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Human populations exhibit complex behaviors—characterized by long-range correlations and surges in
activity—across a range of social, political, and technological contexts. Yet it remains unclear where these
collective behaviors come from or if there even exists a set of unifying principles. Indeed, existing
explanations typically rely on context-specific mechanisms, such as traffic jams driven by work schedules or
spikes in online traffic induced by significant events. However, analogies with statistical mechanics suggest a
more general mechanism: that collective patterns can emerge organically from fine-scale interactions within a
population. Here, across four different modes of human activity, we show that the simplest correlations in a
population—those between pairs of individuals—can yield accurate quantitative predictions for the large-
scale behavior of the entire population. To quantify the minimal consequences of pairwise correlations, we
employ the principle of maximum entropy, making our description equivalent to an Ising model whose
interactions and external fields are notably calculated from past observations of population activity. In
addition to providing accurate quantitative predictions, we show that the topology of learned Ising
interactions resembles the network of interhuman communication within a population. Together, these
results demonstrate that fine-scale correlations can be used to predict large-scale social behaviors, a
perspective that has critical implications for modeling and resource allocation in human populations.
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I. INTRODUCTION

In the study of human behavior, significant effort
has focused on understanding the actions of one or two
individuals at a time. It has been observed, for instance, that
people engage in “bursts” of actions in quick succes-
sion [1–3], and significant effort has concentrated on
understanding the correlated activity of pairs and triplets
of individuals [3,4]. But if we broaden our perspective to
an entire population, it becomes increasingly clear that
humans also exhibit large-scale patterns of correlated
activity. For example, urban transportation systems
undergo surges of correlated activity known as traffic jams
[5], first responders are required to handle correlated spikes
in demand for emergency services [6], and internet and

telephone networks must be designed to withstand surges
of collective activity [7,8]. But where do these large-scale
patterns come from? Does it even make sense to discuss
such distinct phenomena in the same breath?
Existing explanations for collective human behaviors have

focused primarily on external mechanisms, such as fluctua-
tions in urban traffic based on the time of the week [5]
or spikes in demand for emergency services in response
to natural disasters [6]. While external influences are an
important part of the story, such explanations are inherently
limited by their reliance on context-specific mechanisms like
daily or weekly rhythms and natural disasters. By contrast,
interactions between individuals are present in almost every
human context, providing the possibility for a much more
general explanation for the emergence of large-scale corre-
lations. It is precisely this line of reasoning that has fostered
vibrant efforts linking the study of social systems to tools
and intuitions from statistical physics [9]. By adapting
established models of collective behavior in physical sys-
tems, such as the Ising model and similar agent-based
models, scientists have gained a deeper understanding of
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the nature of collective behaviors in social systems. This
program, for example, has resulted in Ising-like models of
social dynamics and human cooperation [10–12], viral
models aiding in the design of vaccination strategies [13],
descriptions of the evolution of social networks [14], and
statistical models of criminal activity [15,16].
Here, we draw inspiration from these seminal results to

investigate the role of fine-scale correlations in generating
large-scale patterns of human activity. Focusing on four
data sets of human activity, from email and private message
correspondence to physical contact and music streaming,
we find that each population exhibits periods of intense
collective activity, which cannot be explained by com-
monly used models that assume independence in human
behavior [17–20]. Intuitively, these surges in activity could
be driven by a common external influence, such as people’s
daily and weekly schedules, or they could be driven by
local correlations between pairs of individuals. To address
the validity of the latter explanation, we quantify the
collective impact of pairwise correlations by constructing
a pairwise maximum entropy model that is formally
equivalent to an Ising model from statistical mechanics.
While the Ising model has previously been used to under-
stand qualitative aspects of human activity [9,11,21–23],
here, in order to make quantitative predictions, we calculate
the specific external fields and pairwise interactions that
best describe each population. In what follows, we show
that this maximum entropy model (i) accurately predicts the
frequencies of different patterns of collective human
activity and (ii) bears a close resemblance to the network
of interhuman communication within a population. Taken
together, these results constitute an important step in the
development of quantitative models of collective human
behavior based on fine-scale correlations within a popula-
tion. Such models, in turn, have important implications for
resource allocation in communication [8] and transporta-
tion [5] networks, understanding social organization [24],
and preventing viral epidemics [25].

II. NETWORK EFFECTS OF CORRELATIONS

As a salient example of collective human activity,
we begin by studying patterns of email correspondence,
focusing specifically on the email activity of 100 scientists
at a European research institution over 526 days [26,27].
To understand the role of correlations in the timing of
people’s actions—and in order to compare against other
types of activities that are not directed from one individual
to another [5–7,28,29]—we initially focus on the timing
of sent emails while blinding our analysis to the email
recipients. Importantly, this choice will later allow us to
compare the architecture of functional interactions derived
from our maximum entropy model with the network of
communication within the population.
In a sufficiently small window of time Δt, each action

appears to be binary—either individual i sent an email

(σi ¼ 1) or they were silent (σi ¼ 0). By discretizing
human activity in this way, we can begin to quantify
correlations between people’s actions. We want the time
window Δt to be as large as possible (to detect correlations
between individuals) without being so large that individuals
perform multiple actions within the same window. We find
that nearly 90% of consecutive emails from the same
individual are sent with at least two minutes in between
[Fig. 1(a)], defining a natural timescale that we use as our
Δt. Discretizing the data, as shown in Fig. 1(b), we produce
a set of about 3.8 × 105 binary vectors σ, each of which
captures the activity of the entire population within a given
two-minute window.
The simplest and most common models of human

activity assume that each individual behaves independently,
implying that the number of people performing an action in
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FIG. 1. Surges of human activity and failure of the independent
approximation. (a) Distribution of interevent times for individuals
in a network of email correspondence. The dashed lines indicate
the proportion of interevent times less than two minutes. (b) Top:
Activity of the 50 most active individuals over a half-day period,
where each dot represents a sent email. Bottom: Network activity
discretized into two-minute windows. (c) Histogram of Pearson
correlation coefficients ρij between activity time series for all pairs
in the 100-person population. (d) Distribution of the number of
emails sent in a given two-minute window (black) and the
distribution after shuffling each person’s activity to eliminate
correlations (blue). The dashed lines show an exponential dis-
tribution fit to the observed data (black) and a Poisson distribution
fit to the shuffled data (blue). (e) The rate of each observed activity
pattern, plotted against the approximate pattern rate assuming
independent people. The dashed line indicates equality.
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a given window follows a Poisson distribution [17]. Indeed,
the Poisson distribution has been widely used to quantify
the effects of various human actions, including telephone
calls to a call center [18], internet activity [19], industrial
accidents [17,18], and highway traffic flow [20]. In our
population of email users, most pairs of individuals are only
weakly correlated [Fig. 1(c)], suggesting that small groups
should be well approximated by an independent model.
However, if we extend the independent approximation to the
entire population of 100 email users, it fails dramatically.
While the Poisson distribution predicts a super-exponential
dropoff in the number of actions performed in a given
window, we find instead that human activity actually follows
an exponential distribution [Fig. 1(d)]. This exponential
distribution is characterized by a heavy tail, representing
moments in timewhenmanymore people are sending emails
thanwould be expected if theywere behaving independently.
Additionally, we report similar heavy-tailed distributions in
separate data sets of private messages, physical contacts, and
music streams (Figs. 10–12). For comparison, after shuffling
the timing of the emails to eliminate correlations [30], we do
not witness a window involving six or more active users
[Fig. 1(d)], while we do observe about 1500 such instances
in the original data set—nearly three per day.
The independent approximation also makes straightfor-

ward predictions for the rate of each activity pattern.
Denoting the probability of individual i sending an email
in a given two-minute window by piðσiÞ, the probability of
observing a given activity pattern σ is simply predicted to
be P1ðσÞ ¼

Q
ipiðσiÞ. This independent model severely

underpredicts activity patterns involving three or more
email users [Fig. 1(e)], and we find a similar discrepancy
in a network of private messages [Fig. 10(c)]. In fact, under
the independent model, each pattern of email activity
involving seven active users should have only appeared
roughly once every 1020 seconds—longer than the age of
the Universe. We conclude that the independent approxi-
mation fails to explain the heavy-tailed nature of human
behavior, characterized by surges of collective activity
[5–8]. But where do these surges come from?

III. MAXIMUM ENTROPY MODEL
OF HUMAN ACTIVITY

To improve upon the independent model, we must take
into account correlations between individuals. Intuitively,
such correlations could be driven by external influences
such as daily and weekly rhythms [Fig. 2(a)], a hypothesis
that has dominated existing explanations of large-scale
human behaviors [5–8]. Alternatively, fine-scale correla-
tions involving only a few individuals could build upon one
another to have a strong impact on the population as a
whole [Fig. 2(b)]. Here, we focus on the simplest possible
correlations within a population—those between pairs of
individuals—and ask whether these pairwise correlations
can give rise to the large-scale patterns of activity that

we observe in the data. As we will see, focusing on pair-
wise correlations represents a natural first step towards
understanding emergent collective human activity, opening
the door for straightforward generalizations to more com-
plex higher-order correlations [Fig. 2(b)] [31,32].
We require a model that incorporates the observed

pairwise correlations in the data while including as little
information as possible about higher-order correlations
between three, four, or more individuals. While it is not
immediately obvious how one would construct such a
model, Jaynes famously showed that an elegant solution
lies in the principle of maximum entropy [33]: Among the
infinite set of distributions consistent with a given set of
correlations, the unique one that assumes as little informa-
tion as possible about additional correlations is precisely
the distribution with maximum entropy. This maximum
entropy principle lies at the heart of equilibrium statistical
mechanics [33,34] and has become increasingly popular as
a tool for studying emergent phenomena in a range of
complex systems, including networks of neurons in the
brain [30,31], flocks of birds [35], protein structures [36],
and gene coexpression patterns [37]. Despite this wide-
spread adoption in biophysics, to our knowledge a similar
data-driven approach has not been attempted previously in
the social sciences.

External influences:(a) Internal correlations:(b)

Example: Weekly rhythms

Noninteracting population

Correlated activity

Pairwise

Triplet

Quadruplet

H
igher-order

FIG. 2. External influences versus internal correlations. (a) An
external mechanism—here taken to be weekly rhythms—
influencing the activity of a population of noninteracting humans.
Intuitively, circadian and weekly rhythms might influence people
to send emails more frequently during the daytime and on
weekdays, thereby inducing population-wide correlations.
(b) Alternatively, population-wide correlations could arise from
fine-scale interactions between individuals within a population.
The set of all correlations forms a hierarchy, beginning with
simple pairwise correlations between two individuals, followed
by more complicated higher-order correlations involving three
(triplet), four (quadruplet), or more individuals.
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Here, we consider the pairwise maximum entropy
model, defined by the Boltzmann distribution

P2ðσÞ ¼
1

Z
exp

�X
i

hiσi þ
1

2

X
i≠j

Jijσiσj

�
; ð1Þ

where the external fields hi and pairwise interactions Jij are
Lagrange multipliers that ensure the model matches the
observed individual activity rates and pairwise correlations
in the data, respectively, and Z is the normalizing partition
function. If we switch notation to σi ¼ �1, where þ1
stands for activity and −1 for inactivity, P2 is equivalent
to the Ising model, which has long been used to simu-
late human dynamics in social networks [9,11,21–23].
However, while existing applications of the Ising model
to human populations are based on metaphors about how
people interact [11,12,21,23,38], we emphasize that our use
of the Ising model is quantitatively rigorous in the sense
that the external fields hi and interactions Jij are calculated
to fit the observed activity of a given population (see
Appendix D).

IV. MINIMAL CONSEQUENCES
OF PAIRWISE CORRELATIONS

Calculations in the Ising model typically require sum-
ming over all 2N activity patterns, where N is the number
of elements in a system, prohibiting applications to large
populations. Thus, it is common to construct a picture of
the whole population by studying many different sub-
populations [30], such as the 10 email users in Fig. 3(a).
To quantify the explanatory power of pairwise correlations,
we need meaningful ways to compare the accuracy of the
maximum entropy model P2 to that of the independent
model P1. Toward this end, we use the Jensen-Shannon
divergenceDJSðQjjPÞ as ameasure of distance from each of
the model distributions (which we call Q) to the observed
activity distribution P. Put simply, the Jensen-Shannon
divergence represents the inverse of the number of inde-
pendent samples needed to distinguish each model Q from
the observed data [39]. Across 300 random groups of 10
users,we find that, on average, onewould require3.13 × 104

independent samples—over 43 days worth of data—to
distinguish the pairwise model P2 from the true distribution
P [Fig. 3(b)]. By contrast, one would typically require 5
times fewer samples to distinguish the independent model
P1 from the observed data. Moreover, we find qualitatively
similar results for individuals engaged in private messaging
[Fig. 10(e)], face-to-face interactions [Fig. 11(c)], and online
music streaming [Fig. 12(c)]. These observations suggest
that the pairwise model provides a marked improvement in
accuracy over the independent model.
We also wish to compare against a model representing

the hypothesis that patterns of human activity are driven by
external influences. While there are many external factors

influencing human actions on a daily basis, from weather
patterns to shifting demands at work, here we consider the
most intuitive and well-studied external influence, namely,
the impact of daily and weekly routines [see Fig. 2(a)]
[5,7,8,40]. To formalize the hypothesis that activity patterns
are driven by daily and weekly schedules, we consider
the conditionally independent model PC, wherein each
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FIG. 3. The pairwise maximum entropy model accurately
describes human behavior. (a) Learned Ising interactions Jij
and external fields hi describing a random 10-person group in the
email network. (b) Jensen-Shannon divergences between the true
distribution P and the independent P1 (blue), maximum entropy
P2 (red), and conditionally independent PC (green) models.
Histograms reflect estimates from 300 random groups of 10
individuals. Inset: DJSðP2jjPÞ versus DJSðPCjjPÞ for the 300
groups. The dashed line indicates equality. (c) Fraction of the
network correlation (quantified by the multi-information I)
captured by the maximum entropy (red) and conditionally
independent (green) models, plotted against I for each group
of 10 people. The multi-information is divided by Δt to remove
dependence on the window size. (d) Fraction of the total
correlation captured by the pairwise (red) and conditionally
independent (green) models in four different modes of human
activity: email correspondence, private messaging, physical
interactions, and online music streaming. Error bars represent
standard deviations over 300 random 10-person groups for the
email and private message data sets, and over 200 groups for the
physical contact and music streaming data sets. (e) Fraction of the
multi-information in the email data captured by the maximum
entropy model versus group size, where each data point is
averaged over 300 randomly selected groups. The dashed line
represents the best log-linear fit, with a 95% confidence interval
indicated by the shaded region.
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individual performs actions independently from all other
individuals, but their activity rates are allowed to vary
according to the time of the week [30,41] (see Appendix E).
Compared to the conditionally independent model PC, we
find that the maximum entropy model P2 is closer to the
observed data (i.e., has a smaller Jensen-Shannon diver-
gence from P) across 291 of the 300 groups [Fig. 3(c),
inset]. This result is particularly notable when considering
that P2 only has 55 parameters for each group of 10
individuals, while PC requires knowledge of each individ-
ual’s email rate at each time during the week, totaling over
5 × 104 parameters.
The pairwise model accurately predicts the rates of

particular activity patterns, but does it explain a majority
of the total correlation in the population? To answer this
question, we note that the total amount of correlation in the
network, contributed by correlations between groups of
users of all sizes, is quantified by the multi-information
I ¼ S1 − S, where S1 is the entropy of the independent
distribution P1 and S is the entropy of the observed
distribution P [34] (see Appendix F). To determine the
amount of multi-information that is contributed by pairwise
correlations, it is useful to review the properties of
maximum entropy models. For a population of N elements,
we can define a sequence of maximum entropy models Pk
that are consistent with all correlations up to the kth order,
where k ¼ 1; 2;…; N. These models form a hierarchy, from
P1, in which all elements are independent, up to PN ,
which is an exact description of the observed activity.
As we scale this hierarchy, the entropies Sk of the
distributions decrease monotonically toward the true
entropy (S1 ≥ S2 ≥ � � � ≥ SN ¼ S), and the combined con-
tribution of all kth-order correlations is quantified by the
entropy difference Ik ¼ Sk−1 − Sk. We note, for instance,
that these entropy differences sum to the full multi-
information: I2 þ � � � þ IN ¼ I. Thus, the problem of
determining how much of the total correlation in the data
stems from pairwise correlations formally reduces to
calculating the proportion of the multi-information I that
is accounted for by the reduction in entropy from pairwise
correlations (i.e., I2 ¼ S1 − S2).
We observe that pairwise correlations account for a

striking I2=I ≈ 89% of the total correlation in groups of
10 users [Fig. 3(c)]. In turn, this observation implies that
the contributions of all other higher-order correlations,
I3 þ � � � þ IN , only combine to account for the remaining
11% of the multi-information. Meanwhile, the amount of
correlation attributable to daily and weekly rhythms
is represented by the entropy difference IC ¼ S1 − SC,
where SC is the entropy of the conditionally independent
model PC. This popular explanation for collective human
behavior is consistently less effective than the maximum
entropy model at capturing the correlations in the data
[IC=I ≈ 67%; Fig. 3(c)]. Importantly, we show (i) that these
results are robust to both reasonable variation in the time

window Δt used to discretize the data [Appendix B 1,
Fig. 7] and differences in the set of individuals selected
for analysis [Appendix B 2, Fig. 8] and (ii) that the
maximum entropy model is relatively consistent over time
[Appendix B 3, Fig. 9]. Moreover, we verify that similar
results hold in separate data sets of private messages
[Appendix C 1, Fig. 10], physical contacts between indi-
viduals [Appendix C 2, Fig. 11], and music streaming
online [Appendix C 3, Fig. 12], as summarized in Fig. 3(d).
In the data set of private messages, for instance, the
pairwise model captures nearly the same amount of
correlation as in the population of email users (I2=I≈
87%), while people’s daily and weekly rhythms explain
very little of the correlation [IC=I ≈ 5%; Fig. 3(e)].
Interestingly, this difference in I=IC between email activity
and private messages [Fig. 3(c)] reflects the commonly-
held intuition that email activity is moderately tied
to people’s work and leisure schedules, while private
messages are not.
We are ultimately interested in understanding the role

of pairwise correlations in driving large-scale surges of
activity in the entire 100-person population. With this goal
in mind, we calculate the fraction I2=I in groups of email
users increasing in size from N ¼ 2 through 10. For small
groups and relatively weak correlations, as the group size
increases, we expect the multi-information I to increase in
proportion to the entropy difference I2 [30]. Indeed, we
find that the fraction I2=I remains nearly constant as the
groups grow in size (I2=I ∝ N−0.075�0.005). Extrapolating
to the entire 100-person population, we find with 95% con-
fidence that pairwise correlations account for 72%–78%
of the total multi-information in the data [Fig. 3(d)].
This fraction is especially large when considering the
exponential number of possible higher-order correlations
(∼2N) for populations of increasing size N. We conclude
that large-scale patterns of behavior, across several distinct
modes of human activity, can be robustly understood
as emerging from an underlying network of pairwise
correlations.

V. MODELING AN ENTIRE POPULATION

Our analysis of relatively small groups indicates that
the pairwise maximum entropy model can capture a
majority of the correlation structure in groups of up to
100 individuals. This result, in turn, suggests that
the heavy-tailed nature of collective human behavior
[Fig. 1(d)]—characterized by surges of activity—might
emerge organically from pairwise correlations. To test this
prediction directly, we must extend the pairwise maximum
entropy model to include the entire population of 100
email users. In order to learn the appropriate Ising
interactions Jij and external fields hi for all 100 people,
we leverage recent advances in stochastic gradient descent
from statistical physics [42] and machine learning [43],
avoiding the exponential complexity of standard Ising
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calculations [see Appendix D; Fig. 13]. Figure 4(a) shows
that the pairwise model successfully captures the heavy-
tailed nature of human activity, accurately predicting the
frequencies of activity surges involving up to seven and
eight individuals.
To understand how a network of simple pairwise

correlations can generate large-scale spikes in activity, it
is useful to study the structure of the Ising parameters in the
maximum entropy model [Eq. (1)]. We note that each
external field hi either biases individual i toward activity
(hi > 0) or toward inactivity (hi < 0). Meanwhile, each
Ising interaction Jij either influences individuals i and j to
perform actions at the same time (Jij > 0) or at different
times (Jij < 0). Here, we draw an important distinction
between the learned interactions Jij in the maximum
entropy model and the observed pairwise correlations ρij
in the data: While each pairwise correlation quantifies the
frequency with which two individuals perform actions at
the same time, each Ising interaction represents a functional
influence between two individuals to synchronize their
activity, thereby inducing a pairwise correlation. Interesti-
ngly, while correlations in the network are weak and almost
exclusively positive [Fig. 1(c)], the Ising interactions
maintain a large amount of heterogeneity [Fig. 4(b), inset],
with almost an equal number of positive and negative
interactions. Indeed, the learned pairwise interactions
depend highly nontrivially on the corresponding pairwise
correlations in the data [Fig. 4(b)]. Importantly, the pres-
ence of competing positive and negative interactions
generates “frustration,” as in spin glasses [44], wherein
triplets of individuals cannot find a combination of activity
and inactivity that simultaneously satisfies all of their
interactions. This frustration gives rise to a complex energy
landscape of activity patterns with many different local
minima, some of which correspond to patterns involving
many more active individuals than would be expected
under the independent model, thus giving rise to the

heavy-tailed behavior in Fig. 4(a). Intriguingly, such
frustrated interactions have previously been hypothesized
to drive a number of social phenomena [9], such as the
formation of coalitions [45]. By calculating the specific
Ising parameters that describe each population, and by
identifying the presence of competing positive and negative
interactions [Fig. 4(b), inset], our work provides rigorous
evidence for these long-standing hypotheses.

VI. ROLE OF INTERHUMAN COMMUNICATION

Thus far, we have focused on understanding correlations
in the timing of actions, without knowledge of who each
person is interacting with in the population. Fundamentally,
the Ising interactions Jij are merely learned parameters that
ensure consistency with the observed pairwise correlations
in the network. However, it is tempting to imbue them with
physical significance, interpreting these functional inter-
actions as comprising a network of real-world influences
between individuals. For previous applications of maxi-
mum entropy models in neuroscience [30,31] and biology
[35–37], because comparisons with ground truth inter-
actions are often infeasible, any physical meaning attrib-
uted to the learned interactions Jij has remained, at its core,
an analogy. By contrast, in the context of email activity,
we automatically know a subset of the ground truth
interactions—namely, the network of email communication
between individuals. Although it is appealing to suspect
that the learned Ising interactions are closely related to the
structure of email correspondence in the data, we empha-
size that this need not be the case. There is an array of
circumstances that could influence the activity of two
individuals to become correlated, from common functional
roles in the network to shared communication with an
external third party. Furthermore, even if correlations do
arise from direct communication, this communication
could take on many forms that do not appear in the data
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set, including face-to-face contact, texts, calls, or other
online avenues.
Keeping in mind these reasons for guarded optimism,

here we compare the learned interactions Jij from our
maximum entropy model with the network of email traffic
between individuals. Letting ni→j denote the number of
emails sent from person i to person j, and letting ni ¼P

j ni→j denote the total number of emails sent by person i,
we define the correspondence rate between two people i
and j to be Aij ¼ ðni→j þ nj→iÞ=ðni þ njÞ. In other words,
Aij represents the fraction of the ni þ nj emails sent by
person i and person j that were addressed to each other.
We find that most correspondence only accounts for around
1% of a pair’s total email communication, while a small
number of pairs communicate almost exclusively with one
another [Fig. 5(a)]. Considering all pairs of people that
exchanged at least one email (Aij > 0), we find that the
learned Ising interactions Jij are significantly correlated
with the correspondence rates Aij in the data [Spearman’s
correlation coefficient rs ¼ 0.13, p ¼ 2 × 10−7; Fig. 5(b)].
This relationship between the learned Ising interactions
and the ground truth communication in the population is
particularly interesting after reflecting on the myriad ways

in which these two networks could have remained unre-
lated, as described above.
To fully appreciate the strength of the relationship

between Jij and Aij, we focus on the fraction f of the
strongest pairwise interactions and correspondence rates in
the population. These two thresholded networks overlap
significantly [Fig. 5(c)], with the strongest 1% of Ising
interactions exhibiting a 20% overlap with the top 1% of
frequently communicating pairs—20 times higher than
expected if Jij and Aij were independent. This overlap
becomes even more pronounced as we increase the thresh-
old [Fig. 5(d)], such that the single strongest maximum
entropy interaction in the entire population corresponds
precisely to the pair of individuals that communicate most
frequently. This relationship between Jij and Aij provides a
compelling mechanistic interpretation for the Ising inter-
actions in our maximum entropy model; namely, frequent
communication between a pair of individuals (quantified
by Aij) acts as an influence to synchronize their activity
(quantified by Jij). As demonstrated in previous sections, the
resulting pairwise correlations, in turn, can generate the
types of large-scale correlations and surges in human activity
that are ubiquitous in the modern world [5–8,28,29].
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VII. CONCLUSIONS AND FUTURE DIRECTIONS

Despite the widespread investigation of fine-scale cor-
relations as the building blocks of large-scale behavior in
complex systems throughout physics [33,34], neuroscience
[30,31,46], and biology [35–37], a similar quantitative
approach to human dynamics has been notably lacking.
Here, we provide an important step toward the ultimate
goal of understanding the role of fine-scale correlations in
generating large-scale patterns of human activity. Studying
four data sets that reflect the diversity of human activity, we
first show that all populations exhibit surges of collective
activity, a phenomenon that has become the subject of
intense research focus [5–8,28,29]. Importantly, these
surges in activity cannot be accounted for by commonly
used models that assume independence in human behavior
[17–20]. To understand where surges in activity come from,
we consider the possibility that large-scale patterns arise
naturally from combinations of simple pairwise correla-
tions between individuals. To formalize this hypothesis,
we utilize the principle of maximum entropy from infor-
mation theory, deriving a pairwise maximum entropy
model of human activity that is formally equivalent to
an Ising model. Interestingly, this maximum entropy model
accounts for 72%–78% of the total correlation in a
100-person population of email users [Fig. 3(e)] and
accurately predicts the heavy-tailed distribution of activity
surges [Fig. 4(a)]. Additionally, we demonstrate that the
Ising interactions in our model closely resemble the net-
work of interhuman communication within the population.
This close relationship between functional interactions and
ground truth communication suggests an intuitive mecha-
nism driving pairwise correlations.
Just as emergent phenomena have garnered significant

attention in the natural sciences [30–37], we anticipate that
similar approaches will prove fruitful in the development of
accurate models of large social systems. Importantly, while
a majority of existing research has focused on the impacts
that external influences have on human populations [5,6],
these explanations are fundamentally limited by their
reliance on context-specific mechanisms [7,8]. By contrast,
interactions between humans are present in almost every
context, and, as we have demonstrated, these interactions
can build upon one another to have a large-scale impact on
the behavior of an entire population. In this way, thinking
carefully about the role of fine-scale correlations in activity
can have quite general implications for resource allocation
in communication [8] and transportation [5] networks,
understanding social organization [24], and preventing
viral epidemics [25].
To conclude, we point out a number of limitations of our

analysis that highlight important directions for future work.
First, we remark that, given the diversity of experiences that
shape human actions, it would be naive to conclude that all
collective behaviors only emerge from internal correlations.
To the contrary, it has been well established that external

influences play an important role in predicting a number of
collective human behaviors [5–8,28,29]. Therefore, future
work should investigate the interplay between external
influences and internal interactions in human populations.
Such an investigation would likely benefit from advances in
control theory and influence maximization [47,48], which
have recently been used to predict the propagation of
external influences in Ising networks [23,38,49]. Second,
we note that our investigation has focused primarily on
pairwise correlations. While these simplest correlations
represent a logical first step, our results do not rule out the
possibility that higher-order correlations could also have an
important impact on large-scale behavior. Practically
speaking, the primary difficulty in studying such higher-
order correlations lies in determining which to include in
a maximum entropy model, as there exist ðNkÞ different
choices for each kth-order correlation (a number that grows
nearly exponentially with k). Fortunately, to handle this
explosion of parameters, recent advances in neuroscience
have produced tractable techniques for generating sparse
higher-order maximum entropy models [31]. Such higher-
order models represent systematic generalizations of the
methods presented here and could prove vital for under-
standing the large-scale impacts of triplet and quadruplet
correlations [Fig. 2(b)], which are thought to encode
important organizational features in human populations
[4] (see Appendix G for an extended discussion).
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APPENDIX A: DATA PREPROCESSING

Here, we discuss the details of how the email data are
processed, noting that the other data sets follow in an
analogous fashion. In total, the data set contains the email
correspondence between 986 members of a European
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research institution over 526 days [26]. We focus on the
100 most active individuals, roughly corresponding to
the members of the population that sent, on average, at
least one email per day (Fig. 6). To quantify correlations

between different individuals, we must discretize the data
into time bins of width Δt. To choose a suitable bin width,
we notice that 90% of consecutive emails from the same
individual are sent with at least two minutes in between
[Fig. 1(a)], defining a natural timescale that we use as our
Δt. Discretizing the 526-day data set into two-minute bins,
we produce a set of ∼3.8 × 105 binary patterns fσg that
define the behavior of our population.

APPENDIX B: ROBUSTNESS
OF THE PAIRWISE MODEL

In Appendix A, we provided first-principles justifica-
tions for focusing on the 100 most active individuals in the
email data set and for discretizing the data into bins of
width Δt ¼ 2 minutes. Here, we verify that the success of
the pairwise maximum entropy model is robust to reason-
able variations in these choices.

200 400 600 800
User rank

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 e

m
ai

ls

FIG. 6. Cumulative distribution of emails versus the activity
rank of the users. The 100 most active individuals account for
56% of the emails in the network (dashed lines).

10−6 10−5 10−4

Multi-information I (bits/s)

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 I

10−6 10−5 10−4

Multi-information I (bits/s)

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 I

10−6 10−5 10−4

Multi-information I (bits/s)

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 I

10−6 10−5 10−4

Multi-information I (bits/s)

0.2

0.4

0.6

0.8

1

1.2

1.4

F
ra

ct
io

n 
of

 I

10−7 10−6 10−5

D
JS

 (bits/s)

0

1

2

3

4

5

6

7

P
ro

b.
 d

en
si

ty
, l

og
10

(D
JS

)

10−7 10−6 10−5

D
JS

 (bits/s)

0

1

2

3

4

5

6

P
ro

b.
 d

en
si

ty
, l

og
10

(D
JS

)

−1 −0.5 0 0.5 1
J

ij

0

1

2

3

4

5

P
ro

ba
bi

lit
y 

de
ns

ity

1− −0.5 0 0.5 1
J

ij

0

1

2

3

4

5

P
ro

ba
bi

lit
y 

de
ns

ity

−1 −0.5 0 0.5 1
J

ij

0

1

2

3

4

5

P
ro

ba
bi

lit
y 

de
ns

ity

1− −0.5 0 0.5 1
J

ij

0

1

2

3

4

5

P
ro

ba
bi

lit
y 

de
ns

ity

10-7 10-6 10-5

D
JS

 (bits/s)

0

1

2

3

4

5

6

P
ro

ba
bi

lit
y 

de
ns

ity
, l

og
10

(D
JS

)

(d)(a) (c)(b)

(e) (g)(f) (h)

(i) (k)

1 minute 5 minutes 10 minutes 30 minutes

I2/I
IC/I

P2

PC

P1

||P

||P

||P

82%
88%

61%
84%

61%
78%

56%
69%

10−7 10−6 10−5

D
JS

 (bits/s)

0

1

2

3

4

5

6

P
ro

b.
 d

en
si

ty
, l

og
10

(D
JS

)

10−7 10−6 10−5

D
JS

 (bits/s)

0

1

2

3

4

5

6

P
ro

b.
 d

en
si

ty
, l

og
10

(D
JS

)

(j) (l)

FIG. 7. Dependence of the pairwise maximum entropy model on the bin width. (a)–(d) Distributions of pairwise couplings for 200
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1. Dependence on the bin width

We investigate the dependence of the pairwise maximum
entropy model on the bin width Δt used to discretize the
email activity. Throughout, we focus on the 100 most active
individuals, and we consider bin widths of Δt ¼ 1, 5, 10,
and 30 minutes. For each value of Δt, we randomly select
200 different groups of 10 individuals and fit a pairwise
maximum entropy model to describe each group. As Δt
increases, we witness more windows involving multiple
active individuals, thereby strengthening the correlations
that we observe in the discretized data. In turn, these
stronger correlations give rise to Ising interactions Jij that
are more positive and sharply peaked [Figs. 7(a)–7(d)]. In
Figs. 7(e)–7(h), we show that the true distribution of
activity is approximately 5 times closer to the maximum
entropy model P2 than to the independent model P1 across

all values of Δt considered, demonstrating the consistency
of the pairwise model in predicting human behavior. On the
other hand, the performance of the conditionally indepen-
dent model PC increases significantly as Δt increases, even
outperforming the pairwise model for Δt ≥ 10minutes. We
note, however, that for such large bin widths, people often
send multiple emails within the same window, and treating
the data as binary may not be justified. In Figs. 7(i)–7(l), we
see that the pairwise model captures nearly all of the multi-
information in the 10-person groups across all choices
for Δt. By contrast, the conditionally independent model
consistently captures a smaller fraction of the multi-
information in the data. Furthermore, for Δt ¼ 1 minute,
the conditionally independent model has lower entropy
than the data themselves (i.e., IC=I > 1) for 30 of the 200
groups, which is a clear indication that the model is
overfitting the data.
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2. Dependence on the individuals being analyzed

We investigate the dependence of the maximum entropy
model on the set of individuals chosen for analysis. In
particular, we consider 200 different 10-person groups
selected from among the 100 most active email users, the
400 most active users, and all 824 users that sent at least one
email. Throughout this section, the bin width is fixed at
Δt ¼ 5minutes. Aswe focus onmore active individuals, the
observed correlations become stronger, which is reflected
in the fact that the distribution of learned interactions Jij
among the top 100 individuals is more sharply peaked and
positive than the pairwise interactions between the top 400
and all 824 individuals [Figs. 8(a)–8(c)]. In Figs. 8(d)–
8(f), we again find that the pairwise model is approximately
5 times closer to the true distribution than the independent
model across all three subpopulations. By contrast, the
conditionally independent model performs nearly as well as
the pairwise model among the 100 most active individuals
but provides only marginal improvements over the inde-
pendent model for all 824 individuals. The failure of the
conditionally independent model in describing the entire
824-person population is not surprising given that most
individuals sent less than one email every five days, leaving
daily and weekly rhythms with little to no predictive power.
We now consider the fraction of the multi-information

captured by each model. For all 824 individuals, Fig. 8(g)

shows that the conditionally independent model captures a
slightly larger fraction of the multi-information than the
maximum entropy model; however, PC erroneously includes
more correlation than the data themselves (i.e., IC=I > 1) for
20 of the 200 groups of 10 people, indicating that themodel is
overfitting the data. For both the top 100 and 400 most active
individuals, the maximum entropy model captures a signifi-
cantly larger fraction of the network correlation than the
conditionally independent model [Figs. 8(h)–8(i)].
We conclude that the predictions of the pairwise maxi-

mum entropy model are robust to variations in both the bin
width Δt and the set of individuals chosen for analysis.

3. Consistency of the pairwise model over time

By employing the pairwise maximum entropy model in
Eq. (1), we implicitly assume that the population activity can
be modeled as a stationary distribution, that is, that the local
fields hi and interactions Jij do not change over time. Here,
we test this assumption explicitly while noting that the
development of time-evolving maximum entropy models is
an important direction for future work (see Appendix G 3 for
an extended discussion). Specifically, we wish to determine
if the Ising parameters describing one portion of the email
activity resemble those describing another portion of the
activity. To do so, we divide the data set into two halves
corresponding roughly to the first and last 263 days of email
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activity. Figures 9(a)–9(c) show that the statistics describing
the population activity remain remarkably consistent over
time, with both the user activity rates and pair correspon-
dence rates Aij being strongly correlated between the two
halves of data (Pearson’s correlations rp ¼ 0.77 for the
activity rates and rp ¼ 0.91 for the correspondence rates).
To study the consistency of the maximum entropy model,

we randomly select 200 different 10-person groups from
among the 74 users that sent at least one email in both halves
of the data set; we then learn pairwise models describing
each group for each half of data. Figures 9(d) and 9(e) show
that the local fields hi and interactions Jij modeling the
population activity are significantly correlated over time
(Pearson’s correlations rp ¼ 0.54 for the local fields and
rp ¼ 0.13 for the interactions). The consistency of the Ising
interactions Jij between the two halves of data becomes even
more apparent when we focus on the strongest interactions
in the population [Fig. 9(f)]. Together, these results indicate
that the patterns of population activity remain relatively
consistent over time, justifying our application of the sta-
tionary maximum entropy model as a first step toward more
complex dynamical models.

APPENDIX C: OTHER MODES
OF HUMAN ACTIVITY

In the main text, our analysis focused primarily on a data
set of email activity. Here, we independently verify the
ability of the pairwise maximum entropy model to quanti-
tatively describe collective human behavior in three other
data sets representing a diverse range of human activities.

1. Private messages

We first consider a data set of around 6 × 105 private
messages sent between 1899 students at U.C. Irvine over
the span of 193 days [27]. As in the context of email
activity, we focus on the individuals that sent, on average, at
least one message per day, corresponding to the 66 most
active students in the population. To choose an appropriate
bin width, we consider the distribution of time gaps
between consecutive messages from the same student
[Fig. 10(a)]. Comparing against the equivalent distribution
in the email data set [Fig. 6(b)], we notice that many more
private messages than emails are sent with short gaps
(≲1 minute) in between. This bursty behavior indicates that
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the private messages serve as a more conversational
communication medium than emails, a fact that will later
help in understanding the impact of daily and weekly
rhythms. Because of the bursty nature of private messages,
we reduce our bin width to Δt ¼ 1 minute, yielding a data
set of about 2.8 × 105 binary activity patterns.
As in the network of email correspondence, the indepen-

dent model P1 fails to explain the collective behavior in the
private message population [17–20]; while the independent
model predicts a super-exponential dropoff in the number of
active individuals in a given window, we find that the
distribution of private messages is actually heavy tailed,
fitting closely to an exponential distribution [Fig. 10(b)].
Additionally, in Fig. 10(c), we see that the independent
model dramatically underpredicts patterns involving two or
more active individuals. To improve upon the independent
model,we again consider two competing hypotheses: (i) that
large-scale patterns emerge from an aggregation of simple
pairwise correlations (represented by the pairwisemaximum
entropy model P2) and (ii) that large-scale patterns are
driven by similarities in people’s weekly routines (repre-
sented by the conditionally independent model PC).
Randomly selecting 300 groups of 10 people, Fig. 10(d)
shows that the pattern rates predicted by the pairwise
maximum entropy model are tightly correlated with the
observed pattern rates, avoiding the inaccuracies of the
independent and conditionally independent models.
Additionally, calculating the Jensen-Shannon divergen-

ces DJSðQjjPÞ from each model Q to the observed data P,
we find that one would typically need over 5 times more
samples to distinguish the pairwise model than the inde-
pendent model [Fig. 10(e)], reflecting roughly the same
performance as in the network of email correspondence.
Interestingly, in contrast to email activity, the conditionally
independent model provides nearly no improvement over
the independent model in the data set of private messages.
Additionally, Fig. 10(f) shows that the pairwise maximum
entropy model captures I2=I ≈ 87% of the correlation in the
data, nearly identical to its performance on the network
of email correspondence, while the conditionally indepen-
dent model accounts for a strikingly small fraction of the
correlation structure (IC=I ≈ 5%). This difference in the
performance of PC between the private message and email
data sets suggests that the conversational nature of private
messages makes them less likely than email traffic to
depend on people’s routines. By contrast, the maximum
entropy model accurately describes the activity in both
populations, further validating the conclusion that patterns
of collective behavior can be understood as emerging from
simple pairwise correlations.

2. Physical contacts

Thus far, we have only studied human actions mediated
by online communication. Here, we instead consider a data
set of face-to-face interactions between 50 attendees at the

ACM Hypertext 2009 conference, which spanned 3 days
[50]. Discretizing the population activity into bins of width
Δt ¼ 20 seconds, we arrive at a set of about 104 binary
activity vectors. As in both the networks of email and
private message correspondence, we observe that the
number of human contacts within a given 20-second
window roughly obeys an exponential distribution, while
the independent model instead predicts a Poisson distribu-
tion that severely underpredicts the likelihood of surges in
human activity [Fig. 11(a)]. To study the pairwise maxi-
mum entropy model, we generate 200 random groups of 10
individuals. Figure 11(b) shows that the rates of activity
patterns predicted by the pairwise model are tightly
correlated with the rates at which they were observed at
the conference, providing consistently more accurate pre-
dictions than both the independent and conditionally
independent models.
Quantitatively, one would require 3 to 4 times as many

samples to distinguish the independent model from the
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observed data than the maximum entropy model, and the
maximum entropy model achieves a lower Jensen-Shannon
divergence from the observed data than from the condi-
tionally independent model across all 200 groups of
attendees [Fig. 11(c)]. Additionally, Fig. 11(d) shows that
the pairwise model captures I2=I ≈ 74% of the correlation
in the face-to-face contacts. While this is slightly lower than
that observed for emails and private messages, we remark
that the conditionally independent model only accounts for
IC=I ≈ 29% of the correlation in the data. Interestingly,
despite physical interactions representing a quite different
mode of human activity from online communication, we
still find that patterns of population behavior are well
described as arising from pairwise correlations.

3. Music streams

To this point, our analyses have considered modes of
human activity that are themselves types of interactions
between individuals. It is natural to suspect, therefore, that
these activities might be particularly conducive to being
described by a pairwise model. To test the ability of the
pairwise maximum entropy model to describe other modes
of human activity, here we consider a data set of 610
individuals streaming music on the website last.fm over
the span of one year [51]. Discretizing the streaming activity
into bins of width Δt ¼ 150 seconds (roughly correspond-
ing to the length of an average song), we arrive at a set of
about 2 × 105 activity vectors. Considering the number of
music streams in a given 150-second window, we notice that
the observed distribution is notably not described by an
exponential distribution [Fig. 12(a)], which is attributable to
the fact that the streaming data are much less sparse than any
of the three activities studied previously. Nevertheless, we
still find that the observed distribution is heavy tailed relative
to the independent Poisson distribution and is characterized
by surges of activity where upwards of 50 users are
streaming music at a given time.
Randomly selecting 200 groups of 10 users, we show in

Fig. 12(b) that the pairwise maximum entropy model
provides a much tighter fit of the observed activity pattern
rates than either the independent or conditionally indepen-
dent models. Moreover, by studying the Jensen-Shannon
divergences between the different models and the observed
distribution of activity patterns, we find that we would need
over 6 times as many data samples to distinguish P2 from P
than to distinguish P1 from P, and over 4 times more
samples to distinguish PC [Fig. 12(c)]. These results are
further supported by Fig. 12(d), which shows that the
pairwise model captures I2=I ≈ 74% of the correlation in
groups of 10 users, nearly identical to the case of face-to-
face contacts. Meanwhile, the daily and weekly rhythms
only account for IC=IN ≈ 35% of the correlation in the data.
All together, our analysis of private messages, face-to-

face contacts, and online music streams serve to strengthen
the conclusions made in the main text, namely, that

pairwise correlations can build upon one another to gen-
erate predictable patterns of population-wide activity.

APPENDIX D: LEARNING A PAIRWISE
MAXIMUM ENTROPY MODEL:
THE INVERSE ISING PROBLEM

Here we present the theory and methodology behind
learning a pairwise maximum entropy model of collective
human activity. Specifically, we describe how to calculate
the Ising parameters hi and Jij from a data set of collective
activity patterns. This inference task has a rich history in
machine learning under the title Boltzmann machine
learning [43] and is commonly referred to in physics as
the inverse Ising problem [52].

1. Exact models for small populations

Given the observed distribution P of activity patterns,
there is a unique pairwise model P2 that is consistent with
the observed activity rates hσii and pairwise correlations
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FIG. 12. Performance of the maximum entropy model in a data
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hσiσji, where h·i represents an average over P. To learn this
pairwise model, one typically begins with an initial pair-
wise distribution Q with parameters h̃i and J̃ij and then
performs gradient descent in the model parameters, with
gradients defined by

Δh̃i ∝ hσii − hσiiQ; ðD1Þ

ΔJ̃ij ∝ hσiσji − hσiσjiQ; ðD2Þ

where h·iQ represents an average over Q. For groups of
size N ¼ 10, these gradient calculations are tractable and
standard gradient descent converges to the correct pairwise
maximum entropy model P2.

2. Approximate models for large populations

The primary difficulty in learning a maximum entropy
model for a large population, such as the group of 100 email
users, lies in calculating the one- and two-point correlations
under Q at each gradient step in Eqs. (D1) and (D2). For
large populations, exact calculations using the Boltzmann
distribution are infeasible, and one must resort to approxi-
mate methods. The standard strategy is to simulate the
system using Monte Carlo techniques [31,53,54]. Naively,
one would run a new Monte Carlo simulation to estimate the
gradients at each step of the learning algorithm. However,

this straightforward approach is extremely inefficient.
Instead, one can adjust the estimates of the one- and two-
point correlations at each gradient step using importance
sampling [55] or histogram Monte Carlo [42]. In addition to
limiting the number of Monte Carlo simulations, because
each sample σ ofQ is dominated by inactive individuals, one
can leverage sparse matrix operations to significantly speed
up the simulations themselves.
We terminate the learning algorithm when the model

correlations, hσiiQ and hσiσjiQ, are sufficiently close to the
observed correlations. The relevant scale for errors in the
observed correlations is defined by the standard deviations
Δhσii and Δhσiσji, which are estimated by bootstrap
sampling from the original data set. Thus, the learning
algorithm is terminated when

jhσii − hσiiQj < Δhσii ≈ 2.2 × 10−4 ðD3Þ

and

jhσiσji − hσiσjiQj < Δhσiσji ≈ 1.7 × 10−4: ðD4Þ

We confirm that the individual email rates and pairwise
correlations under the maximum entropy model P2 match
the observed correlations within the experimental errors in
the data [Figs. 13(a)–13(c)].
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FIG. 13. Learning a pairwise maximum entropy model for a 100-person population. (a) Reconstructed activity rates for all 100
individuals under the maximum entropy model, plotted against their true activity rates. The dashed line indicates equality.
(b) Reconstructed pairwise correlations under the maximum entropy model versus the observed correlations. (c) Distribution of
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For a population of 100 individuals, defining a pairwise
maximum entropy model requires learning NðN þ 1Þ=2 ¼
5050 different parameters. Given such a large number, it is
possible that the model is being finely tuned to match
statistical errors in the data. To test for overfitting, we
randomly select 476 of the 526 days to learn the model, and
then we test the accuracy of the model on the remaining
50 days. We confirm that the pairwise model assigns the
same amount of probability to the test data as to the training
data, within errors, demonstrating that the learned model
generalizes to describe data outside of the training set
[Fig. 13(d)]. We conclude that the learned pairwise model
(i) fits the activity data within experimental precision and
(ii) does not overfit statistical noise in the data. For access
to the calculated external fields hi and pairwise interactions
Jij, please contact the corresponding author.

APPENDIX E: THE CONDITIONALLY
INDEPENDENT MODEL

To test the prediction that collective behavior is driven by
similarities in people’s daily and weekly routines, we study
the conditionally independent model PC. Letting pt

iðσiÞ
denote the probability of person i performing an action
within a window of width Δt at time t during the week, the
conditionally independent model is defined by

PCðσÞ ¼
Δt
ω

X
t

Y
i

pt
iðσiÞ; ðE1Þ

where ω denotes the length of a day or week. Under this
conditionally independent model, correlations between
individuals are driven by fluctuations in their inherent
activity rates.

APPENDIX F: ESTIMATING ENTROPY
FROM FINITE DATA

To calculate the multi-information I ¼ S1 − S of the
network activity, we must compute the entropies of the
independent model S1 and the observed data S. While
calculating S1 is straightforward, we must estimate the true
entropy S from a finite number of samples, possibly leading
to finite-size errors. Suppose that the data set consists of
the patterns fσαg with corresponding probabilities fpαg.
One could naively estimate the entropy using the standard
formula

S̃ ¼ −
X
α

pα logpα: ðF1Þ

However, since some of the patterns are likely missing and
the probabilities pα are not exact, this estimate should
fundamentally be viewed as an approximation to S that
improves as the number of samples increases. To correct for
the sample size dependence of S̃, we subsample the data

and fit the resulting estimates using a form proposed by
Strong et al. [56],

S̃ðsizeÞ ¼ Sþ a
size

þ b
size2

; ðF2Þ

where a and b are finite-size corrections. Using this fit, we
can extract an accurate estimate of the true entropy S. We
remark that for large data sets such as those considered
here, and for relatively small networks like the 10-person
groups studied in the main text, finite-size errors are small.

APPENDIX G: EXTENDED DISCUSSION

Our investigation of collective human behavior yields
three distinct conclusions:
(1) Large-scale behavior, characterized by surges in

collective activity, cannot be understood using mod-
els that assume humans behave independently.

(2) While collective behavior is far from independent,
the minimal extension of the independent model
consistent with the observed pairwise correlations
captures most of the correlation in all populations
considered, accurately predicting surges of collec-
tive activity.

(3) In the network of email correspondence, the learned
pairwise interactions are closely related to the
underlying topology of interhuman communication,
imbuing the maximum entropy model with real-
world interpretability.

Here, we discuss the implications and limitations of these
results while keeping in mind that modern life involves a
diverse range of activities, some of which may require a
fundamentally different approach. Throughout, we empha-
size important opportunities for future research.

1. Internal correlations versus external influences

In the study of human dynamics, as in the study of
physical and biological systems, any macroscopic behavior
that evades explanation by a model of independent ele-
ments fundamentally derives from two possible sources of
correlation: (i) interactions between elements or groups of
elements and (ii) external influences on the system. In all
human activities considered here, we witness surges of
collective activity that cannot be explained under assump-
tions of human independence. Instead, we find that the
populations are described quantitatively by models that
include the simplest possible correlations—those between
pairs of individuals. However, given that large-scale pat-
terns could derive from higher-order correlations or from
shared external inputs to the population, and given the
myriad experiences that shape human actions, it would be
naive to universally conclude that all collective human
activity emerges from pairwise correlations. Instead, we
hypothesize that particular activities fall along a spectrum,
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with internal correlations and external influences each
playing roles of variable importance.
We remark that we have already witnessed evidence for

such a spectrum in the different human activities studied
above. For example, while patterns of email communica-
tion were reasonably well described by taking into account
people’s weekly rhythms, capturing about 67% of the
correlation structure in 10-person groups, private message
correspondence had a markedly weak dependence on
people’s schedules, with daily routines accounting for only
about 5% of the correlation in 10-person groups. These
results agree with intuition, indicating that email activity
is moderately tied to people’s work and leisure schedules,
while daily routines have nearly no predictive power in a
network of private messages. Interestingly, correlations in
both face-to-face contacts and online music streaming are
moderately driven by daily and weekly routines, falling in
between email and private message correspondence. With
these results in mind, the clearest direction for future
investigation is to continue probing different ends of the
spectrum by quantifying the relative importance of internal
correlations versus external influences in different modes of
human behavior.

2. The energy landscape of collective human behavior

Every maximum entropy model Q is defined by a
Boltzmann distribution QðσÞ ¼ expð−EðσÞÞ=Z, where
EðσÞ is the energy function, or Hamiltonian, that describes
the system, and Z is the normalization constant. In the case
of the pairwise maximum entropy model, the relevant
energy function is that of the Ising model, EðσÞ ¼
− 1

2

P
i≠j Jijσiσj −

P
i hiσi. In statistical mechanics, there

is a wealth of literature exploring the diversity of large-
scale behaviors that can emerge from systems with different
energy landscapes [33,57]. Thus, future research should
leverage this connection to answer a number of important
questions: What can the energy landscape of a given
population tell us about its functional properties? Does
collective human behavior favor dramatic shifts in activity,
or are social populations organized to incentivize local
fluctuations, guarding against the effects of large external
shocks?

3. Beyond equal-time correlations

Throughout our analysis, we have focused on modeling
equal-time correlations, which quantify the tendencies of
individuals to engage in synchronous actions. In doing so,
we have implicitly assumed that each observed activity
pattern σ is drawn independently from an underlying
stationary distribution PðσÞ, leaving models of the pop-
ulation’s activity without notions of time or causality.
While studying equal-time correlations has allowed us to
reach a number of important conclusions, the idea that
patterns of human activity are sampled from a stationary

distribution is not consistent with the common intuition that
conscious human actions are often responses to prior social
and environmental influences. For example, the fact that
individuals perform bursts of actions in quick succession is
thought to be the result of a decision-based queuing process
[1], and it is known that the temporal scales of human
activity can change over time [58–60].
In the context of human communication, a significant

fraction of emails and private messages are direct responses
to previous correspondence. Therefore, it would be inter-
esting to study the correlations between people’s activities
with a time delay τ in between, where τ represents the
characteristic response time of communication in the
population. Such spatiotemporal correlations have recently
received a large amount of interest in neuroscience and
biology, where it has been found that the spatiotemporal
patterns of spiking neurons in the brain and flocks of birds
in flight are only partially captured by stationary maximum
entropy models [32,61,62]. Similarly, studying the spatio-
temporal patterns that define collective human activity has
significant implications for understanding the causal flow
of influences and information between individuals in a
population [60]. Furthermore, developing accurate dynami-
cal models of large-scale behavior has important ramifi-
cations for predicting the effects of interventions and
time-varying perturbations in networks of interacting
humans [5,7,8,24,25,63,64].
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