
 

Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy
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We perform microwave spectroscopy of Andreev states in superconducting weak links tailored in an
InAs-Al (core-full shell) epitaxially grown nanowire. The spectra present distinctive features with bundles
of four lines crossing when the superconducting phase difference across the weak link is 0 or π. We interpret
these features as arising from zero-field spin-split Andreev states. A simple analytical model, which takes
into account the Rashba spin-orbit interaction in a nanowire containing several transverse subbands,
explains these features and their evolution with magnetic field. Our results show that the spin degree of
freedom is addressable in Josephson junctions and constitute a first step towards its manipulation.
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I. INTRODUCTION

The Josephson supercurrent that flows through a weak
link between two superconductors is a direct and generic
manifestation of the coherence of the many-body super-
conducting state. The link can be a thin insulating barrier, a
small piece of normal metal, a constriction, or any other
type of coherent conductor, but regardless of its specific
nature, the supercurrent is a periodic function of the phase
difference δ between the electrodes [1]. However, the exact
function is determined by the geometry and material proper-
ties of the weak link. A unifying microscopic description of
the effect has been achieved in terms of the spectrum of
discrete quasiparticle states that form at the weak link: the
Andreev bound states (ABS) [2–5]. The electrodynamics of
an arbitrary Josephson weak link in a circuit is not only

governed by the phase difference but depends also on
the occupation of these states. Spectroscopy experiments
on carbon nanotubes [6], atomic contacts [7–9], and semi-
conducting nanowires [10–12] have clearly revealed these
fermionic states, each of which can be occupied at most by
two quasiparticles. The role of spin in these excitations is a
topical issue in the rapidly growing fields of hybrid super-
conducting devices [13–15] and of topological supercon-
ductivity [16–19]. It has been predicted that for finite-length
weak links, the combination of a phase difference, which
breaks time-reversal symmetry, and of spin-orbit coupling,
which breaks spin-rotation symmetry, is enough to lift the
spin degeneracy, therefore, giving rise to spin-dependent
Josephson supercurrents even in the absence of an external
magnetic field [20–23]. Here we report the first observation
of transitions between zero-field spin-split ABS.

II. ABS AND SPIN-ORBIT INTERACTION

Andreev bound states are formed from the coherent
Andreev reflections that quasiparticles undergo at both
ends of a weak link. Quasiparticles acquire a phase at each
of these Andreev reflections and while propagating along
the weak link of length L. Therefore, the ABS energies
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depend on δ, on the transmission probabilities for electrons
through the weak link, and on the ratio λ ¼ L=ξ, where ξ is
the superconducting coherence length. Assuming ballistic
propagation, ξ ¼ ℏvF=Δ is given in terms of the velocity
vF of quasiparticles at the Fermi level within the weak link
and of the energy gap Δ of the superconducting electrodes.
In a short junction defined by L ≪ ξ, each conduction
channel of the weak link, with transmission probability τ,
gives rise to a single spin-degenerate Andreev level at
energy EA ¼ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ sin2 ðδ=2Þ

p
[3–5]. This simple limit

has been probed in experiments on aluminum supercon-
ducting atomic contacts using three different methods:
Josephson spectroscopy [7], switching current spectros-
copy [8], and microwave spectroscopy in a circuit QED
setup [9]. The spectrum of Andreev states in a weak link
with a sizable spin-orbit coupling has already been probed
in two experiments on InAs nanowires [11,12]. Both
experiments were performed in the limit L≲ ξ. In
Ref. [12], the zero-field spectrum was probed using a
circuit QED setup and no effect of spin-orbit interaction
was reported. In Ref. [11], where spectra at finite field were
obtained by Josephson spectroscopy, spin-orbit interaction
enters in the interpretation of the spectra when the Zeeman
energy is comparable to the superconducting gap [24].
In the following, we consider a finite-length weak link

with Rashba spin-orbit interaction [Fig. 1(a)] and show that

spin-split Andreev states require at least two transverse
subbands. We first discuss the case of a purely one-
dimensional weak link. As shown by the green lines in
Fig. 1(b), spin-orbit interaction splits the dispersion relation
(assumed to be parabolic) according to the electron-spin
direction [25]. AR at the superconductors couple electrons
(full circles) with holes (open circles) of opposite spins and
velocities. When the transmission probability across the
wire is perfect (τ ¼ 1), Andreev bound states arise when the
total accumulated phase along closed paths that involve two
AR and the propagation of an electron and a hole in
opposite directions [Fig. 1(c)] is a multiple of 2π [2].
Figure 1(d) shows, in the excitation representation, the
energy of the resulting ABS as a function of δ. ABS built
with right- (left-) moving electrons are shown with thin
solid (dashed) lines in Figs. 1(c) and 1(d). Note that the
existence of two ABS at some phases is just a finite-length
effect [5] (here, L=ξ ¼ 0.8) and that ABS remain spin
degenerate as the spatial phases acquired by the electron
and the Andreev-reflected hole are the same for both spin
directions. Backscattering in the weak link (τ ≠ 1) due
either to impurities or to the spatial variation of the
electrostatic potential along the wire couples electrons
(as well as holes) of the same spin traveling in opposite
directions, leading to avoided crossings at the points
indicated by the open blue circles in Fig. 1(d). One obtains
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FIG. 1. Effect of the Rashba spin-orbit coupling (RSO) on Andreev levels. (a) Weak link of length L between superconductors with
phase difference δ. Blue star symbolizes a scatterer at position x0. (b) Dispersion relation for a purely one-dimensional weak link in the
presence of RSO (green solid lines; labels ↑↓ indicate spin in the y direction). Density of states of superconducting electrodes is
sketched at both ends of the wire. (c) Andreev reflections (AR) at the superconductors couple electrons (full circles) with holes (open
circles) of opposite spins and velocities, leading to the formation of ABS. Blue arrows indicate reflections due to a scatterer. (d) Energy
of ABS (excitation representation). Thin lines in (c) and (d): transmission τ ¼ 1, ABS formed from right-moving electrons and left-
moving holes (solid), or the opposite (dashed). Backscattering (τ ≠ 1) leads to opening of gaps at the crossings highlighted with blue
circles in (d). Resulting spin-degenerate Andreev levels are shown with thick solid lines. (e)–(g) Effect of RSO in the presence of two
transverse subbands, only the lowest one being occupied. (f) Dispersion relation (subband spacing and superconducting gap are in a ratio
that roughly corresponds to our experiments). Gray solid lines labeled 1↑↓ and 2↑↓ are dispersion relations for uncoupled subbands.
RSO couples states of different subbands and opposite spins leading to hybridized bands (green solid lines) with energy-dependent spin
textures. Fermi level μ is such that only the lowest energy bands m1 and m2 are occupied. AR couples, e.g., a fast electron from m2 to a
fast hole (in black) and a slow electron from m1 to a slow hole (in red). (g) Construction of ABS: Black and red loops are characterized
by different absolute velocities. Spins pointing in different directions symbolize spin textures of the bands. Thin red and black lines,
solid and dashed in (e),(g): ABS at τ ¼ 1 associated with different spin textures. Thick black lines in (e): ABS when crossings
highlighted with blue circles are avoided due to backscattering.
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in this case two distinct Andreev states (thick solid lines),
which remain spin degenerate. This is no longer the case in
the presence of a second transverse subband, even if just the
lowest one is actually occupied [26–29]. Figure 1(f) shows
how spin-orbit coupling hybridizes the spin-split dispersion
relations of the two subbands (around the crossing points of
1↑ with 2↓ and of 1↓ with 2↑) [30,31]. The new dispersion
relations become nonparabolic and are characterized by
different energy-dependent spin textures [26–31]. We focus
on a situation in which only the two lowest ones (m1 and
m2 in the figure) are occupied. Importantly, their associated
Fermi velocities are different. When τ ¼ 1, this difference
in Fermi velocities leads, as illustrated by Figs. 1(e) and
1(g), to two families of ABS represented by black and red
thin lines built from states with different spin textures. As
before, backscattering leads to avoided crossings at the
points indicated by the blue open circles in Fig. 1(e). The
resulting ABS group in manifolds of spin-split states,
represented by the thick black lines. In the absence of a
magnetic field, the states remain degenerate at δ ¼ 0 and π.
Figure 2 shows parity-conserving transitions that can be
induced by absorption of a microwave photon at a given
phase difference. Red arrows [Fig. 2(a)] correspond to pair
transitions in which the system is initially in the ground
state, and a pair of quasiparticles is created either in one

manifold or in different ones. Green arrows [Fig. 2(b)]
correspond to single-particle transitions where a trapped
quasiparticle [32] already occupying an Andreev state is
excited to another one [26,33], which can be in the same or
in another ABS manifold. The corresponding transition
energies in the absorption spectrum for both the pair and
single-particle cases are shown in Fig. 2(c) as a function of
the phase difference δ. Pair transitions that create two
quasiparticles in the same energy manifold do not carry
information on the spin structure. On the contrary, pair and
single-particle transitions involving different energy mani-
folds produce peculiar bundles of four distinct lines all
crossing at δ ¼ 0 and δ ¼ π. They are a direct signature of
the spin splitting of ABS. Finally, single-particle transitions
within a manifold give rise to bundles of two lines. As we
discuss below, some of these transitions are accessible in
our experiment.
Figure 3 shows a spectrum measured on an InAs nano-

wire weak link between aluminum electrodes. The plot
shows at which frequency f1 microwave photons are
absorbed as a function of the phase difference δ across
theweak link (see description of the experiment below). This
spectrum is very rich, but herewepoint to two salient features
highlighted with color lines on the right-hand side of the
figure. The red line corresponds to a pair transition, with
extrema at δ¼ 0 and δ¼ π. The frequency f1ðδ ¼ 0Þ ¼
26.5 GHz is much smaller than twice the gap of aluminum
2Δ=h ¼ 88 GHz, as expected for a junction longer than the
coherence length. To the best of our knowledge, this is the

(a)
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FIG. 2. Possible parity-conserving transitions in aweak linkwith
spin-split ABS [level positions correspond to the phase difference
indicated with an arrow in Fig. 1(e)]. Blue line corresponds to the
ground state. (a) Pair transitions.A pair of quasiparticles are created
from the ground state, either both in the same manifold (solid
arrows) or not (dashed arrows). (b) Single-particle transitions. A
quasiparticle already present in one ABS (solid dot) is excited to
another ABS, either in the same (dotted arrows) or in another (solid
arrows) manifold. (c) Corresponding transition energies as a
function of the phase difference δ across theweak link. (Transitions
involving quasiparticles in the continuum are not represented).

FIG. 3. Microwave excitation spectrum measured at a gate
voltage Vg ¼ −0.89 V. The gray scale represents the frequency
change f − f0 of a resonator coupled to the weak link when a
microwave excitation at frequency f1 is applied as a function of
the phase difference δ across the weak link. In the right half of the
figure, some transition lines are highlighted. Red line corresponds
to a pair transition; green lines are single-particle transitions.
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first observation of a discrete Andreev spectrum in the
long-junction limit. The observation of the bundle of lines
(in green) with crossings at δ ¼ 0 and δ ¼ π that clearly
correspond to single-particle transitions shown in Fig. 2(c) is
the central result of this work.

III. EXPERIMENTAL SETUP

The measurements are obtained using the circuit QED
setup shown in Fig. 4(d) and performed at approximately
40 mK in a pulse-tube dilution refrigerator. The super-
conducting weak link is obtained by etching away, over a
370-nm-long section, the 25-nm-thick aluminum shell that
fully covers a 140-nm-diameter InAs nanowire [34–36]
[see Figs. 4(a) and 4(b)]. A side gate allows us to tune the

charge carrier density and the electrostatic potential in the
nanowire and therefore the Andreev spectra [11]. The weak
link is part of an aluminum loop of area S ∼ 103 μm2,
which has a connection to ground to define a reference for
the gate voltage [see Fig. 4(c)]. The phase difference δ
across the weak link is imposed by a small magnetic
field Bzð< 5 μTÞ perpendicular to the sample plane:
δ ¼ BzS=φ0, with φ0 ¼ ℏ=2e the reduced flux quantum.
Two additional coils are used to apply a magnetic field in
the plane of the sample. The loop is inductively coupled to
the shorted end of a λ=4 microwave resonator made out of
Nb, with resonance frequency f0 ≈ 3.26 GHz and internal
quality factor Qint ≈ 3 × 105. A continuous signal at fre-
quency f0 is sent through a coplanar transmission line
coupled to the resonator (coupling quality factor
Qc ≈ 1.7 × 105), and the two quadratures I and Q of the
transmitted signal are measured using homodyne detection
[see Fig. 4(d)]. Andreev excitations in the weak link are
induced by a microwave signal of frequency f1 applied on
the side gate. The corresponding microwave source is
chopped at 3.3 kHz, and the response in I and Q is
detected using two lock-ins, with an integration time of
0.1 s. This response is expressed in terms of the corre-
sponding frequency shift f − f0 in the resonator (see the
Appendix, Sec. 3). The fact that single-particle transitions
are observed (see Fig. 3) means that during part of the
measurement time, the Andreev states are occupied by a
single quasiparticle. This is in agreement with previous
experiments in which the fluctuation rates for the occupa-
tion of Andreev states by out-of-equilibrium quasiparticles
were found to be in the 10-ms−1 range [9,12,32]. Note that
in contrast to an excitation that couples to the phase
difference across the contact through the resonator
[9,24,26], exciting through the gate allows us to drive
transitions away from δ ¼ π and at frequencies very far
detuned from that of the resonator.

IV. SPECTROSCOPY AT ZEROMAGNETIC FIELD

Figure 5(a) presents another spectrum taken at zero
magnetic field (apart from the tiny perpendicular field Bz <
5 μT required for the phase biasing of the weak link) at
Vg ¼ 0.5 V. In comparison with the spectrum in Fig. 3,
pair transitions are hardly visible in Fig. 5. Bundles of lines
corresponding to single-particle transitions have crossings
at 7.1, 14.0, and 22.4 GHz at δ ¼ 0 and 9, 21.5, and
26.0 GHz at δ ¼ π. Here, as in Fig. 3 (see the Appendix,
Sec. 2), replicas of transition lines shifted by f0 are also
visible (bundle of lines near f1 ¼ 11 GHz and around
δ ¼ 0). They correspond to transitions involving the
absorption of a photon from the resonator. Remarkably,
the sign of the response appears correlated with the
curvature of the transition lines. This suggests that the
signal is mainly associated with a change in the effective
inductance of the nanowire weak link. Additional work is
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FIG. 4. Experimental setup. (a) False-color scanning-electron-
microscope image of the InAs-Al core-shell nanowire. The Al shell
(gray) is removed over 370 nm to form the weak link between the
superconducting electrodes. A close-by side electrode (Au, yellow)
is used to gate the InAs exposed region (green). (b),(c) The
nanowire is connected to Al leads that form a loop. This loop is
located close to the shorted end of a coplanar wave-guide (CPW)
resonator. (d) The CPW resonator is probed by sending through a
bus line a continuous microwave tone at its resonant frequency
f0 ¼ 3.26 GHz and demodulating the transmitted signal, yielding
quadratures I andQ. Microwaves inducing Andreev transitions are
applied through the side gate (frequency f1) using a bias tee, the dc
port being used to apply a dc voltage Vg.
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needed to confirm this interpretation. We focus on the
bundle of lines between 13 and 23 GHz for which the effect
of a magnetic field B is also explored. The green lines in
Fig. 5(b) are fits of the data at B ¼ 0 with a simple model
that accounts for two bands with different Fermi velocities
v1 and v2 and the presence of a single scatterer in the wire
(see the Appendix, Sec. 1). The model parameters are
λj¼1;2 ¼ LΔ=ðℏvjÞ and the position x0 ∈ ½−L=2; L=2� of
the scatterer of transmission τ. ABS are found at energies
E ¼ ϵΔ, with ϵ solution of the transcendental equation (see
the Appendix, Sec. 1):

τ cos ½ðλ1 − λ2Þϵ ∓ δ� þ ð1 − τÞ cos½ðλ1 þ λ2Þϵxr�
¼ cos½2 arccos ϵ − ðλ1 þ λ2Þϵ�; ð1Þ

where xr ¼ 2x0=L. It should be noticed that Eq. (1) for λ1 ¼
λ2 reduces to the known result for a single quantum channel
without spin orbit [5,37]. The fit in Fig. 5(b) corresponds to
λ1 ¼ 1.3, λ2 ¼ 2.3, τ ¼ 0.295, and xr ¼ 0.525 (we take
Δ ¼ 182 μeV ¼ h × 44 GHz for the gap of Al). These
values can be related to microscopic parameters, in particular
to the intensity α of the Rashba spin-orbit interaction
entering in the Hamiltonian of the system as HR ¼
−αðkxσy − kyσxÞ (with σx;y Pauli matrices acting in the
spin) [26]. Assuming a parabolic transverse confinement
potential, an effective wire diameter of W ¼ 140 nm and an
effective junction length of L ¼ 370 nm, the values of λ1;2
are obtained for μ ¼ 422 μeV (measured from the bottom of
the band) and α ¼ 38 meVnm, a value consistent with
previous estimations [38,39]. However, we stress that this
estimation is model dependent: Very similar fits of the data
can be obtained using a double-barrier model [with

scattering barriers located at the left ðx ¼ −L=2Þ and right
ðx ¼ L=2Þ edges of the wire] with λ1 ¼ 1.1 and λ2 ¼ 1.9,
leading to α ¼ 32 meVnm. For both models, we get only
two manifolds of Andreev levels in the spectrum, and only
these four single-particle transitions are expected in this
frequency window (transitions within a manifold are all
below 3.5 GHz). The other observed bundles of transitions
are attributed to other conduction channels: Although we
considered till now only one occupied transverse subband,
the same effect of spin-dependent velocities is found if
several subbands cross the Fermi level. A more elaborate
model together with a realistic modeling of the bands of the
nanowire is required to treat this situation and obtain a
quantitative fit of the whole spectra.

V. SPIN CHARACTER OF ABS

The splitting of the ABS and the associated transitions in
the absence of a Zeeman field reveal the difference in the
Fermi velocities v1 and v2, arising from the spin-orbit
coupling in the multichannel wire. To further confirm that
this splitting is indeed a spin effect, we probe the ABS
spectra under a finite magnetic field and, in particular, as a
function of the orientation of the field with respect to the
nanowire axis [26]. Figure 5(c) shows the spectrum in the
presence of an in-plane magnetic field with amplitudes
B ¼ 0, 2.6, and 4.4 mT applied at an angle of −45° with
respect to the wire axis. The symmetry around δ ¼ 0 and
δ ¼ π is lost. This is accounted for by an extension of the
single-barrier model at finite magnetic field (green lines)
and assuming an anisotropic g factor: g⊥ ¼ 12 and gk ¼ 8

(see below and the Appendix, Sec. 1).

(a) (b)

(c)

FIG. 5. Excitation spectra at Vg ¼ 0.5 V. (a) Large-scale spectrum at zero magnetic field. (b) Enlargement of the same data with fits
(see text). (c) Dependence of the spectrum with the amplitude B of an in-plane magnetic field applied at an angle of −45° with respect to
the nanowire axis. Green lines are fits (see text).
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The specific effects of a parallel and of a perpendicular
magnetic field on the ABS are shown in Fig. 6. When the
field is perpendicular to the wire (B⊥x), the ABS spectrum
becomes asymmetric (this asymmetry is related to the
physics of φ0 junctions [27]), as observed in Figs. 6(b) and
6(d). The field is directly acting in the quantization
direction of the spin-split transverse subbands [gray parab-
olas in Fig. 1(f)] from which the ABS are constructed,
leading to Zeeman shifts of the energies. When the field is
along the wire axis Bkx and, thus, perpendicular to the spin
quantization direction, it mixes the spin textures and lifts
partly the degeneracies at δ ¼ 0 and δ ¼ π (see Fig. 7). The
spectrum of ABS is then modified, but it remains sym-
metric [40] around δ ¼ 0 and π; see Figs. 6(a) and 6(c).
Keeping the same parameters as in Fig. 5, the value of the g
factor is taken as a fit parameter for all the data with
perpendicular field and for all the data with parallel field,
leading to two distinct values: g⊥ ¼ 12 and gk ¼ 8 (see the
Appendix). Green lines show the resulting best fits.

VI. CONCLUDING REMARKS

The results reported here show that the quasiparticle spin
can be a relevant degree of freedom in Josephson weak
links, even in the absence of a magnetic field. This work
leaves several open questions. Would a more realistic
modeling of the nanowire [41–44] allow for a precise
determination of spin-orbit interaction from the measured
spectra? We need to understand, along the lines of Ref. [45]
e.g., the coupling between the microwave photons and
the ABS when the excitation is induced through an
electric field modulation, as done here, instead of a phase

modulation [26,33,46]. In particular, what are the selection
rules? Are transitions between ABS belonging to the same
manifold allowed? Can one observe pair transitions leading
to states with quasiparticles in different manifolds? What
determines the signal amplitude? Independent of the
answer to these questions, the observation of spin-resolved
transitions between ABS constitutes a first step towards
the manipulation of the spin of a single superconducting
quasiparticle [20,26]. Would the spin coherence time of a
localized quasiparticle be different from that of a propa-
gating one [47]? Finally, we think that the experimental
strategy used here could allow the probing of a topological
phase with Majorana bound states at larger magnetic
fields [33].
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APPENDIX

1. Details on the theoretical model and
the fitting parameters

The nanowire is described by the Hamiltonian H3D

consisting of kinetic energy, a confining harmonic potential
in the y and z directions with a confinement width W
(effective diameter of the nanowire), and Rashba spin-orbit
coupling with intensity α,

H3D ¼ p2
x þ p2

y þ p2
z

2m� þ ℏ2ðy2 þ z2Þ
2m�ðW=2Þ4 þ αð−kxσy þ kyσxÞ;

ðA1Þ

where m� is the effective mass, and σx;y are the Pauli
matrices for spin. We consider two spin-full transverse
subbands denoted by nσ, with n ¼ 1, 2 and σ ¼ ↑;↓,
arising from the confining potential in the transverse

FIG. 6. Effect of an in-plane magnetic field on the ABS
excitation spectrum around δ ¼ 0. The Andreev states correspond
to the same gate voltage as in Fig. 5. Field is applied parallel [(a),
(c)] or perpendicular [(b),(d)] to the wire. Green lines are the
result from the theory using g⊥ ¼ 12 and gk ¼ 8 (see text).
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direction [gray parabolas in Fig. 1(f)] under the effect of the
Rashba spin-orbit coupling. The energy-dispersion rela-
tions of the resulting lowest subbands [green lines labeled
m1 and m2 in Fig. 1(f)] are [26]

EsðkxÞ ¼
ℏ2k2x
2m� þ

E⊥
1 þE⊥

2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E⊥
1 −E⊥

2

2
− sαkx

�
2

þ η2

s
;

ðA2Þ

where s ¼ −1 corresponds to m1 and s ¼ þ1 to m2, and
E⊥
n ¼ 4ℏ2n=ðm�W2Þ; η ¼ ffiffiffi

2
p

α=W is the strength of the
subband mixing due to the Rashba spin-orbit coupling. In
accordance with the estimated nanowire diameter, we take
W ∼ 140 nm, which leads to E⊥

2 − E⊥
1 ∼ 0.68 meV for the

subband separation. Particle backscattering within the

nanowire is accounted for by either a single deltalike
potential barrier located at some arbitrary position x0 or
by potential barriers localized at both ends (x ¼ �L=2).
The linearized Bogoliubov–de Gennes equation around

the chemical potential μ is

�
H0 þHb ΔðxÞeiδðxÞ
ΔðxÞe−iδðxÞ −H0 −Hb

�
ΨðxÞ ¼ EAΨðxÞ; ðA3Þ

with the basis ΨðxÞ ¼ ½ψe
þ;RðxÞ;ψe

þ;LðxÞ;ψe
−;RðxÞ;ψe

−;LðxÞ;
ψh
þ;RðxÞ;ψh

þ;LðxÞ;ψh
−;RðxÞ;ψh

−;LðxÞ�, where RðLÞ refers to
the right-moving (left-moving) electron (e) or hole (h) in
the bands m1ð−Þ, m2ðþÞ. Here, H0 is the Hamiltonian for
electrons in the nanowire

H0 ¼

0
BBBBB@

−iℏv1∂x − ℏv1kF1 0 0 0

0 iℏv2∂x − ℏv2kF2 0 0

0 0 −iℏv2∂x − ℏv2kF2 0

0 0 0 iℏv1∂x − ℏv1kF1

1
CCCCCA; ðA4Þ

where vj¼1;2 are the Fermi velocities given by

vj ¼
ℏkFj
m� þ ð−1Þj α½E⊥

1 =2 − ð−1ÞjαkFj�
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E⊥

1 =2 − ð−1ÞjαkFj�2 þ η2
q ; ðA5Þ

and kFj are the Fermi wave vectors satisfying EsðkFjÞ ¼ μ. We note that if there is no subband mixing, i.e., η ¼ 0 [gray
parabolas in Fig. 1(f)], Eqs. (A2) and (A5) show that kF1 − kF2 ¼ 2m�α=ℏ2 and v1 − v2 ¼ ðkF1 − kF2Þℏ=m� − 2α=ℏ ¼ 0,
indicating clearly that the Fermi velocities are the same. The potential scattering term Hb is modeled as

Hb ¼ UbðxÞ

0
BBBBB@

1 cos½ðθ1 − θ2Þ=2� 0 0

cos½ðθ1 − θ2Þ=2� 1 0 0

0 0 1 cos½ðθ1 − θ2Þ=2�
0 0 cos½ðθ1 − θ2Þ=2� 1

1
CCCCCA; ðA6Þ

where

UbðxÞ ¼
�
U0δðx − x0Þ for a single barrier at x ¼ x0;

ULδðxþ L=2Þ þ URδðx − L=2Þ for barriers at x ¼ −L=2 and x ¼ L=2;
ðA7Þ

and θj¼1;2 ¼ arccos½ð−1ÞjðℏkFj
=m� − vjÞ=α� characterize

the mixing with the higher subbands; i.e., cosðθj=2Þ and
sinðθj=2Þ determine the weight of the states on the
hybridized subbands and therefore their spin texture. The
superconducting order parameter ΔðxÞeiδðxÞ in Eq. (A3)
is given by Δe−iδ=2 at x < −L=2, Δeiδ=2 at x > L=2, and

zero otherwise, where δ is the superconducting phase
difference.

a. Ballistic regime

In the absence of particle backscattering, the phase
accumulated in the Andreev reflection processes at
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x ¼ −L=2 and x ¼ L=2, as illustrated in Fig. 1(g), leads to
the following transcendental equation for the energy ϵ ¼
EA=Δ of the ABS as a function of δ:

sinðϵλ1 − sδ=2 − arccos ϵÞ sinðϵλ2 þ sδ=2 − arccos ϵÞ ¼ 0;

ðA8Þ

where λj¼1;2 ¼ LΔ=ðℏvjÞ. For ϵ ≪ 1, there are two sets of
solutions given by

8<
:

ϵ↑ðδÞ ¼ 1
1þλ1

h
δ
2
þ
�
lþ 1

2

�
π
i
;

ϵ↓ðδÞ ¼ 1
1þλ1

h
− δ

2
þ
�
l0 þ 1

2

�
π
i
;8<

:
ϵ↙ðδÞ ¼ 1

1þλ2

h
δ
2
þ
�
lþ 1

2

�
π
i
;

ϵ↗ðδÞ ¼ 1
1þλ2

h
− δ

2
þ
�
l0 þ 1

2

�
π
i
;

with integers l and l0. The ballistic ABS are represented by
the thin lines (black and red) in Fig. 1(e).

b. Single-barrier model

In this case, the effect of the barrier can be taken into
account as an additional boundary condition at x ¼ x0,

Ψðx0 þ 0þÞ ¼

0
BBB@

M12 0 0 0

0 M21 0 0

0 0 M12 0

0 0 0 M21

1
CCCAΨðx0 − 0þÞ;

ðA9Þ

where 0þ is a positive infinitesimal and Mij is the 2 × 2

matrix given by

Mij ¼
1

t0

0
B@ tt0 − rr0

ffiffiffi
vj
vi

q
r0eiφ

−
ffiffiffi
vi
vj

q
re−iφ 1

1
CA; ðA10Þ

with φ ¼ ½ðkF1 þ kF2Þ þ ðλ1 þ λ2Þϵ=L�x0. The reflection
and transmission coefficients are determined by

te−iua ¼ t0eiua ¼
�
cos dþ ius

sin d
d

�
−1
;

re−iφ ¼ r0eiφ ¼ −i
ffiffiffiffiffiffiffiffiffiffi
u1u2

p sin d
d

cos

�
θ1 − θ2

2

� ffiffiffiffiffi
tt0

p
;

d ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 − 2u1u2 cosðθ1 − θ2Þ

q
; ðA11Þ

where v0 ¼ ℏv1v2=U0, uj ¼ vj=v0, us ¼ ðu1 þ u2Þ=2,
and ua ¼ ðu1 − u2Þ=2. From the continuity conditions at
x ¼ �L=2 and Eq. (A9), we find the transcendental
equation (1) where τ ¼ jtj2. As already noticed in the
main text, Eq. (1) leads to split ABS when v1 ≠ v2, except
for δ ¼ 0, π where the ABS degeneracy is protected by
time-reversal symmetry.

c. Double-barrier model

In this case, there are two boundary conditions similar to
Eq. (A9) at the nanowire-superconductor interfaces, which
results in the transcendental equation

sinðϵ̃1 − arccosϵÞ sinðϵ̃2 − arccos ϵÞ
¼ ð2− τL − τRÞ sinðϵ̃1Þ sinðϵ̃2Þ
− ð1− τLÞð1− τRÞ sinðϵ̃1 þ arccosϵÞ sinðϵ̃2 þ arccosϵÞ
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− τLÞð1− τRÞ

p
cosðφtotÞð1− ϵ2Þ; ðA12Þ

where ϵ̃j ¼ ϵλj þ ð−1Þjsδ=2, τL;R are the transmission
probabilities at x ¼∓ L=2, θν are the scattering phases
acquired at the interfaces (ν≡ L, R):

θν ¼ arg

�
cos dν þ i

sin dν
dν

vs
vν

�
; ðA13Þ

where dν and vν are defined as d in Eq. (A11) replacing U0

by Uν. Finally, we note φtot ¼ ðkF1 þ kF2ÞL − ðθL þ θRÞ
the total accumulated phase. For the estimations quoted
in the main text, we assume two identical barriers,
i.e., τL ¼ τR ¼ τ.

d. Magnetic field effect

Information on the ABS spin structure can be inferred
from their behavior in the presence of a finite magnetic
field. This behavior depends strongly on the orientation of
the field with respect to the nanowire axis [26]. We consider
a magnetic field lying in the x-y plane. The y component By
(parallel to the spin states of the transverse subbands
without RSO) shifts the energy of the subbands depending
on the spin states and modifies the Fermi wave vectors as
illustrated in Fig. 7(c). They thus satisfy

EsðkFÞ ¼
ℏ2k2F
2m� þ E⊥

1 þ E⊥
2

2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E⊥
1 − E⊥

2

2
− s

�
αkF −

gμB
2

By

�	
2

þ η2

s
¼ μ:

ðA14Þ

On the other hand, the x component Bx mixes opposite-
spin states, thus, opening a gap at the crossings points as
illustrated in Fig. 7(a). We include this effect perturbatively
[26]. For both Bkx and B⊥x cases, the resulting ABS and
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the corresponding transition lines are shown in the bottom
row of Fig. 7.

e. Fitting strategy

The transcendental equations [Eqs. (1) and (A12)] for the
single- and double-barrier models contain dimensionless
parameters with which we fit the experimental data at zero
magnetic field:

(i) λ1, λ2, τ, and xr for the single-barrier model,
(ii) λ1, λ2, τ, and φtot for the double-barrier model.

We then deduce the physical parameters α, μ (measured
from the bottom of the lowest band), L, and U0 (or UL=R)
using Eqs. (A2), (A5), and (A11), and assuming that the
nanowire diameter is fixed at W ¼ 140 nm. We further set
m� ¼ 0.023me where me is the bare electron mass. For the
experimental data in Fig. 5, the single-barrier model gives
λ1 ¼ 1.3, λ2 ¼ 2.3, τ ¼ 0.295, and xr ¼ 0.52, resulting in
the microscopic parameters α¼ 53meVnm, μ ¼ 255 μeV,
U0 ¼ 92 meVnm, L ¼ 332 nm. Using the double-
barrier model, we get λ1 ¼ 1.1, λ2 ¼ 1.9, τ ¼ 0.52,
φtot ¼ 0.93 ðMod 2πÞ, α ¼ 36 meVnm, μ ¼ 427 μeV,
UL ¼ UR ¼ 130 meVnm, L ¼ 314 nm. Another possibil-
ity is to fix the length of the junction L to the length of the
uncovered section of the InAs nanowire, 370 nm, which
leads to α ¼ 38 meV nm and μ ¼ 422 μeV for the single-
barrier model (α ¼ 32 meVnm and μ ¼ 580 μeV for the
double-barrier model). However, in the single-barrier

model, one cannot find values of U0 leading to the corre-
sponding τ. This is due to the fact that in our simplifiedmodel
for the scattering matrix, processes involving the higher
subbands are neglected, thus, limiting its validity to small
values of U0.
In order to fit the finite magnetic field data, in addition to

the parameters determined at zero magnetic field, one needs
the g factors in the parallel and perpendicular directions, gk
and g⊥. We use all the data taken with field in the parallel
and in the perpendicular directions and calculate the
correlation function between the images of the measured
spectra (taking the absolute value of the response f − f0)
and theory using various values of gk and g⊥. Figure 8
shows the dependence of the correlation functions with gk
and g⊥. The best agreement is found for gk ¼ 8 and
g⊥ ¼ 12, which are within the range of values reported
in the literature [48–51]. Note that the determination of gk is
less accurate, and that overall, gk ¼ 4 gives a similar
correlation as gk ¼ 8, but agreement is worse at the largest
values of Bk where the effect is the strongest.

2. Fit of the data at Vg = − 0.89 V

Many features of the data taken at Vg ¼ −0.89 V (Fig. 3)
can be accounted for by the single-barrier model. This is
shown in Fig. 9, where we compare the data with the results
of theory using λ1 ¼ 2.81, λ2 ¼ 4.7, τ ¼ 0.25, and
xr ¼ 0.17. The Andreev spectrum obtained with this set

FIG. 7. Effect of an in-plane magnetic field on the band structure (top row), the Andreev levels (bottom row, left) and the excitation
spectrum (bottom row, right). (b) Reference graphs at zero field, (a) field applied along the wire axis, (c) field applied perpendicularly to
the wire axis. The field effect on the band structure is exaggerated for clarity. The model parameters for the Andreev levels and the
excitation spectrum are the same as in Fig. 5 and B ¼ 10 mT.
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of parameters [Fig. 9(c)] presents three manifolds of spin-
split states leading to three bundles of four lines associated
to single-particle transitions between manifolds [green lines
in Fig. 9(b)]. They are in good agreement with the transition
lines at least partly visible in the data. In addition, the pair
transition corresponding to two quasiparticles excited in the
lowest manifold gives rise to an even transition which falls
in the frequency range of the data and roughly corresponds
to a transition visible in the data. Assuming a fixed length
L ¼ 370 nm and using the model of Eq. (A1), we deduce
the microscopic parameters α ¼ 43.7 meVnm and μ ¼
102 μeV (measured from the bottom of the band).
However, these values should be taken with care since

the linearization of the dispersion relation is not valid for
energies close to Δ when μ≲ Δ.

3. Measurement calibration

The measurement is performed by chopping with a
square wave the excitation signal applied on the gate
and recording with lock-in detectors the corresponding
modulation of the response of the circuit on the two
quadratures I and Q. We interpret these modulations as
arising from shifts of the resonator frequency. To calibrate
this effect, we measure how the dc values of I andQ change
for small variations of themeasurement frequency f0 around
3.26 GHz. With all of the measurement chain being taken
into account, we find ∂I=∂f0 ¼ −40.3 μV=Hz and
∂Q=∂f0 ¼ 34.4 μV=Hz. The signal received by the lock-
in measuring the I quadrature is a square wave, so that the
response ILI at the chopping frequency is related to the root-
mean-square (Irms) and peak-to-peak (IPP) amplitudes at its
input by ILI ¼ ð4=πÞIrms ¼ ð ffiffiffi

2
p

=πÞIPP. The same reasoning
applies to the Q quadrature measurement. We combine
ILI and QLI into XLI ¼ −ðILI=40.3Þ þ ðQLI=34.4Þ and
using ∂X=∂f0 ¼ 2 μV=Hz, the resonator frequency
change f − f0 is obtained from f − f0 ¼ Δf0 ¼
ΔX=ð2 μV=HzÞ ¼ ½XLI=ð2 μV=HzÞ�=ð ffiffiffi

2
p

=πÞ.

4. Gate dependence of the spectrum

Figure 10 shows two examples of the gate-voltage
dependence of the spectrum at phase difference δ ¼ π,
with reference spectra as a function of phase. In both
spectra, single-particle transitions appear white at δ ¼ π,
whereas pair transitions appear black. When Vg is changed,

FIG. 9. (a) Data at Vg ¼ −0.89 V, with yellow arrows pointing to transition lines that are replicas of lines appearing exactly 3.26 GHz
above. (b) Same data superimposed with predictions of the single-barrier model using parameters corresponding to the spectrum of ABS
shown in (c). Single-particle transitions (green lines) between the three manifolds labeled 1, 2, 3 in (c) are visible in the data. Red line in
(b) is the pair transition leading to two quasiparticles in manifold 1.
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finite magnetic field data and theory as a function of the g factor,
for field direction parallel (blue) or perpendicular (red) to the
nanowire.
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both types of lines move up and down but do not change
color. Both types of transitions are observed in the
frequency window 2–20 GHz at almost all values of Vg.
A remarkable feature is that the black and white lines move
“out of phase,” which can be understood from the effect of
Vg on the transmission τ: When τ decreases, the distance
between the two lowest manifolds decreases at δ ¼ π so
that the transition energy for single-particle transitions
decreases; at the same time, the energy of the lowest
manifold increases and so does the transition energy for
pair transitions.
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