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Analytical approaches to model the structure of complex networks can be distinguished into two groups
according to whether they consider an intensive (e.g., fixed degree sequence and random otherwise) or an
extensive (e.g., adjacency matrix) description of the network structure. While extensive approaches—such as
the state-of-the-art message passing approximation—typically yield more accurate predictions, intensive
approaches provide crucial insights on the role played by any given structural property in the outcome of
dynamical processes. Here we introduce an intensive description that yields almost identical predictions to the
ones obtained with the message passing approximation using bond percolation as a benchmark. Our approach
distinguishes nodes according to two simple statistics: their degree and their position in the core-periphery
organization of the network. Our near-exact predictions highlight how accurately capturing the long-range
correlations in network structures allows easy and effective compression of real complex network data.

DOLI: 10.1103/PhysRevX.9.011023

I. INTRODUCTION

The structure of real complex networks lies somewhere
between order and randomness [1-3], with the consequence
that it cannot typically be fully characterized by a concise set
of synthesizing observables. This irreductibility explains
why most theoretical approaches to model complex networks
are inspired by statistical physics in that they consider
ensembles of networks constrained by the values of observ-
ables (e.g., density of links, degree-degree correlations,
clustering coefficient, degree or motif distribution) and
otherwise organized randomly. These approaches have three
notable advantages. First, they usually yield analytical
treatment. Second, they are intensive in network size, mean-
ing that their complexity scales with the support of the
observables (i.e., sublinearly with the numbers of nodes and
links). Third, they provide null models, of which many have
led to the identification of fundamental properties character-
izing the structure of real complex networks [4,5].

Despite important leaps forward in recent years, these
approaches still fail to capture enough information to
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systematically provide accurate quantitative predictions
of most dynamical processes on real complex networks.
The reason for this shortcoming is that the properties from
which the ensembles are constructed are not constraining
enough; the ensembles are “too large,” such that the
original real networks are exceptions, rather than typical
instances, in the ensembles. As a result, the current
state-of-the-art approach—the so-called message passing
approximation (MPA) [6]—requires the whole structure to
be specified as an input (i.e., the adjacency matrix, or a
transformation thereof). This method is interesting because
it is mathematically principled, meaning that it yields exact
results on trees, and offers inexact, albeit generally good,
predictions on networks containing loops (i.e., most real
complex networks) [7].

However, by considering the whole structure of networks
and thereby considering every link on equal footing, the
accuracy of the MPA comes at a significant computational
and conceptual cost. First, its time and space complexity
are extensive in the number of links and therefore in the size
of the network. Second, and most importantly, it does not
provide any insight on the role played by any given
structural property in the outcome of a dynamical process.
With the MPA, getting good predictions comes at the
expense of understanding what led to that outcome.

In this paper, we bridge the gap between intensive and
extensive approaches to the mathematical modeling of
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networks using the classic bond percolation problem as a
benchmark. We introduce a random network ensemble that
relies solely on an intensive description of the network
structure that, nevertheless, yields predictions that are
comparable to the ones from the MPA. This ensemble is
based on the onion decomposition (OD), a refined k-core
decomposition [8]. Critically, the OD can be translated into
local connection rules allowing an exact mathematical
treatment using probability generating functions (PGFs)
in the limit of large network size. This approach leads to
exact predictions on trees like the MPA and highlights the
critical contribution of the OD to an accurate effective
mathematical description of real complex networks. The
significant step forward in accuracy provided by this new
network description is confirmed by comparing its pre-
dictions with the ones of the classic configuration model, its
degree-correlated variant and the MPA using a collection of
111 real network datasets. We included network data from
several scientific domains, from the structure of social
interactions among people, to food webs, power grids, road
networks, and connectomes, making our study one of the
most extensive comparisons of network models to date.

II. RESULTS AND DISCUSSIONS

To obtain useful analytical results, most models of
complex networks must rely on some variation of the
treelike approximation, which assumes that complex net-
works have essentially no loops beyond some local
structure of interest [9,10]. This approximation allows an
elegant mathematical treatment which typically works
surprisingly well, although the vast majority of real com-
plex networks are not treelike [11]. In the case of the MPA,
the treelike approximation implies that a lot of information
given to the model is thrown away due to loops being
included in the input information (i.e., the adjacency
matrix) only to be mathematically ignored.

To take advantage of the mathematical tools developed
for treelike approximations, we propose to limit the
information given to the model by compressing complex
networks into an effective tree. While there are many
approaches to network compression, most of them do
not encode the network structure in a way that lends
itself to mathematical treatment beyond the calculation
of a few observables (e.g., degree distribution or clustering
coefficients). The limitations of these approaches—which
are mostly based on the concepts of motifs, local cluster-
ing, modules, or latent metric space—are discussed in
Appendix E. Instead, we rely on a peeling process, which
iteratively removes leaves (i.e., nodes located at the
periphery) to unveil the effective tree of a network.

Taking this information into account, we then focus on
predicting the outcome of bond percolation on complex
networks: a canonical problem of network science analogous
to many applied problems such as disease propagation or
network resilience [12]. Given a network structure, this

simple stochastic process consists in the occupation of each
original link with probability p. We aim to predict the size of
the largest connected component composed of occupied links
S, as well as the percolation threshold p,., above which that
component corresponds to a macroscopic fraction of the
network. The outcome of percolation depends on structural
properties at all scales, thus making it a good benchmark for
theoretical network models. Note that while real finite net-
works do not undergo phase transitions per se, their con-
nectivity displays a behavior akin to a phase transition when
varying p. We aim to predict this behavior using mathemati-
cal models in which phase transitions do take place.

A. Onion decomposition

The k-core decomposition is a well-known network
metric that identifies a set of nested maximal subnet-
works—the k-cores—in which each node shares at least
k links with the other nodes [13,14]. A node belonging to
the k-core but not to the (k + 1)-core is said to be of
coreness k and to be part of the k-shell. Nodes with a high
coreness are generally seen as more central whereas nodes
with low corenesses are seen as being part of the periphery
of the network. The onion decomposition refines the k-core
decomposition by assigning a layer [ to each node to further
indicate its position within its shell (e.g., in the middle of
the layer or at its boundary). The OD therefore unveils the
internal organization of each centrality shell and, unlike the
original k-core decomposition, can be used to assess
whether the structure of a core is more similar to a tree
or to a lattice, among other things [8].

The OD of a given network structure is obtained via the
following pruning process (see Fig. 1). First we remove every
node with the smallest degree k;,; the coreness of these

FIG. 1. TIllustration of the onion decomposition (OD) of a
simple network. The number of the layer to which each node
belongs is indicated and the different k-cores are shown using
increasingly darker background shades. The color of each stub
according to the LCCM is also shown (different sizes and shapes
are used for a clearer contrast between the three types of stubs).
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nodes is equal to k,;, and they are part of the first layer
(I =1). Removing these nodes may yield nodes whose
remaining degree is now equal to or smaller than k;,; these
nodes must also be removed, have a coreness of k,;, as well,
but are part of the second layer (I = 2). If removing nodes of
the second layer yields new nodes with a remaining degree
equal to or lower than k;,, they will be part of the third layer
(I = 3), will have a coreness of k,;,,, and will also be removed.
This process is repeated until no new nodes with a remaining
degree equal to or lower than k,;,, are left. We then update the
value of k;, to reflect the lowest remaining degree and repeat
this whole process until every node has been assigned a
coreness and a layer. The layer number keeps increasing such
that each layer corresponds to a unique coreness.

An efficient implementation of this procedure has a run-
time complexity of O(LlogN), where L and N are,
respectively, the number of links and nodes, which implies
that the OD can be quickly obtained for virtually any real
complex network [8]. Most importantly, nodes belonging to a
same layer are topologically similar with regard to the
mesoscale centrality organization of the network. Because
the layer of anode is only weakly related to its degree (i.e., the
coreness of a node provides a lower bound to its degree), the
pair layer-degree can therefore be used to indicate how well a
node is connected, but also to indicate its “topological
position” in the network. It therefore allows us to discrimi-
nate central nodes from peripheral ones which, based on their
degree alone, would have otherwise been deemed identical.

B. Effective random network ensemble: The layered
and correlated configuration model (LCCM)

From the pruning process described above, it can be
concluded that a node of coreness ¢ belonging to the /th layer
is in one of two scenarios. (1) It must have exactly c links to
nodes in layers I’ > [ if layer [ is the first layer of the ¢ shell
(i.e., nodes in layer I — 1 belong to the ¢’ shell with ¢’ < ¢).
(2) Otherwise, if it is not in the first layer of its ¢ shell, it must
have at least ¢ + 1 links to nodes of layers I/ > [ — 1 and at
most ¢ links to nodes of layers I’ > [. The distinction
between the two scenarios is that nodes not in the first
layer of their shell require at least one link to the previous
layer to anchor them to their own layer. Also, the common
feature of these scenarios is that a node of coreness ¢ needs at
least ¢ links with nodes of equal or greater coreness.

By rewiring the links of a given network using a degree-
preserving procedure [15,16] while ensuring that the afore-
mentioned rules are respected at all time, it is possible to
explore the ensemble of all possible single networks with the
same fixed layer-degree sequence [i.e., the sequence of every
pair (I, k) in the original network]. Exactly preserving the
layers—and thus the coreness of every node—is of critical
significance since previous rewiring approaches could only
approximately preserve the k-core decomposition [17].

Additionally, the pair layer-degree assigned to each node
can be used to enforce two-point correlations [i.e., the

(layer-degree)—(layer-degree) correlations], thus reducing
the size of a random network ensemble. This correlated
ensemble can be explored via a double link swap Markov
chain method preserving both the layer-degree sequence
and the number of links within and between every node
class (i.e., nodes with the same layer-degree). One way to
implement this method is by first choosing one link at
random (e.g., joining nodes A and B) and then choosing
another link at random (e.g., joining nodes C and D) among
the links that are attached to at least one node whose layer-
degree pair is the same at one of the two nodes connected
by the first link (e.g., A and C have the same layer-degree)
[18]. The two links are then swapped (e.g., A becomes
connected to D and B to C) if no self-link or multilink
would be created. Doing so ensures that both the degree
sequence and the two-point correlations are preserved at all
time. We call the layered and correlated configuration
model (LCCM) the ensemble of maximally random net-
works with a given joint layer-degree sequence and
(layer-degree)—(layer-degree) correlations.

Since it preserves both the degree sequence and the
degree-degree correlations, the LCCM is a subset of two
commonly used random network ensembles defined by the
configuration model (CM) [19] and the correlated con-
figuration model (CMM) [20]; the latter being known for its
fair accuracy in many applications [11]. The LCCM,
however, distinguishes itself from these models (and other
variants) by enforcing a mesoscopic organization via the
layers of the OD. This feature has the critical advantage of
making the LCCM a mathematically principled approach in
the sense that it exactly preserves the structure of a wide
variety of trees (see Fig. 2). This is due to the fact that the
network ensemble defined by the LCCM corresponds to the
automorphisms of these trees. In other words, in such cases
the only link swaps allowed by the connection rules of the
LCCM yield a mere relabeling of the nodes without
modifying the overall structure whatsoever. As we show
below, this mesoscopic information accounts for a signifi-
cant portion of the missing gap between the predictions of
the intensive configuration models and the extensive,
current state-of-the-art MPA.

C. Percolation on the LCCM

We adapt the approach of Ref. [10] to solve bond or site
percolation on the LCCM in the limit of large network size.
This approach requires the specification of (1) the classes of
nodes, which here correspond to the distinct pairs layer-
degree noted (/,k) and (2) the colors of stubs (i.e.,
half-links), which in the LCCM are identified based on
the layer I’ of the neighboring node. More precisely, from
the connection rules stated in the previous section, the
LCCM requires us to keep track of the number of links that
each node in each layer / shares with nodes (i) in layers
I'> 1, (ii) in layer I’ =1 — 1, and (iii) in layers I’ <[ — 1.
We identify the corresponding half-links as red, black, and
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(a) Message passing approximation

(b) Layered and correlated

(c) Configuration model

configuration model

FIG. 2. Compression of a perfect tree with different network models. (a) The message passing approximation assigns a unique ID to
every node and preserves the full structure of the tree. (b) The layered and correlated configuration model assigns an ID to every node
corresponding to its degree and its position in the core-periphery structure of the network. Degrees are not shown to lighten the
presentation. Stubs are colored according to the layer to which they point: red if they point to more central layers and black if they point
to the previous layer (different sizes are used for a clearer contrast between black and red stubs). There are no green stubs in this
example. (c) The configuration model assigns an ID to every node according to its degree before randomly connecting them, thereby
destroying the mesoscopic and macroscopic structure of the original network. The correlated configuration model fixes the number of
links between different degree classes, and would therefore prohibit components formed by two nodes with degree 1, but would

otherwise be very similar to the configuration model shown here.

green stubs, respectively. For instance, a link between
nodes in layers 3 and 5 consists in a red stub stemming out
of the node in layer 3 paired with a green stub belonging to
the node in layer 5. Note that a link between two given
layers can only consist in a unique pair of stub colors, and
the only allowed combinations are red-red, red-black, and
red-green.

From the link correlation matrix L., whose entries specify
the fraction of links within and between every class of
nodes, we can derive the function (see Appendix B)

ou(x) = D Pk K R e g (1)
kKb k9

generating the probability P (k”, k", k9) that a node in
class (1, k) has k" red stubs, k” black stubs, and k9 green
stubs, given the connection rules of the LCCM. From the
same link correlation matrix, we can also derive the
functions (see Appendix C)

e =" " o K.d)x,.  (2)

'K oe{rb.g}

for every a€{r,b,g}, generating the probability

9 (I', k', d’) that a stub of color a stemming from a node
of class (/, k) is attached to a stub of color @ belonging to a
node in class (7', k). Combining these two functions yields
the PGF generating the distribution of the number of nodes
of each class that are neighbors of a randomly chosen node
of class (,k):

Ii(x) = @u(y(x)). (3)

Note that this PGF also includes the colors of the stub
through which these neighbors are connected to the node of

class (I, k). Similarly, the number of such nodes that can be
reached from a node of class (/,k) that has itself been
reached by one of its stubs of color a is

- L Opy(x')

e (x) =

v R (4)
<k >lk ax;k x'=y(x)

where (k%) = {[0¢;(1)]/0x$ } is the average number of
stubs of color a nodes of class (1, k) have.

To compute the size of the extensive component, we
assume that the networks in the ensemble are locally treelike,
which occurs in the limit of large network size or when the
detailed structure of matrix L. permits only exact trees (i.e.,
when loops are structurally impossible). We define af, as the
probability that attempting to reach a node in class (/, k) by
one of its stubs of color a does not eventually lead to the
extensive component. Noting p the probability that links are
occupied, the probabilities {af; } are the solution of

ap =1-p+pfila), (5)

forall /, k, and a. This last expression encodes the simple self-
consistent argument that attempting to reach the node will not
lead to the extensive component if (1) the link is unoccupied,
which occurs with probability 1 — p, or if (2) the link is
occupied, with probability p, but the attempts to reach the
other neighbors of the node that has just been reached will all
fail, which occurs with probability f% (a). Note that this
argument relies on the assumption that the states of these
neighbors are independent, which is true for a treelike
structure. Having solved Eq. (5), the relative size of the
extensive component S is then given by the probability that a
randomly chosen node is found in S,
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S =1~ Y P(l.k)gy(a). (6)

where P(1, k) is the fraction of nodes in class (/, k) which can
be extracted from the link correlation matrix L (see
Appendix A). Note that Eq. (5) remains valid in the case
of site percolation—where nodes, instead of links, are
occupied with probability p—since we assume the networks
of the ensemble to be locally treelike. Equation (6) solely
needs adjustment and becomes S = pS to account for the
fact that only a fraction p of nodes are occupied and can
therefore be part of the extensive component [10,21]. Note
also that the percolation threshold p,. is the value of p at
which a = 1 becomes an unstable solution of Eq. (5) (see
Appendix D), which corresponds to the emergence of the
extensive component.

D. Effective treelike structure

Because the LCCM is a special case of both the CM and
CCM, the cardinality of the ensemble it generates should
always be smaller than the cardinality of the ensembles
generated by the CM and by the CCM. Consequently, if the
mesoscale structural information provided by the layers [ is
of any significance, we expect the predictions of the LCCM
to be the closest to the ones obtained with the MPA.
Figure 3 confirms this observation using 111 real network
datasets (see Appendix F for details on the datasets). In fact,
our results demonstrate that identifying nodes using the
layer in the OD alongside their degree does not merely
improve the predictions, it drastically changes their nature,
making them qualitatively very similar to the ones of the
MPA when not strikingly quantitatively identical. Figure 4
further supports this conclusion with four representative
datasets for which the gain in accuracy is the most manifest.
Indeed, the LCCM reproduces the general shape of the

curves, has the same number of inflection points, and
always predicts a connected network when all links are
occupied (i.e., S must be 1 at p = 1 since we considered the
largest connected components of every datasets).
Interestingly, only the LCCM and the MPA are able to
capture the mesoscopic core-periphery and/or modular
structures that were numerically shown to lead to smeared
(or double) phase transitions [22] such as the one observed
on the protein-protein interaction network.

Perhaps most importantly, the LCCM approximates to
high accuracy the percolation threshold predicted by the
MPA, as seen in Fig. 3(a), with a relative error of less than
1.5% for 75% of the 111 network datasets considered.
Additionally, Fig. 3(b) shows the expected error on the size
of the extensive component averaged over the entire range
of occupation probability p. When using the LCCM to
compress the network structure, we find that the error,
relative to the MPA, is at most of the order of 1073 for 75%
of the datasets considered; an improvement of at least 1
order of magnitude from existing approaches. Altogether,
these results indicate that categorizing nodes with the
classes (I,k) captures critical features of the local and
mesoscopic treelike organization of many real complex
networks, thus offering an intensive effective description of
their structure.

It is important to mention that the MPA’s predictions were
considered here not as the ground truth of bond percolation
but rather as the best analytical predictions available. While
we acknowledge that there exist approximations of the MPA
taking into account clustering that work quite well for site
percolation [27], the accuracy of these approximations does
not translate well to bond percolation due to the over-
counting redundant paths. Similar approximations exist for
bond percolation but based on nonunique decompositions of
networks into triangles [28]. More importantly, the
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Predictions of the intensive models (CM, CCM, and LCCM) compared to the predictions of the extensive MPA for a collection

of 111 real network datasets from different scientific domains, including, but not limited to, social networks (where nodes are often
people and links are interactions), biological networks (e.g., protein-protein interaction networks), connectomes (e.g., axonal
connections between brain regions), food webs, infrastructure networks (e.g., power grids), and transportation networks (e.g., flights
between airports). Further details are provided in Appendix F. The whiskers cover the range between the fifth and the 95th percentiles,
the black dots indicate the mean, and the outliers’ data points are shown with a circle. Each box indicates the first, second, and third
quartiles, as usual. (a) Relative error of the percolation threshold defined as | pmodel — pMPA|/ pMPA The calculation of pL“M is detailed
in Appendix D. (b) Area of the region bounded by the curves S™°%! and SMPA computed as [ [Sm%! — SMPA|gp. References [6,19,20]
provide the methods to compute pT°%! and §™°%! for the CM, the CCM, and the MPA.
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FIG. 4. Relative size of the extensive component predicted by the LCCM with the CM, the CCM, and the MPA for four representative
real network datasets. (a) One-mode projection of a bipartite network of Norwegian boards of directors [23]. (b) PGP web of trust [24].
(c) A subset of the Internet at the autonomous level [25]. (d) Protein-protein interaction network of Homo sapiens [26]. The insets show
the absolute value of the difference A between the MPA and the CM, the CCM and the LCCM as a function of p, as well as an
enlargement of the region around the percolation threshold. The largest connected component was used for all datasets.

“original” formulation of the MPA and the LCCM both rely
on the same simplifying assumptions of infinite network size
and treelike local structure, which allowed us to compare the
predictions of both approaches on the same footing. Doing
so allows us to clearly demonstrate that the LCCM offers a
way to substantially compress the information used indis-
criminately by the MPA while still providing predictions
with a similar accuracy. That being said, approximations
introduced in the MPA to account for clustering could also
potentially be used within the LCCM.

III. SUMMARY AND FUTURE WORK

We introduced a random network ensemble that relies
solely on an intensive description of the network structure
that yields predictions for percolation that are either
essentially quantitatively identical—or at least strikingly
qualitatively similar—to the ones obtained with the state-
of-the-art MPA. This ensemble assigns two structural
features to each node—its degree k (local) and its position
[ in the onion decomposition of the network (mesoscale)—
and creates links according to simple, local connection
rules that exactly preserve these two features. This ensem-
ble lends itself to exact analytical calculations using
probability generating functions in the limit of large net-
work size. This model is mathematically principled,

meaning that it leads to exact predictions on trees, like
the MPA, but unlike other intensive approaches, such as the
classic configuration model and existing variants. The
accuracy of the predictions of the LCCM shows that the
OD easily captures important features of the mesoscale
structural organization of many real complex networks,
which is at the root of the accuracy of the current state-of-
the-art message passing approximation. Given that the vast
majority of network models rely on local, pairwise con-
nection rules, the significant gain in accuracy demonstrated
here for percolation is therefore readily accessible to other
modeling approaches. We consequently strongly argue that
this information should be included in the future gener-
ations of models of complex networks.

A. Recurrent state dynamics

One salient advantage of effective ensembles of random
networks is that they can be leveraged to describe complex
dynamical processes on networks, whereas generalizing the
MPA to complex recurrent state dynamics is nontrivial
[29,30]. With that in mind, the exact mathematical descrip-
tion of the LCCM can easily be included in a system of
ordinary differential equations (ODEs) describing, e.g., the
susceptible-infectious-susceptible (SIS) model of disease
spread. Instead of directly following all types of nodes
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generated by Eq. (1), we can average all nodes with the
same layer and degree and simply follow the fractions
I, ,(t) that are infectious at time 7. The model specifies that
these infectious nodes recover at rate @ and infect suscep-
tible neighbors at rate 3, such that we can write:

ill,k(t) = —al (1) + BIP(L, k) — I14(1)]

dt
X Y Pk K9 KD)
kK9 Kb
y [k’ > rsiw L (1 + S ) e
> rsik Ly (1 + 8 de)
> vei—tw Lol
> r<iciwLur
> v L=yl -1y
> e Lk -1y '

This system of ODEs is equivalent to a mean-field
metapopulation model where we follow the average state
of a population of nodes with a given structural role (given
pair I, k) coupled with the other populations according to
the LCCM structure. The dynamical rules of the SIS model
simply specify the sign and rates of the transition events,
and we could as easily write similar equations for other
dynamical processes. This approach relies on an averaging
approximation but overlayed on an exact description of the
LCCM structure.

+ ko

+ kb

B. Network comparison

The LCCM is fundamentally a compression method for
network structure. While we demonstrated its potential
in the context of percolation, it is also applicable to other
problems where an extensive description of network
structure is prohibitive. For instance, one classic solution
to the task of comparing two networks is to calculate their
graph edit distance (GED). The GED is defined along
sequences of elementary graph operations, such as the
insertion or deletion of a node or a link, that turns a network
G, into another network G,. Each edit operation e; is
associated with a given cost c¢(e;) based on the operation it
performs. The distance D(G;, G,) between networks G; and
G, is then defined as the minimal cost for a sequence
P(G,,G,) of edits that transforms G, into G,: D(G;,G,) =
M, o)eP(G,.0,) 2oit C(€7)-

Algorithms for calculating these edit distances are well
studied but unfortunately tend to scale exponentially with
network size and are therefore usually tested on networks
with only a handful of nodes [31]. This impractical scaling
means that GED is virtually impossible to apply to the real,
large, complex networks considered here. To solve this
problem, a new avenue of research recently introduced a
more statistical perspective to network comparison [32,33].
For example, Bagrow and Bollt introduced a principled

approach where, instead of comparing networks, one
compares graph portraits: the matrix B , containing the
number of nodes with k neighbors at a shortest distance of
¢ [33]. A similar approach could be used on the LCCM and
its joint layer-degree distribution, such that LCCM ensem-
bles are compared instead of individual networks.

The LCCM has three main advantages over other
statistical description of networks. First, the underlying
network compression algorithm, the onion decomposition,
is fast. Second, the compressed network can be mapped
to connection rules yielding a link swapping algorithm
to explore the ensemble. Third, the ensemble is described
by an exact analytical formalism. The second and third
advantages are particularly powerful since they allow one
to interpolate between two networks, both computationally
and analytically. When doing network comparison, it
would therefore be possible to not only quantify the
distance between two networks, but also generate inter-
mediate networks between them. This could be leveraged,
for example, to better explore the space of all possible
robust designs for infrastructure networks.
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APPENDIX A: LINK CORRELATION MATRIX

We define the symmetrical link correlation matrix L
whose elements Ly, correspond to the fraction of links
between nodes of class (/,k) and (Z,k’). It has the
following properties,

1
EZ Z(l + 0w ) Lk = 1,
I

'K

(A1)

since each type of link appears twice in the matrix except
for the links connecting nodes of the same class (i.e.,
diagonal elements), and

1 kP(l, k
_Z(l + 0w ) L iy = CL

22, w oW

where P(1, k) is the fraction of nodes belonging to the class
(Lk) and (k) = >, kP(l k) is the average degree.

011023-7



ANTOINE ALLARD and LAURENT HEBERT-DUFRESNE

PHYS. REV. X 9, 011023 (2019)

APPENDIX B: DISTRIBUTION OF THE NUMBER
AND OF THE COLOR OF STUBS

The connection rules of the LCCM indicate that a node
of degree k in layer / and coreness c¢; have at most ¢; red
stubs. Since red stubs are defined as half-links toward
nodes in layers I’ > [, they represent a fraction

%Z Z(l + 8o ) Lk

>l K

(B1)

of all stubs in the network ensemble, where ;s accounts
for the fact that a link connecting two nodes of class (I, k)
contributes to two red stubs. This last quantity would be
equal to

CIP(Z, k)

(k)
if every of these nodes had exactly ¢; red stubs.
Consequently, since the LCCM only dictates bounds on

the number of each color, the probability that a node of
degree k in layer [ has exactly k" red stubs is simply

(B2)

Note that whenever layer [ is the first layer of its core—
when ¢; > ¢;_;—Eq. (B4) reduces to pj, = 1, meaning
that each node has exactly ¢; red stubs, as prescribed by the
connection rules of the LCCM.

Similarly, the fraction of half-links shared with nodes in
layers I' < [ —1 (i.e., green stubs) is

I I

I'<l-1 ¥

(BS)

The maximal value of this quantity, however, varies in
function of /. If the layer is the first layer of its shell (i.e., if
¢; > ¢;_1), then each node has c; red stubs and up to k — ¢;
green stubs according to the connections rules. If ¢; = ¢;_;,
nodes that have exactly c; red stubs can have up to k —
c; — 1 green stubs since they must have at least one black
stub, and can have up to k — ¢; otherwise. The maximal
value of Eq. (B5) can therefore be summarized as

c , _
<ki> [plrk]k [] - plrk]cl k s (B3) (k —A - 5kr,01501-01—1 )P(l’ k) (B6)
(k) ’
where
i = vzt 2 (L + Gwdue) Lk (B4)  such that the probability that a node of degree k in layer /
2¢,P(1, k) / (k) has exactly kY green stubs is
|
k—c; =60, 1) [ k—c . } ks [ k—c ) Jeer k=it
T P 1- P . B7
< k9 k=ci =68 eec, k=ci =68 eec, (B7)
with
7 /L 17
Pl = >or<i-1 2ok L (BS)

2(k = c))P(L. k) / (k)

Combining Eqs. (B3) and (B7) yields the probability that a node in layer / and of degree k has k”, k%, and k red, green, and

black stubs, respectively:

r ¢ r k" r 1c,—k"
Py (K" k9 kP) = 8) pr g g (kr> [P [1=pple*

k—Cl

4 —c;—k9—=0yr 0, ¢
% <k— (&) _5kr’c,5c,,c,1) |: p]gk:| K |:1 3 k—Cl p[gk k=c;=k9=6yr 01601,
k9 k— €l _5k’,c,5c’,,c,_1 k— C _5k’.c,5c,,cl_l

(B9)

Finally, after some elementary algebra, it can be shown that the generating function ¢ (x) associated with this distribution is

ou(x) = Y Pk K9, KP (LK) [, ¥ [ ¥ [ ¥

k" kP k9

r r |c k - CI
= 601,01-1x?k[plkxlk] l |:<] B m

9 ) xb 4 k—c¢ g9 .9 k_cl_l_(s [prxi]e(1 — .ﬁ/) b4 pd g]k—c,
Pl )Xtk ™ 37— o —1 PliXii e P ik Puic) Xt T PiXik

+ [(1 = pj)xh + phxp] (1 = pj)xh + phxg ).

(B10)
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APPENDIX C: TRANSITION PROBABILITIES

With the distribution of the number of stubs of each color
that nodes have being provided by Eq. (B10), the only
missing quantities are the transition probabilities: the
probability Q% (I, k’,a’) that a stub of color a stemming
from a node of class (/, k) leads to a stub of color o attached
to anode of class (!, k'). Once more, this information can be
extracted from the link correlation matrix L.

Let us recall that black stubs stemming from nodes of
class (I, k) can lead only to red stubs attached to nodes in
the previous layer (i.e., I’ = [ — 1), which can be summa-
rized by

bl K. o) = (er’.r&l’.l—lLl’k’.lk
sz( K ad) = ,
Do >k O Ly g

where the denominator is proportional to the fraction of all
stubs that are black and that are stemming from nodes of
class (I, k). Similarly, since green stubs can only lead to red
stubs attached to nodes in layer /' < [ — 1, we have

(C1)

Ot Ltk i

— e gf <=1
Z[”d—l Zk” Ly

(UK. ) = (C2)

0 otherwise.
Because red stubs can lead to all three colors of stubs, we

first consider the case where a red stub leads to a black
|

~ 2ors 2ok Luarw [0 (14 8a0) x4 8y ax00 + (1= 8y) (1 = 8ip_y)x), ]

stub (i.e., to a node in layer I’ = [+ 1), which corres-
ponds to

Or 1L rw

Qr (l/, k/, b) — ,
4 D st Do (1A Syrpger ) Ly e

(C3)

where the denominator is proportional to the fraction of all
stubs that corresponds to red stubs stemming from nodes of
class (1, k). In the case of red stubs leading to red stubs—
i.e., links between nodes in the same layer—we need to
double the contribution of L ; since each link between
nodes of the same class contributes to two red stubs, which
yields

Sy (1 + S ) Lug oy
Yo rrst 2w (1 Syrgger ) Ly e

Oyl K, r) = (C4)

The case of red stubs leading to green stubs is similar to
Eq. (C2) and is straightforward to obtain:

leJ’k’ . /
ifl'>1+1
I/> //(l+6 116 v//)L .!/ "
erk(l/, k’,g) _ Z[ >/ Zk 1" Okl ) Lot 17
0 otherwise.
(Cs5)

Finally, by inserting Egs. (C1)—(C5) in Eq. (2), we obtain

ri(x) = , (C6a)
. > st 2w (1 + 8y ) L i
Z ’Ll—lk’,ler_ /
Vh(x) = ==, (C6b)
YL
D or<i-1 2w Liv uX),
v (x) = A (C6e)
D or<i—1 2ok Lo i
|
APPENDIX D: PERCOLATION THRESHOLD e = pMe, (DZ)

The value of the percolation threshold p. can be
computed analytically by a linear stability analysis of
the solution @ =1 of Eq. (5). Substituing afj, = 1 — &,
where &, <« 1, yields

of ik (x) /
4 = pZ Y, € (D1)
ko 'k Tx=1

when limiting the expansion of f%(1—g) to the first
order. The last equation can be rewritten as an eigenvalue
problem,

thus indicating that the fixed point @ = 1 loses its stability
—i.e., the extensive component emerges—when the largest
eigenvalue of pM exceeds 1. The percolation threshold p,.
therefore equals the reciprocal of the largest eigenvalue of
M, which, by virtue of the Perron-Frobenius theorem, is
real and positive.

The elements of M can be written as

8f?k(1) — 1 82(:0[1{(1) ay(l)ljc/(l) (D3)
oxy, (k) S Oxg0x Ox,
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where the derivatives are calculated directly from Eq. (B10) and (C6a)—(C6c). While the derivatives of y% (x) are
straightforward, the derivatives of ¢ (x) require special care with respect to the value of k — ¢;. To facilitate the numerical

implementation of the formalism, we provide the explicit expression of the derivatives of ¢ (x):

r a‘ﬂlk(l)
(k") = ) = Ci P> (D4a)
k—=c)ph =6c.c pn](k—c)pf ifk—c <1
a(p (1) ( 1) F ik cr.ci Wk 1k
(ke = ) (D4b)
Ik (k—c 1)[9‘;]/( otherwise,
ey, = o) _ [l =pi) + (k=e)(L=pi) + 8, [Pid " (k= e)pp i k—c; <1 i)
" ax?k c(1=pp) + (k=c)(1 - P‘?k> otherwise,
32¢1k(1) r
oxg o= DIPRL (D4d)
O pu(1 plkplk Ocrery pplei(k=c)pf, ifk—c; <1 (D4e)
3xlk8xlk - Cl Plkplk otherwise.
Pou(1) = pp) etk =c)pp (1= pj) + 6, PRl ci(k—c))py,  if k- e <1 (D)
axlkaxlk Cl - 1 ] = pi) + etk —c)pp (1 - P';Ik) otherwise.
Pl (k== 1) Pl =80, [P (k=) (k== 1) [l if k—c, <2
ax% ) (k= Cl_1>[ ] —0crep [Plrk]cl(k—cl)(k—cl—1)[171%(]2—1-50176171 [pl’k]cl(k—cl) [sz]Zk z’ otherwise,
(D4g)
ci(k=c))pi(1=pp) ifk—c,; <1
Pop(1) ci(k=c)pl(1=pp) +(k=c))(k=c;= 1) pl(1=pJ) +8c,c, [Pl (k=c)) (k=c; = D[pf]* if k—c;=2
Ot | eulk=e)p(1=pi)+ (k=) (k= er=Dpf(1 = P + 8, (PRI (k=) (k=i = D P}
~8cyepy [P (k=) ]2112 fj otherwise,
(D4h)
ci(c; = 1)(1 _plrk)2+zcl(k_cl)(1 —Pfk)(l —P'?k) if k—¢; <1
— ci(er=1)(1 = pp)? +2¢,(k=c)(1 = pp)(1 = pii) + (k= ¢;) (k= ¢; = 1)(1 = pj)?
D) _J g ik = )k = = DIp? i k=2
X
" ciler=1)(1 = pj)? + 2¢,(k = ) (1 = pp) (1 = ) + (k= e) (k= ¢; = 1)(1 = pj)?
~Beye, [PRJ (k= ) (k= ¢ = VPRI + 8eye,, [P (k= ) [P 225 otherwise.
(D4i)

Let us recall that ¢; # ¢;,_; and pj, = 1 whenever k = ¢, since these nodes are in the first layer of their core by definition,

and that we set c¢; # ¢( to simplify the notation. Finally, note that Eqs. (D4) satisfy

Oy (1)

xS, = Z<k i =k

a a

and
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SO S ke — ) =

a ad
ad OxjOxj o=

k(k—1) (D6)

fora, o’ € {r, g, b} and regardless of the value of k — ¢, as
expected.

APPENDIX E: OTHER APPROACHES TO
NETWORK COMPRESSION

Let us recall that we aimed to find a compression of
networks that (1) provides an intensive description of
network structure, (2) allows an exact mathematical
description, and (3) preserves the accuracy of the message
passing approximation. In this Appendix, we briefly dis-
cuss some other promising network compression appro-
aches, but to which one or more of the following short-
comings led us to discard them from our contribution. First,
some descriptions of network structure were simply not
designed to capture structures relevant to percolation or
other dynamical processes. Second, some allow simple
mathematical description, but move the difficulty of the
problem to inferring the structure on which the description
should apply which, in some cases, is still an active area of
research. Third, some simply do not have known math-
ematical descriptions.

1. Stochastic block models (SBMs)

In its most general version, the stochastic block model
(SBM) is described as N nodes divided into B blocks with a
given number of edges ¢,, between blocks r and s. More
relevant to dynamical processes and percolation is the
degree-corrected version that also maintains the degree
distribution of nodes. The problem of inferring the block
structure within the SBM is not a simple one, but it allows
principled solutions in terms of minimum description
length or Bayesian model selection [34]. Once inferred,
the framework of multitype probability generating func-
tions used in the main text can be used to mathematically
describe the structure around nodes with a given degree and
block membership.

Unfortunately, the goal of the SBM is to describe large-
scale block structure in networks and not necessarily the
microscale or local connections at which our approach
operates. In fact, the treelike networks for which our
mathematical framework is exact do not contain significant
blocks encoding their structure. For example, the optimal
description of the finite Cayley tree shown in Fig. 2 in terms
of a degree-corrected SBM reduces the tree to a bipartite
network with one block containing the even generations of
the tree and the other block containing the odd generations.
The ensemble of networks defined by this block structure is
obviously very similar to that of the configuration model
or correlated configuration model with small exceptions.
The degree-corrected SBM will therefore not preserve the

connected tree structure, simply because it is not the
objective of the SBM.

2. Motif decompositions (MD)

Motif decomposition (MD) is related philosophically to
the SBM, but focuses on smaller (microscopic) structures
[9,35]. The objective of MD is to find common small motifs
with a fixed structure of connections among each other.
Nodes are then described by their number of memberships
to different motifs; the complex treelike composition of
motifs can be described mathematically by solving their
internal structure independently [9,10].

The larger problem with MD is that there is currently no
principled approach to infer the set of relevant motifs in real
networks to accurately predict the outcome of percolation.
For example, the tree of Fig. 2 could be exactly described
by keeping the root node as a motif of size one, and then by
distinguishing all wedges (motifs of size 3) by their motif
degree. This would result in three unique motifs and an
exact description. However, this decomposition breaks
down if two or more generations to the Cayley tree are
added, which would then require motifs that span more
than two generations of the tree. This issue illustrates the
larger problem: There is no systematic way to exactly
decompose these trees in motifs, and even less so for
complex networks.

3. dk series

The dk series is one way to provide a systematic MD
[36]. The dk series hierarchically extends the concept of
motif degree to motifs of increasing sizes as a nested series.
Per definition, the zeroth element in the dk series, given by
d = 0 and described by the Ok distribution, is simply the
average degree of the network. The next element, the 1k
distribution, looks at motifs of size 1 (nodes) and their
connections through motif degree to other motifs of size 1,
hence corresponding to the standard degree distribution.
The second element, the 2k distribution, follows motifs of
size 2 (edges), which corresponds to the joint degree
distribution defining the number of edges connecting nodes
of degree k and &'

For d = 3, the two possible motifs are triangles and
wedges, distinguished by the degree k, k', and k" of the
nodes involved. This series extends to motifs of larger size
for higher values of d, and the motif-degree correlations
become exponentially more involved (and become exten-
sive in network size once we start distinguishing every
unique motif of a given size d because of the unique
sequence of d degrees involved in the motif).

While a mathematical description exists for d € {0,
1,2}, there is currently no mathematical description for
the ensemble of all networks preserving all features
captured by the dk series with d > 3. Given how con-
straining the dk series becomes for higher d [36], extending
exact mathematical descriptions to these highly constrained
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ensembles is a hard but potentially important problem to
tackle.

4. Geometric embeddings

The models considered above all consist of pairwise
interactions (i.e., either two nodes connected by a link or a
node connected to a motif), thus explaining our difficulty to
model general forms of clustering realistically, which are
three-body interactions. To circumvent this limitation, an
interesting approach assumes that complex networks are
embedded in a latent metric space where the distance
between each pair of nodes controls their probability of
being connected. From a mathematical point of view, the
interactions are still pairwise, but the triangle inequality of
the underlying metric space indirectly allows the repro-
duction of the clustering patterns observed in real complex
networks [37-39].

Critically, most applications require the inference of the
positions of the nodes of real complex networks into a
latent hyperbolic space [40—43], an optimization problem
that scales badly with the number of nodes. Many heuris-
tics, some inspired by machine-learning methods, have

been proposed over the years [38,41,44-47], and Refs. [40—
43] provide compelling evidence of their success. However,
the range of complex networks that these methods can map
into hyperbolic space is still too restricted for this meth-
odology to become the state-of-the-art approach to model
the structure of complex systems. Moreover, although these
maps provide invaluable information to understand the
overall organization of these systems, the inferred positions
of the nodes are not precise enough to generate represen-
tative surrogates of the original network.

While the next generation of embedding algorithms will
surely overcome these limitations, the remaining challenge
will consist in incorporating the inferred positions of the
nodes in hyperbolic space into a mathematical formalism to
predict the outcome of various dynamical processes such as
percolation. To the best of our knowledge, such a formal-
ism has yet to be developed.

APPENDIX F: NETWORK DATASETS

Table I provides the domain, source, brief description,
and reference (when available) for the 111 networks used in
this study.

TABLE I. Description of the network datasets.

Network name Domain Source Description or name within source” Reference
AdoHealth Social [48] Adolescent health (1994) [49]
Arabidopsis Biological [48] Arabidopsis interactome (2011) [50]
ArtExhibit Social [48] Art exhibit dynamic contacts (2011) [51]
arXiv Social [48] Scientific collaborations in physics (1995-2005) [52]
Brightkite Social [48] Location-based social networks [53]
Cargoships Transport associated web page”  Shipping journeys between major commercial ports [54]
CargoshipsBB Transport from the authors Shipping journeys between major commercial ports [55]
CatBrain2013 Connectome  [48] Cat brain (2013) [56,57]
CatCortexThalamus1999a Connectome  [48] Cat cerebral hemisphere [58]
CatCortexThalamus1999b Connectome  [48] Cat cerebral hemisphere [58]
CElegans Connectome  [48] C. elegans neurons (1986) [59,60]
CElegansGenetic Biological [48] Multiplex protein interactions (2015) [61]
CoastalFoodWeb* Food Web [48] Coastal food webs with metazoan parasites [62]
Corporate Economic [48] Corporate ownership (2002) [63]
Counties Geographical public dataset’ Adjacent counties in the U.S.

Digg Information  [48] Digg reply network (2008) [64]
Drosophilal3 Connectome  from the original paper Synapses in the optic medulla of Drosophila [65]
Drosophilal3_full Connectome  [48] Fly medulla (2013) [65]
DrosophilaGenetic Biological [48] Multiplex protein interactions (2015) [61]
Ecoli Biological from the authors Shared participation of metabolites in E. coli [43,66]
EColi2 Biological from the authors Shared participation of metabolites in E. coli [43,66]
Email Social [48] Email network (EU research inst.) [67]
Enron Social [48] Email network (Enron corpus) [68]
EuropeGridKit Infrastructure  public dataset® Transmission network

EuropeSciGrid Infrastructure public dataset’ Transmission network

FloridaBayDry Food Web [48] Florida cypress wetlands food web (1998)

FloridaBayWet Food Web [48] Florida cypress wetlands food web (1998)

FoodWeb Food Web [48] Little Rock Lake food web (1991) [69]
GermanRoads Infrastructure [48] German highway system (2002) [70]
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TABLE 1. (Continued)

Network name Domain Source Description or name within source® Reference
GermanySciGrid Infrastructure public dataset’ Transmission network
Gnutella Technological [48] Gnutella p2p networks (2002) [71]
HollywoodFilmMusic Social [48] Hollywood film music [72]
HomoGenetic Biological [48] Multiplex genetic interactions (2014) [61]
Human08 Connectome from the authors Axonal connections between brain regions [73,74]
Human12a Connectome from the authors Axonal connections between brain regions [73,74]
Human131 Connectome  [48] Axonal connections between brain regions [75]
Human13m Connectome  [48] Axonal connections between brain regions [75]
HumanHerpes4Genetic Biological associated web page®  Genetic-protein interactions Epstein-Barr virus [61]
HumanHIV1 Biological associated web page®  Genetic-protein interactions human HIV type 1 [61]
InternetAS Technological [48] Route Views AS graphs (1997-1998)
InternetCaida Technological [48] CAIDA AS graphs (2004-2007)
InternetOregon Technological [48] Route Views (extended) AS graphs (2001)
Internet Technological [48] Internet AS graph (2006) [6]
Jazz Social [48] Jazz collaboration network [76]
Macaque93 Connectome  [48] Macaque cortical connectivity (Young) [77]
Macaque95 Connectome  associated web pageh Cortical connectivity [78]
MangroveEstuaryDry Food Web [48] South Florida ecosystems (2005)
MangroveEstuary Wet Food Web [48] South Florida ecosystems (2005)
MetabolicTrade Biological unpublished dataset Metabolite exchanges of synthetic

microbial populations
Mousel4 Connectome  from the original paper Axonal connections between brain regions [79]
MouseRetina2013 Connectome  [48] Mouse retina (2013) [80]
MouseRetina2013_full Connectome  [48] Mouse retina (2013) [80]
MusGenetic Biological [48] _ Multiplex protein interactions (2015) [61]
NAmericaGridKit Infrastructure  public dataset' Transmission network
NetScientists Social [48] Scientific collaborations in network science (2006) [81]
NorwegianBoard Social [48] Norwegian Boards of Directors (2002-2011) [23]
PGP Information  [48] PGP web of trust (2004) [24]
PGP2009 Information  [48] PGP web of trust (2009) [82]
PINHSapiens Biological associated web page’  Protein-protein interactions in H. sapiens [26]
PlantPollinator Food Web [48] Clements and Long plant-pollinator web
PlantPollinator2 Food Web [48] McCullen plant-pollinator web
PlantPollinator3 Food Web [48] Robertson plant-pollinator web
Plasmodium Biological [48] Multiplex protein interactions (2015) [61]
PolBlogs Information  [48] Political blogs network (2004) [83]
PolBlogs?2 Information  [48] Political blogs network (2004) [83]
PolBooks Information  [48] Political books network (2004)
PolishGrid Infrastructure  associated web page®  Subset of the power grid of Poland [84]
PowerGrid Infrastructure [48] Western U.S. Power Grid [1]
ProteinCore Biological associated web pagel Protein-protein interactions in S. cerevisiae [85]
RattusGenetic Biological [48] Multiplex protein interactions (2015) [61]
RattusNorvegicus1 Connectome  [48] Rat brain (2011-2013) [86]
RattusNorvegicus2 Connectome  [48] Rat brain (2011-2013) [86]
RattusNorvegicus3 Connectome  [48] Rat brain (2011-2013) [86]
RhesusBrain2012 Connectome  [48] Rhesus brain (2012) [871]
SacchCere Biological [48] Multiplex protein interactions (2015) [61]
Slashdot Social [48] Slashdot Zoo friend-foe network (2009) [88]
Square Synthetic - 50 x 50 square lattice
UClrvine Social [48] Facebook100 [89]
USAirports500 Transport [48] U.S. airport network (top 500; 2002) [90]
USAirports Transport [48] U.S. airport networks (2010)
UScommodities™ Economic from the original paper Trade between industrial sectors in the U.S. in 2007 [91]
UScommute™ Transport from the original paper Daily flow of commuters between counties [91]

in the US 2000
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TABLE 1. (Continued)

Network name Domain Source Description or name within source® Reference
WAirports Transport [48] Opentflights airport network (2010)

WikipediaNorms Information  [48] Wikipedia norms (2015) [92]
WorldAirports Transport [48] Openflights airport network (2016)

WordAssoc Information  [48] USF word associations [93]
WTW2013 Economic from the authors Trade exchanges between countries in 2013 [42]
ZebraFinchl7 Connectome  from the original paper Synapses in the basal-ganglia (Area X) [94]

of the Zebra Finch
ZebraFinch17b Connectome  from the authors Synapses in the basal-ganglia (Area X) [94]

of the Zebra Finch

*A brief description of the network dataset or its name can be found in Ref. [48].

°Ref. [95].
“21 unique edge lists that can be downloaded from Ref. [96].
dRef. [97].
°Ref. [98].
‘Ref. [99].
ERef. [100].
"Ref. [101].
"Ref. [98].
JRef. [102].
*Ref. [103].
'Ref. [104].

"The unweighted backbone considered in Ref. [55] was also used.
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