
 

Machine Learning a General-Purpose Interatomic Potential for Silicon

Albert P. Bartók
Scientific Computing Department, Science and Technology Facilities Council,

Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom

James Kermode
Warwick Centre for Predictive Modelling, School of Engineering,
University of Warwick, Coventry, CV4 7AL, United Kingdom

Noam Bernstein
Center for Materials Physics and Technology, U.S. Naval Research Laboratory,

Washington, D.C. 20375, USA

Gábor Csányi
Engineering Laboratory, University of Cambridge,

Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

(Received 26 May 2018; revised manuscript received 11 October 2018; published 14 December 2018)

The success of first-principles electronic-structure calculation for predictive modeling in chemistry,
solid-state physics, and materials science is constrained by the limitations on simulated length scales and
timescales due to the computational cost and its scaling. Techniques based on machine-learning ideas for
interpolating the Born-Oppenheimer potential energy surface without explicitly describing electrons have
recently shown great promise, but accurately and efficiently fitting the physically relevant space of
configurations remains a challenging goal. Here, we present a Gaussian approximation potential for silicon
that achieves this milestone, accurately reproducing density-functional-theory reference results for a wide
range of observable properties, including crystal, liquid, and amorphous bulk phases, as well as point, line,
and plane defects. We demonstrate that this new potential enables calculations such as finite-temperature
phase-boundary lines, self-diffusivity in the liquid, formation of the amorphous by slow quench, and
dynamic brittle fracture, all of which are very expensive with a first-principles method. We show that the
uncertainty quantification inherent to the Gaussian process regression framework gives a qualitative
estimate of the potential’s accuracy for a given atomic configuration. The success of this model shows that
it is indeed possible to create a useful machine-learning-based interatomic potential that comprehensively
describes a material on the atomic scale and serves as a template for the development of such models in
the future.
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I. INTRODUCTION

A. Background

First-principles molecular simulation, based on various
approximations of the electronic-structure theory, is the
workhorse of materials modeling. For example, density-
functional theory (DFT), a prominent method, is indicated

as the topic of about 19 000 papers published in 2017
according to the Web of Science database. However,
because of the combination of its computational expense
and unfavorable scaling, simulations that require thousands
of atoms and/or millions of energy or force evaluations are
carried out not using electronic-structure methods but
empirical analytical potentials (also known as force fields
in the chemistry literature). These are parametrized approx-
imations of the Born-Oppenheimer potential energy surface
(PES), the electronic ground-state energy viewed as a
function of the nuclear positions [1].
The functional form of analytical potentials is typically

simple, based partly on a combination of physical and
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chemical intuition and partly on convenience. The param-
eters are usually optimized so that the model reproduces, as
best as it is able, either some macroscopic observables
or microscopic quantities such as total energies and/or
forces, corresponding to selected configurations and calcu-
lated separately using an electronic-structure method.
Unsurprisingly, while it is easy to find parameter sets that
reproduce individual observables (e.g., the melting point
corresponding to a particular composition or the binding
energy of a crystalline structure), the simple functional
forms postulated are not flexible enough to allow matching
many properties simultaneously, and the potential energy
surface is not accurate, which suggests that, when empirical
analytical potentials are successful, there is a risk that this
result is due to a fortuitous cancellation of errors and is then
a case of getting the right answer for the wrong reasons.
The practitioner is forced to select parameters subject to a
trade-off between maximizing the accuracy for a few
selected properties and transferability, i.e., avoiding a large
or even qualitative error for a wide range of configurations
and observables of interest [2,3]. This trade-off severely
limits the predictive power of empirical analytical poten-
tials when the very parameters that give sufficient accuracy
for some known observables result in wildly varying
predictions for new phases and properties whose prediction
is the ultimate goal of the simulation.
Machine-learning (ML) methods provide a systematic

approach to fitting functions in high-dimensional spaces
without employing simply parametrized functional forms
[4], thus opening up the possibility of creating interatomic
potentials for materials with unprecedented accuracy for a
wide range of configurations. The development in the past
10 yr required exploring a variety of ways to describe the
chemical environment of atoms, the basis functions used to
construct the potential, e.g., by various kernels or artificial
neural network models, and the way such fits can be
regularized, either by linear algebra or by various protocols
of neural-network optimization [5,6]. The general approach
is to define an atomic energy as a function of its local
environment and fit this function in a 60–100-dimensional
space corresponding to the relative positions of 20–30
nearby atoms. The challenge we take on here is to use this
approach to develop a general-purpose interatomic poten-
tial, neither restricted to a narrow range of configurations or
observables nor compromising accuracy in reproducing the
reference potential energy surface. This approach requires
adequately sampling enough of the space that is relevant to a
wide range of atomistic simulations to interpolate it accu-
rately and doing so in a computationally tractable manner.
The Achilles heel of machine-learning models, directly

related to their flexibility, is their naturally much-
reduced transferability: The flexible function representation
is informed by a large training database, leading to a
good fit for configurations near the database (in the space of
the chosen representation) and progressively poorer away

from it. This limitation is often summarized by saying that
high-dimensional fits are good at interpolation but less
good at extrapolation, which can be viewed as another
manifestation of the “curse of dimensionality”.
When first encountering the ML potential approach, one

might wonder why such high-dimensional fits work at all,
given that it is impractical to thoroughly sample the full
space (e.g., on a grid). It is an empirical observation that
they often do, so the real question is, what are the special
properties of potential energy surfaces that make them
amenable to such approximations? Regularity is almost
certainly one of these, the mathematical concept encom-
passing the colloquial idea of a potential varying smoothly
as a function of the atomic positions. Indeed, the regular
kernels that are used (and the corresponding regular
activation functions in artificial neural networks) define
the length scales over which predictions are interpolated
rather than extrapolated. This definition can also point
towards explaining why some methods work better than
others: Kernels that better capture the inherent regularity of
the underlying function interpolate better and extrapolate
farther. Another property is that the configurations that are
likely to arise in an atomistic simulation actually occupy a
volume of configuration space that is much smaller than
the full space. Consequently, a database derived from
configurations found in reference atomistic simulations is
sufficient for fitting an interatomic potential, so long as it
includes not only the low-energy configurations but also
nearby high-energy ones to constrain the potential at
the boundary of the region that will be explored when
it is used.
Thus, the trade-off made by empirical analytical poten-

tials (viz. between accuracy and transferability) is now
replaced by another trade-off: that between transferability
and database size, because high accuracy is possible but
only near the training set. In order to achieve the promised
wider impact in materials modeling, it is desirable to
explore this trade-off. In particular, is it possible to create
a training database of manageable size that covers almost
all relevant configurations of a material and, thus, a
potential for future larger length-scale simulations? Or will
such models always be confined to a narrow set of atomic
configurations, with every new scientific question neces-
sitating a new fit trained on a problem-specific database of
first-principles calculations? Since the notion of nearness is
intimately tied to the representation, in this paper, we
explore this question for a particular case, a kernel-based fit
using the previously introduced smooth overlap of atomic
positions (SOAP) kernel [7] and the Gaussian approxima-
tion potential (GAP) framework [8]. (Everywhere in this
paper, when we refer to GAP models, we mean a Gaussian
process regression model using the SOAP kernel, although,
of course, other kernels and also combinations of different
kernels can be used within the GAP framework and have
indeed been used for other systems [9–12].)
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An obvious alternative approach to the transferability
problem is to give up on it entirely and accept that an
interatomic potential will always be extremely narrowly
confined to its training database. One can then develop
algorithms that actively adapt or grow the training database
during the course of a simulation [13–20]. The obvious
disadvantage is that an electronic-structure method always
has to be part of the simulation, to be called upon to calculate
new target data as and when necessary. The efficacy of this
approach then depends on what algorithm is used to detect
that the simulation has strayed into parts of configuration
space not sufficiently well covered by the current database
and precisely what subsequent action is taken.

B. State of the art

The following is a brief review of the recent works in the
emergent field of interatomic potential construction using
high-dimensional nonparametric fits. Although fits to the
potential energy surface of molecules and small molecule
clusters have a much longer history [21–34], here we limit
our scope to include only efforts that model strongly bound
materials in the condensed phase. On the one hand, material
models generally have a number of critical requirements that
differentiate them from molecular models: (i) The potential
must be reactive, i.e., needs to describe the forming and
breaking of many covalent bonds, often simultaneously;
(ii) a wide range of neighbor configurations need to be
covered, including radical changes in neighbor count.
Comprehensive models also need to (iii) cover multiple
phases, e.g., metallic and insulating, solid and liquid, etc. On
the other hand, many works cited below (and the present
work) consider only one type of element, which allows the
consideration of only relatively short-range interactions,
because the absence of charge transfer obviates the need to
describe long-range electrostatic effects.
Modeling the short-range interactions with artificial

neural networks (NNs) really took off about a decade
ago [35], starting with the bulk phases of silicon [36,37],
with many more to follow: describing some silicon defects
[38], the graphite-diamond transition [39], bulk zinc oxide
[40], copper with some defects [41], the phase-change
material GeTe in its various phases [42], various ionic
solids [43,44], Li-Si alloys [45–47], bulk TiO2 [48], alloys
[49,50], Ta2O5 [51], Li3PO4 [52], gold clusters [53],
graphene [54], and various surfaces [55–59]. Fitting NN
potentials is beginning to be combined with the combina-
torial structure search [60–62].
Kernel fitting is a different approach to high-dimensional

interpolation, with origins in statistics [cf. kriging [63] and
Gaussian process regression (GPR) [64] ] and widely
applied in numerical analysis and machine learning [65].
The key to its success is the choice of kernel and, through it,
the basis functions employed. In the context of atomistic
potentials, a significant step was the introduction of rota-
tionally and permutationally invariant representations that

also vary smoothly with the coordination number, based on
the spherical Fourier transform and the bispectrum con-
structed from it [66]. This representation was later sim-
plified to the SOAP representation and kernel [7] and
applied to tungsten [67], amorphous carbon [11,68], iron
[69], graphene [12], and boron [70]. Using the original
spherical bispectrum as a representation, potentials were
made with linear regression for tantalum [71] and molyb-
denum [72], with quadratic regression for tantalum [73],
and with a nonlinear kernel for bulk Li2B12H12 [74]. Linear
regression using yet another class of basis functions was
introduced by Shapeev [75] and used to make a potential
for Li [76]. Others use GPR with different representations
to fit forces directly without constructing a potential,
starting with a test for silicon [13], and more comprehen-
sive models for aluminum [77–80].
Machine-learning methods and novel molecular repre-

sentations and descriptors are also used for other regression
tasks for molecules, using a variety of approaches to predict,
e.g., atomization energies, atomic charges, NMR shifts, etc.,
[81–98], constructing molecular force fields [99–106], and
even in combination with quantum mechanics/molecular
mechanics (QM/MM) embedding methods [107].

C. A general potential

Here, we demonstrate that, using ML techniques, it is
indeed possible to develop an accurate potential that spans
a wide range of physically important structures and proper-
ties. Using silicon as an example, we create a potential and
demand that it give reasonably accurate predictions for all
configurations relevant to scientific questions within a wide
temperature and pressure range, including surfaces, point
and line defects, cracks, etc. Silicon is a good material for
such a study for a number of reasons. First, it has a rich
phase diagram with many stable and metastable crystal
structures, as well as a wide variety of point and line defects
and surface reconstructions. Second, the simulation com-
munity has extensive experience in understanding many
aspects of its potential energy surface. Finally, there are a
large number of empirical analytical potentials that have
been constructed over the past decades whose successes
and failures give a detailed picture of what it is about the
potential energy surface that is relatively easy to get right
and what the more difficult aspects are.
Indeed, many advances in materials simulation method-

ology over the past decades have been demonstrated first
using silicon. Some of these are new approaches where
silicon is used as a test system, including the Car-Parrinello
method for ab initio molecular dynamics (MD) [108],
maximally localized Wannier functions for analyzing
electronic structure [109], concurrent coupling of length
scales combining different simulation methods [110,111],
and the learn-on-the-fly method for extending the timescale
of ab initio MD [112]. Others use these new methods to
explain experimentally observed phenomena in silicon,
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e.g., using the DFT to study the 7 × 7 dimer-adatom-
stacking-fault reconstruction of the Si (111) surface [113].
Silicon is also extensively used as a model system to
understand fracture and, in particular, the interplay between
brittle and ductile failure [114–118].
A large number of interatomic potentials have been

developed for silicon with the intent of describing its bulk
phases and defects. While there are too many publications
to thoroughly review here, we discuss the most widely used
and successful ones, to motivate our choices for compari-
son models in this work. By far the two most commonly
used are those of Stillinger and Weber (SW) [119,120] and
Tersoff [2,121–124]. Both include pair terms and three-
body terms, the former defined in terms of bond lengths and
bond angles, the latter in terms of a repulsive core and a
bond-order-dependent attractive bonding interaction. Many
other functional forms are also used, as reviewed, e.g., by
Balamane, Halicioglu, and Tiller [125] and more recently
by Purja Pun and Mishin [126]. While none produce
sufficient improvement to lead to a significant adoption
by the simulation community, recent attempts to add terms
that depend on more than three-body interactions have been
at least somewhat successful. These include the environ-
ment-dependent interatomic potential (EDIP) [127], modi-
fied embedded atom method (MEAM) [128,129], ReaxFF
[115,130], and screened Tersoff [131,132]. EDIP uses the
local coordination of each atom to approximate a bond
order (a chemical concept that is also integral to the Tersoff
potential) and change the preferred bond length, strength,
and bond angle correspondingly. MEAM is an angle-
dependent functional form that evolved out of the simpler
embedded atommethod, mainly used for metals. It was first
applied to silicon with a first-neighbor cutoff distance by
Baskes, Nelson, and Wright [133] and later reparametrized
several times with different choices of fitting quantities and
interaction cutoffs [129,134,135]. Here, we use the second-
neighbor cutoff parametrization due to Lenosky et al.
[129]. The ReaxFF form was originally developed in the
context of computational chemistry to describe reactions of
molecules, and the silicon potential we use [130] was
previously used to simulate a brittle fracture [115]. The
screened Tersoff form (TersoffScr) was developed by
Pastewka et al., who modified the Tersoff functional form
with a screening term to improve its performance for
fracture properties [131,132], where bonds are broken
and formed. Finally, Purja Pun and Mishin took the
modified Tersoff form developed by Kumagai et al.
[136] and optimized it for a wide range of properties
[126]. We compare the results of GAP to these interatomic
potential models (EDIP, MEAM, Purja Pun, ReaxFF, SW,
Tersoff, and TersoffScr) and also to the density-functional
tight-binding (DFTB) method [137–139].
The inclusion of a tight-binding (TB) model in the above

list is essential, because TB represents a middle ground
between the DFT and interatomic potentials. The TB

approach is a minimal description of electronic structure
[1], significantly cheaper than the DFT, yet still carrying the
essentially quantum-mechanical nature of the electrons,
giving a qualitatively robust description of their behavior in
solids in a wide range of materials. Like interatomic
potential models, TB can be easily implemented with a
cost that is linear in the number of atoms. A lot of effort has
gone into making accurate TB models [138,140–150], and,
if they were clearly more accurate or transferable than
conventional interatomic potentials, they might present the
same trade-off between speed and accuracy as ML models,
which are also significantly more computationally expen-
sive than conventional interatomic potentials. However,
such does not appear to be the case: The widely used
TB model included here does not perform better on the
whole than analytical potentials. For the DFTB calcula-
tions, we use the “pbc” parameter set and a k-point density
of 0.007 Å−1 for bulk configurations and 0.04 Å−1 for
others. To reduce the computational cost, no charge-
self-consistency iterations are performed, since they are
not expected to lead to substantial differences for this
monatomic covalently bonded material.
Our focus is on creating useful models, and therefore the

guiding principle is to create a data set and fitting protocol
that is the least specific to the material and the observables
as possible while still achieving the aims. On the one hand,
we try to create tests that are as relevant to the materials
modeler as possible, focusing on observables that are either
directly comparable to experiments or at least generally
agreed to be important for the understanding of material
behavior. On the other hand, we think of the ML potential
as an interpolation scheme for the reference DFT method,
so, with a few exceptions, we compare the interatomic
potential results to the DFT, rather than to an experiment,
for example.
It is worth noting that the comparisons with analytical

potentials we show in this paper are not meant as a
definitive evaluation of their accuracy. Since the analytical
potentials are fit to different sets of properties from different
sources, their performance for any particular observable
could very well be improved somewhat by refitting them to
our DFT data; we do not see the relevance of doing that
here and work with the published parametrizations, since
the analytical potentials’ main advantages are simplicity,
computational efficiency, and some transferability rather
than ultimate accuracy. In the case of a machine-learned
model, the unique selling point is the accuracy with which
the target potential energy surface is matched, which is best
demonstrated by comparing to DFT results. The route to an
improved agreement with experimental observables is to
improve the target, i.e., using a more accurate description of
the electronic structure.
In contrast to many earlier works on materials modeling

and machine learning, we do not emphasize learning
outcomes in the statistical sense, using splits of the data
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set into training, testing, and validation. This is partly
because this has been done many times before for the same
kernel, representation, and approach to parameter choice
that we use here and partly because the SOAP kernel does
not have hyperparameters that are worth optimizing: They
are dictated by the length and energy scales inherent in
atomic interactions, which are well known. (The other
parameters in the regression correspond to accuracy targets
on a few classes of configurations.) Ultimately, the paper is
about the validation on material properties, and all those are
based on atomic configurations which are themselves not in
the training set.
Figure 1 provides an overview of many of the verifica-

tion and validation tests carried out for our new silicon

GAP model in comparison to the empirical analytical
models mentioned above. While the individual tests are
discussed in more detail below, we present an overview
here. The first three groups of quantities in the figure are
verification tests, in the sense that they require accuracy on
configurations which are directly represented in the training
set. These are split into three classes of test: bulk properties,
surfaces, and point defects. Bulk properties, namely, the
bulk modulus B and diamond cubic elastic constants C11,
C12, and C44, are well reproduced by the GAP model with
fractional errors relative to the DFT of less than 10%; none
of the other interatomic potentials reach this accuracy,
although in many cases they are fit to different training data
(e.g., an experiment or simply other exchange-correlation

FIG. 1. Comparison of percentage errors made by a range of interatomic potentials for selected properties, with respect to our DFT
reference. Those on the left of the break in the axis are interpolative, i.e., well represented within a training set of the GAP model: elastic
constants (bulk modulus B, stiffness tensor components Cij), unreconstructed (but relaxed) surface energies [(111), (110), and (100)
low-index surfaces], point-defect formation energies (vacancy and hexagonal, tetrahedral, and dumbbell interstitials); while the planar

defects to the right are extrapolative: (112) Σ3 symmetric tilt grain boundary and unstable stacking-fault energies on shuffle plane γðsÞus

and glide plane γðgÞus . The first row in the corresponding table shows reference quantities computed with the DFT (units indicated in the
header row).
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functionals). The largest relative errors in bulk properties
are typically made in the softest elastic constant C12, with
the EDIP model being the next most accurate after our new
GAP model. The second class of verification tests dem-
onstrates that the GAP model performs consistently at
describing surface energies of the (111), (110), and (100)
cleavage planes, with errors of around 2% with respect to
our reference DFT calculations. Here, the scatter across the
various other models is smaller than for bulk properties. For
example, the (100) surface energy is, in general, well
described by most models. For the third class of verification
tests, formation energies of vacancy and interstitial point
defects, we see a wide range of errors across the models
evaluated. The new GAP model again predicts all these
quantities within 10% of the reference DFT results. In
general, for any particular property, there is often a model
that provides an accurate description, but apart from the
GAP, we are not aware of any model that provides uniform
accuracy across the whole range of properties in Fig. 1. The
typical spread between DFT exchange-correlation func-
tionals for structural and vibrational properties of silicon is
much smaller; e.g., Ref. [151] reports only around a 1%
variation in Si lattice constants and fundamental phonon
frequencies over a wide range of exchange-correlation
functionals.
Moving to more stringent tests of the new model, we

consider a set of planar defects which are not represented in
the training set (right-hand group in Fig. 1), namely, the
ð112ÞΣ3 symmetric tilt grain boundary, and unstable

stacking-fault energies on the (111) shuffle plane γðsÞus

and (111) glide plane γðgÞus . For these tests, the accuracy
of the GAP model is reduced but still within 20% of the
DFT, comparing favorably with all other models, some of
which include stacking-fault values in their training sets
(e.g., EDIP). Moreover, the ability of the GAP model to
provide an estimated error along with its predictions allows
us to qualitatively assess the expected reliability of the
model for particular classes of configurations. Figure 2

shows the predicted errors for each atom in the vacancy,
shuffle, glide, and grain boundary configurations. For the
vacancy, the confidence of the model is high on all atoms
(blue), and the corresponding accuracy with respect to DFT
is high. The reduced confidence close to the planar defects
(red atoms) is consistent with the larger errors made for
these configurations and the fact that the database does not
include any similar atomic environments.
The rest of the paper is organized as follows. In Sec. II,

we give an overview of the potential fitting methodology
and the construction of the database. In Sec. III, we report
on extensive tests that serve to verify that those properties
which the database is explicitly designed to capture are
indeed correctly predicted. This testing includes equations
of state, average structural properties of liquid and amor-
phous states, point-defect energetics, surface reconstruc-
tions, and crack-tip geometries. In Sec. IV, we validate the
model by showing predictions for properties that are
deemed fundamental for modeling this material but for
which the database makes no special provision. These
predictions includes thermal expansion, di-interstitials,
grain boundaries, and random structure search. We finally
give a brief outlook in Sec. V.

II. METHODOLOGY

A. Potential fitting

The interatomic potential, even after assuming a finite
interaction radius, is a relatively high dimensional func-
tion, with dozens of atoms affecting the energy and force
on any given atom at the levels of tolerances we are
interested in (around a meV per atom). However, much
of the interaction energy (in absolute magnitude) is
captured by a simple pair potential, describing exchange
repulsion of atoms at close approach and potentially the
chemical bonding in an average sense farther out. In
anticipation of the kernel approach for fitting the inter-
atomic potential, the pair potential also serves a useful
purpose from the numerical-efficiency point of view,
because the exchange repulsion it takes care of is a
component of the potential that is very steep, in com-
parison with the bonding region, and such disparate
energy scales are difficult to capture with a single kernel
in high dimensions.
In the present case, we choose a purely repulsive pair

potential, given by cubic splines that are fitted to the
interaction of a pair of Si atoms, computed using DFT. This
choice leaves the description of the attractive part entirely
for the many-body kernel fit.
We start by giving a concise account of the GAP kernel-

fitting approach, as we use it here. The total GAP model
energy for our system is a sum of the predefined pair
potential and a many-body term which is given by a linear
sum over kernel basis functions [64]:

> 0.005 eV

< 0.001 eV

(111) shuffle

0.5 eV/Å

(111) glide

(112) 3

Vacancy

FIG. 2. Visualization of vacancy, (111) shuffle and glide
unstable stacking faults, and ð112ÞΣ3 grain boundary configu-
rations. Atoms are colored by the per-atom energy errors
predicted by the GAP on the DFT-relaxed configurations, and
arrows show the nonzero GAP forces.
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E ¼
X
i<j

Vð2ÞðrijÞ þ
X
i

XM
s

αsKðRi;RsÞ; ð1Þ

where i and j range over the number of atoms in the system,
Vð2Þ is the pair potential, rij is the distance between atoms i
and j, K is a kernel basis function defined below, andRi is
the collection of relative position vectors corresponding to
the neighbors of atom i which we call a neighborhood. The
last sum runs over a set ofM representative atoms, selected
from the input data set, whose environments are chosen to
serve as a basis in which the potential is expanded (more on
this below).
The value of the kernel quantifies the similarity between

neighborhoods (in the Gaussian process literature, it is a
covariance between values of the unknown function at
different locations), which is largest when its two argu-
ments are equal and smallest for maximally different
configurations. The degree to which the kernel is able to
capture the variation of the energy with the neighbor
configuration determines how efficient the above fit is.
The better the correspondence, the fewer representative
configurations are needed to achieve a given accuracy. It
also helps tremendously if exact symmetries of the
function to be fitted are already built into the form of
the kernel. For an interatomic potential, we need a kernel
that is invariant with respect to the permutation of like
atoms and 3D rotations of the atomic neighborhood. Note
that translational invariance is already built in, because the
kernel fit is applied to each atom individually—this very
natural decomposition of the total energy is customary
when fitting interatomic potentials and is directly analo-
gous with the spatial decomposition of convolutional
neural networks [152].
Here, we use the SOAP kernel [7,8]. We start by

representing the neighborhoodRi of atom i by its neighbor
density,

ρiðrÞ ¼
X
i0
fcutðrii0 Þe−ðr−rii0 Þ=2σ2atom ; ð2Þ

where the sum ranges over the neighbors i0 of atom i
(including itself), fcut is a cutoff function that smoothly
goes to zero beyond a cutoff radius rcut, and σatom is a
smearing parameter, typically 0.5 Å. Invariance to rotations
is achieved by constructing a Haar integral over the SO(3)
rotation group [7]. The SOAP kernel between two neighbor
environments is the integrated overlap of the neighbor
densities, squared, and then also integrated over all possible
3D rotations:

K̃ðRi;RjÞ ¼
Z
R̂∈SOð3Þ

dR̂

����
Z

drρiðrÞρjðR̂rÞ
����2: ð3Þ

To obtain the final kernel, we normalize and raise to a small
integer power:

KðRi;RjÞ ¼ δ2

�������
K̃ðRi;RjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̃ðRi;RiÞK̃ðRj;RjÞ
q

�������
ζ

ð4Þ

with ζ ¼ 4 in the present case. The δ hyperparameter
corresponds to the energy scale of the many-body term, and
we use δ ¼ 3 eV, commensurate with typical atomization
energy per atom. The accuracy of the fit is not particularly
sensitive to this parameter.
In practice, we do not evaluate the above integrals

directly but expand the neighbor density in a basis of
spherical harmonics Ylmðr̂Þ and radial functions gnðrÞ (we
use equispaced Gaussians, but the formalism works with
any radial basis):

ρiðrÞ ¼
X
nlm

cinlmYlmðr̂ÞgnðrÞ: ð5Þ

The following spherical power spectrum vector (henceforth
termed the “SOAP vector”) is a unique rotationally and
permutationally invariant description of the neighbor envi-
ronment,

p̃i
nn0l ¼

Xl

m¼−l
ci�nlmc

i
n0lm ð6Þ

pi ¼ p̃i=jp̃ij; ð7Þ

and the SOAP kernel can be written as its scalar product:

KðRi;RjÞ ¼ δ2jpi · pjjζ: ð8Þ

The coefficients αs in Eq. (1) are determined by solving a
linear system that is obtained when available data are
substituted into the equation, as we detail below. In the
present case, these data take the form of total energies and
gradients (forces and stresses) corresponding to small- and
medium-sized periodic unit cells, calculated using the
density-functional theory.
We also need an algorithm to select the set of represen-

tative environments over which the sum in Eq. (1) is taken.
This selection could be done by simple random sampling,
but we find it advantageous to use this freedom to optimize
the interpolation accuracy. One approach to this optimiza-
tion is to maximize the dissimilarity between the elements
of the representative set [153] such that the small number of
environments best represents the variety of the entire set.
Here, we use a matrix reconstruction technique called CUR
matrix decomposition [154] and apply it to the rectangular
matrix formed by the concatenation of SOAP vectors
corresponding to all the neighbor environments appearing
in the input data. The CUR decomposition leads to a low-
rank approximation of the full kernel matrix using only a
subset of its rows and columns [155].
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There are two factors that complicate the determination
of the vector of linear expansion coefficients, α. The first is
that atomic energies are not directly available from the
density-functional theory, and the second is the presence of
gradients in the input data. The following treatment
addresses both of these. We denote the number of atoms
in the input database with N and define y as the vector
with D components containing the input data—all total
energies, forces, and virial stress components in the training
database—y0 as the vector with N components containing
the unknown atomic energies of the N atomic environments
in the database, and L as the linear differential operator of
size N ×D which connects y with y0 such that y ¼ Ly0.
After selectingM representative atomic environments (with
M ≪ N), the regularized least-squares solution for the
coefficients in Eq. (1) is given by [156,157]

α�¼½KMMþðLKNMÞTΛ−1LKNM�−1ðLKNMÞTΛ−1y; ð9Þ

where KMM is the kernel matrix corresponding to the M
representative atomic environments [with matrix elements
from Eq. (8)], KNM is the kernel matrix corresponding to
the representative set and all of the N environments in the
training data, and the elements of the diagonal matrix Λ−1

represent weights for the input data values. The Bayesian
interpretation of the inverse weights is expected errors in
the fitted quantities. While taking Λ ¼ σ2νI with an empiri-
cal value for σν would be sufficient to carry out the fit, this
interpretation makes it straightforward to set sensible
values. The expected errors are not just due to a lack of
numerical convergence in the electronic-structure calcula-
tions but also include the model error of the GAP
representation, e.g., due to the finite cutoff of the local
environment. Our informed choices for these parameters
are reported in Table I.
For several systems below, we include results on the

predicted error, the measure of uncertainty intrinsic to our
interpolated potential energy surface. These come from the
Bayesian view of the above regression procedure, in which
the data (and the predicted values) are viewed as samples
from a Gaussian process whose covariance function is the
chosen kernel function [64]. The mean of this Gaussian
process is, of course, just the second term of the predicted
energy, Eq. (1), and the predicted variance of the atomic
energy for atom i is given by

KðRi;RiÞ − kTðKMM þ σeIÞ−1k; ð10Þ

where the element s of the vector k is given by KðRi;RsÞ,
the covariance between the environment of atom i and the
environments of the representative atoms s in the database.
The above is a simplified error estimate, in which we
regularize using the parameter σe, typically set to 1 meV
[equal to the value used for the per-atom energy data

components of Λ for most of the database in Eq. (9)] rather
than using the more complicated regularization as in
Eq. (9). We interpret this variance as the (square of the)
“one-sigma” error bar for the atomic energies.

B. Database

The database of atomic configurations (periodic unit
cells) is described in Table I. It was built over an extended
period, using multiple computational facilities. The kinds of
configuration that we include are chosen using intuition and
past experience to guide what needs to be included to obtain
good coverage pertaining to a range of properties. The
number of configurations in the final database is a result of
somewhat ad hoc choices, driven partly by the varying
computational cost of the electronic-structure calculation
and partly by observed success in predicting properties,
signaling a sufficient amount of data. Each configuration
yields a total energy, six components of the stress tensor, and
three force components for each atom. The database there-
fore has a total of 531 710 pieces of electronic-structure data.
We represent the diversity of atomic neighborhoods using
M ¼ 9000 representatives [see Eq. (1)], and the number of
these picked from each of the structure types by the CUR
algorithm is also shown in the table.
We use the CASTEP software package [158] as our

density-functional-theory implementation, and manual
cross-checking is done to ensure that the calculations are
consistent between different computers. The main param-
eters of the electronic-structure calculation are as follows:
PW91 [159] exchange-correlation functional (the choice is
motivated by the existence of a large-scale simulation of the
melting point with this functional), 250 eV plane-wave
cutoff (with finite basis corrections), Monkhorst-Pack
k-point grids with 0.03 Å−1 spacing (corresponding to a
603 grid in the primitive cell), ultrasoft pseudopotentials,
and 0.05 eV smearing of the electronic band filling. The
remaining numerical error is dominated by the finite
k-point grid, leading to errors on the order of a few
meV per atom. The reference data for testing purposes
are calculated with the parameters kept the same, except for
bulk energy-volume curves, which use a k-point spacing of
0.015 Å−1; the reoptimization of IP minima of amorphous
configurations (Table II) which use a k-point spacing of
0.07 Å−1; and molecular dynamics of the liquid, whose
parameters are given further below. The high k-point
densities above might surprise some readers, but we find
it necessary in order to converge values of the virial stress.
While we focus our efforts here on testing the GAP for its

predictions for scientifically interesting observables, we
also evaluate the global distribution of force errors relative
to DFT calculations. The results for all the potentials
evaluated on the GAP-fitting database, as well as for the
GAP on a simple testing database (distinct from the fitting
database), are shown in Fig. 3. The GAP shows much lower

BARTÓK, KERMODE, BERNSTEIN, and CSÁNYI PHYS. REV. X 8, 041048 (2018)

041048-8



force errors than any other potential tested, with a median
of about 0.025 eV=Å, an order of magnitude smaller than
for the analytical potentials. The testing database, which
consists of a grain boundary, six di-interstitials, the unre-
laxed and relaxed shuffle and glide generalized stacking-

fault paths, and an amorphous configuration, shows a very
similar distribution of the force error, although the actual
errors are strongly dependent on the type of geometry, so
changing the proportions of each could change the resulting
distribution somewhat.

TABLE I. Summary of the database for the silicon model. The first column shows the number of atoms in the periodic unit cells, and
the second column shows the number of such unit cells in the database, while the third column is the product of the first two and, thus,
shows the number of atoms (and, therefore, atomic environments) in the database for each structure type. The fourth column shows the
number of representative atoms picked automatically from each structure type by the CUR algorithm (see the text). The last three
columns show the regularization we use in the linear system (empty rows correspond to using the defaults, given at the top).

σenergy σforce σvirial

default values:

Structure type No. atoms No. structures No. environments No. representative atoms 0.001 0.1 0.05

Isolated atom 1 1 1 1
Diamond 2 104 208 6

16 220 3520 53
54 110 5940 58

128 55 7040 92
β-Sn 2 60 120 32

16 220 3520 51
54 110 5940 66

128 55 7040 157
Simple hexagonal 1 110 110 13

8 30 240 15
27 30 810 42
64 53 3392 89

Hexagonal diamond 4 49 196 7
bcc 2 49 98 40
bc8 8 49 392 66
fcc 4 49 196 46
hcp 2 49 98 28
st12 12 49 588 94
Liquid 64 69 4416 1114 0.003 0.15 0.2

128 7 896 323
Amorphous 64 31 1984 231 0.01 0.2 0.4

216 128 27 648 1719
Diamond surface (001) 144 29 4176 514

Decohesion 32 11 352 28
Diamond surface (110) 108 26 2808 338

Decohesion 16 11 176 8
Diamond surface (111)

Decohesion 24 11 264 10
Unreconstructed 96 47 4512 573
Adatom 146 11 1606 62
Pandey reconstruction 96 50 4800 632
DAS 3 × 3 unrelaxed 52 1 52 6

Diamond vacancy 63 100 6300 168
215 111 23 865 405

Diamond divacancy 214 78 16 692 416
Diamond interstitial 217 115 24 955 605
Small (110) crack tip 200 7 1400 130
Small (111) crack tip 192 10 1920 185
Screw dislocation core 144 19 2736 124
sp2 bonded 8 51 408 61
sp bonded 4 100 400 392 0.01 0.2 0.4

Total 2475 171 815 9000
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Note that the testing database for Fig. 3 is not the result
of the usual random split into training and test sets but
represents extrapolation into configurations entirely differ-
ent from those in the training database, providing an even
more stringent test than the usual split. Since the empirical
analytical potentials are not fit to our database, the latter
serves as a test for the potentials. It is remarkable how good
the analytical potentials’ predictions are for macroscopic
properties, which are mostly energy differences, given the
large force errors shown here.

C. Convergence

Since the principal goal of machine-learned interatomic
potentials is to enable the prediction material properties by
fitting the Born-Oppenheimer potential energy surface, it is
interesting to consider the convergence of such a potential.
The expectation is that a closer match of the potential
energy surface will result in more accurate predictions.
While a comprehensive convergence study is beyond
the scope of this work, there are simple convergence

parameters in the SOAP-GAP framework that directly
control the trade-off between computational cost and
accuracy of the fit. One is the number M of representative
environments (effectively the number of basis functions in
the regression), and the other is the truncation of the
spherical harmonic and radial basis expansion of the atomic
neighbor density [Eq. (5)]. Figure 4 shows the convergence
of the SOAP or GAP model with respect to these. We use
the Δ value of Lejaeghere et al. [162] to compute the error
in the energy-volume curves for diamond and β-Sn with
respect to our DFT reference, defined as

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1.06V0

0.94V0
½EGAPðVÞ − EDFTðVÞ�2dV

0.12V0

s
;

where EGAP and EDFT denote GAP and DFT energies,
respectively, relative to the diamond energy minimum to
allow comparison, V0 is the DFT minimum-energy volume
for each phase, and the integral is computed numerically by
fitting cubic splines to 12 ðE; VÞ pairs for each model.
Good convergence can be seen with respect to both basis
set size and the accuracy of the expansion of the atomic
density, with a precision of the order of a meV (for β-Sn; for
diamond, another order of magnitude better), indicating
that GAP reproduces the target DFT energy surface better
than the typical variability between DFT codes of the order
of Δ ¼ 1 meV reported in Ref. [162].
In principle, a Gaussian process regression model should

be able to converge to a given target function with arbitrary
accuracy as the database size grows. However, in this case,
the only remaining physical approximation is the finite
cutoff of the interatomic potential, which means that the
force on an atom that is computed using our DFT engine is
not strictly a function of the finite neighborhood of the
atom. From the point of view of a model with a finite cutoff,
the target function appears to have an finite amount of
uncertainty, and this uncertainty is taken into account when

TABLE II. Coordination statistics ci (fraction of atoms with number of neighbors i within rc ¼ 2.75 Å, in
percent) and energy per atom relative to the diamond structure (ΔEac, in eV) for amorphous structures resulting from
quenching of the liquid. The energy difference evaluated using the interatomic potential isΔIP

ac, the energy difference
of the interatomic-potential-relaxed structure evaluated (but not relaxed) using the DFT is ΔEeD

ac , and the DFT-
evaluated energy difference of the DFT-relaxed structure starting from the interatomic potential structure is ΔErD

ac .
Most atoms in the MEAM structure have coordination ≥ 6. The experimental defect density is from Ref. [160] and
the energy from Ref. [161].

Model c3 c4 c5 ΔEIP
ac ΔEeD

ac ΔErD
ac

Lit. exper. ≥ 99 0.137
GAP 1.4 98.1 0.5 0.15 0.14 0.13
EDIP 0.5 94.4 5.1 0.22 0.22 0.19
Tersoff 0.0 98.1 1.9 0.22 0.18 0.17
MEAM 0.0 0.0 2.8 0.14 0.65 0.28
SW 2.3 75.5 21.8 0.20 0.29 0.23
ReaxFF 0.0 86.1 13.9 0.35 0.35 0.25

FIG. 3. Cumulative probability distribution of force component
errors (relative to reference DFT calculations) for all potentials
evaluated on the GAP model-fitting database (solid lines) and for
the GAP model only on a separate testing database (dashed line).
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fitting the model, as mentioned above. Indeed, previous
investigations show that, with a cutoff of 5 Å, an error of
0.1 eV=Å on the forces is about what is to be expected for
the diamond structure [163–165]. Note that it is possible to
estimate the expected force error due to the finite cutoff
directly from the DFT engine, because forces are them-
selves local quantities, as opposed to site energies and virial
stress components, which are not observable directly.
It is noteworthy how much more accurate the potential is

for the diamond structure than for β-Sn. Two factors
contribute to this: First, there are many more diamondlike
configurations in the database, particularly the configura-
tions associated with various defects, and, second, the
locality error is expected to be significantly larger for the
β-Sn structure due to its metallic electron density of states.
Small clusters represent a class of systems where locality is
even worse, due to delocalized surface states and a
fluctuating Fermi level, whose effects decay slowly with
the inverse of the system size [166]. The type of bonding in
small clusters varies wildly as the cluster size changes, with
reactive, metallic ground states and inert, closed-shell
“magic number” clusters competing energetically [167–
169]. This variation suggests that interatomic potentials in
general are not well suited to accurately model silicon
clusters; hence, we decide to omit them from this study.
We do not claim that our database in the present work is

complete in a mathematical sense (even within the restric-
tion of the given cutoff) but that, for any particular
application whose relevant configurations are well repre-
sented in the database, errors can be improved only by
choosing a larger cutoff, which in turn might lead to the
need to enlarge the database further.

D. Testing

A software testing framework was built to run tests of the
potential using the atomic simulation environment (ASE)
[170]. Each model and test is implemented as an indepen-
dent PYTHON module, allowing all tests to be run with each
model (similarly to the design of the OpenKIM project
[171]). The model modules are simple, consisting of calls
to existing ASE interfaces to QUIP [172] (GAP, DFTB,
Stillinger-Weber, Tersoff, and MEAM), LAMMPS [173]
(EDIP, Purja Pun, and ReaxFF), and ATOMISTICA [174]
(TersoffScr). Reference DFT results are obtained using the
same tests with a model based on the ASE interface to
Castep and using the parameters discussed above. One
advantage of this automated approach is that it ensures
consistency in starting configurations, minimization algo-
rithms, and the final test results that are shown in our
figures. Another is that it enables automated rerunning of
tests when changes are made, e.g., to the GAP training
database, allowing incremental improvements to be
assessed. The framework is available for download [175].

III. RESULTS: VERIFICATION

In this section, we report on a series of basic tests which
the GAP model is designed to pass, because they corre-
spond to configurations that are selected for inclusion in the
database for the purpose of describing those very observ-
ables. We refer to these as “verification,” by analogy to the
usage of the term in software engineering, where it refers to
the confirmation that the software implements the speci-
fications correctly.
It is important to note that, by the very nature of such

data-driven models, in some sense the database (and the

FIG. 4. Error of the SOAP or GAP model based on the Δ value of Ref. [162] with respect to the DFT for diamond (black) and β-Sn
(red) structures. The left shows the error as a function of the number of basis functions used in the Gaussian process regression. Because
we use a stochastic algorithm to select which basis functions to use, multiple models are shown, which differ only in the pseudorandom
seed. The right shows the error as a function of the length of the SOAP vector, which in our case is controlled by the truncation of the
radial and spherical harmonic expansion of the atomic neighbor density. The horizontal dashed line corresponds to 1 meV per atom
error, our default energy accuracy target.
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corresponding models) will never be deemed completely
final and definitive. By designating some tests as part of
“verification,” we mean to be open about the fact that the
database is amended qualitatively and quantitatively until
these tests are passed to our satisfaction, and, therefore,
these tests are in some sense merely the achievement of a
good fit. In the following “validation” section (again by
analogy to the use of the term in software engineering
where it refers to the confirmation that the specifications
describe a method that achieves the desired goal), we
collect tests for which the database is not explicitly
designed but concern observables that a good model for
the material ought to be able to describe. We make no
attempt to augment or modify the database in order to
improve the results of those tests, and this could, and
indeed should, be done in future work.

A. Bulk crystals

As an initial test, we calculate the energy vs volume for a
number of bulk crystal structures for silicon, including the
ground-state diamond structure, closely related hexagonal
diamond, known high-pressure structures β-Sn, simple
hexagonal (sh), bc8, and st12 structures, as well as even
higher pressure phases, hexagonal close packed (hcp),
body-centered cubic (bcc), and face-centered cubic (fcc).
When calculating these curves with the DFT as well as
DFTB and each interatomic potential, we deform the lattice
to the target volume and relax it with respect to the unit cell
shape and atomic position while approximately con-
straining the volume and also constraining the symmetry
(using spglib [176]) to remain that of the initial structure.

We find that the hcp structure has two minima, the
conventional one with c=a ≈

ffiffiffiffiffiffiffiffi
3=2

p
and another we label

hcp0, which has a much lower c=a < 1.
The resulting EðVÞ curves for each crystal structure

calculated with the GAP and compared to our reference
DFT calculations are shown in Fig. 5. The results are in
excellent agreement for all structures tested, including
minima positions (volume), depths (cohesive energy rela-
tive to the ground state), and curvatures (bulk modulus).
The hcp0 structure, which is not in the fitting database, has a
larger discrepancy than the other structures, although it is
still in good agreement. A comparison of all the models for
a few selected crystal lattices (diamond structure, β-Sn, and
fcc) is shown in Fig. 6. Only the GAP is even qualitatively
reproducing all three selected structures, and many of the
models fail to reproduce even the first structure seen
experimentally under applied pressure, β-Sn.

FIG. 5. Energy per atom vs volume per atom for various bulk
crystal lattice structures computed using the DFT (solid lines) and
GAP (dashed lines). The hcp0 structure (indicated by an arrow),
which is not in the fitting database, has a substantially larger
discrepancy between the DFT and GAP than any of the other
structures, all of which are in the database.

FIG. 6. Energy per atom relative to diamond structure vs
volume per atom for fcc (top), β-Sn (middle), and diamond
structure (bottom), computed with the DFT (black, solid line),
GAP (red dashed line), and all other models (various colors,
dashed lines). Note different y-axis ranges in each panel.

BARTÓK, KERMODE, BERNSTEIN, and CSÁNYI PHYS. REV. X 8, 041048 (2018)

041048-12



B. Liquid

To simulate the structure of liquid silicon with each
interatomic potential and DFTB, we use constant-pressure
(P ¼ 0 GPa) molecular dynamics as implemented in the
QUIP package through the quippy PYTHON interface [172].
A 2 × 2 × 2 supercell of the eight-atom diamond cubic cell
(64 atoms total) is heated from T ¼ 0 K to T ¼ 5000 K for
rapid melting over 20 000 0.5 fs time steps and then
equilibrated at T ¼ 2000 K for 10 000 0.25 fs time steps.
Structural data are gathered over an additional 5000 0.25 fs
time steps. Reference DFT results are obtained from a
similar MD simulation using the Castep software, averag-
ing over 9700 0.25 fs time steps at T ¼ 2000 K. For the
electronic-structure calculations, a 200 eV plane-wave
energy cutoff and a 2 × 2 × 2 Monkhorst-Pack [177]
k-point grid are used (equivalent to a k-point density of
about 0.05 Å−1). The radial distribution function (RDF)
and angular distribution function (ADF) are calculated and
averaged using the tools included in QUIP.
The resulting structural quantities are shown in Fig. 7.

The GAP RDF is in excellent agreement with the DFT
result, including both peak heights and radii at all distances
captured in the simulation cell. The DFTB is in comparably
good agreement on this structural quantity, and the various
interatomic potentials are in much worse agreement, with
significant variation among them. The ADF proves to be an
even more stringent test. Again, the GAP results are in
excellent agreement with the DFT, showing a narrow peak
at about 60° and a broader peak with similar height at about
100°. Most of the potentials greatly underestimate the
height of the small-angle peak and overestimate the height
of the large-angle peak. The only two that are qualitatively
correct are EDIP and MEAM, but those both overestimate
the depth of the trough separating the two peaks. Several
issues with the analytical interatomic potentials may be the
source of the differences. Some, e.g., Tersoff [2], greatly
overestimate the melting point and are therefore strongly
undercooled at T ¼ 2000 K rather than an equilibrium
liquid. In other cases, it is possible that the wide variety of
curves observed is consistent with the hypothesized liquid-
liquid phase transition between a high-coordination, high-
density metallic phase and a low-coordination, low-density
semiconductorlike phase [178]. Some of the potentials may
simply be incorrectly predicting the low-coordination phase
to be present at T ¼ 2000 K and zero pressure, leading to a
predominantly tetrahedral-like bond angle distribution.
In addition to the two structural quantities, we evaluate a

dynamical quantity, the diffusivity of liquid Si, by carrying
out variable cell size constant enthalpy MD simulations
using the LAMMPS software [173,179] on a 512-atom
cell for 105 1 fs time steps at temperatures ranging
from about 1700 to 2200 K. The resulting diffusivity
as a function of the temperature is shown in Fig. 8 and
compared to the experimental results [180], DFT results
[181] (using the PBE generalized gradient approximation

exchange-correlation functional, which is somewhat differ-
ent from the PW91 functional we use to generate our fitting
database), and previously published SW potential results
[182–185]. The GAP results are in excellent agreement

FIG. 7. Liquid silicon radial and angular structure from well-
equilibrated constant temperature and pressure 64-atom samples
at P ¼ 0 GPa and T ¼ 2000 K. Top: RDF. Bottom: ADF. The
black solid line indicates DFT results, the red dashed line and
symbols indicate GAP results, and dashed lines (various colors)
indicate the DFTB and other interatomic potentials.

FIG. 8. Diffusivity of liquid silicon from literature DFT
simulations [181] (black), literature experiment [180] (gray),
GAP (red), and literature SW potential [Refs. [182–185] for
(a)–(d), respectively, pink]. Error bars for GAP simulations are
smaller than symbols on this scale and are not available for
literature SW results.
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with the DFT, and so both underestimate the experimental
diffusivity. This difference relative to the experiment has
previously been ascribed to the tendency for DFT to
exaggerate the structure of the liquid [181], and so the
similar diffusivities of the GAP and DFTare consistent with
the similarities in their liquid RDF and ADF.

C. Amorphous phase

Amorphous silicon is an interesting tetrahedrally coor-
dinated phase that forms upon various forms of processing,
including ion implantation, low-temperature deposition,
and rapid quenching from the melt. The last of these is
commonly used in simulations, but it is challenging to
reach experimentally relevant cooling rates using accurate
methods such as the DFT. We therefore carry out zero-
pressure variable cell volume (hydrostatic strain) simula-
tions of the quenching of a 216-atom sample of liquid Si,
cooled at 1012 K=s from 2000 to 500 K with a 1 fs time step
(1.5 × 106 steps) using the LAMMPS software, and then
relax to the local energy minimum with respect to atomic
positions and cell size and shape. The initial configuration
for all quenches is from a GAP equilibrated liquid at
T ¼ 1800 K, which is further equilibrated with each
potential at T ¼ 2000 K for an additional 105 time steps
before cooling. As for the liquid above, for some potentials
this initial thermodynamic state may be a strongly under-
cooled liquid due to their overestimation of the melting
temperature.
The RDFs of the resulting structures are shown in Fig. 9,

in comparison with experimental results [186] (since DFT
results for comparable sizes or quench rates are not
computationally feasible). The various interatomic models
vary widely in the overall shape of their RDF, with GAP,
EDIP, and Tersoff in best agreement with the experiment,
showing a sharp first neighbor peak at about 2.35 Å

and a broad second peak at about 3.8 Å. These three
models have essentially no atoms between the two peaks
(2.5 Å≲ r≲ 3.25 Å). The other models show various
qualitative problems, including smaller peaks between
the two expected ones or an excess of atoms throughout
the entire distance range between the first and second
neighbor peaks. The corresponding coordination statistics
(using r ¼ 2.75 Å as the nearest-neighbor distance cutoff)
are shown in Table II. The GAP and Tersoff models have
the lowest coordination defect concentration, significantly
lower than the next-best model, EDIP, and closest to the
experimental estimates of ≤ 1% [160].
Table II also lists the amorphous-crystal energy differ-

ence ΔEac relative to the diamond structure. The obvious
way to evaluate the energy difference for each structure is to
use the same interatomic potential that is used to generate
the structure, i.e., a calculation that is entirely self-
consistent for that potential. This ΔEIP

ac listed in the table
shows the GAP with the closest value to the experiment
[186] (excluding MEAM, which has a very unphysical
structure), while other interatomic potentials result in
higher energy differences. However, using the potential
to evaluate the energy difference risks mixing up errors in
the structure with errors in the energy difference given the
structure, with the possibility of exaggerating or under-
stating the stability of the amorphous structure, depending
on the sign of the energy error. For an independent
evaluation of the quality of the quenched a-Si structures,
we evaluate their energies with the DFT (ΔEeD

ac ) and also
further relax them with the DFT (ΔErD

ac ). Note that these
calculations are done with a lower k-point density,
0.07 Å−1, due to the computational expense of the 216-
atom cells. In general, the unrelaxed DFT energy shows a
similar trend to the IP energy, except for SW and MEAM,
where the IP energy greatly underestimates the (more
reliable) DFT energy difference. Relaxing the structure
leads to a small energy reduction for GAP as well as EDIP
and Tersoff, indicating a structure that is relatively close to
the nearest DFT local minimum, but much larger reductions
for the other potentials.
All these DFT results show that quenching a liquid with

GAP produces the most stable a-Si structure with the lowest
energy difference relative to the diamond structure crystal
as compared with the other interatomic potentials and that
the GAP evaluated energy of this structure is in good
agreement with the DFT. Further work at lower quench
rates is required to generate structures that can be reason-
ably argued to be directly comparable to the experi-
ment [187].

D. Phase diagram

The phase behavior corresponding to an interatomic
potential is a useful benchmark: It not only informs the user
about how realistic the model is but provides an indirect
yet stringent test of the microscopic details of the PES.

FIG. 9. RDF for a 216-atom amorphous configuration gener-
ated by cooling at 1012 K=s from 2000 to 500 K and then
minimized, for GAP (red) and other interatomic potentials (other
colors). Experimental results (gray) generated by ion implanta-
tion from Ref. [186] are shown for comparison.

BARTÓK, KERMODE, BERNSTEIN, and CSÁNYI PHYS. REV. X 8, 041048 (2018)

041048-14



The phase transitions result from a delicate balance
between energetic and entropic effects and, for finite-
temperature transitions, probe relatively high-energy con-
figurations. To calculate the liquid-solid transition lines, we
perform coexistence simulations for the diamond and
simple hexagonal structure at a fixed pressure and enthalpy
and measure the resulting average equilibrium temperature
[188]. The diamond-liquid simulations contain 432 atoms,
and the pressure is fixed at the values of 0, 4, and 8 GPa; the
simple hexagonal-liquid system contains 1024 atoms, and
the simulations are carried out at 8 and 12 GPa. To estimate
the transition line between β-Sn and simple hexagonal
phases, we run isothermic-isobaric molecular-dynamics
simulations of both pure phases in a temperature range
of 0–1000 K and a pressure range of 6–14 GPa and observe
the transition (which occurs in both directions in all cases)
by monitoring the Steinhardt bond-order parameters [189].
Finally, the transition line between diamond and β-Sn
structures is determined by calculating the Gibbs free
energy using the quasiharmonic approximation (QHA).
We also establish that in these phases anharmonic con-
tributions to the free-energy differences are negligible at
0 K. We use the LAMMPS package for the MD simulations
and phonopy [190] for the phonon calculations. Figure 10
shows the calculated phase diagram, compared to the
published DFT results for the diamond-liquid melting point
[191] and our own calculations with the Castep program for
the diamond/β-tin and β-tin/simple hexagonal transition
pressures at 0 K. For comparison, we also show the
experimentally determined phase relations [192]. Note that
the Imma phase is missing from the calculated phase
diagram, which is due to the fact that both our DFT
calculations and GAP model find the Imma phase to be
metastable.

E. Defects

1. Point defects

Several point defects are represented in the fitting data-
base (Table I), and their formation energies would therefore
be expected to be accurately reproduced by the GAP.
Indeed, as Fig. 1 shows, the relative error for the vacancy
and three interstitial positions, hexagonal, tetrahedral, and
dumbbell, are all within at most 7% of the reference DFT
values. The only other potential that is close to this level of
accuracy is EDIP, with similar errors for all but the
hexagonal interstitial, where it is off by 14%. All the other
potentials, as well as DFTB, differ from our DFT calcu-
lations by tens of percent for at least some of the defects.
Since point defects control properties such as diffusivity

in bulk silicon, their migration barriers are also of interest
and as they represent bond breaking and formation proc-
esses, often present a challenge for interatomic potentials.
Since the training database configurations come from
finite-temperature MD, it could, in principle, include
configurations near the barrier, but, since the system spends
relatively little time near the energy saddle point, this is
actually unlikely [52]. However, the hexagonal and tetra-
hedral interstitials are related by a short displacement, so
one is typically a local minimum and the other a saddle
point along an interstitial diffusion pathway. We find that
the GAP preserves the DFT ordering, although the energy
difference is underestimated, while the other potentials
make much larger errors, many reversing the relative order
of the two high-symmetry geometries. Two other related
observables, the migration path of the vacancy and the
formation energy of the fourfold defect [193] (the midpoint
of the concerted-exchange diffusionmechanism [194,195]),
which are not represented in the database, are discussed
below in Secs. IV E and IV F.

2. Surfaces

Surfaces are a class of defects that have particular
importance for the behavior of materials. Solids fail under
tension by opening new surfaces, and it is on surfaces that
reactions involving chemical species in the environment
can take place, where special functional layers can form,
e.g., by oxidation, and also where a crystal can grow under
suitable conditions. Apart from useful applications, a rich
complexity of bonding emerges on surfaces due to the
subtle interplay of strain effects with the chemistry of
dangling bonds. This complexity makes surface formation
energies, and particularly the energies and geometries of
various reconstructions, a sensitive test of the accuracy of
an interatomic potential.
Figure 11 shows the energy as a function of separation as

a gap is opened up in a unit cell that is long in one direction
and has the dimensions of the minimal surface unit cell in
the orthogonal plane. For the purposes of this test, the
atomic positions are not relaxed but kept rigid relative to

FIG. 10. Temperature-pressure phase diagram of silicon, com-
puted with the GAP (red), compared to available DFT results
(black) and experimental phase transitions (gray). The finite-
temperature DFT value and slope are from Ref. [191], and the
experimental lines are from Ref. [192].

MACHINE LEARNING A GENERAL-PURPOSE … PHYS. REV. X 8, 041048 (2018)

041048-15



one another as the gap is opened. All analytical potentials
apart from the screened Tersoff show far too short a
range—they plateau much earlier than the DFT, and, in
fact, this observation is one of the motivating factors behind
modifying the original Tersoff potential [131,132]. The
right-hand-side limit corresponds to the unrelaxed surface
energy in each case, a property in which the potentials show
about 30% scatter. Note that, in the case of the (111)
surface, the DFT is believed to overestimate the surface
energy [196] and, e.g., Tersoff and its screened version are
explicitly fit to reproduce the experimental value.
Note that the final version of the fitting database for the

GAP presented here includes configurations along the

separation path, in addition to fully separated surfaces.
An earlier version of the GAP model [197] that does not
include configurations from the separation path correctly
reproduces the fully separated energy (since fully separated
surfaces are included in the fitting) but not the intermediate
energies, as shown in the insets in Fig. 11. The test results
for the version of the potential without the decohesion path
configurations (as well as fewer nondiamond crystal
structures), listed in detail in Supplemental Material
[198], are very close to the final GAP values, with most
tested quantities differing by less than 1%. The only
exceptions are the quantities directly related to configura-
tions newly added to the database and a few other tests
(described later in this subsection and in Sec. IV G) that are
not explicitly fit [two di-interstitial formation energies that
change by 3% and 10% and the (111) reconstructed surface
energies that change by 2%–3%]. This example shows that
the flexibility of the GAP functional form makes it possible
to correct shortcomings by adding configurations to the
database without significantly affecting accuracy for other
configurations.
Figure 12 shows the geometry of the tilted-dimer 2 × 1

reconstruction, one of the low-energy configurations of the
(100) surface, which forms spontaneously from the as-cut
surface. In this reconstruction, the surface atoms dimerize
to form additional bonds, and the dimers tilt (by 18° in our
DFT calculations) due to a Jahn-Teller effect [199], which
would seem to require an explicit description of the
electrons. In fact, none of the analytical potentials repro-
duce the substantial tilting (zero tilt for all but EDIP, which
tilts by 4°). Only the GAP, with its relatively long-range and
flexible form, captures the tilting in reasonable agreement
with the DFT (−2.5° error). The DFTB model, with its
minimal description of the electronic structure, also shows
the breaking of symmetry with a similar error on the
resulting bond angle of about −2.3°.
The lowest energy configuration of the (111) surface is the

famous 7 × 7 dimer-adatom-stacking-fault (DAS) recon-
struction, already alluded to in the introduction. It is a rather
complex structure, involving a 2D superlattice of ten-atom
rings, connected by dimerized dislocation cores that separate
triangles of stacking faults, half ofwhich have extra atoms on
top. A family of analogous structures can be defined by
varying the number of dimers, n ≥ 3, between the vertices of

FIG. 11. Decohesion energy of diamond-structure silicon along
various directions (labeled according to the orientation of the
opening surface). Insets (same axes as the main plot) show errors
with respect to the DFT for the current GAP (red) as well as for a
previous version of the GAP (gray) with a fitting database that
does not include any configurations along the separation path (or
high-energy crystal-lattice structures) but only final fully sepa-
rated surfaces.

[100]

[110]-
18°

FIG. 12. Geometry of the 2 × 1 reconstruction of the (100)
surface, showing the tilting of the surface dimers. The dashed
circles show the surface dimer in the untilted (but rebonded)
position.
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the superlattice, leading to the designation ð2nþ 1Þ×
ð2nþ 1Þ. As shown in Fig. 13, all analytical potentials
predict these reconstructions to be higher in energy than the
unreconstructed surface (shown in place of n ¼ 1 for
simplicity), and, furthermore, within the family of DAS
structures, the energy goes down as n goes up. Computing
accurate DFT energies is a nontrivial calculation, and its
prediction that the 7 × 7 DAS structure is the lowest energy
configuration is a significant early triumph of theDFT [113].
Here, our reference is a more recent careful determination of
theDFTenergies [200]. TheDFTBmodel again stands out as
qualitatively different from the analytical models but still
fails to show quantitative agreement with the DFT. The GAP
model, which includes in its training database just a single
configuration of the 3 × 3DAS structure (shown in Fig. 14),
gives energies with an error below 0.05 J=m2 (much smaller
than a meV per atom over the supercell), correctly predicting
the DAS family to be lower in energy than the unrecon-
structed surface and also giving an energy minimum.
The lowest energy structure for the present potential

happens to be for 2nþ 1 ¼ 5, within 0.01 J=m2 of the
7 × 7 structure. The energy differences are much smaller

than the target (and assumed) error in the GAP model, and
as such this level of detail is not robust: The earlier variant
of the potential fitted to a slightly different database [in
ways unrelated to the (111) surface] show the 7 × 7 DAS
structure as the global minimum, as shown before [197].
What is robust is the relationship of the energies of the DAS
family to other types of reconstructions and the upturn in
energy for n ¼ 9. Significantly more data relevant to these
structures are needed in order to robustly capture the finest
of relative energies within the DAS family.
Figure 14 shows which atoms are picked (automatically,

by the CUR decomposition of the SOAP representation
matrix, as mentioned above) to be part of the representative
set: mostly those that are unique to the DAS family of
reconstruction and do not appear elsewhere in the data set,
i.e., the adatom, the atom just below it, one of the dimer
atoms in at the boundary of the stacking fault, and one atom
on the ten ring that surrounds the vertices of the surface
unit cell.

F. Crack propagation

The atomic-scale details of crack propagation prove
particularly challenging to model, since sufficient accuracy
to describe bond-breaking processes must be combined
with large model systems to avoid unrealistic strain
gradients [201]. Interatomic potentials which provide an
otherwise good description of the bulk and elastic proper-
ties of silicon (e.g., the Stillinger-Weber and Tersoff
potentials) tend to overestimate the lattice-trapping barriers
to brittle fracture, resulting in an overestimate of the
fracture toughness as well as an erroneously ductile
material response including features such as crack arrest
and dislocation emission [116,117,202]. Progress has been
made using reactive potentials such as ReaxFF [115] or
with hybrid quantum or classical approaches where an
ab initio crack-tip model is embedded within a larger
classical model system [203–205]. The latter limits the
applicability to timescales accessible to the DFT, making it
extremely challenging to study processes such as thermally
activated crack growth [206].
To test the accuracyof our newGAPmodel for fracture,we

considered the well-studied ð111Þ½11̄0� cleavage system,
where fracture is known to exhibit a low-speed instability
triggered by the formation of a crack-tip reconstruction
[204]. We perform simulations of a 23 496-atom model
system of dimensions 600 × 200 × 3.86 Å3 using both
molecular dynamics at 300 K with a range of strain rates
between10−6 and10−4 fs−1 andquasistatic strain increments
followed by relaxation. In all cases, the trajectories obtained
are consistent with those expected from our earlier DFT-
based hybrid simulations as reported in Ref. [204]. The GAP
model predicts brittle fracture morphology with an atomi-
cally smooth fracture surface and the occasional formation of
crack-tip reconstruction and subsequent surface steps in the
“downward” ½111� direction, in line with the results of our

FIG. 14. Two views of the DAS 3 × 3 (111) surface
reconstruction configuration that is in the database with atoms,
marked with dark gray, whose environments are selected to be
among the representative set for the purposes of defining the
GAP model.

FIG. 13. Formation energy of the dimer-adatom-stacking-fault
(DAS) reconstruction of the (111) surface for various surface unit
cell sizes 2nþ 1 ¼ ð3; 5; 7; 9Þ computed with different models.
The value shown at 2nþ 1 ¼ 1 corresponds not to a DAS
reconstruction but rather to the unreconstructed surface. The
box on the lower right is a magnified view that shows just the
DFT and GAP results.
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previous study. A snapshot from a quasistatic simulation
showing the formation of the crack-tip reconstruction at a
strain energy release rate of G ¼ 5.13 J=m2 is illustrated
in Fig. 15.
It is worth noting that atoms at the crack tip have rather

unique neighbor environments, and, with nothing nearby in
the database, the description of crack tips is not reasonable
by an earlier version of the potential. But including just a
handful (17) of crack tips in the database (using just an
∼200-atom unit cell) already leads to a potential that
describes the subtle competition between bond breaking
and bond rotation, and qualitatively correct surfaces and
crack-tip reconstructions are obtained. The atoms are
colored by the predicted error of the GAP model, showing
high confidence in the bulk but significant predicted errors
at the crack tip, which could be reduced by expanding the
database.

IV. RESULTS: VALIDATION

In addition to the tests presented in the previous section,
we tested quantities and configurations that are physically
important but do not map so cleanly to particular geom-
etries in the database. The first is a random structure search,
which probes a very wide range of geometries, bonding
topologies, and energies. The second is a test of the
vibrational properties (harmonic phonons and anharmonic
Grüneisen parameters) of the diamond structure, which are
only implicitly included in the fit through the perturbed
diamond configurations. Finally, two types of defects are

tested, a high-symmetry grain boundary and di-interstitials,
which have geometries related to, but clearly different than,
the defects in the fitting database.

A. Random structure search

The random structure search (RSS) [207,208] method
provides a global test of the potential energy surface,
including not only regions near the physically reasonable
minima (i.e., typical bulk lattices with small distortions and
defects that vary only locally from the bulk structure) but
also much more distorted and correspondingly higher
energy configurations. We carry out the RSS using the
various interatomic potentials and DFT for eight-atom unit
cells with constraints on the initial shape (close to cubic)
and interatomic distances (>1.7 Å) to exclude unphysically
close atoms, relaxed with the two-point steepest-descent
[209] method. The resulting distribution of configuration
energy and volume are plotted in Fig. 16. The GAP results
show a similar distribution to the DFT, with the diamond
structure at the correct volume, a few structures with
energies up to 0.2 eV per atom higher, mostly at comparable

FIG. 16. Relaxed volumes and energies (relative to the diamond
structure) for random structure search minima. The top left shows
a scatter plot with the DFT (black stars), GAP (red stars), and
various other interatomic potentials (various color circles). The
top right shows the density of states for the minima. The bottom
shows a convex hull surrounding all minima for each method
with the same x axis and colors as the top.

50 Å(a)

(b)

> 0.005 eV

5 Å

< 0.001 eV

FIG. 15. (a) Snapshot from a quasistatic simulation of fracture
in the Sið111Þ½11̄0� cleavage system at a strain energy release rate
of G ¼ 5.13 J=m2. The model system contains 23 496 atoms and
has dimensions 600 × 200 × 3.86 Å3. (b) A close-up of the crack
tip, which undergoes a crack-tip reconstruction as previously
reported in DFT-based hybrid simulations in Ref. [204]. Atoms
are colored by the predicted error per atom of the GAP model,
from blue (low) to red (high).
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or somewhat larger volumes (with one or two exceptions at a
substantially smaller volume), and a large group at more
than 0.2 eV per atom higher at a comparable or smaller
volume. None of the interatomic potentials give a similar
distribution, and some of the more sophisticated ones give
drastically different distributions, including low energies for
extremely small (25% below diamond structure) volumes or
unphysical local minima at very high energies (>0.4 eV per
atom). This discrepancy is in accordance with previous
work, which shows that empirical force fields typically give
a poor description of the energy landscape with many
spurious local minima [210]. The densities of states of
the minima found by each model, shown in the top right in
Fig. 16, confirm the agreement between the DFT and GAP
and the rather different population of minima found by the
other potentials.
While the distribution of energies and volumes for the

GAP-relaxed minima is similar to that of the DFT-relaxed
ones, that does not necessarily mean that individual minima
predicted by the GAP are also DFT minima. To test this
assumption, we further relax the GAP minima using the
DFT and plot the resulting positions on the ðE; VÞ plane in
Fig. 17. The plot shows that in many, although clearly not
all, cases the GAP energy for GAP minimum configura-
tions is close to the DFT energy for the same configuration,
and further relaxation with the DFT does not change the
volume or energy very much. The distribution of volume
changes, shown in the top in Fig. 18, confirms that most
volume changes are small, with 80% falling below 1 Å3 per
atom or about 5% of the diamond structure volume. The
corresponding changes in atomic positions shown in the
middle in Fig. 18 show mostly small displacements,

although 20% of the configurations have displacements
larger than about 1.5 Å. Rerelaxing these DFT minima
using the GAP shows substantially smaller displacements,
indicating that nearly all the DFT minima have nearby GAP
minima.
A better understanding of the large volume changes that

sometimes occur during DFT relaxation comes from
calculating the GAP energy for the DFT relaxation trajec-
tory configurations. Two examples of these energy varia-
tions are shown in the inset in Fig. 18. For the configuration
with a small overall volume change, the DFT energy goes
down a bit and quickly flattens as the DFT minimum is

FIG. 17. Energies and volumes of relaxation of GAP RSS
minima with DFT forces and stresses. Red circles indicate GAP
minima, gray circles indicate DFT energies of GAP minima
configurations, and black circles indicate the energy and volume
of DFT-relaxed configurations starting from the corresponding
GAP minimum.

Large relaxation

Small relaxation

80th percentile

FIG. 18. The top shows the distribution of volume changes for
the relaxation of GAP minima using the DFT. The dotted vertical
line indicates the 80th percentile. The inset shows the energy per
atom for trajectories generated by DFT relaxation starting from
the GAP RSS minimum, computed with the DFT (black solid
line) and GAP (red dashed line), for one configuration with a
small volume change and one with a large volume change. The
inset horizontal axis is the cumulative Euclidian distance along
the relaxation path. The remaining panels show the distributions
of atomic displacements for the DFT relaxation of the GAP
minima (center) and the GAP rerelaxation of the DFT-relaxed
GAP minima (bottom).
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reached, while the GAP energy on the same trajectory goes
up a bit (as it must, since the initial configuration is a GAP
local minimum) and also flattens. On the other hand, for the
configuration with the large volume change, the DFT
energy does not flatten immediately but instead goes down
significantly. While the initial GAP local minimum is not
also a DFT local minimum, the barrier that separates it from
other minima on the GAP PES is small, and all of the
configurations that the DFT minimization trajectory goes
through have very similar energies (within 0.05 eV per
atom) with the DFT and GAP. This similarity suggests that,
while the GAP PES is not perfect, differing in the positions
and height of some small energy barriers, the overall shape
of the PES is, in fact, in good agreement with the DFT.

B. Phonons and thermal expansion

Vibrational properties probe the PES in the region close
to the minima and influence the thermodynamic and
transport behavior of the material. We compute the phonon
and mode Grüneisen dispersion curves in the cubic
diamond structure with the GAP, DFT, DFTB, and various
interatomic potentials using phonopy [190]. The results are
shown in Fig. 19. Even though the phonon frequencies are
not included in the database explicitly, there is an excellent
agreement between the DFT and GAP. The analytical

interatomic potentials are generally in good qualitative
agreement for the phonon spectrum, although they over-
estimate the acoustic branch zone edge and all optical
branch frequencies, while the DFTB is in significantly
better agreement with the DFT. Not unexpectedly, the slope
of the dispersion curves at small k vectors is well
reproduced, corresponding to the generally good agreement
of the elastic constants of the examined potentials with the
DFT. GAP results for the mode Grüneisen parameter are
more mixed, with the transverse acoustic branch showing a
large discrepancy, indicating that the force data of near-
equilibrium crystalline configurations are not sufficient for
the fitting procedure to resolve the anharmonicity of the PES.
The analytical potentials andDFTB, on the other hand, differ
qualitatively from the DFT calculation for all branches.
Diamond structure silicon displays negative thermal

expansion at low temperatures [211] due to phonon
entropic effects, and this behavior is reproduced by the
DFT [212]. To benchmark this unusual feature and other
thermal properties of the GAP, we calculate the thermal
expansion and Grüneisen parameters using QHA and
the heat capacity from the phonon frequencies [213].
Figure 20 shows the temperature dependence of the linear

FIG. 19. Top: Phonon dispersion curves of cubic diamond
silicon at 0 GPa with various models. Bottom: Dispersion curves
of mode Grüneisen parameters.

FIG. 20. Linear thermal expansion, Grüneisen parameter, and
specific heat of silicon computed with various models, using the
quasiharmonic approximation, compared to experimental results:
(a) Lyon et al. [214] and (b) Okada and Tokumaru [211].
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thermal expansion, the Grüneisen parameter, and the heat
capacity of various models including the GAP and DFT.
Even though the mode Grüneisen parameters of the DFT
are not accurately reproduced by the GAP, these averaged
thermodynamic properties show a reasonable agreement,
including the temperature region with negative thermal
expansion. Analytic potentials and the DFTB show a good
agreement in the temperature dependence of the heat
capacity, not surprisingly, as phonon frequencies are gen-
erally similar. However, the errors that the other tested
models make in the mode Grüneisen parameters shown in
the previous figures manifest themselves here in the form of
qualitative errors in the thermal expansion, where none
reproduce the negative values at a low temperature. At low
temperatures, mostly low energy states are excited and, in
particular, those in the transverse acoustic (TA) branch. The
hardening of phonons, or, in other words, the strongly
negative mode Grüneisen parameters, in the TA branch are
associated with the negative thermal expansion of silicon
[212]. The shift to large positive values of the TA mode
Grüneisen parameters of the DFTB in the Λ direction is
probably the reason for the spurious maximum in the
Grüneisen parameter.

C. Generalized stacking faults

One type of planar defect that is important as a
representative of dislocation properties, which control
macroscopic behavior such as plasticity and fracture, is
the generalized stacking-fault (GSF) surface [215]. This
generalization of the conventional stacking fault, which has
been studied extensively in silicon [216–219], is the energy
as a function of an arbitrary in-plane shift between two
blocks of otherwise undisturbed crystal. We focus on the
diamond structure (111) planes, where the GSF can be
introduced in glide planes (within a bilayer) or shuffle
planes (between bilayers). We calculate the energy along
high-symmetry paths on the GSF surface connecting
equivalent representations of the ideal crystal in a 1 × 1
(111) surface cell with nine bilayers (18 atoms) in the
normal direction, relaxing the atoms parallel to the surface
normal. In each case, we choose the minimum barrier
energy path: ½112� for the glide fault and ½110� for the
shuffle fault. The resulting energies along the paths for the
GAP and the reference DFT results are shown in Fig. 21.
For both relaxed shuffle and glide GSFs, the GAP results
are in good agreement with the DFT. The predicted errors
shown in the plot are significant near the peaks of both
paths, consistent with a relatively large disagreement with
the DFT reference values and with the fact that neither type
of configuration is included in the fitting database.
A comparison of the energy along one of the paths, glide

plane relaxed, for all potentials, is shown in Fig. 22, and the
corresponding fractional errors in the peak energy along all
relaxed paths relative to the DFT for all the interatomic
potentials are shown in Fig. 1. The results for the GAP

show reasonable agreement with the DFT, similar to the
best of the other interatomic potentials and much better
than most.
The final point on the glide-plane GSF path is the

conventional stable stacking-fault energy γsf, which is
listed in Table III. The DFT reference value is small and
positive, indicating that the hexagonal stacking is higher in
energy than the cubic diamond structure. To get a sense of
the scale, note that the glide curve does not quite reach zero

> 0.005 eV< 0.001 eV

Shuffle

Glide

Stable
stacking
fault
energy

FIG. 21. Relaxed generalized stacking-fault energies along
minimum barrier energy path directions (½112� for glide and
½110� for shuffle) computed with the DFT (black solid lines) and
the GAP. The thick curve showing the GAP model energies is
colored according to the maximum per-atom predicted error of
the GAP model and dashed where the predicted error exceeds the
scale maximum of 5 meV per atom. The upper two curves
correspond to the glide plane and the lower two to the shuffle
plane.

FIG. 22. Relaxed glide-plane generalized stacking-fault ener-
gies along the minimum barrier energy path ½112� direction
computed with the DFT (solid lines), GAP (red dashed lines with
symbols), and other interatomic potentials (other color dashed
lines).
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at the right-hand side of Fig. 21: That mismatch corre-
sponds to the stable stacking-fault energy. The GAP value
is positive but much too small, indicating that the diamond
structure is indeed the lowest-energy configuration but
underestimating the energy difference. There are four
atoms with a non-diamond-like second neighbor environ-
ment, and the DFT energy difference corresponds to a
contribution of about 10 meV from each roughly in
correspondence with the ∼2.5 meV per atom predicted
error (purple). The elevated predicted error shows that the
GAP’s range and flexibility can distinguish these environ-
ments, and the γsf value could probably be improved by
extending the database. While most potentials tested are
short ranged and give exactly zero energy, ReaxFF has a
similar value to the GAP, while MEAM gives a qualita-
tively incorrect negative γsf . The DFTB model is the only
one that accurately reproduces the DFT value.

D. Grain boundary

Another class of planar defects that is not included in
the fitting database are grain boundaries, which are the
interfaces between identical crystal lattices in different
orientations. As a simple example of these structures, we
choose the ð112ÞΣ3 tilt boundary of the diamond structure,
which can be represented by a relatively small unit cell and
can therefore be efficiently computed with the DFT. We
computed the energy per unit area of this grain boundary
with the various interatomic potentials and the DFTB, as
well as the DFT, using a cell with 48 atoms, which has a
single interface unit cell and is about 27 Å long normal to
the boundary. The resulting fractional errors relative to the
DFT value are shown in Fig. 1, and the GAP force errors for
the DFT-relaxed configuration are shown in Fig. 2. Despite
the fact that the grain boundary structure is not in the fitting
database, the GAP energy is in excellent agreement with
the DFT. The difference between the DFT- and GAP-
relaxed geometries is also small, as indicated by the small
magnitudes of the GAP forces in the DFT-relaxed geometry
(Fig. 2), and the corresponding displacements (not shown)
are nearly imperceptible. The accuracy of the other inter-
atomic potentials varies considerably, with some also in

very good agreement but others with very large energy
errors relative to the DFT reference.

E. Fourfold defect

The point defect with the lowest formation energy in the
diamond structure of silicon is the so-called “fourfold
coordinated defect” [193], which is formed by a bond
rotation followed by reconnecting all broken bonds. The
energy barrier for the reverse process (i.e., annealing out
this defect) is relatively small, and the GAPmodel does not,
in fact, stabilize this defect, as shown in Fig. 23. Indeed, the
database does not contain anything resembling the bond
rotation process or the final defect structure, which is
quantitatively shown by the predicted error. The energies of
the GAP model agree very well with those of the DFT up to
where the predicted error (taken as the maximum over all
atoms) is lower than about 3 meV per atom and strongly
deviate after that. Similarly to the planar defects, the
predicted error gives a good qualitative indication of where
the database is deficient and is in need of extension.

F. Vacancy migration

We compare the migration paths for vacancies in
63-atom diamond structure cells predicted by the various
models, as a test of their ability to describe bond-breaking
processes. The end points are relaxed with preconditioned
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) scheme [220] to a maximum force tolerance
of 10−3 eV=Å, and the path is calculated as a linear

TABLE III. Stable stacking-fault energy γsf for each model.

Model γsf (J=m2)

DFT 0.047
GAP 0.002
EDIP 0.000
Tersoff 0.000
TersoffScr 0.001
Purja Pun 0.000
MEAM −0.046
SW 0.000
ReaxFF 0.004
DFTB 0.052

FIG. 23. Relaxation path of the GAP model showing the
instability of the fourfold defect as a function of the angle of
the rotating bond relative to its initial orientation. The left-hand
side of the plot corresponds to the local minimum of the fourfold
defect for the DFT model. The black curve shows the energy of
the configurations of this path evaluated with the DFT (which is
not a DFT minimum energy path but, of course, still shows a
barrier). The thick curve shows the GAP model energies, colored
according to the maximum per-atom predicted error of the GAP
model and is dashed where the predicted error exceeds the scale
maximum of 5 meV per atom.
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interpolation between the two relaxed end points. The
intermediate configurations are not relaxed (as in, e.g.,
the nudged elastic band method [221]), because features
in the PES of many of the potentials lead to ill-behaved
paths, similar to the inconsistencies previously noted for the
Tersoff potential [222]. The results shown in Fig. 24 indicate
the wide variability in the quality of the predictions from the
interatomic potentials in comparison to the DFT, with many
of themodels significantly over- or underestimating both the
formation energy and the migration barrier for vacancies.
For the GAP, MEAM, and TersoffScr, which produce

formation energies and barriers close to the DFT, the
minimum energy path (MEP) is determined using the
nudged elastic band (NEB) [221] algorithm as imple-
mented in ASE using nine intermediate images between
minima. The results shown in Fig. 25 show that the GAP
produces the most accurate MEP in comparison to the DFT,
albeit with an underestimate of the barrier. TersoffScr
predicts a local minimum at the split vacancy configuration.
The insets show the per-atomGAP predicted errors at one of
the minima and close to the saddle point; the model is more
confident near the minima, since it is trained on similar
configurations, while saddlelike configurations are not
present in the training data. The predicted error here again
provides a useful guide to the expected reliability of the
model,with good agreementwith theDFTwhere it is low and
decreasing agreement where it exceeds 3 meV per atom.

G. Di-interstitials

Although configurations including simple point defects,
such as the monovacancy and the interstitial, are part of our

training database, the di-interstitial provides an interesting
test case of transferability to new defect types. The atomic
neighbor environments involved in the di-interstitial are
clearly different from anything that is explicitly included in
the database. Figure 26 shows the percentage error that
various interatomic potentials make in the formation energy
of the di-interstitial for six different conformations. We
used 66 atoms in the unit cell, including the two extra
that are added to a conventional 64-atom cubic unit cell.

FIG. 24. Unrelaxed energy profiles for the migration of a
vacancy, consisting of a series of linearly interpolated configu-
rations between relaxed vacancy end points, in a 63-atom
diamond cell for all models. Energies are calculated relative to
a bulk crystal with the same number of atoms so that the end
points indicate the relaxed vacancy formation energy.

FIG. 25. Comparison of the DFT, GAP, MEAM, and TersoffScr
models for the migration of a vacancy. Lines show NEB
minimum energy pathways for a 63-atom cell, with the thick
GAP line and inset images colored by the predicted error,
becoming dashed where the maximum error exceeds
0.005 eV=Å, showing that the model is more confident at the
minima than the saddle.

FIG. 26. Percentage error in the formation energy of di-
interstitials (I2) in various configurations for a variety of
interatomic potentials, relative to the DFT.
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The starting positions [223] are relaxed with each potential,
as well as the DFT, and the final energies from each local
minimum compared.
The results show that most potentials struggle with this

property. EDIP, e.g., which performs relatively well for the
monovacancy and the single interstitial, makes up to 20%
error here. The Stillinger-Weber model, on the other hand,
which makes errors of over 50% for the single point
defects, looks rather better here. MEAM, ReaxFF, and
DFTB perform poorly, similarly to the case of single point
defects. It is also clear from the plot that all potentials
struggle with the TT configuration (even the best result is
over 10%), including the GAP (which otherwise has errors
less than about 6%). Figure 27 shows the corresponding
relaxed geometries using the GAP and Stillinger-Weber
model, as well as the DFT, with colored markings for
significant deviations. The Stillinger-Weber model, despite
its competitive energy accuracy, shows many more dis-
torted geometries.

V. CONCLUSION

The benefit of the nonparametric approach for creating
interatomic potentials, as presented here, is first and fore-
most its accuracy in matching the target potential energy
surface. This enhanced accuracy is not just a quantitative
improvement but actually leads to a qualitatively better
potential: The GAP model for silicon presented here
provides a uniformly high accuracy across a wide range
of properties and systems including bulk structures, point,
and plane defects tested while maintaining useful properties
of conventional interatomic potentials: locality and linear
scaling computational cost. This achievement requires an
accurate description of the energetics of a wide range of
configurations, including fully bonded systems as well as
bond breaking. The ability of the Si GAP to accurately

describe both the energy and forces during the bond-
breaking process, including surface decohesion, unstable
stacking-fault minimum energy paths, and point-defect
migration barriers, is an especially important point which
has been challenging for interatomic potentials to achieve
due to their limited variational freedom and short range.
Such a comprehensive description of silicon has never
before been achieved, despite many efforts, with analytical
potentials. The probabilistic nature of the Gaussian process
technique allows for uncertainty quantification (and similar
measures are possible to obtain using other nonparametric
fitting techniques), which is useful in assessing when
configurations are encountered that are too far from the
training set and are likely to have large errors. Initial efforts
here strongly suggest that the accuracy can be further
improved for specific properties by adding relevant con-
figurations to the database without compromising the
accuracy for other properties.
There are, of course, limitations of the specific potential

presented here. The major ones are that (i) we focused on
only ambient and moderate pressures here, and a compre-
hensive silicon potential would be expected to reproduce
the large variety of high-pressure phases at finite temper-
atures; (ii) clusters are included neither in the database nor
the tests: These are known to display strong quantum
mechanical nonlocality, demonstrated by the existence of
magic numbers [167–169], and we do not expect to
accurately capture the properties of such small clusters
using a local model; (iii) we limited ourselves to consid-
ering an elemental material. While it is true that increasing
the number of different elements increases the dimension-
ality and therefore the complexity of the configuration
space, several recent works found that including different
atomic species does not qualitatively change the difficulty
of the problem [153,224]. Another consequence of using

FIG. 27. Visualization of the atomic configurations of the relaxed di-interstitial structures with the GAP (top row) and Stillinger-Weber
(bottom row). Dark gray spheres show reference DFT-relaxed positions of defect atoms (those that are significantly different from
perfect lattice position or topology), light gray spheres show reference DFT-relaxed positions of other atoms, and colored spheres show
interatomic-potential-relaxed positions of defect atoms that are more than 0.1 Å from the corresponding DFT atom position.
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the elemental silicon condensed phase example is that no
long-range interactions beyond 5 Å (such as Coulomb or
van der Waals) are needed. Properly including a long-range
interaction and integrating it with a high-dimensional fit of
the short-range interactions is still an outstanding problem.
Using a multiscale description to capture these is an
alternative approach [225]. Another deficiency of the
present potential is that the training database was
assembled “by hand” using an ad hoc iterative process.
It would be desirable to establish protocols that allow the
essentially automated construction of databases suitable for
predicting and studying specified macroscopic phenomena.
There is every hope that the built-in uncertainty quantifi-
cation can be used in the future to build much better
databases and design algorithms that automatically select
novel configurations encountered during a simulation for
inclusion or even to generate new atomic configurations
that are optimized to improve the database.
Finally, we are not making any claims about the

optimality of the SOAP kernel and the corresponding basis
functions. In particular, our implementation has a computa-
tional cost of around 100 ms per atom, and it is certainly
possible that there are basis functions that are cheaper to
calculate and better suited to the problem, so that fewer of
themmight be enough to achieve the same accuracy [71,75].
We believe that this potential, perhaps extended by the

addition of particular geometries of interest or by a
reevaluation of the reference database with more accurate
methods, will enable a new and more quantitative approach
to simulations of structural properties of silicon.
We are well aware that the merits of the silicon potential

presented here will not satisfy all possible audiences. While
it is undeniable that the potential is far more accurate and
transferable than any before it, the intrinsic problem of
transferability stemming from the high dimensionality of
the fit has not gone away but is just shown to be less of a
practical issue with a large database: The potential remains
sensible and even competitive for configurations well away
from the training set, such as the stacking faults and the
fourfold coordinated defect. We hope that the present
success in building a generally applicable potential will
allow it to serve as a template for building such models for
other materials, enabling scientifically and technologically
relevant simulations that have thus far been limited by the
trade-offs between accuracy and computational cost.
The potential is available for anyone to use and is

provided in the form of an XML file for the QUIP code
[172,175]. In addition to usage directly with QUIP, it
can be used with the LAMMPS [173] software with
the “pair_style quip” command, as well as from
ASE [170] through QUIP’s quippy PYTHON module.
The data file includes a copy of the training database
structures and associated DFT data. The potential
used throughout this paper has the unique label
GAP_2017_6_17_60_4_3_56_165.
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