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We show, by solving Maxwell’s equations, that an electric charge on the surface of a slab of a linear
magnetoelectric material generates an image magnetic monopole below the surface provided that the
magnetoelectric has a diagonal component in its magnetoelectric response. The image monopole, in turn,
generates an ideal monopolar magnetic field outside of the slab. Using realistic values of the electric and
magnetic field susceptibilities, we calculate the magnitude of the effect for the prototypical magnetoelectric
material Cr2O3. We use low-energy muon spin rotation to measure the strength of the magnetic field
generated by charged muons as a function of their distance from the surface of a Cr2O3 film and show that
the results are consistent with the existence of the monopole. We discuss other possible routes to detecting
the monopolar field, and show that, while the predicted monopolar field generated by Cr2O3 is above the
detection limit for standard magnetic force microscopy, the detection of the field using this technique is
prevented by surface charging effects.
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I. INTRODUCTION

The elusiveness of magnetic monopoles, which are
expected in classical electrodynamics because of the
duality symmetry between electricity and magnetism,
has intrigued physicists for centuries. Their relevance
was particularly emphasized by Dirac, who introduced a
description allowing monopoles to remain consistent with
the known zero divergence of magnetic fields and showed
that their existence would explain the observed quantiza-
tion of electric charge in the Universe [1]. The quest for a
magnetic monopole therefore remains an active research
area today, ranging from searches using sensitive cosmic
ray detectors to attempts to generate monopoles in collider
experiments; for a review, see Ref. [2]. While the existence
of true magnetic monopoles has not yet been verified, a
number of condensed-matter systems have been shown to
provide intriguing analogues. Perhaps the most popular are

the pyrochlore-structure “spin-ice” materials of which the
prototype is dysprosium titanate, Dy2Ti2O7 [3,4]. In these
materials, magnetic excitation of the frustrated antiferromag-
netic “two-in, two-out” tetrahedral spin ordering leads to
two locally divergent magnetizations of opposite sign—one
tetrahedron has three spins pointing inward and one pointing
outward, and vice versa—connected by the analogue of a
Dirac string. Also of interest are the so-called linear mag-
netoelectric materials, magnetic insulators in which an
applied electric field induces a magnetization and vice versa.
Here, it has been shown theoretically that when an electric
charge is introduced into a diagonal magnetoelectric (in
which the induced magnetization is parallel to the electric
field), the divergent electric field of the charge induces a
monopolelike magnetization around the electric charge [5,6].
Similarly, it has been argued that a charge above a topological-
insulator–ferromagnet heterostructure should lead to a mag-
netic monopolar field due to the quantized Chern-Simons
magnetoelectric response of topological-insulators with bro-
ken time-reversal symmetry [7,8]. While the magnetoelectric
response of such a system can in principle be sizable [9], its
detection is challenging [10] becauseof the practical difficulty
in achieving insulating bulk behavior in topological-
insulators, as well as the need to incorporate a separate
time-reversal symmetry-breaking component [11].
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Here, we show that conventional linear magnetoelectric
materials, of which Cr2O3 is the prototype [12,13], can
generate an external monopolar magnetic field when an
electric charge is placed above any flat sample surface.
In linear magnetoelectrics, an applied magnetic field H
induces an electric polarization P, and an applied electric
field E induces a magnetization M according to

P ¼ ᾱH; ð1Þ

μ0M ¼ ᾱTE: ð2Þ

Here, μ0 is the permeability of free space, and ᾱ is the
magnetoelectric tensor in SI units. ᾱ is allowed to be
nonzero in materials that break both time-reversal and
space-inversion symmetry, and its nonzero components are
determined by the detailed crystalline and magnetic sym-
metry. In the next section, we show theoretically that, in
cases for which ᾱ has a nonzero diagonal component, a
surface charge q generates a subsurface image monopole
m. This monopole leads, in turn, to a divergent magnetic
field above the sample surface as shown in Fig. 1.

II. CALCULATION OF THE FIELDS INDUCED
BY A CHARGE ON THE SURFACE OF
A MAGNETOELECTRIC MATERIAL

We consider the geometry shown in Fig. 1, in which a
point electric charge q is placed in the vacuum region a
small distance r0 ¼ ð0; 0; z0Þ away from the planar surface
of a semi-infinite slab of a uniaxial magnetoelectric
material.

A. Magnetoelectrostatics

We solve the classical Maxwell equations for a static
system in which the electromagnetic fields are given by
Gauss’s laws

∇ · D ¼ ρ; ð3Þ

∇ · B ¼ 0: ð4Þ

Here, ρ is the free charge, D is the electric displacement,
and B is the magnetic flux density. In the conventional
treatment, the electric displacement and magnetic flux
density are given by D ¼ ϵ̄E and B ¼ μ̄H, respectively,
with ϵ̄ and μ̄ the dielectric and magnetic susceptibility.
Inside a linear magnetoelectric material, however, the
displacement and magnetic fields take the form

D ¼ ϵ̄Eþ ᾱH; ð5Þ

B ¼ μ̄H þ ᾱTE; ð6Þ

where ᾱ is the linear magnetoelectric susceptibility tensor
[14] and ᾱT its transpose. This expanded formulation must
be used in the Maxwell equations (3) and (4) to calculate
the electromagnetic fields in a magnetoelectric material.
In addition, the system needs to satisfy the electrostatic
boundary conditions for interfaces at all times:

D · n ¼ constant; ð7Þ

B · n ¼ constant; ð8Þ

E · t ¼ constant; ð9Þ

H · t ¼ constant; ð10Þ

where n is the surface normal and t the surface tangent.
Since we look at the static limit, it is helpful to use the

electrostatic and magnetostatic potentials ϕe and ϕm, which
are related to the electric and magnetic fields by

E ¼ −∇ϕe; ð11Þ

H ¼ −∇ϕm: ð12Þ

B. Solution for an isotropic magnetoelectric

First, we present the solution of the field equations for a
charge above an isotropic magnetoelectric in which ᾱ ¼ α1
(1 is the unit matrix). Even though there are five magnetic
point groups permitting such a behavior, no material with
such a magnetoelectric response has yet been identified
experimentally. Nevertheless, the behavior is of academic
interest, since it has the symmetry of the so-called

FIG. 1. A charge q (green sphere) above the surface of a
magnetoelectric induces an image monopole m (brown sphere) at
the same distance beneath the surface. The magnetic field above
the surface is divergent with its source at the subsurface image
monopole. The enlargement shows the unit cell of the proto-
typical magnetoelectric Cr2O3.
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Chern-Simons magnetoelectric response of topological-
insulators [15]. In addition, the solution is obtained
straightforwardly using the well-established method of
mirror charges and already provides insight into the full
problem that we address in the next section. Placing mirror
charges inside, “in,” and outside, “out,” of the magneto-
electric, we obtain the ansatz for the electric potential ϕe:

ϕout
e ðrÞ ¼ 1

4πε0

q
jr − r0j

þ q0

jr − r1j
; ð13Þ

ϕin
e ðrÞ ¼

q00

jr − r0j
; ð14Þ

where q is the real charge at position r0 ¼ ð0; 0; z0Þ,
and q00 and q0 are electric image charges at positions
r0 ¼ ð0; 0; z0Þ, r1 ¼ ð0; 0;−z0Þ. We enforce continuous
normal components of the displacement field and magnetic
flux density at the interface as well as continuous tangential
components of the electric and magnetic fields. To satisfy
the magnetic boundary conditions, we use the following
ansatz for the magnetic potential:

ϕout
m ðrÞ ¼ m0

jr − r1j
; ð15Þ

ϕin
mðrÞ ¼

m00

jr − r0j
; ð16Þ

where m00 and m0 are effective magnetic image monopoles
at positions r0 ¼ ð0; 0; z0Þ, r1 ¼ ð0; 0;−z0Þ. We solve this
system of equations, as shown in detail in Appendix A,
to obtain the following expression for the magnetic flux
density outside of the material:

BðrÞ ¼ −
μ0
4π

2qα
ðμþ μ0Þðεþ ε0Þ − α2

r − r1
jr − r1j3

: ð17Þ

The resulting E and B fields both inside and outside of the
magnetoelectric slab using literature values for the relative
response parameters of Cr2O3 (Table I) averaged to mimic
an isotropic material are sketched in Figs. 2(a) and 2(b).
The electric field outside the slab is similar to that of the

original isolated point charge, with deviations in the region
close to the interface due to the dielectric screening of the
field within the slab. The electric field within the slab is a

divergent point charge field with the charge outside the slab
as its origin and its magnitude screened by the static
dielectric constant of the material. Since the magnetic flux
density within the material is induced by the electric field
through the magnetoelectric effect, the field lines within
the slab diverge identically to those of the electric field.
Outside of the slab, the magnetic field is particularly
interesting as it is perfectly divergent, with its source being
an image monopole that is the same distance below the
surface as the point charge is above it. A positive charge
with the magnitude of an electronic charge induces an
image monopole equal to −3.63 × 10−16 Am in a material
with these response parameters. This monopole converts to
a magnetic B field of the order of a microtesla caused by
and measured at the site of a single electronic point charge
placed a distance of 2 nm above the interface. Note that a
positive charge on a material with a positive magnetoelec-
tric tensor induces a negative magnetic field outside the
material and that changing the sign of either the surface
charge or the magnetoelectric tensor changes the sign of the
field. As a result, opposite magnetoelectric domains pro-
duce fields of opposite sign for the same sign of charge.

C. Solution for a uniaxial magnetoelectric

Next, we analyze the realistic case of the response
of a uniaxial anisotropic magnetoelectric material [19].

TABLE I. Experimental values of α, relative permittivity εr, and
relative permeability μr for Cr2O3, from Refs. [16–18]. εr is
measured at room temperature, whereas μr and α are the low
temperature (4 K) values. α has units of inverse velocity in the SI
units that we use here.

Component α (ps=m) εr (ε0) μr (μ0)

⊥ 0.734 10.3 1.0014
k −0.233 10.9 1.0001

z

x

x x

z z

E field (isotropic + uniaxial response)(a)

(b) B field (uniaxial response)(c)B field (isotropic response)

FIG. 2. Calculated E (a) and B (b),(c) fields induced by a
positive charge close to a magnetoelectric surface in Cr2O3. The
green and orange circles mark the position of the charge and the
image charges. The arrows indicate the orientation of the fields
calculated using an averaged isotropic magnetoelectric response
(b) and using the full anisotropic responses (c) of Cr2O3. The
electric field (a) is indistinguishable for the two cases due to the
small anisotropy in the dielectric response.
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Specifically, we take the case of the prototypical magneto-
electric Cr2O3 and treat its full uniaxial response. We orient
the high-symmetry axis along the z axis, so that the
magnetoelectric, dielectric, and magnetic susceptibility
tensors are as follows:

ᾱ¼

2
64
α⊥ 0 0

0 α⊥ 0

0 0 αk

3
75; ϵ̄¼

2
64
ε⊥ 0 0

0 ε⊥ 0

0 0 εk

3
75; μ̄¼

2
64
μ⊥ 0 0

0 μ⊥ 0

0 0 μk

3
75:

Aligning the n ¼ ð0; 0; zÞ axis of the magnetoelectric
perpendicular to the surface plane, the field equations
inside the magnetoelectric become

∇ ·D¼ðε⊥∇⊥þ εk∇kÞEþðα⊥∇⊥þαk∇kÞH¼ 0;

∇ ·B¼ðμ⊥∇⊥þμk∇⊥ÞHþðα⊥∇⊥þαk∇kÞE¼ 0; ð18Þ

and those outside the material

∇ · D ¼ qδðr − r0Þ;
∇ · B ¼ 0: ð19Þ

We solve this system of equations by Fourier transforma-
tion in the two-dimensional coordinate space perpendicular
to the interface and then solve separately for the two half-
spaces with the boundary conditions stated previously in
Sec. II A. We obtain the following expressions for the
potentials ϕm and ϕe (for details, see Appendix B):

ϕin
e ¼ cine1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ jζþz − z0j2
p þ cine2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ jζ−z − z0j2
p ; ð20Þ

ϕout
e ¼ 1

4πε0

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ jz − z0j2

p þ coute1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ jzþ z0j2

p ; ð21Þ

ϕin
m ¼ cinb1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ jζ−z − z0j2
p þ cinb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ jζþz − z0j2
p ; ð22Þ

ϕout
m ¼ coutb1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ jzþ z0j2
p ; ð23Þ

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. ζ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�γ þ aþ dÞ=2p

is deter-
mined by the electric, magnetic. and magnetoelectric
susceptibilities:

a ¼ εkμ⊥ − αkα⊥
εkμk − α2k

;

b ¼ εkα⊥ − ε⊥αk
εkμk − α2k

;

c ¼ μkα⊥ − μ⊥αk
εkμk − α2k

;

d ¼ ε⊥μk − αkα⊥
εkμk − α2k

;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2adþ 4bcþ d2

p
:

The values of the parameters for the case of Cr2O3

(obtained using the susceptibilities from Table I) are given
in Table II.
Equation (23) leads us immediately to the central result

of our calculations, which is that the magnetic field outside
the material has the monopolar form:

BðrÞ ¼ μ0coutb1
r − r1
jr − r1j3

: ð24Þ

Here, r ¼ ðx; y; zÞ and r1 ¼ ð0; 0;−z0Þ. We plot the mag-
netic field in Fig. 2(c) for the parameters of Cr2O3. The
monopolar nature above the surface is clear, while the
behavior beneath the surface is more complicated than in
the isotropic case.
Note that the electric field (not shown) is indistinguishable

from that obtained for the isotropic case because it is
dominated by the dielectric response, which is almost
isotropic. The additional electric polarization that is induced
by the magnetoelectric response is negligible compared to
the direct dielectric response. We emphasize again that, due
to the transformation properties of the magnetoelectric
tensor, the sign of the magnetic image charges and the
corresponding induced B field will be opposite in the two
different magnetoelectric domains of Cr2O3.

D. Dependence of the monopolar field strength
on the magnetoelectric anisotropy

We saw in the previous two sections that the induced
monopolar field depends on both the magnitude of the

TABLE II. Calculated values for the coefficients inEqs. (20)–(23)
for an elementary point charge at a vacuum-Cr2O3 interface. The
corresponding parameters are in units of ampere-meters (Am) for
the magnetic potentials and in units of volt-meters (Vm) for the
electric potential respectively.

cine1 2.48 × 10−10 Vm
cine2 6.15 × 10−16 Vm
coute1 −7.47 × 10−9 Vm
cinb1 3.41 × 10−15 Am
cinb2 3.38 × 10−15 Am
coutb1 −1.59 × 10−16 Am

Q. N. MEIER et al. PHYS. REV. X 9, 011011 (2019)

011011-4



magnetoelectric response and its anisotropy, that is, the
relative magnitudes of αk and α⊥. In Appendix C, we give a
detailed analysis of the effect of anisotropy, the main results
of which we present here. In Fig. 3, we show the field
contributions from the “sum” (proportional to the sum of
α⊥ and αk) and “difference” (proportional to the difference
between α⊥ and αk) components of the magnetoelectric
tensor:

ᾱ ¼ 1

2
ðα⊥ þ αkÞ1þ 1

2
ðα⊥ − αkÞ

2
64
1 0 0

0 1 0

0 0 −1

3
75 ð25Þ

calculated assuming that the anisotropies in ε and μ
are small.
We see that, for this particular slab orientation (with the

surface perpendicular to the high-symmetry axis), while
both the sum and difference components of the magneto-
electric tensor contribute to the field within the slab, only
the sum component is relevant for the field outside the
magnetoelectric; in fact, for the case of exactly isotropic ϵ̄
and μ̄ tensors, the field outside the slab is given by the result
that we derived for the fully isotropic case, Eq. (26):

BðrÞ ¼ −
μ0
4π

qðα⊥ þ αkÞ
ðμþ μ0Þðεþ ε0Þ − 1

4
ðα⊥ þ αkÞ2

r − r1
jr − r1j3

:

ð26Þ
This result is consistent with the symmetry of the vacuum,
in which a hypothetical magnetic charge would induce a
purely monopolar magnetic field. Anisotropies in the ϵ̄ and
μ̄ tensors modify the magnitude of BðrÞ slightly from that
of Eq. (26) (for the case of Cr2O3 using the values from
Table I, we find a difference of 0.05% between the exact

solution and that for averaged isotropic ϵ̄ and μ̄) but do not
change its monopolar form.
This feature makes it particularly straightforward to

predict the temperature dependence of the monopolar field.
The highly temperature-dependentmagnetoelectric response
in Cr2O3 [17] is reproduced in Fig. 4. While the in-plane
magnetoelectric response α⊥ shows the usual Brillouin-
function form below the Néel temperature (orange triangles
in Fig. 4), the spin-fluctuation mechanism [20] responsible
for the out-of-plane response αk results in a strong temper-
ature dependence (green squares in Fig. 4), with αk even
changing sign at low temperature. Since the strength of the
induced monopole is proportional to the sum 1

2
ðαk þ α⊥Þ

shown as the red line in Fig. 4, the corresponding induced
monopolar field must have the same temperature depend-
ence. We see that the induced monopolar field should
increase with increasing temperature, reaching a maximum
at around 280K, before decreasing and vanishing at theNéel
temperature at 307 K.

III. EXPERIMENTAL SEARCH FOR THE
MAGNETIC MONOPOLE USING LOW-ENERGY

MUON SPIN ROTATION (LE-μSR)

Next, we describe our experimental search for the
magnetic monopolar field using low-energy muon spin
rotation [21–24] (LE-μSR).

A. Experimental setup

In the LE-μSR method, fully polarized muons are
implanted into a sample, and the local magnetic field at
the muon stopping site is measured by monitoring the
evolution of the muon spin polarization. The monitoring is
achieved via the anisotropic beta decay positron which is
emitted preferentially in the direction of the muon’s spin at

)

(
)

(

FIG. 4. Measured temperature dependence of the parallel (αk,
green squares) and perpendicular (α⊥, orange triangles) mag-
netoelectric response in Cr2O3. The red circles show the average,
1
2
ðαk þ α⊥Þ. Data taken from Ref. [17].

FIG. 3. Magnetic field B along ð0; 0; zÞ induced by an elec-
tronic charge q ¼ þjej, 2 nm above the surface (at z ¼ 0) of the
magnetoelectric slab. Positive z values are above the sample
surface. The field is decomposed into contributions from the sum
and difference components of the magnetoelectric tensor. We see
that the monopolar field outside the sample is determined entirely
by the isotropic sum component of the magnetoelectric response.
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the time of decay. Using appropriately positioned detectors,
one can measure the asymmetry AðtÞ of the beta decay
along the initial polarization direction. AðtÞ is proportional
to the time evolution of the spin polarization of the
ensemble of implanted spin probes [25].
Conventional μSR experiments use so-called surface

muons with an implantation energy of 4.1 MeV, resulting
in a stopping range in typical density solids of from 0.1 to
1 mm below the surface. As a result, their application is
limited to studies of bulk properties, and they cannot
provide depth-resolved information or study extremely
thin-film samples. In contrast, depth-resolved μSR measure-
ments can be performed at the low-energy muon spectrom-
eter (LEM) using muons with tunable kinetic energies in the
1 to 30 keV range, corresponding to implantation depths of
10 to 200 nm. We take advantage of this capability here.
Our measurement, which builds on our previous attempt

to measure the image monopole in topological insulators
[10], is designed in the following way: We use a 500-nm-
thick Cr2O3 film grown in the (001) direction, which is
coated by an insulating stopping layer, in this case, solid
nitrogen, N2. The muons (which carry a positive electronic
chargeþe) are implanted at different depths in the N2 layer.
The electric field of the muon should penetrate the Cr2O3

layer and induce both electric and magnetic responses, with
the magnetic response being the monopolar field described
above in Sec. II. The muon itself then acts as the magnetic
probe to measure the induced magnetic field. The full
experimental setup is sketched in Fig. 5. In Fig. 6, we show
the calculated magnetic field as a function of the distance of
the muon from the Cr2O3 surface, and note that, like the
field from a charge at a fixed point shown in Fig. 3, it has a
ð1=d2Þ dependence.
The Cr2O3 films used here are grown by reactive rf

sputtering on (0001)Al2O3 substrates using ametalCr target
in an ArþO2 atmosphere (base pressure <1×10−6Pa) at a

substrate temperature of 773 K. Bottom Pt electrodes with
thicknesses of 25 nm are sputtered on Al2O3 substrates and
Cr2O3 films using shadow masking. Prior to our measure-
ments, the Cr2O3 layer is prepared in a single-domain state
using magnetoelectric annealing. This is achieved by cool-
ing the sample from 320 K through the Néel temperature to
20 K in a positive magnetic field of 0.3 T and a positive
electric field larger than 1 kV=cm both applied along the
surface normal. Since E and H are parallel, such an anneal
yields a single magnetoelectric domain with positive mag-
netoelectric tensor α [26].
We then deposit a 150-nm layer of solid nitrogen on top

of the Cr2O3 film to provide an insulating muon stopping
region above the surface of the magnetoelectric. The N2

deposition and all subsequent measurements are performed
at 20 K to maintain the N2 in the solid state. Muons are then
implanted into this bilayer structure with different incident
muon kinetic energies, in the presence of a small bias field
Bmeas ¼ �10 mT. The fraction of muons that do not
capture an electron to form the neutral hydrogenlike
muonium state is about 40% in the N2 film [27]. The
muonium response occurs at a completely different reso-
nance frequency, and so it is easily subtracted from the
measurement. The bias field is used to increase the
accuracy of the measurement, but it is too small to reorient
the antiferromagnetic domain, and so it does not change the
sign of the magnetoelectric tensor [28]. We perform
independent second-harmonic generation domain imaging
experiments [14] and verify that the domain structure is
stable up to fields of 5.8 T (at which a spin flop occurs).
In Fig. 7 (inset), we show the muon stopping profiles

(that is, the fraction of muons as a function of implantation
depth) for different muon implantation energies calculated
assuming an N2 thickness of 150 nm and a density of
1 g=cm3. We use the Monte Carlo program TRIM.SP, which
treats the positive muon as a light proton and has been
shown to be accurate for low-energy muons [29]. The black
line in the main panel shows the calculated LE-μSR initial

FIG. 5. Sketch of the LE-μSR setup used for this experiment.
Muons with a kinetic energy of 12.7 keV enter the sample region
with nearly 100% spin polarization (red arrow). The energy of the
muons impinging on the sample can be tuned by choosing the
appropriate potential at the sample plate. The sample is cooled in
a positive poling field of Bpol ¼ 0.3 T and a positive electric field
of E > 1 kV=cm to ensure a positive α. The measurements at low
temperature are performed in Bmeas ¼ �10 mT.

(
)

( )

FIG. 6. Calculated magnetic field at the site of a muon at a
distance of minus the implantation depth above the surface
of Cr2O3.
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asymmetry as a function of the implantation energy calcu-
lated from these stopping profiles, with the assumption that
only those muons that stop in the N2 layer and that do not
form muonium contribute to the initial polarization. The
initial asymmetry decreases for increasing implantation
energies as the muons enter the magnetic Cr2O3 layer where
they quickly lose their polarization due to the strong internal
magnetic fields. Also plotted in the main panel is our
observed LE-μSR asymmetry measured in a transverse-
magnetic field of �10 mT. The agreement in trend between
the results based on the TRIM.SP calculations and the
measured values indicate that our assumed values for the
thickness and density of the nitrogen layer are reasonable.

B. Results

In Fig. 8(a), we show the measured internal fields at the
muon sites as a function of the muon implantation energy,
with higher implantation energies corresponding to smaller
average distances to the Cr2O3 surface. The upper panel (blue
circles) shows the results obtained in a small positive bias field
(alongþc) and the lower panel (red circles) those obtained in
a small negative bias field. The local field shown in Fig. 8 is
the sum of the bias field plus any internal field at the muon
site. We see that in both cases the muon experiences a local
magnetic field that varies monotonically with its distance
from the surface. Note again that only the muons stopping in
the nitrogen overlayer contribute to the signal, as the muons
stopping in Cr2O3 quickly depolarize. The LE-μSR raw data
for an example point are shown in Appendix D.
If the only contribution to the internal field at the muon

site were the monopolar field from the magnetoelectric
response, we would expect the shifts in both cases to be in
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FIG. 7. Measured LE-μSR asymmetry (blue circles and black
squares) for positive and negative applied magnetic fields and
TRIM.SP prediction (solid black line) as a function of muon
implantation energy for a 150-nm-thick solid nitrogen layer on
Cr2O3. Inset: Muon stopping profiles calculated using TRIM.SP
for various muon implantation energies.
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FIG. 8. (a) Measured magnetic field experienced by the muons
stopping in the solid nitrogen layer as a function of energy. With
increasing implantation energy, the average distance of muons to the
Cr2O3 interface decreases. Positive and negative external field refers
to the small bias field applied at low temperature for the duration of
themeasurement; in both cases, the sample is poled in a large positive
field parallel to the external electric field prior to the measurement
to prepare it in a single magnetoelectric domain with positive α.
(b) Measured local field corrected for contributions from parasitic
field effects as a function of the muon implantation energy. (c) Mea-
sured FWHM of the magnetic field distribution fit to a Lorentzian
distribution PL

fitðBÞ as a function of the muon implantation energy.
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the same direction, since both sets of measurements are
performed on the same magnetoelectric domain. It is
known, however, that Cr2O3 thin films can have stray
spins caused by defects at the interface with the Al2O3

substrate, as well as impurity spins at the interface, which
have been shown to be susceptible to small magnetic fields
in thin-film samples [28,30]. (Note that the intrinsic surface
spin density resulting from the termination of the anti-
ferromagnetic magnetoelectric [31–33] is not reversed
under the conditions of our experiment, since this would
require the reversal of the full antiferromagnetic domain
[33]. In addition, it has an associated field that is negligible
compared with that from the monopole effect.) To remove
the contribution from the stray magnetic dipoles, which we
expect to switch with the applied magnetic bias field, we
therefore sum the local internal values obtained in positive
and negative bias and present 0.5ðBþ þ B−Þ as a function
of the muon energy in Fig. 8(b). The base level bias
corresponds to the switching precision of the small mag-
netic bias field. We obtain an internal field shift that is
consistent with the expected behavior of the induced
magnetic monopole: The maximum value close to the
surface is of the same order of magnitude (several micro-
teslas) as the calculated value, the sign is as expected for
the prepared magnetoelectric domain, and it decays with
distance from the interface. While the size of the error bars
prohibits extraction of the exact functional form, the decay
is consistent with quadratic behavior.
For completeness, we present in Fig. 8(c) the full width

at half maximum of the distribution of the fields sensed by
the muons, PL

fitðBÞ, extracted from the damping rate of the
measured muon spin polarization assuming a Lorentzian
field distribution. The values of the linewidths of approx-
imately 20 μT and their increase towards the Cr2O3 surface
are consistent with the total local field values from Fig. 8(a)
convoluted with the calculated stopping profiles shown
earlier, indicating that this incoherent broadening results
primarily from the contribution from the stray spins that are
aligned ferromagnetically by the bias field.

IV. DISCUSSION AND OTHER EXPERIMENTAL
TECHNIQUES

The small field shift in our LE-μSR measurements
combined with the increased width of the field distribution
towards the interface present a first hint that a monopole is
indeed induced by an electric charge at a magnetoelectric
surface. In this final section, we discuss studies that we
have attempted using other techniques, as well as additional
possible future routes for confirmation of the monopole’s
existence.
A first step would be to perform temperature-dependent

measurements using the LE-μSR technique described
above. We showed in Sec. II D the temperature dependence
of the average magnetoelectric response which, in turn,
determines the strength of the monopolar field. A measured

increase in field strength on warming with a maximum at
around 280 K would be a strong indication that the origin of
the field is the magnetoelectric response of the sample. For
such a study, a different stopping layer would be needed
because nitrogen would not be solid.

A. Magnetic force microscopy

In addition to the muon experiments, we performed
magnetic force microscopy (MFM) on a cut and etch-
polished commercial c-oriented Cr2O3 crystal of d ¼
150 μm thickness grown by the Verneuil method
(Kristallhandel Kelpin). The magnetic tip of an atomic force
microscope acted as an electric chargemonopole by applying
a voltage U of 20 V between the tip and the copper back
electrode of the sample. At the same time, the magnetization
of the tip served as the detector for the induced monopolar
magnetic field. The goal of the experiment was to exploit the
different sign of α for the two antiferromagnetic domains and
measure a change of sign in the responsewhen the tip moves
across a domain boundary, as sketched in Fig. 9. In addition,
we aimed to vary the tip-surface distance to verify the
characteristic r2 dependence of a monopolar field. From
our values ofU,d, andα, we estimated themonopolar field at
the positionof the tip to beon the order of1 μT, which should
be detectable as a change of the mechanical deformation of
the magnetized tip.
In the first step, we determined the distribution of anti-

ferromagnetic domains in our Cr2O3 samples by optical
second-harmonic generation [14]. In step two, we corrobo-
rated the sensitivity of our experiment to the magnetization
induced via the linear magnetoelectric effect. We coated
a Cr2O3 sample with a metallic platinum film of 50 nm
thickness acting as the front electrode and detected the
Cr2O3 bulk magnetization induced by 50 V applied to the

FIG. 9. Proposed technique for measuring monopolar magnetic
fields. The charged MFM tip both induces the image monopole
and detects its field. AF1 and AF2 indicate oppositely oriented
antiferromagnetic domains, which support monopoles and asso-
ciated fields of opposite sign.
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electrodes. This revealed a domain-dependent magnetiza-
tion 1 to 2 orders above our detection limit [34]. In the third
step, we repeated the experiment on an uncoated Cr2O3

sample, now employing the charged tip as the source of
charge to generate a monopolar magnetic field as described
above. We found, however, that the residual Cr2O3 surface
roughness of about 4 nm leads to a pronounced electrostatic
inhomogeneity in this insulating sample that obscured any
response expected from the magnetic monopole field.
No signal difference was detected at the position of the
antiferromagnetic domain boundaries.

B. Scanning SQUID Magnetometry

Another possible technique for measuring the induced
monopolar field could be scanning superconducting quan-
tum-interference device (SQUID) magnetometry. When a
charge ne · jqj is placed on the magnetoelectric surface, we
have shown that the resulting monopole is given by

m ≈ −
μ0
4π

qðα⊥ þ αkÞ
ðεþ ε0Þðμþ μ0Þ − 1

4
ðα⊥ þ αkÞ2

¼ neð1.92 × 10−22Þ Tm2 ð27Þ

for the case of Cr2O3. The magnetic flux from the magnetic
monopole through a Josephson junction is then given by
(see derivation in Appendix E)

Φ¼
Z

B ·dS¼mðzþdÞ
Z

2π

0

dϕ
Z

R

0

rdr
1

½r2þðzþdÞ2�3=2

¼ 2πm

�
1 −

zþ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðzþ dÞ2

p
�
; ð28Þ

where m is the magnetic monopole moment, z is the
distance of the pickup from the interface, d is the distance
of the charge from the interface, and R is the radius of the
loop. One of the key challenges in this experiment would be
to find a way to fix and localize charge above the surface.

V. CONCLUSIONS

In summary, we derived the form of the electric and
magnetic fields that are induced by an electric charge above
a surface of a semi-infinite slab of magnetoelectric material.
We found that, for both isotropic and uniaxial magneto-
electrics, the electric charge induces a magnetic image
charge, which is the source of a monopolar field decaying
with r2 in the vacuum region. The strength of this induced
field depends on the value of the sum part 1

2
jα⊥ þ αkj of the

magnetoelectric tensor, and any internal field arising from
a difference component of the magnetoelectric response
vanishes at the interface. We showed that the magnitude of

the response induced by a single electronic charge is large
enough to be detectable experimentally, and we described
searches using muon spin spectroscopy and magnetic force
microscopy. Our muon spin spectroscopy data, while not
fully conclusive, are consistent with the existence of the
monopolar field. We hope that our encouraging initial
results, as well as our discussion of other possible exper-
imental approaches for measurement of the monopole,
motivate further studies.
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APPENDIX A: DETAILED SOLUTION
FOR THE ISOTROPIC CASE

In this and the following Appendices, we use centimeter-
gram-second (cgs) units for conciseness of notation. From
the electrostatic boundary conditions and Eqs. (14) and
(16), it follows that the image monopole m00 ¼ m0 and that
the image charge q00 ¼ qþ q0,

m00 ¼ m0;

q00 ¼ qþ q0:

From the second and third boundary condition, we find
that

εq00 þ αm ¼ q − q0;

μm0 þ αq00 ¼ −m:

We rewrite the boundary conditions as the matrix
equation

0
B@

1 −1 0

1 ε α

0 α μþ 1

1
CA
0
B@

q0

q00

m0

1
CA ¼

0
B@

−q
q

0

1
CA;

which we solve using Gaussian transformations:

0
B@

1 −1 0 −q
εþ 1 α 2q

0 0 μþ 1 − α2

εþ1
− 2qα

εþ1

1
CA:

We find

SEARCH FOR THE MAGNETIC MONOPOLE AT A … PHYS. REV. X 9, 011011 (2019)

011011-9



m0 ¼ −
2qα

ðμþ 1Þðεþ 1Þ − α2
;

q00 ¼ 1

εþ 1

�
þ 2qα2

ðμþ 1Þðεþ 1Þ − α2
þ 2q

�

¼ 2qðμþ 1Þ
ðμþ 1Þðεþ 1Þ − α2

;

and

q0 ¼ −qþ 2qðμþ 1Þ
ðμþ 1Þðεþ 1Þ − α2

¼ −
qðμþ 1Þðε − 1Þ − α2

ðμþ 1Þðεþ 1Þ − α2
:

Using the previous results, one finds the potentials

ϕout
e ¼ q

jr − r1j
−

q
jr − r2j

ðμþ 1Þðε − 1Þ − α2

ðμþ 1Þðεþ 1Þ − α2
;

ϕout
m ¼ −

q
jr − r2j

2α

ðμþ 1Þðεþ 1Þ − α2
;

ϕin
e ¼ q

jr − r1j
2ðμþ 1Þ

ðμþ 1Þðεþ 1Þ − α2
;

ϕin
m ¼ −

q
jr − r1j

2α

ðμþ 1Þðεþ 1Þ − α2
;

where ϕ are electric (e) and magnetic (m) potentials inside
(in) and outside (out) the magnetoelectric slab. Taking the
gradients, leads to the fields

EoutðrÞ ¼ qðr − r1Þ
jr − r1j3=2

−
qðr − r2Þ
jr − r2j3=2

ðμþ 1Þðε − 1Þ − α2

ðμþ 1Þðεþ 1Þ − α2
;

HoutðrÞ ¼ −
qðr − r2Þ
jr − r2j3=2

2α

ðμþ 1Þðεþ 1Þ − α2
;

EinðrÞ ¼ qðr − r1Þ
jr − r1j3=2

2ðμþ 1Þ
ðμþ 1Þðεþ 1Þ − α2

;

HinðrÞ ¼ −
qðr − r1Þ
jr − r1j3=2

2α

ðμþ 1Þðεþ 1Þ − α2
:

APPENDIX B: DETAILED SOLUTION
FOR THE UNIAXIAL CASE

To solve the problem of a charge adjacent to a slab of
uniaxial material, one starts with the coupled equations
inside the magnetoelectric in the absence of free charge.
Again, we use cgs units for conciseness.

ðε⊥∇⊥ þ εk∇kÞEþ ðα⊥∇⊥ þ αk∇kÞH ¼ 0;

ðμ⊥∇⊥ þ μk∇⊥ÞHþ ðα⊥∇⊥ þ αk∇kÞE ¼ 0;

where

∇k ¼

0
B@

0

0

∂
∂z

1
CA

and

∇⊥ ¼

0
B@

∂
∂x
∂
∂y
0

1
CA

are parts of the ∇ operator, which are antiparallel and
parallel to the anisotropy axis.
Taking the partial Fourier transform along x and y

defined by

Fðx; y; zÞ ¼ 1

4π2

Z Z
dkxdkyFðkx; ky; zÞeikxxeikyy;

Fðkx; ky; zÞ ¼
Z Z

dxdyFðx; y; zÞe−ikxxe−ikyy;

we obtain the Fourier-transformed magnetoelectric differ-
ential equations in terms of magnetic and electric potentials

�
μk αk
αk εk

��
ϕm

00

ϕe
00

�
¼ k2

�
μ⊥ α⊥
α⊥ ε⊥

��
ϕm

ϕe

�
;

where k2 ¼ k2x þ k2y and the 0 indicates the derivative with
respect to z. Multiplying with the inverse of the first matrix
and diagonalizing the equation, we find that

�
ϕm

00

ϕe
00

�
¼ k2

μkεk−α2k

�
μ⊥εk−αkα⊥ εkα⊥−αkε⊥
−αkμ⊥þμkα⊥ ε⊥μk−αkα⊥

��
ϕm

ϕe

�
:

Diagonalizing this equation, we obtain the eigenvalues

λ1 ¼ −k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ þ aþ d

p
ffiffiffi
2

p ;

λ2 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γ þ aþ d

p
ffiffiffi
2

p ;

λ3 ¼ −k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ aþ d

p
ffiffiffi
2

p ;

λ4 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ aþ d

p
ffiffiffi
2

p ;

where we substitute
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a ¼ μ⊥εk − αkα⊥
μkεk − α2k

;

b ¼ εkα⊥ − αkε⊥
μkεk − α2k

;

c ¼ −αkμ⊥ þ μkα⊥
μkεk − α2k

;

d ¼ ε⊥μk − αkα⊥
μkεk − α2k

;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2adþ 4bcþ d2

p
:

The eigenvectors are given by

v1 ¼

0
BBBBBB@

1
k

ffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffi
aþd−γ

p
dða−dþγÞ−2bc

−−aþdþγ
2c

− 1
k

ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffi
aþd−γ

p
1

1
CCCCCCA
; v2 ¼

0
BBBBBB@

− 1
k

ffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffi
aþd−γ

p
dða−dþγÞ−2bc
a−dþγ
2c

− 1
k

ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffi
aþdþγ

p
1

1
CCCCCCA
;

v3 ¼

0
BBBBBB@

− 1
k

ffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffi
aþdþγ

p
2bcþdð−aþdþγÞ

−−aþdþγ
2c

1
k

ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffi
aþd−γ

p
1

1
CCCCCCA
; v4 ¼

0
BBBBBB@

1
k

ffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffi
aþdþγ

p
2bcþdð−aþdþγÞ

a−dþγ
2c

1
k

ffiffi
2

pffiffiffiffiffiffiffiffiffiffiffi
aþdþγ

p
1

1
CCCCCCA
:

Since thepotential should not diverge for z → −∞,C1 andC3

are zero, which means that the solution can be written as a
combinationofthesecondandfourtheigenfunctionsv2 andv4:

ϕm¼−C2

1

k

ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþd− γ

p
dða−dþ γÞ−2bc

ek
ffiffiffiffiffiffiffiffiffi
−γþaþd

p ffiffi
2

p z

þC4

1

k

ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþdþ γ

p
2bcþdð−aþdþ γÞe

k
ffiffiffiffiffiffiffiffi
γþaþd

p ffiffi
2

p z;

ϕe ¼C2

1

k

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþd− γ

p ek
ffiffiffiffiffiffiffiffiffi
−γþaþd

p ffiffi
2

p zþC4

1

k

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþdþ γ

p ek
ffiffiffiffiffiffiffiffi
γþaþd

p ffiffi
2

p z:

In the vacuum half-space, the Maxwell equations reduce to

∇ · E ¼ 4πqδðr − r0Þ;
∇ ·H ¼ 0:

Fourier transforming in the x-y plane, we obtain

∇2ϕeðkx; ky; zÞ − ðk2x þ k2yÞϕeðkx; ky; zÞ ¼ 4πqδðz − z0Þ;
∇2ϕmðkx; ky; zÞ − ðk2x þ k2yÞϕmðkx; kz; zÞ ¼ 0:

The general solutions to these equations in Fourier space are
given by

ϕvac
e ¼ D1e−kðzþz0Þ þ 2πq

k
e−kjz−z0j;

ϕvac
m ¼ D2e−kðzþz0Þ:

Applying the inverse Fourier transform, we obtain

ϕout
e ðx; y; zÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ jz − z0j2
p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Potential of the point charge

þ 1

2π

D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ jzþ z0j2

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Electric image charge

;

ϕout
m ðx; y; zÞ ¼ 1

2π

D1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ jzþ z0j2

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Magnetic image charge

outside the material, and inside the material,

ϕin
mðx; y; zÞ ¼ −

C2

2π

ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ d − γ

p
dða − dþ γÞ − 2bc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2þ

��� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−γþaþd

p ffiffi
2

p z − z0
���2

r

þ C4

2π

ffiffiffi
2

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ dþ γ

p
2bcþ dð−aþ dþ γÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2þ

��� ffiffiffiffiffiffiffiffiffiffiffi
γþaþd

p ffiffi
2

p z − z0
���2

r ;

ϕin
e ðx; y; zÞ ¼

C2

2π

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ d − γ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2þ

��� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−γþaþd

p ffiffi
2

p z − z0
���2

r þ C4

2π

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ dþ γ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2þ

��� ffiffiffiffiffiffiffiffiffiffiffi
γþaþd

p ffiffi
2

p z − z0
���2

r :

SEARCH FOR THE MAGNETIC MONOPOLE AT A … PHYS. REV. X 9, 011011 (2019)

011011-11



One now can solve the system of equations for the con-
stants by imposing the electromagnetic boundary conditions.

APPENDIX C: EFFECT OF ANISOTROPY
ON THE MONOPOLAR FIELD

From Eq. (24), we see that the strength of the magnetic
monopolar field is determined by the parameter coutb1 , which
has a functional dependence on the three tensors ϵ̄; μ̄, and ᾱ.
To understand this dependence, we next analyze the
magnitude of coutb1 as we vary the three response functions
individually.
First, we investigate the dependence of the magneto-

electric response on the anisotropy in αk and α⊥, with ϵ̄ and

μ̄ set equal to isotropic values. In Fig. 10(a), we show coutb1 as
a function of t, which is the scaling between αk and α⊥,
such that α⊥ ¼ tαk for fixed αk. We see that the monopolar
field grows linearly with αk and vanishes for αk ¼ −α⊥.
The orange line shows the change in the monopole on
keeping the sum of the components constant but varying
the weight, thus, α⊥ ¼ tα0, αk ¼ ð1 − tÞα0. Interestingly,
here the monopolar field strength remains independent of t,
indicating that it is determined by the sum of both
components rather than their relative magnitudes.
Next, we discuss the effect of the permittivity tensor on

the field strength (the dependence on the permeability is
analogous, and we do not show it here), with the mag-
netoelectric response set to an isotropic value. In Fig. 10(b)
(orange line), we plot the change in coutb1 when we linearly
increase the perpendicular component ε⊥ ¼ tε0 while
keeping εk constant. We see that the strength of the mono-
polar field decreases when ε increases. This is because a
higher dielectric screening decreases the electric field
inside the magnetoelectric which leads, in turn, to a reduced
image monopole strength. With the blue line, we show the
result of setting ε⊥ ¼ tε0 and εk ¼ ð20 − tÞε0. This illus-
trates that the monopolar field is at its minimum for an
isotropic tensor ε, while a higher dielectric anisotropy
increases the monopolar field regardless of which compo-
nent of ε is increased.
Finally, in Fig. 10(c), we consider the situation in which

we have anisotropy in both α and ε, by setting α⊥ ¼ −3αk
and varying ε in the same way as in Fig. 10(b). In this case,
we find that increasing εk leads to a reduced contribution of
αk and vice versa. Even the sign of the response can be
changed if one element of ε is increased sufficiently, as is
seen for values of t > 17.
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FIG. 11. Typical LE-μSR spectra (20 K, 10 keV, þ10 mT)
obtained for four positron detectors arranged around the
sample. The solid lines are fits to the raw data with an exponen-
tial envelope function, i.e., assuming a Lorentzian field
distribution.
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FIG. 10. (a) Strength of the monopolar field as a function of
scaling αk (blue) and scaling αk by keeping αk þ α⊥ ¼ const
(orange). In addition, we show the evolution of monopolar
strength by a uniaxial scaling of the dielectric constant for an
isotropic (b) magnetoelectric response α⊥ ¼ αk and for a strongly
anisotropic (c) magnetoelectric response α⊥ ¼ −3αk.

Q. N. MEIER et al. PHYS. REV. X 9, 011011 (2019)

011011-12



APPENDIX D: LE-μSR SPECTRA

In Figs. 11 and 12 we present representative raw data
of our muon spectroscopy measurements presented in
Sec. III B for the example point with a stopping energy
of 10 keV with an applied field of þ10 mT.

APPENDIX E: MAGNETIC FLUX
THROUGH A SQUID LOOP

Taking the usual form for the magnetic flux through a
loop

Φ ¼
Z
S
B · dS ðE1Þ

and the magnetic field that we derive for a monopole at
position x ¼ 0, y ¼ 0, z ¼ −d,

B ¼ m

½x2 þ y2 þ ðzþ dÞ2�3=2 ; ðE2Þ

we integrate along the surface parametrized by

fðx; y; zÞ ∈ Sjx2 þ y2 ≤ R2; z ¼ zg

and obtain

Φ ¼ m
Z
S
dS

ðzþ dÞ
½x2 þ y2 þ ðzþ dÞ2�3=2 ðE3Þ

¼ mðzþ dÞ
Z

2π

0

dϕ
Z

R

0

rdr
1

½r2 þ ðzþ dÞ2�3=2 : ðE4Þ

Substituting s ¼ r2 þ ðzþ dÞ2 and using dr ¼ ðds=2rÞ
leads to

Φ ¼ 2π
mðzþ dÞ

2

Z
R2þðzþdÞ2

ðzþdÞ2
ds

�
1

s3=2

�
ðE5Þ

¼ 2πm

�
1 −

zþ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðzþ dÞ2

p
�
: ðE6Þ

Note that in the limit of a large loop radius R, we find

ΦR→∞ ¼ 4πm
2

; ðE7Þ

which is half the flux created by the point charge as
expected from Gauss’s law.
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