −2, and hence the bulk-edge correspon-
dence predicts two modes propagating along the þx
direction. This property is confirmed by the numerical
results: the edge-state dispersion is now formed by two
branches. Because of the symmetry of the structure, one of
the branches (with kx > 0) is coincident with the one
obtained for the gyrotropic-PEC interface geometry dis-
cussed previously. The second branch has kx < 0 but a
positive group velocity; i.e., it is a backward wave. Thus, in
agreement with the bulk-edge correspondence, both edge
modes propagate along the þx direction.
To further validate the analysis and the link between the

angular momentum and the gap Chern numbers, I used CST

MICROWAVE STUDIO [55] to simulate the full wave response
of a photonic crystal cavity with a geometry analogous
to that of Fig. 2. The cavity lateral walls are PEC. The
top region (y > 0) is a truncated photonic crystal with
ωc ¼ þ0.8ωp, and the bottom region (y < 0) is a truncated
photonic crystal with ωc ¼ −0.8ωp. The structural param-
eters of the photonic crystals are as in the previous example.

The CST simulations fully take into account the granular
structure of the photonic crystals (the continuum approxi-
mation is not used). From the continuum results (Fig. 3),
one may expect that for low frequencies this system
supports (i) one unidirectional edge state propagating along
the lateral walls and (ii) two distinct unidirectional edge
states propagating along the interface (y ¼ 0) of the two
gyrotropic photonic crystals. To test these ideas, the cavity
was excited with a dipole-type antenna placed in between
the two photonic crystals near to the left-hand side
lateral wall. Figures 4(a) and 5(a) show a time snapshot
of the excited magnetic field (Hz) for a dipole oriented
perpendicular (vertical dipole) and parallel (horizontal
dipole) to the interface, respectively, with oscillation
frequency ω ¼ 0.5ωp. The effect of weak material loss
is taken into account to ensure the convergence of the
simulations. The propagation of edge states at the lateral
walls and at the interface of the two photonic crystals is
evident. Furthermore, as can be seen from the Poynting
vector lines in Figs. 4(b) and 5(b), the energy circulates in
closed orbits, such that for the top region (with gap Chern
number Cgap;1 ¼ −1) the energy flows in the anticlockwise
direction whereas in the bottom region (with gap Chern
number Cgap;1 ¼ þ1) it flows in the clockwise direction.
This result is in agreement with Eq. (33), which links the
sign of the Chern number with the direction along which
the energy circulates. Interestingly, the time animations
available in the Supplemental Material [56] show that the
edge state excited at the interface of the two photonic
crystals (y ¼ 0) by the vertical dipole is a forward wave
(Fig. 4), whereas the edge state excited by the horizontal
dipole is a backward wave (Fig. 5). Hence, in agreement

FIG. 4. Photonic crystal cavity terminated with PEC lateral walls. The region y > 0 (top half of the cavity) is biased with a positive
(along þz) magnetic field (ωc ¼ þ0.8ωp), and the region y < 0 (bottom half of the cavity) with a negative (along −z) magnetic field
(ωc ¼ −0.8ωp). The cavity is excited with a vertical (along þy) short electric dipole placed at the interface of the two regions near the
left-hand side lateral wall. The oscillation frequency of the dipole is ω ¼ 0.5ωp. (a) Time snapshot of the magnetic field Hz.
(b) Poynting vector lines showing how the energy circulates in the cavity.
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with the dispersion of the edge states obtained with the
continuum approximation [Fig. 3(b)], the interface y ¼ 0
supports two unidirectional edge modes: a forward wave
and a backward wave. Furthermore, as seen in Figs. 4
and 5, Hz has even (odd) symmetry with respect to y ¼ 0
for the forward (backward) mode, respectively. The edge-
mode profiles obtained with the continuum theory have the
same symmetries, which further reinforces the validity of
this approximation.

VII. SUMMARY

I established a direct link between the thermal (or
quantum) expectation of the light angular momentum
spectral density LT;ω in a large cavity and the photonic
Chern number. Using as a starting point either the fluc-
tuation-dissipation theorem or a modal expansion
approach, it was shown that in a cavity with opaque-type
boundaries LT;ω can be written as an integral of the system
Green function over a semistraight line parallel to the
imaginary frequency axis [Eqs. (23) and (25)]. Taking into
account that the gap Chern number C has a similar
representation [Eq. (8)], it was proven that for a sufficiently
large cavity (Atot → ∞) and in a band gap of the bulk region
the following universal relation—independent of the
material properties and of the photonic crystal geometry
—LT;ω=Atot ¼ −ET;ωC=πc2 holds. Thus, in agreement with
Ref. [23], it follows that the spectral density of the angular
momentum per unit of area is quantized in the bulk band
gaps, and that the Chern number is the “quantum” of the
fluctuation-induced angular momentum. Furthermore,
using the findings of Ref. [23], which link LT;ω with the
net number of unidirectional edge modes circulating
around the cavity walls, I presented a physically intuitive
proof of the bulk-edge correspondence principle in pho-
tonics [Eq. (33)].
From a more formal point of view, my theory highlights

how topological invariants (which are computed for

periodic structures) manifest themselves when the system
is closed with opaque-type lateral walls. For example,
the photonic Chern number manifests itself in the form
of a nontrivial fluctuation-induced angular momentum.
Moreover, the theory suggests that the recently discovered
quadrupole-topological index [9,57] may be linked to
fluctuation-induced light. Thus, my findings raise multiple
questions about the intriguing role of topology in fluc-
tuation-electrodynamics and point to new exciting research
directions.
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APPENDIX A: DEPENDENCE OF THE CHERN
NUMBER ON THE BOUNDARY CONDITIONS

In this Appendix, it is demonstrated that C calculated
with Eq. (8) depends critically on the Green function
boundary conditions [Eq. (11)].

A. Alternative formula for the Chern number

To begin, I use the fact that independent of the boundary
conditions enforced on the lateral walls, the value of C
calculated with Eq. (8) is the same as (Ref. [28],
Appendix B)

C ¼ limAtot→∞
2π

Atot

X
n∈F

F n; ðA1Þ

with F n given by

FIG. 5. Similar to Fig. 4 but for a horizontal (along þx) electric dipole.
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F n ¼
X
m≠n

i
1

ðωn − ωmÞ2

× ½hQnj∂1ĤgjQmihQmj∂2ĤgjQni − 1 ↔ 2�: ðA2Þ

The sum in Eq. (A1) is restricted to the cavity modes with
ωn < ωgap, whereas the sum in Eq. (A2) is over all the
modes. It is relevant to point out that for a bounded cavity
(Atot finite) the set of modes is countable.
Furthermore, ∂iĤg represents the operator

∂
∂ki ½Ĥgðr;−i∇þ kÞ�:

Unlike in electronics, in photonic systems Ĥgðr;−i∇þ kÞ
is a linear function of the wave vector, and hence ∂iĤg is
independent of k. From Eq. (2), it can be explicitly written
as ∂iĤg ¼ M−1

g · ∂iL̂, with

∂iL̂ ¼

0
B@

∂iN̂ 0 � � �
0 0 � � �
� � � � � � � � �

1
CA: ðA3Þ

In Eq. (A2) the modes fQngn¼1;2;… are the full-cavity
modes [Ĥgðr;−i∇Þ ·Qn ¼ ωnQn], rather than the periodic
spatial envelopes of the Bloch eigenmodes (with the
propagation factors removed). The modes are normalized
such that hQnjQmi ¼ δn;m. The equivalence between
Eqs. (8) and (A1) was demonstrated in Ref. [28] assuming
periodic lateral walls, but it can be verified that the proof
remains valid if other “closed” boundary conditions are
enforced.

B. Opaque-type boundaries

The equivalence between Eq. (A1) and the Chern
number written as a function of the Berry curvature
[Eq. (7)] is well established when the boundary conditions
are periodic [28,34]. Next, I show that for other boundary
conditions (e.g., PEC) the two formulas may give dissimilar
results [see Eq. (11)].
As a starting point, it is observed that from Eq. (2) it

follows that

∂kĤg ¼
1

i
½r; Ĥg�; ðA4Þ

where ½Â; B̂�≡ Â B̂−B̂ Â stands for the commutator of two
operators. Note that ∂kĤg plays in photonics a role
analogous to the “velocity operator” in quantum mechan-
ics, and hence can be linked to the commutator of the
position operator (r) with the Hamiltonian. In the photonic
case, the operator ð1=c2Þ∂kĤg determines the Abraham
(kinetic) light momentum in the cavity [40,42,43]. Indeed,
it can be easily checked with the help of Eq. (A3) that

hQj 1
c2

∂iĤgjQi ¼ 1

c2

Z
V

dV
1

2
ûi · ðE ×H� þE� ×HÞ;

ðA5Þ

and the right-hand side is precisely the ith component of the
(Abraham) light momentum of a (complex-valued) vector
field [42,43]. Here, E;H are the electromagnetic field
components of the state vector Q.
Using Eq. (A4) and ĤgQn ¼ ωnQn, it is seen that

hQnj∂jĤgjQmi ¼
1

i
ðωm − ωnÞhQnjxjjQmi þ RðjÞ; ðA6Þ

with RðjÞ defined as in Eq. (12) of the main text. Since Ĥg is
an Hermitian operator it is tempting to set RðjÞ ¼ 0.
However, here one needs to be rather careful because
Ĥg is Hermitian onlywhen the involved state vectors satisfy
suitable boundary conditions. I will return to this issue
shortly; first let us see the consequence of having RðjÞ ¼ 0.
Substituting Eq. (A6) into Eq. (A2) it is readily found that

F n ¼
X
m≠n

i½hQnjx1jQmihQmjx2jQni − 1 ↔ 2�

¼ i½hQnjx1x2jQni − 1 ↔ 2� ¼ 0: ðA7Þ

In the second identity I used the completeness of the
basis fQmgm¼1;2;... and the fact that the constraint m ≠ n
can be dropped. The result F n ¼ 0 is at first sight
disconcerting because it implies that the Chern number
calculated with Eq. (A1) [or equivalently with Eq. (8)]
vanishes.
To bring some light into the discussion, it is observed

that after some manipulations RðjÞ can be written explicitly
as a surface integral over the cavity boundary (∂V),

RðjÞ ¼ 1

2

Z
∂V
dsn̂ · ½E�

n ×Hm þEm ×H�
n�xj; ðA8Þ

where n̂ is the outward normal unit vector. Let us suppose
first that the boundary conditions on the lateral walls
are periodic. In this situation, the modes Qn and Qm are
periodic, and thereby E�

n ×Hm þEm ×H�
n is also a

periodic function. However, ½E�
n ×Hm þ Em ×H�

n�xj is
not periodic, and hence its flux over the lateral walls
does not need to vanish, i.e., RðjÞ ≠ 0. In other words,
hĤgQnjxjjQmi ≠ hQnjĤgxjjQmi, because the function
xjQm does not satisfy periodic boundary conditions. The
result RðjÞ ≠ 0 is reassuring because otherwise the Chern
number (Cp) calculated with Eq. (A1) would always vanish,
which evidently cannot happen.
Let us consider now that PEC boundary conditions are

imposed on the lateral walls. Clearly, in this case the state
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vector xjQm satisfies the same boundary conditions as Qm,
and thereby RðjÞ ¼ 0. As a by-product, it follows that the
Chern number CPEC calculated with Eq. (A1) [or with
Eq. (8)] is indeed zero when the lateral walls are PEC,
CPEC ¼ 0, as I wanted to prove [Eq. (11)]. Clearly, the
boundary conditions enforced on the Green function in
Eq. (8) are of crucial importance.
As discussed in the main text, the lateral walls are

said to be “opaque” when the boundary conditions guar-
antee that RðjÞ ¼0. For opaque boundaries, one has F n ¼ 0
[Eq. (A7)]. In electronics, the Berry curvature F n can be
understood as the normalized electric conductivity contri-
bution from an electron in the nth state when it is excited by
a static-electric field [34]. In a system with periodic-type
boundaries, the electric current can be nonzero because
the boundaries are cyclic, and hence it is possible to have
F n ≠ 0. In contrast, for opaque-type boundaries it is
unfeasible to have a steady electric current because it
cannot go through the boundaries, and therefore F n ¼ 0.
Translating these ideas to optics, one may regard F n as the
(linear) response of the light momentum due to some steady
external stimulus (some analogue of the static-electric field
excitation in fermionic systems), when the initial state of
the system is determined by the nth cavity mode. For cyclic
(periodic) boundaries the induced momentum can be
nontrivial, but for opaque-type boundaries it must vanish.

APPENDIX B: ANGULAR MOMENTUM
EXPECTATION FROM THE FLUCTUATION-

DISSIPATION THEOREM

The fluctuation dissipation theorem establishes that the
electromagnetic field correlations can be expressed in terms
of the system Green function (10) as [24,41,58]

1

ð2πÞ2 hff̂ðr;ωÞf̂
†ðr0;ω0ÞgiT

¼δðω−ω0ÞET;ω
−1
2π

½Ḡðr;r0;ωÞþḠ†ðr0;r;ωÞ�ωþ0þi: ðB1Þ

Note that the definition of the Green function used in this
article [Eq. (10)] differs slightly from that of Ref. [24]. In
the above, f̂ ¼ ð Ê Ĥ ÞT represents the electromagnetic
field quantum operator, f� � �g is the symmetrized product of
two operators, and h� � �iT gives the expectation at temper-
ature T [24]. Calculating the inverse Fourier transform of
Eq. (B1) and using Ḡ�ðr; r0;ωÞ ¼ Ḡðr; r0;−ω�Þ, one
obtains the equal-time field correlations:

hff̂ðr; tÞf̂ðr0; tÞgiT

¼ − 1

π
Re

�Zþ∞

0

dωET;ω½Ḡðr; r0;ωÞ þ ḠTðr0; r;ωÞ�ωþ0þi

�
:

ðB2Þ

In particular, the Poynting vector expectation hŜðr; tÞiT ¼
hfÊðr; tÞ × Ĥðr; tÞgiT may be written in a compact form as

hŜiðr; tÞiT ¼ − 1

π

× Re

�Zþ∞

0

dωET;ωtrfḠðr; r;ωÞ · ∂iN̂gjωþ0þi

�
;

ðB3Þ

with

∂iN̂ ¼
�

0 −ûi × 13×3
ûi × 13×3 0

�

and i ¼ 1, 2, 3. The expectation of the z component of the
angular momentum is thereby

hLziT ¼
Zþ∞

0

dωLT;ω; ðB4aÞ

LT;ω ¼ −ET;ω
1

c2
1

π
Re

�Z
dVtrfḠðr; r;ωÞ

· ðx1∂2N̂ − x2∂1N̂Þgjωþ0þi

�
: ðB4bÞ

In the above, LT;ω is the (unilateral) angular momentum
spectral density at temperature T. The integration is over
the cavity volume. The derived result is rather general and
applies to lossy cavities (even in case of strong loss). The
quantum vacuum expectation of Lz in a lossless cavity can
be formally obtained from the fluctuation-dissipation theo-
rem result simply by letting T → 0þ and by removing all
the relevant dissipation mechanisms (e.g., by making the
cavity walls perfectly conducting) [24]. This observation
yields Eq. (21), where it is implicit that the Green function
is evaluated for a lossless cavity.

APPENDIX C: PARTIAL ANGULAR
MOMENTUM: FLUCTUATION-DISSIPATION

THEOREM APPROACH

In this Appendix, I derive Eq. (25) using as a starting
point the fluctuation-dissipation theorem result Eq. (24). To
begin, I note that the integrand of Eq. (24) vanishes in the
real-frequency axis except at the locations of the cavity
resonant frequencies. This is so because in the lossless limit
Lω consists of δ-type functions centered at the resonant
frequencies. Hence, integrating Eq. (24) by parts in
frequency and supposing that ωg is not coincident with a
resonant frequency [for a bounded cavity the eigenfre-
quencies are countable and so this restriction is not
problematic; the function LzðωgÞ is evidently discontinu-
ous at the eigenfrequency values], one finds that
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LzðωgÞ ¼
1

c2
ℏ
4π

Re
Zωgþi∞

ωg

dωω2

×
Z

dVtrf∂ωḠðr; r;ωÞ · ðx1∂2N̂ − x2∂1N̂Þg;

ðC1Þ

with ∂ω ≡ ∂=∂ω.
Next, I note that from the definition of the Green

function [Eq. (10)],

½N̂−ωMðr;ωÞ� ·∂ωḠðr;r0;ωÞ¼ ∂ω½ωMðr;ωÞ� · Ḡðr;r0;ωÞ:
ðC2Þ

Furthermore, using N̂xi ¼ xiN̂ − i∂iN̂, one obtains

½N̂ − ωMðr;ωÞ� · xi∂ωḠðr; r0;ωÞ
¼ xi∂ω½ωMðr;ωÞ� · Ḡðr; r0;ωÞ − i∂iN̂ · ∂ωḠðr; r0;ωÞ:

ðC3Þ

A generic vector field f that satisfies ½N̂−ωMðr;ωÞ� ·fðrÞ¼
ijðrÞ and the same boundary conditions as the Green
function has the integral representation:

fðrÞ ¼
Z

dV 0Ḡðr; r0;ωÞ · jðr0Þ: ðC4Þ

Clearly, for opaque-type boundaries, xi∂ωḠðr; r0;ωÞ sat-
isfies the same boundary conditions as the Green function.
Thus, it has the integral representation:

xi∂ωḠðr; r0;ωÞ ¼
Z

dV 00Ḡðr; r00;ωÞ · ð−iÞ
× fx001∂ω½ωMðr00;ωÞ� · Ḡðr00; r0;ωÞ
− i∂iN̂ · ∂ωḠðr00; r0;ωÞg: ðC5Þ

In particular, it follows that

xi∂ωḠðr; r;ωÞ ¼
Z

dV 0Ḡðr; r0;ωÞ

· f−ix0i∂ω½ωMðr0;ωÞ� · Ḡðr0; r;ωÞ
− ∂iN̂ · ∂ωḠðr0; r;ωÞg: ðC6Þ

This formula shows that the partial angular momentum
[Eq. (C1)] can be decomposed as

LzðωgÞ ¼
1

c2
ℏ
4π

Re
Zωgþi∞

ωg

dωω2½I1ðωÞ þ I2ðωÞ�; ðC7aÞ

I1 ¼−
Z

dV
Z

dV 0trf∂2N̂ · Ḡðr;r0;ωÞ ·∂1N̂ ·∂ωḠðr0;r;ωÞ

−1↔ 2g; ðC7bÞ

I2 ¼
Z

dV
Z

dV 0trfð−ix01Þ∂2N̂ · Ḡðr; r0;ωÞ

· ∂ω½ωMðr0;ωÞ� · Ḡðr0; r;ωÞ − 1 ↔ 2g: ðC7cÞ

The term associated with I1 reproduces Eq. (25) and hence
it suffices to show that the term associated with I2

vanishes.
To do this, I use again Eq. (10) to find that ½N̂ −

ωMðr;ωÞ� ·xiḠðr;r0;ωÞ¼ xii1δðr−r0Þ− i∂iN̂ · Ḡðr;r0;ωÞ.
Hence, I2 can be expressed as

I2 ¼
Z

dV
Z

dV 0trfx01½ðN̂ − ωMðr;ωÞÞ · x2Ḡðr; r0;ωÞ

− x2i1δðr − r0Þ� · ∂ω½ωMðr0;ωÞ� · Ḡðr0; r;ωÞ
− 1 ↔ 2g: ðC8Þ

After some simplifications and using the cyclic property of
the trace (trfA · Bg ¼ trfB ·Ag), one can write

I2 ¼
Z

dV
Z

dV 0trfx01∂ω½ωMðr0;ωÞ� · Ḡðr0; r;ωÞ

· ½ðN̂ − ωMðr;ωÞÞ · x2Ḡðr; r0;ωÞ� − 1 ↔ 2g: ðC9Þ

The integral representation Eq. (C4) is equivalent to
fðr0Þ ¼ R

dVḠðr0; r;ωÞ · ð−iÞ½N̂ − ωMðr;ωÞ� · fðrÞ, being
implicit that the generic vector field f satisfies the same
boundary conditions as the Green function. This result
implies that

x02Ḡðr0;r00;ωÞ

¼
Z

dVḠðr0;r;ωÞ ·ð−iÞ½N̂−ωMðr;ωÞ� ·x2Ḡðr;r00;ωÞ:

ðC10Þ

Substituting this formula into Eq. (C9), one can see that

I2 ¼
Z

dV 0trfix01x02∂ω½ωMðr0;ωÞ� · Ḡðr0; r0;ωÞ− 1↔ 2g

¼ 0: ðC11Þ

This proves that the term associated with I2 really
vanishes, and hence Eq. (25) follows.
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APPENDIX D: PARTIAL ANGULAR
MOMENTUM: A MODAL
EXPANSION APPROACH

In this Appendix, I derive Eq. (25) relying on the modal
expansion Eq. (22), i.e.,

LzðωgÞ ¼
X
ωn>ωg

ℏωn

2
LðnÞ: ðD1Þ

The modes are normalized such that hQnjQmi ¼ δn;m, and
it is assumed that the cavity lateral walls are opaque.
Using Ĥg¼

P
mωmjQmihQmj and Eq. (A6) with RðjÞ ¼0

(for opaque-type lateral walls), one may write LðnÞ
[Eq. (18)] as

LðnÞ ¼ 1

c2
X
m≠n

ωm

ðωm − ωnÞ2
i½hQnj∂1ĤgjQmihQmj∂2ĤgjQni

− 1 ↔ 2�: ðD2Þ

Substituting this formula into Eq. (D1), it follows that

LzðωgÞ ¼
1

c2
ℏ
2

X
ωm<ωg;
ωn>ωg

ωmωn

ðωm − ωnÞ2

× i½hQnj∂1ĤgjQmihQmj∂2ĤgjQni − 1 ↔ 2�:
ðD3Þ

I used the fact that the generic term of summation is
antisymmetric with respect to interchanging the indices m
and n. Because of this property the summation over m can
be restricted to modes with ωm < ωg.
Similar to Appendix C, it is supposed that ωg is not an

eigenfrequency of the cavity. The line Refωg ¼ ωg splits
the complex-frequency plane into two semiplanes. It was
shown in Ref. [28] that when ωm and ωn are in different
semiplanes, one has

Zωgþi∞

ωg−i∞
dω

1

ðω − ωmÞ2
1

ω − ωn
¼ 2πi

ðωm − ωnÞ2
sgnðωg − ωnÞ:

ðD4Þ

The same integral vanishes whenωm andωn are in the same
semiplane. Hence, LzðωgÞ may be written as

LzðωgÞ¼
1

c2
−ℏ
4π

X
ωm<ωg;
ωn>ωg

Zωgþi∞

ωg−i∞
dω

ωm

ðω−ωmÞ2
ωn

ω−ωn

× ½hQnj∂1ĤgjQmihQmj∂2ĤgjQni−1↔2�: ðD5Þ

To proceed further, I note that by interchanging the
indices m and n in Eq. (D3) one obtains LzðωgÞ ¼
ð1=c2Þð−ℏ=2ÞPωn<ωg;

ωm>ωg
½� � ��, with the generic term of

summation the same as in Eq. (D3). Hence, using
again Eq. (D4), it is found that LzðωgÞ ¼
ð1=c2Þ½−ℏ=ð4πÞ�Pωn<ωg;

ωm>ωg

Rωgþi∞
ωg−i∞ dω½� � ��, with the integrand

the same as in Eq. (D5). Averaging this result and Eq. (D5),
one finally obtains that

LzðωgÞ ¼
1

c2
−ℏ
8π

X
m;n

Zωgþi∞

ωg−i∞
dω

ωm

ðω − ωmÞ2
ωn

ω − ωn

× ½hQnj∂1ĤgjQmihQmj∂2ĤgjQni − 1 ↔ 2�:
ðD6Þ

The summation indices were unconstrained because the
integral vanishes when ωm and ωn are in the same semi-

plane. Noting that
R ωgþi∞
ωg−i∞ dω½1=ðω − ωmÞ2� ¼ 0, one finds

that

LzðωgÞ¼
1

c2
−ℏ
8π

X
m;n

Zωgþi∞

ωg−i∞
dω

ωm

ðω−ωmÞ2
ω

ω−ωn

× ½hQnj∂1ĤgjQmihQmj∂2ĤgjQni−1↔2�: ðD7Þ
The state vector can be decomposed as Qn¼ðfnQð1Þ

n � ��ÞT ,
with fn the electromagnetic field associated with the nth
mode. Using the definition of the weighted inner product
[Eq. (4)] and Eq. (A3), one sees that

LzðωgÞ¼
1

c2
−ℏ
32π

Zωgþi∞

ωg−i∞
dω

X
m;n

ωm

ðω−ωmÞ2
ω

ω−ωn

×
ZZ

dVdV 0½f�nðrÞ ·∂1N̂ · fmðrÞf�mðr0Þ ·∂2N̂ · fnðr0Þ

−1↔ 2�: ðD8Þ
The photonic Green function has the modal expansion

[28,30,59,60]

Ḡðr; r0;ωÞ ¼ i
2

X
n

1

ωn − ω
fnðrÞ ⊗ f�nðr0Þ: ðD9Þ

Hence, after some manipulations, one obtains that

LzðωgÞ ¼
1

c2
−ℏ
8π

Zωgþi∞

ωg−i∞
dω

ZZ
dVdV 0

× (trfωḠðr0;r;ωÞ · ∂1N̂ · ∂ω½ωḠðr; r0;ωÞ� · ∂2N̂g
− 1↔ 2): ðD10Þ

PROOF OF THE BULK-EDGE CORRESPONDENCE THROUGH … PHYS. REV. X 9, 011037 (2019)

011037-15



Integrating by parts in frequency the term 1 ↔ 2 and using
the cyclic property of the trace, it is found that it is identical
to the first term, so that

LzðωgÞ ¼
1

c2
−ℏ
4π

Zωgþi∞

ωg−i∞
dω

ZZ
dVdV 0

× trf∂2N̂ ·ωḠðr; r0;ωÞ · ∂1N̂ · ∂ω½ωḠðr0; r;ωÞ�g:
ðD11Þ

The above formula gives LzðωgÞ as an integral over a
straight line parallel to the imaginary axis. Alternatively, it
is possible to express LzðωgÞ as an integral over a path
contained in the upper half plane. To do this, I note that
the term in rectangular brackets in Eq. (D8) is pure
imaginary. Hence, a simple analysis shows that LzðωgÞ ¼
ð1=c2Þ½−ℏ=ð32πÞ�2Re R ωgþi∞

ωg dω½� � ��, with the integrand
the same as in Eq. (D8) and “Re” the real-part operator.
Using the modal expansion of the photonic Green function
[Eq. (D9)], one obtains after some manipulations that

LzðωgÞ ¼
1

c2
−ℏ
4π

Re
Zωgþi∞

ωg

dω
ZZ

dVdV 0

× (trf∂2N̂ ·ωḠðr; r0;ωÞ · ∂1N̂ · ∂ω½ωḠðr0; r;ωÞ�g
− 1↔ 2); ðD12Þ

which gives the angular momentum as an integral along a
straight line contained in the upper half plane. The term
∂ω½ωḠ� ¼ Ḡþ ω∂ωḠ originates two contributions, but the
first one is invariant under a permutation of the indices 1
and 2. Thus, one obtains

LzðωgÞ ¼
1

c2
−ℏ
4π

Re
Zωgþi∞

ωg

dωω2

ZZ
dVdV 0

× ½trf∂2N̂ · Ḡðr; r0;ωÞ · ∂1N̂ · ∂ωḠðr0; r;ωÞg
− 1 ↔ 2�; ðD13Þ

which yields the desired result [Eq. (25)].
Up to now, in this Appendix it was implicit that the

cavity lateral walls are opaque and, hence, the photonic
Green function Ḡ satisfies opaque-type boundary condi-
tions. Let us now suppose that “periodic-type” boundary
conditions are enforced on Ḡ. Furthermore, let ωg lie in a
band gap of the corresponding photonic crystal. In these
conditions, the integrand of Eq. (D11) is an analytic
function in a vertical strip of the complex plane that
includes the integration path (there are no poles in this
strip). Hence, the integration path may be displaced in the

strip without changing the value of LzðωgÞ calculated with
Eq. (D11). Independent of the Green function boundary
conditions, Eqs. (D11) and (D13) give the same result.
Hence, it follows that LzðωgÞ calculated with Eq. (D13)
with a Green function that satisfies periodic boundary
conditions is a constant function, Lz ¼ const, in each band
gap of the periodic structure. Using this result in Eq. (23),
it follows that the spectral density Lω vanishes in the
band gap [Eq. (26)] when Ḡ satisfies periodic boundary
conditions.
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