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An algorithmically hard phase is described in a range of inference problems: Even if the signal can be
reconstructed with a small error from an information-theoretic point of view, known algorithms fail unless
the noise-to-signal ratio is sufficiently small. This hard phase is typically understood as a metastable
branch of the dynamical evolution of message-passing algorithms. In this work, we study the metastable
branch for a prototypical inference problem, the low-rank matrix factorization, that presents a hard phase.
We show that, for noise-to-signal ratios that are below the information-theoretic threshold, the posterior
measure is composed of an exponential number of metastable glassy states, and we compute their entropy,
called the complexity. We show that this glassiness extends even slightly below the algorithmic threshold,
below which the well-known approximate message-passing (AMP) algorithm is able to closely reconstruct
the signal. Counterintuitively, we find that the performance of the AMP algorithm is not improved by
taking into account the glassy nature of the hard phase. This result provides further evidence that the hard
phase in inference problems is algorithmically impenetrable for some deep computational reasons that
remain to be uncovered.
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I. INTRODUCTION

Inference problems are ubiquitous in many scientific
areas involving data. They can be summarized as follows:
A signal is measured or observed in some way, and the
inference task is to reconstruct the signal from the set of
observations. Many practical applications involving data
rely on our ability to solve inference problems fast and
efficiently. While from the point of view of computa-
tional-complexity theory many of the practically impor-
tant inference problems are algorithmically hard in the
worst case, practitioners are solving them every day in
many cases of interest. It is hence an important research
question to know which types of inference problems can
be solved efficiently and which cannot. A formally
satisfying answer to this question would lead to an
entirely new theory of typical computational complexity
and would likely shed new light on the way we develop
algorithms.

For a range of inference problems, the Bayesian infer-
ence naturally leads to statistical physics of systems with
disorder; see, e.g., Ref. [1]. This connection is explored in a
range of recent works and brings a class of models for the
inference problem in which the Bayes-optimal inference
can be analyzed and presents a first-order phase transition.
As is common in physics in high dimensions, the first-order
phase transition is associated to the existence of a meta-
stable region in which known efficient algorithms fail to
reach the theoretical optimal performance. This metastable
region is coined as the hard phase; see, e.g., Ref. [2]. It is
located in error-correcting codes [3,4], compressed sensing
[5], community detection [6], the hidden-dense submatrix
problem [7,8], low-rank estimation problems including
data clustering, sparse principle component analysis, or
tensor factorization [9,10], and learning in neural networks
[11]. The nature of the hard phase in all these problems is of
the same origin, and, therefore, it is expected that algorithmic
improvement in any of them would lead to improvement in
all the others as well.
In the current state of the art (including the references

above), the hard phase is located as a performance barrier of
a class of message-passing algorithms. Message-passing
algorithms can be seen as spin-offs of the cavity method of
spin glasses [12]. In the context of inference on dense
graphical models, the algorithms is called approximate
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message passing (AMP) known from the context of com-
pressed sensing [13]. In the limit of a large system size, the
dynamical evolution of AMP can be tracked by the so-called
state evolution (SE) [13,14], whose fixed-point equations
coincide with the saddle-point equations describing the
thermodynamic of the system under the replica-symmetric
assumption. The analysis of SE and its comparison to the
analysis of the Bayes-optimal performance reveals that there
is an interval of the noise-to-signal ratio where the signal
could be reconstructed by sampling the posterior measure,
while AMP is not able to converge to the optimal error. This
interval marks the presence of the hard phase.
In this paper, we want to attract further attention of the

physics community towards the existence of this hard
phase related to a first-order phase transition in the optimal
performance in inference problems. The following open
questions might use the physicslike approach and insights:
Could there be a physics-inspired algorithm that is able to
overcome the algorithmic barrier the AMP algorithm
encounters? Note that in problems where the corresponding
graphical model can be designed, such as compressed
sensing or error-correcting codes, such a strategy related to
nucleation indeed exists [5,15]. But what about the more
ubiquitous problems where the graphical model is fixed?
Are there some physical principles or laws that can provide
further evidence towards the impenetrability of the algo-
rithmic barrier?
The motivation of the present work is to investigate the

above questions. We analyze the following physics-
motivated strategy: It is known that the metastable part
of the posterior measure in the hard phase is glassy [16–18].
Yet, the AMP algorithm fails to describe this glassiness
properly. In some other contexts where message-passing
algorithms are successfully used, a correct account of
glassiness leads to algorithms that improve over simpler
ones. Notably, this is the case of random constraint-
satisfaction problems, where the influential work in
Ref. [19] shows that survey propagation, that correctly
takes glassiness into account, beats the performance of
belief propagation.
We pose therefore the problem whether, in inference

tasks, the reconstruction of the signal becomes easier when
one uses algorithms in which the glassiness is correctly
taken into account. We investigate this strategy thoroughly
in the present work. We confirm that the hard phase is
glassy in the sense that it consists of an exponential num-
ber of local optima at higher free energy than the equilib-
rium one. However, when it comes to the reconstruction
of the signal, our analysis leads us to the remarkable
conclusion that, in contrast to constraint-satisfaction and
optimization problems, in inference problems, taking into
account the glassiness of the hard phase does not improve
upon the performance of the simplest AMP algorithm.
We thus provide additional evidence towards the bold
conjecture that in the corresponding inference problems

AMP is the best of the low-computational-complexity
inference algorithms.
Note that such a negative result is very interesting from

both a physics and a computer-science point of view.
In physics, a common intuitive narrative tells us that the
properties of the energy landscape control the algorithmic
difficulty of the problem. Yet a solid and physically
intuitive explanation of why an inference algorithm could
not penetrate the hard phase remains open. Our results
invite researchers to progress in this question, eventually
leading to a precise understanding of the interplay
between the dynamics and landscape. In computer science,
developments that go beyond the traditional worst-case
computational-complexity results are rare, and the hard
phase provides a unique and a sharply delimited case that
might be computationally hard even for a typical instance.
Building a theory that would explain the nature of the hard
phase might be the next pillar of our understanding of
computational complexity.
Our analysis of the glassiness of the hard phase provides

new insights on the performance of Monte Carlo or
Langevin dynamics. The presence of the glassiness sug-
gests that these sampling-based algorithms are slowed
down, and, thus, their commonly used versions may not
be able to match the performance of AMP. While this
suggestion aligns with some of the early literature [16],
more recent literature [6] suggests, based on numerical
evidence, that Monte Carlo sampling is as good as the
message-passing algorithm. Based on the conclusion of our
work, this question of performance barriers of sampling-
based algorithms should be reopened and investigated more
thoroughly. A good understanding of the performance of
these algorithms is especially important in view of the fact
that some of the most performing systems currently use
stochastic gradient descent, that can be seen as a variant of
the Langevin dynamics.
This paper is organized as follows. In Sec. II, we

introduce the model on which we illustrate the main
findings of this paper; we expect this picture to be generic
and apply to all the models where the hard phase related
to a first-order phase transition in the performance of the
Bayesian inference is identified. In Sec. III, we recall the
basic setting of Bayesian inference. In Sec. IV, we give a
summary of the main algorithmic consequences of our
work. In Sec. V, we then recall the replica approach to the
study of the corresponding posterior measure. Section VA
then summarizes the known replica-symmetric diagram and
the resulting phase transitions. Section V B then includes
the main technical results of the paper, where we quanti-
tatively analyze the glassiness of the hard phase, giving rise
to our conclusions in Sec. VI.

II. MODEL

In order to be concrete, we concentrate on a prototypical
example of an inference problem with a hard phase—the
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constrained rank-one matrix estimation. This problem is
representative of the whole class of inference problems
where the hard phase related to a first-order phase transition
is identified [7,20,21]. We choose this example because it
is very close to the Sherrington-Kirkpatrick model, for
which the study of glassy states is the most advanced [12].
Glassiness is also studied in detail in the spherical or Ising
p-spin model, corresponding to spiked tensor estimation
[9]. However, in that model the hard phase spans the full
low-noise phase, and the transition towards the easy phase,
on which we aim focus here, happens for a noise-to-signal-
ratio too low to be straightforwardly investigated within the
replica method.
In the rank-one matrix estimation problem, the signal,

denoted by xð0Þ ∈ RN, is extracted from some separable
prior probability distribution given by PXðxð0ÞÞ ¼

Q
N
i¼1

Pðxð0Þi Þ. This signal is subjected to noisy measurements of
the following form:

Yij ¼
1ffiffiffiffi
N

p xð0Þi xð0Þj þ ξij; ∀ i ≤ j; ð1Þ

where ξij are Gaussian random variables with zero mean
and variance Δ. Therefore, one observes the signal through
the matrix Y. The inference problem is to reconstruct the
signal xð0Þ given the observation of the matrix Y. The
informational-theoretically optimal performance in this
problem is analyzed in detail in Ref. [21], and this analysis
is proven rigorously to be correct in Refs. [22–25].
References [21,22,26] also analyze the performance of
the AMP algorithm.
While the theoretical part of this paper is for a generic

prior PX, the results section focuses on the Rademacher-
Bernoulli prior

PXðxÞ ¼ ð1 − ρÞδðxÞ þ ρ

2
½δðx − 1Þ þ δðxþ 1Þ�; ð2Þ

as this is a prototypical yet simple example in which the
hard phase appears for sufficiently low ρ [20,21]. Let us
mention that the rank-one matrix estimation with the
Rademacher-Bernoulli prior has a very natural interpreta-
tion in terms of the community detection problem. Keeping
this interpretation in mind can help the reader to get
intuition about the problem. Nodes are of three types:
xð0Þ ¼ 1 belong to one community, xð0Þ ¼ −1 to a second
community, and xð0Þ ¼ 0 does not belong to any commu-
nity. The observations Yij (1) can be interpreted as weights
on edges of a graph that are on average larger for nodes that
are either both in community one or both in community
two, they are on average smaller if one of the nodes is in
community one and the other in community two, and they
are independent and unbiased when one of the nodes does
not belong to any community. Thanks to the output
universality result of Refs. [23,27], the results presented

in this paper also hold for a model where the observations
Yij ∈ f0; 1g correspond to the adjacency matrix of an
unweighted graph with Fisher information corresponding
to the inverse of the variance Δ.

III. BAYESIAN INFERENCE AND APPROXIMATE
MESSAGE PASSING

We study the so-called Bayes optimal setting, which
means that we know both the prior PXðxÞ and the variance
Δ of the noise. The probability distribution of x given Y is
given by the Bayes formula

PðxjYÞ ∝ PXðxÞPðYjxÞ: ð3Þ

Since the noise ξij is Gaussian, we have

PðYjxÞ ∝
Y
i≤j

exp

�
−

1

2Δ

�
Yij −

xixjffiffiffiffi
N

p
�

2
�

≡Y
i≤j

G
�
Yij

���� xixjffiffiffiffiNp
�
: ð4Þ

In both Eqs. (3) and (4), we omit the normalization
constants. An estimate of the components of the signal
that minimize the mean-squared error with the ground truth
signal xð0Þ is computed as

x̂i ¼ hxii; ð5Þ

where the brackets stand for the average over the posterior
measure Eq. (3). Therefore, in order to solve the inference
problem, we need to compute the local magnetizations
fx̂ig. The AMP algorithm is aiming to do precisely that; its
derivation can be found, e.g., in Ref. [21]. AMP boils down
to a set of recursion relations of the form

x̂ðtþ1Þ
i ¼ AMPiðx̂ðtÞ; x̂ðt−1Þi Þ; ð6Þ

whose iterative fixed point is taken as an estimate of the
signal. It is known that fixed points of the state evolution
of the AMP algorithm are in the thermodynamic limit
described by the replica-symmetric (RS) solution of the
model [13,14]. AMP follows the RS solution irrespective of
the fact whether RS is the physically correct description of
the posterior measure or not.
As shown in Ref. [28], it is possible to derive a

generalized AMP, that we call the approximate survey
propagation (ASP) algorithm, whose state evolution fixed
points coincide with the replica equations in the one-step
replica symmetry-breaking (1RSB) ansatz. Just as AMP,
the ASP algorithm can be also written in the form [28]

x̂ðtþ1Þ
i ¼ ASPiðx̂ðtÞ; x̂ðt−1Þi ; sÞ; ð7Þ
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depending on one additional free parameter s, correspond-
ing to the Parisi parameter from the spin-glass literature.
The special case of s ¼ 1 reduces the ASP algorithm back
to AMP. The 1RSB solution is known to provide a better
description—in many cases, exact—of glassy states. In
Sec. V, we hence study the thermodynamics of the above
model in the RS and 1RSB ansatz, focusing on its
properties in the hard phase.

IV. SUMMARY OF MAIN
ALGORITHMIC RESULT

Before going to the technical part of the replica analysis
in Sec. V, we briefly summarize the corresponding main
algorithmic result. In Sec. V, we then investigate in detail
the 1RSB solution of the low-rank matrix estimation model
(1) focusing on the glassy properties of the hard phase. Our
main interest, however, is in the relation between the 1RSB
solution and the associated algorithmic performance. The
main question we ask is whether ASP can (for a suitable
choice of the Parisi parameter s) improve on AMP. The
experience with the survey propagation algorithm applied
to constraint-satisfaction problems [29] suggests that this
improvement should be possible.
In Fig. 1, we plot the magnetization achieved by the ASP

algorithm as a function of the noise Δ for several values of
the Parisi parameter s. We observe that, as the noise Δ
decreases, the equilibrium value (yellow) is reached first by
the s ¼ 1 curve, corresponding to the performance of AMP.
In Fig. 3, we then plot the mean-squared error (MSE) as a
function of the Parisi parameter s for several values of the
noise Δ. Again, we see that in all cases the best error is
achieved with s ¼ 1. Algorithmically, this result means

that, in the present setting, ASP never obtains better
accuracy than the canonical AMP algorithm.
The fact that among all the values of s the lowest MSE is

reached by the s ¼ 1 states for all Δ is unexpected from the
physics point of view. It implies that the AMP that neglects
glassiness and wrongly describes the hard region works
better as an inference algorithm than an algorithm that
correctly describes the metastable states in this region. At
the same time, the above result could be anticipated based
on a mathematical theorem of Ref. [7] that implies that
AMP is optimal among all local algorithms. This theorem
applies as long as an iterative algorithm uses only infor-
mation from nearest neighbors and (nearly) reaches a fixed
point after Oð1Þ iterations.

V. THE REPLICA APPROACH TO
THE POSTERIOR MEASURE

In order to study the posterior measure, we define the
corresponding free energy as

f½Δ;Y� ¼ −
1

N
ln
Z �YN

i¼1

dxiPXðxiÞ
�Y

i≤j
G
�
Yij

���� xixjffiffiffiffiNp
�
:

ð8Þ

This energy is a random object, since it depends on the
matrix Y. Furthermore, it depends on Δ through the
function G. Indeed, we want to study the typical behavior
of this sample-dependent free energy. Therefore, we define

fðΔÞ ¼ f½Δ;Y�≡
Z �Y

i≤j
dYij

�
PðYÞf½Δ;Y�; ð9Þ

where Y is obtained as in Eq. (1), so that PðYÞ is given by

PðYÞ ∝
Z

dxð0ÞPXðxð0ÞÞ
Y
i≤j

G
�
Yij

���� x
ð0Þ
i xð0Þjffiffiffiffi
N

p
�
: ð10Þ

In order to perform the average defined in Eq. (9), we use
the replica method [12]. Introducing

Z ¼
Z �YN

i¼1

dxiPXðxiÞ
�Y

i≤j
G
�
Yij

���� xixjffiffiffiffiNp
�
; ð11Þ

we get

fðΔÞ ¼ −
1

N
lim
n→0

∂n

Z �Y
i≤j

dYij

�
PðYÞZn: ð12Þ

For integer n, we can represent Zn as an n-dimensional
integral over n replicas xðaÞ with a ¼ 1;…; n. Stated
in this way, the problem is obviously symmetric under
the exchange of the n replicas among themselves.

 0

 0.2

 0.4

 0.6

0.85ρ2 0.9ρ2 0.95ρ2 Δalg Δc=ρ2 ΔIT Δdyn

m

Δ

s = 0.90
s = 0.95
s = 0.98
s = 1.02
s = 1.03
s = 1.05
s = 1.00

FIG. 1. The magnetization, also known as the overlap, between
the signal and the states described by the 1RSB solution at Parisi
parameter s, as a function of the noise strength Δ, and sparsity
ρ ¼ 0.08. The curve that shows a spinodal transition towards the
strongly magnetized solution at the largest values of Δ is the one
for s ¼ 1. The same curve represents also the performance of the
AMP algorithm. Taking the glassiness of the metastable branch
into account does not improve upon AMP.
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Moreover, since we need to integrate over the signal
distribution PðYÞ, we end up with a system of nþ 1
replicas, that, in the Bayes optimal case, is symmetric under
the permutation among all the nþ 1 replicas. Performing
standard manipulations (see, e.g., Ref. [12]), we arrive at a
closed expression for fðΔÞ that is

fðΔÞ ¼ −
1

N
ln
Z

DqDq̂ exp ½NSðq; q̂Þ�; ð13Þ

where S is a function that can be computed explicitly and q
and q̂ are ðnþ 1Þ × ðnþ 1Þ overlap matrices. In the large
N limit, the integral in Eq. (13) can be evaluated using the
saddle-point method. At the saddle-point level, the physical
meaning of the overlap matrix q is given in terms of

qab ¼
1

N

XN
i¼1

hxðaÞi xðbÞi i; ð14Þ

while the matrix q̂ is just a Lagrange multiplier. We denote
m the magnetization of the system, meaning

m≡ q0a ¼ qa0 ¼
1

N

XN
i¼1

hxð0Þi xðaÞi i; a > 0: ð15Þ

The saddle-point equations for q and q̂ can be written in
complete generality for any n, but then one needs to take
the analytic continuation down to n → 0. One needs an
appropriate scheme from which one can take the replica
limit. Here, we consider two schemes: the RS and the 1RSB
one. We refer here to symmetry under permutations of the n
replicas with index a ¼ 1;…; n.

A. Reminder of the replica-symmetric solution

The RS scheme boils down to considering

qab ¼ ðqd − q0Þδab þ q0; a; b ≥ 1;

q̂ab ¼ ðq̂d − q̂0Þδab þ q̂0; a; b ≥ 1;

q0a ¼ qa0 ¼ m; a ≥ 1;

q̂0a ¼ q̂a0 ¼ m̂; a ≥ 1: ð16Þ

From the point of view of the inference, the relevant
quantity to look at is the MSE:

MSE ¼ 1

N

XN
i¼1

ðhxii − xð0Þi Þ2

¼ ρ − 2mþ q0; ð17Þ

where ρ≡ hxð0Þi2. Replica symmetry among all the nþ 1
replicas is obtained for m ¼ q0. It is well known that, as a
direct consequence of Bayes optimality (also called the
Nishimori condition [2]), this fully replica-symmetric

solution is the one that describes thermodynamically
dominant states. The more general ansatz is, however,
important, as it allows one to describes metastable states
where the Nishimori identities might not hold. Plugging
this ansatz inside the expression for S and taking the
saddle-point equations with respect to all these parameters,
one gets the replica-symmetric solution as reported in
Ref. [21] and proven to give the equilibrium solution in
Refs. [24,25]. The RS free energy can be expressed as

fRSðΔÞ ¼ min
m

fϕRSðm;ΔÞg ð18Þ

with

ϕRSðm;ΔÞ ¼ m2

4Δ
− Exð0Þ;W

�
f

�
m
Δ
;
m
Δ
xð0Þ þ

ffiffiffiffi
m
Δ

r
W

��
;

ð19Þ

where

fðA;BÞ ¼ ln

�Z
dxPXðxÞe−ð1=2ÞAx2þBx

�
ð20Þ

and xð0Þ and W are random variables distributed according
PXðxð0ÞÞ and a standard normal distribution, respectively.
The values ofm for which ϕRS is stationary are the solution
of

m ¼ Exð0Þ;W

�
xð0Þ

∂f
∂B

�
m
Δ
;
m
Δ
xð0Þ þ

ffiffiffiffi
m
Δ

r
W

��
: ð21Þ

Equilibrium properties of the inference problem are given
by the global minima of the free energy Eq. (19). Local
minima of the free energy that do not correspond to the
equilibrium solution are called metastable.
For illustration, we consider the case of the Rademacher-

Bernoulli prior (2), and we set ρ ¼ 0.08 so that the inference
problem has a hard phase [21]. The replica-symmetric phase
diagram is represented in Fig. 1 (yellow curve).
At high Δ, the noise is so strong that the signal cannot

be recovered and, therefore,m ¼ 0. Upon decreasingΔ, the
signal is relatively stronger with respect to the noise, and
for Δ ¼ Δdyn ∼ 1.041ρ2 the system undergoes a dynamical
transition. On the one hand, one can see that the free energy
(19) develops a local metastable minimum with m > 0.
On the other hand, the m ¼ 0 state undergoes a clustering
transition according to the pattern familiar in the physics of
spin glasses [30,31]. The corresponding RS free energy
ceases to describe a paramagnetic state, and it describes a
nonergodic phase with an exponential number exp½NΣðΔÞ�
of metastable states—also known as clusters—with zero
overlap among each other and identical energy and internal
entropy. Both the zero m dominating branch and the
metastablem > 0 branch have identical energy and internal

GLASSY NATURE OF THE HARD PHASE IN INFERENCE … PHYS. REV. X 9, 011020 (2019)

011020-5



entropy. Their free-energy difference is the complexity
fðm > 0Þ − fðm ¼ 0Þ ¼ ΣðΔÞ. Moreover, as we see in
the next section, the typical overlap q1 between configu-
rations in these states coincides with the value of m of the
magnetized solution. For that reason, the magnetized state
corresponds just to one cluster among the exponential
multiplicity dominating the thermodynamics. The com-
plexity (i.e., log of their number) of the thermodynamic
states decreases with Δ, until it vanishes at a value Δ ¼
ΔIT ∼ 1.0295ρ2, where there is the information-theoretic
phase transition and ΣðΔITÞ ¼ 0. The signal is here strong
enough so that a first-order phase transition happens where
the minimum with positive magnetization becomes the
global minimum of the free energy. The complexity of the
m ¼ 0 solution becomes negative, the solution is non-
physical, and consequently RSB is necessary to describe
the metastable branch. Despite this fact, this RS metastable
branch cannot be just dismissed as unphysical: It continues
to be relevant algorithmically as a dynamical attractor of
the AMP algorithm. Decreasing the intensity of the noise
further, another phase transition happens in this RS branch.
AtΔ ¼ Δc ¼ ρ2, the metastable minimum develops a small
magnetization. Decreasing even further Δ, at Δ ¼ Δalg ∼
0.9805ρ2, this metastable minimum disappears with a
spinodal transition. In the interval ½Δalg;ΔIT�, one finds
the hard phase defined by the property that the AMP
algorithm is suboptimal (the shaded yellow region in
Fig. 1): The global minimum of the free energy has a
high m (low MSE), but the small m nonphysical local
minimum continues to describe the attractor of the AMP.
The state evolution describing the AMP algorithm starting
from random conditions converges to the local minimum of
lowest magnetization.

B. Glassy phase and complexity

The low-branch RS solution is nonphysical below ΔIT;
its existence, however, suggests that metastable states exist
that should be described with RSB. We therefore consider
the 1RSB ansatz. We divide the n replicas a ¼ 1;…; n into
n=s blocks, where s is the so-called Parisi parameter [12].
The overlap matrix becomes

qab ¼
8<
:

qd a ¼ b;

q1 a; b in the same block;

q0 a; b in different blocks

ð22Þ

and analogous for q̂. For s strictly equal to one, we get back
the replica-symmetric ansatz Eq. (16). Note that, for s ≠ 1,
m and q0 are, in general, different in the solution: This
difference is crucial when evaluating the MSE Eq. (17), as
the minimum of the MSE does not correspond, in general,
to the maximum of m.

The 1RSB free energy takes the form

f1RSBðΔ; sÞ ¼ extrfϕ1RSBðm; q0; q1;Δ; sÞg; ð23Þ

with

ϕ1RSBðm; q0; q1;Δ; sÞ

¼ m2

2Δ
− s

q20
4Δ

− ð1 − sÞ q
2
1

4Δ

−
1

s
Exð0Þ;W

�
f

�
q1
Δ
;
m
Δ
xð0Þ þ

ffiffiffiffiffi
q0
Δ

r
W;

q1 − q0
Δ

��
; ð24Þ

where

fðA;B;CÞ ¼ ln
Z

dh

ffiffiffiffiffiffi
C
2π

r
e−ð1=2ÞCh2

·

�Z
dxPXðxÞe−ð1=2ÞAx2þðBþChÞx

�
s
: ð25Þ

The stationary points of the 1RSB free energy are now
obtained by the fixed points of

m ¼ 1

s
Exð0Þ;W

�
xð0Þ

∂f
∂B

�
;

q0 ¼
1

s2
Exð0Þ;W

��∂f
∂B

�
2
�
;

q1 ¼
2

sðs − 1ÞExð0Þ;W

�∂f
∂Aþ ∂f

∂C
�
; ð26Þ

where A¼q1=Δ, B¼mxð0Þ=ΔþW
ffiffiffiffiffiffiffiffiffiffiffi
q0=Δ

p
, C¼ðq1−q0Þ=

Δ, and the extremum is a minimum inm and a maximum in
the other parameters.
We reiterate here the observation that, in the same way

that the stationary points of the RS free energy correspond
to state evolution fixed points of the AMP algorithm, the
stationary points of the 1RSB free energy correspond to the
fixed points of the state evolution of an approximate survey
propagation algorithm that depends on s [28]. In particular,
the expression (17) exactly gives the MSE of such an
algorithm with m and q0 being the solution of Eq. (26).
For high enoughΔ, the 1RSB solution collapses to the RS

one, meaning that q0¼q1¼m¼0. At Δdyn, the saddle-point
equations for s ¼ 1 admit a solution with m ¼ q0 ¼ 0,
q1 > 0. The value of q1 in this solution coincides with the
value ofm in the high-magnetization RS branch discussed in
the previous section. At ΔIT, the metastable states undergo
an entropy crisis transition. Although the thermodynamically
dominant state becomes the state with high correlation with
the ground truth signal, glassy states continue to exist. In
fact, as far as these states are concerned—if we neglect the
high-magnetization state—the system undergoes there a
Kauzmann transition, where the dominant glassy states have
zero complexity and a value of the Parisi parameter s is
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determined by the condition that complexity ΣðΔ; sÞ
(defined below) is equal to zero [32].
Let us now discuss s ≠ 1 solutions. It is well known that

the Parisi parameter s can be interpreted as an effective
temperature that enables one to select families of meta-
stable states of given (internal) free energy [33]. Their
corresponding complexity Σ (defined as the log of their
number) is obtained by deriving Eq. (24) with respect to s
[33] and multiplying the result by s2, i.e.,

ΣðΔ; sÞ ¼ s2

4Δ
ðq21 − q20Þ − s2

∂
∂sExð0Þ;W

�
1

s
f

�
q1
Δ
;
m
Δ
xð0Þ

þ
ffiffiffiffiffi
q0
Δ

r
W;

q1 − q0
Δ

��
: ð27Þ

As expected, this complexity for s ¼ 1 coincides with the
free-energy difference between the two RS branches dis-
cussed in the previous section.
In Fig. 2, we plot the complexity as a function of both s

and of the noise variance Δ. For each value of s, we find
two regions: a physical region where Σ is positive and a
nonphysical one where Σ < 0. Note that the physical region
with positive complexity continues not only below ΔIT but
even well below Δalg.
The 1RSB solution is not guaranteed to give the exact

description of the glassy states. It is well known that in the
replica solutions should be stable against (further) breaking
of the replica symmetry. This stability requires that all the
eigenvalues of the Hessian of the free energy should be
positive in the solution. The 1RSB solutions can lose
stability in two possible ways, associated to negative values
of the following eigenvalues [34–36]:

λI ¼ 1 −
1

Δ

Z
∞

−∞
dhPðs; hÞ½f00ðs; hÞ�2;

λII ¼ 1 −
1

Δ

Z
∞

−∞
dhPð1; hÞ½f00ð1; hÞ�2; ð28Þ

where [A ¼ q1=Δ, B ¼ ðm=ΔÞxð0Þ þ h, and C ¼
ðq1 − q0Þ=Δ]

fð1; hÞ ¼ ln
Z

dxPðxÞ exp
�
−
A
2
x2 þ hx

�
;

fðs; hÞ ¼ 1

s
ln
Z

dzffiffiffiffiffiffiffiffiffi
2πC

p e−ðz2=2CÞesfð1;h−zÞ; ð29Þ

Pðs; hÞ ¼ Exð0Þ

" ffiffiffiffiffiffiffiffiffiffi
Δ

2πq0

s
exp

�
−

Δ
2q0

B2

�#
;

Pð1; hÞ ¼ esfð1;hÞ
Z

dze−ðz2=2CÞffiffiffiffiffiffiffiffiffi
2πC

p · Pðs; h − zÞe−sfðs;h−zÞ:

ð30Þ

A negative λI (type-I instability) signals the appearance of
new scales of distance between states. A negative λII, on
the other hand, is met when the glassy states are unstable
against a Gardner transition to further RSB [34,35]: Each
metastable state splits into a hierarchy of new states (type-II
instability) [36]. In Fig. 2, we mark with full lines the stable
region and with dashed lines the unstable ones. Type-I
instability is found for large s in the nonphysical region
of negative complexity. Type-II instability is found in the
physical region at small values of s, and it has been found
also in spin-glass models [36–38].
Let us now discuss in detail the glassy solutions that

one finds for Δ < ΔIT representing metastable states with
higher free energy than the high-magnetization solution.
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FIG. 2. The complexity of metastable states Σ as a function of
the Parisi parameter s and the noise Δ, for prior (2) with sparsity
ρ ¼ 0.08. Upper: Complexity at fixed s in the whole domain of
existence of a nontrivial fixed point. Lower: The physical region
of positive Σ as a function ofΔ. We draw the stable solutions with
a solid line and the unstable, with respect to the eigenvalues (28),
with a dashed line. For each value of Δ ∈ ½ΔIT;Δdyn�, the value of
ΣðΔ; s ¼ 1Þ represents the complexity of the family of thermo-
dynamically dominating states. Below ΔIT, the s ¼ 1 solution is
nonphysical and ΣðΔ; s ¼ 1Þ < 0. The algorithmic threshold of
AMP occurs when the ghost-glassy states at s ¼ 1 have a
spinodal transition towards the signal.
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These solutions have zero or low magnetization (overlap
with the signal). As already remarked, for a givenΔ, among
all the glassy states the ones with the lowest total free
energy turn out to be the ones with zero complexity Σ.
For different fixed values of the parameter s, the complexity
curves reach a zero value at different values of Δ.
Remarkably, as illustrated in Fig. 2, a stable (towards
higher levels of RSB) zero-complexity solution is found
down to a value of noiseΔ1RSB;equil < Δalg. Stable solutions
of positive complexity exist down to Δ1RSB;stable <
Δ1RSB;equil and solutions with positive complexity (irre-
spective of the stability) down to Δ1RSB;all < Δ1RSB;stable.
Example of specific values for ρ ¼ 0.08 in Fig. 2 are
Δalg∼0.9805ρ2,Δ1RSB;equil∼0.951ρ2,Δ1RSB;stable∼0.918ρ2,
and Δ1RSB;all ∼ 0.903ρ2. This result notably means that for
Δ < Δalg, namely, in the easy phase where AMP converges
close to the signal, families of metastable states continue to
exist, some of them being stable with extensive complexity.
One can discuss how do these states influence

Monte Carlo dynamics that explore the space of configu-
ration according to the principles of physical dynamics.
On the one hand, one could conjecture that Monte Carlo
dynamics gets trapped by glassy states even below Δalg.
On the other hand, the dynamics is expected to fall out of
equilibrium for all Δ < Δdyn, and it is not a priori clear in
which states it should get trapped. While AMP clearly
works for Δ < Δalg and does not work for Δ > Δalg, our
analysis does not provide any reason why the threshold
Δalg should be relevant for Monte Carlo or other sampling-
based algorithms. For such physical dynamics, numerical
simulations and analytic studies in suitable models are
necessary to clarify the question of what the corresponding
algorithmic threshold is.
So far, we focus on glassy states of positive complexity

(i.e., existing with probability one for a typical instance).
There are also solutions of the 1RSB equations having
negative complexity. We call the negative-complexity
solution the ghost-glassy states. From the physics point
of view, those solutions do not correspond to physical states
for typical instances. Yet, from the algorithmic point of
view, they do correspond to the fixed points of the ASP
algorithm [28] run for a given value of Parisi parameter s;
as such, they can be reached algorithmically. At this point,
it becomes relevant to understand for which value ΔalgðsÞ
the ghost-glassy state disappears, developing a spinodal
instability towards the high-magnetization state. In particu-
lar, we can ask the natural question if with a suitable
choice of the Parisi parameter s the ASP improves over
the algorithmic threshold Δalg ≡ Δalgðs ¼ 1Þ of the usual
AMP (s ¼ 1) and if we could have an s for which
ΔalgðsÞ > Δalgð1Þ. With this question in mind, in Fig. 3,
we plot the MSE with the ground truth signal given by
Eq. (17) as a function of s for various values of Δ. We
initialize the 1RSB fixed-point equations at infinitesimal

magnetization and iterate them till a fixed point. We observe
that for all values of Δ the MSE is minimized for s ¼ 1,
i.e., by the canonical AMP algorithm.

VI. CONCLUSION

In conclusion, we studied the glassy nature of the hard
phase in inference problems. Our results imply that indeed
the corresponding metastable state is glassy, i.e., composed
of exponentially many states. We evaluate their number
(complexity) as a function of their internal free energy to
conclude that this glassiness extends to a range of the noise
parameter Δ even larger than the extent of the hard phase.
This finding reopens the natural question of performance
limits of Monte Carlo–based sampling. While some recent
works [6] anticipated numerically that Monte Carlo and
message passing will share the same algorithmic threshold,
our results do not provide any evidence of this result.
Instead, they suggest that, since glassiness is present also
below the algorithmic threshold of AMP, the performance
of sampling-based algorithms will be different, in general.
In order to validate this proposition, one needs to study a
different model than the present one. The present model is
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FIG. 3. The MSE as a function of the Parisi parameter s for
different values of the noise strength Δ. The smallest MSE is
always reached for s ¼ 1, corresponding to the performance of
the AMP algorithm, with a threshold at Δalg ¼ 0.9805ρ2.
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dense and thus not suitable for large-scale simulations; also,
the analytically tractable description of sampling-based
dynamics for the present model is a major open question.
One possibility is to perform a large-scale numerical study
with Monte Carlo–based dynamics in diluted models such
as those studied in Ref. [39]. Another possibility is to aim at
an analytical description of the Langevin dynamics that is
known in a tractable form so far only for mixtures of
spherical p-spin models.
While we anticipate that the performance of the usual

sampling-based algorithms will be hampered by the glassi-
ness, it is an interesting open question to investigate
whether other algorithms are able to match the performance
of AMP. We have in mind, for instance, the algorithms
based on the robust ensemble as introduced in Ref. [40].
Concerning the AMP algorithm, we conclude that,

despite the fact that it assumes the hard phase not to be
glassy, the improved description in terms of one-step
replica symmetry breaking, that takes glassiness into
account, does not provide algorithmic improvement. This
conclusion is at variance with the situation in random
constraint-satisfaction problems, where the knowledge of
the organization space of solutions provided by 1RSB leads
to algorithmic improvement [29]. We note that this obser-
vation is surprising, and we are missing a physically
intuitive explanation for why taking glassiness into account
improves performance in optimization problems but not in
Bayes-optimal inference. We stress that our results provide
strong evidence towards the conjecture that the hard phase
is impenetrable for some computationally fundamental
reasons. Further investigation of this conjecture is an
exciting direction for both physics and theoretical computer
science.
In this paper, we use the example of low-rank matrix

estimation with spins 0 and�1 as a prototypical example in
which the hard phase exists. We checked that the resulting
picture applies in a range of parameters and also for some
other models (such as planted mixed p-spin model) where
the hard phase was identified. We expect the picture
presented here to be generic in all the problems where
the hard phase related to a first-order phase transition was
identified.
We also note that our above conclusions apply to the case

of Bayes-optimal inference, where the generative model is
matched to the inference model. In case the hyperpara-
meters are not known or mismatched, the message-passing
algorithm that takes glassiness into account can provide
better error and robustness, which is investigated in detail
in Ref. [28].
Finally, we mention that the results shown here may be

compelling also beyond inference problems. In particular,
the instabilities of the RS solution at Δalg and Δc can be
related to a similar phenomenon occurring in the mean-field
theory of liquids and glasses [41,42]. A phase structure
similar to the one presented in this paper is found in that

case, if we identify Δ as analogue to an (inverse) density
parameter and the reconstruction phase as the crystal. Also in
that case, the RS solution representing the liquid at low
density describes a nonergodic extensive complexity phase
at higher density. As is the case here, there is a density where
complexity vanishes, but the solution can be continued
below this point. Finally, there is a maximum density where
the solution undergoes an instability—called Kirkwood
instability—and ceases to exist [43,44]. Our analysis sug-
gests that within inference models not only the nonphysical
negative-complexity RS solution could undergo this insta-
bility but also the glassy ones. Whether this phenomenon
could be relevant for other glassy systems is an intriguing
question.
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