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We study the effects of disorder (quenched randomness) in a two-dimensional square-lattice S = 1/2
quantum-spin system, the J-Q model with a multispin interaction Q supplementing the Heisenberg exchange
J. In the absence of disorder, the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid
(VBS) ground states. The VBS breaks Z, symmetry spontaneously, and in the presence of arbitrarily weak
disorder it forms domains. Using quantum Monte Carlo simulations, we demonstrate two different kinds of
such disordered VBS states. Upon dilution, a removed site in one sublattice forces a leftover localized spin in
the opposite sublattice. Such spins interact through the host system and always form AFM order. In the case of
random-J or -Q interactions in the intact lattice, we find a different spin-liquid-like state with no magnetic or
VBS order but with algebraically decaying mean correlations. Here we identify localized spinons at the nexus
of domain walls separating regions with the four different VBS patterns. These spinons form correlated groups
with the same number of spinons and antispinons. Within such a group, we argue that there is a strong tendency
to singlet formation because of the native pairing and relatively strong spinon-spinon interactions mediated by
the domain walls. Thus, the spinon groups are effectively isolated from each other and no long-range AFM
order forms. The mean spin correlations decay as 7~2 as a function of distance . We propose that this state is a
two-dimensional analogue of the well-known random-singlet (RS) state in one dimension, though, in contrast
to the one-dimensional case the dynamic exponent z is finite in two dimensions. By studying quantum-critical
scaling of the magnetic susceptibility, we find that z varies, taking the value z = 2 at the AFM-RS phase
boundary and growing upon moving into the RS phase (thus, causing a power-law divergent susceptibility).
The RS state discovered here in a system without geometric frustration may correspond to the same fixed point
as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign
problems opens up opportunities for further detailed characterization of its static and dynamic properties. We
also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-

exchange quantum magnets Sr,CuTe;_, W Og for x in the range of 0.2-0.5.
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I. INTRODUCTION

In the quest to classify and characterize ground states
and excitations of quantum many-body systems, disorder
(quenched randomness) plays a central role. Beyond the
fundamental scientific interest in understanding the interplay
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between quantum fluctuations and intrinsic randomness,
there are also potential practical implications: In the same
way as pure crystalline states of matter are often not optimal
for achieving desired properties of materials, e.g., in the
case of metals hardened by limiting the size of crystal
grains, it is likely that quantum technologies will emerge that
exploit disorder effects. For example, random spin chains
have been proposed as key elements for memories [1,2]
and state transfer channels [3] in quantum computing. Two-
dimensional (2D) quantum-spin systems, which we consider
here, are other natural settings for exploring novel disorder-
induced states.

Recent experimental efforts have been devoted to searches
for quantum-spin liquids in quasi-2D insulators. Several
candidate systems showing the qualitative signatures of spin
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liquids have been identified, e.g., in a series of organic salts
where the spins reside on triangular lattices [4—7] and in the
kagome-lattice herbertsmithite [8—11]. It has so far not been
possible to unambiguously match the properties of these
systems to theoretically proposed spin liquids, however, and
it has been suggested that disorder effects are crucial for
understanding the observed behaviors [12]. In a more
extreme interpretation put forward recently [ 13-20], disorder
is even responsible for realizing a certain spin liquid, the
random-singlet (RS) state, in some triangular, kagome, and
frustrated honeycomb lattice systems, e.g., the triangular
YbMgGaO, [21,22] where disorder is present in the form
of random occupation of Mg and Ga ions on equivalent
lattice sites between the magnetic layers. While such a state
has not yet been observed in systems without geometric
frustration, there is recent experimental evidence for an
RS state in a square-lattice system: the double perovskite
Sr,CuTe;_, W, Oq. Here, the disorder is in the form of
random Te <> W substitutions relative to the isostructural
compounds Sr,CuTeOg and Sr,CuWOg, which have dom-
inant nearest- and next-nearest-neighbor spin interactions,
respectively [23-25].

Here we show that disorder can induce a spin-liquid-like
state—a gapless state with algebraic correlation functions—
in a 2D quantum spin system on the square lattice even
without geometric frustration. We refer to this state as an
RS state for reasons to be discussed further in Sec. II.
To demonstrate the existence of the RS state and to
characterize its properties, we carry out large-scale quan-
tum Monte Carlo (QMC) simulations of an §=1/2
quantum-spin model, the J-Q model, which in the absence
of disorder hosts both a Néel antiferromagnetic (AFM) and
a spontaneously singlet-dimerized valence-bond solid
(VBS) ground state. The transition between these states
is driven by enhancing the formation of correlated singlets
by increasing the multispin (here six-spin) interaction Q,
which competes with the Heisenberg exchange J. We show
that randomness in the coupling constants leads to the
formation of domains in the fourfold degenerate VBS
state, with different realizations of the bond order and with
domain walls of the type expected [26] to lead to localized
spinons at each nexus of four domain walls. These spinons
form in correlated groups of even numbers, as a conse-
quence of the domain-wall topology. We show evidence
for domain-wall-mediated enhanced spinon-spinon inter-
actions, which leads to singlet formation within the groups
and no residual AFM ordering of the spinons. As a contrast,
we also consider a site-diluted system in which the remnant
local moments associated with removed sites are not
spatially strongly correlated; thus, residual AFM order
forms and there is no RS phase.

We present a broad survey of the phase diagrams,
quantum-phase transitions, and basic ground-state and
temperature 7 > 0 properties of the 2D RS phase in
different versions of the random J-Q model. The spin
and bond correlations at 7 = 0 decay as power laws, likely

as a consequence of rare events in the form of singlet
formation over large distances. At 7 > 0, using lattices
sufficiently large to reach the thermodynamic limit, we find
power-law scaling in 7" of the magnetic susceptibility. This
behavior allows us to extract the dynamic exponent z,
which we find is varying inside the RS phase.

It is possible that the RS state we identify here is the same
one, in the sense of renormalization-group (RG) fixed points,
as the one proposed recently to arise out of a VBS on the
triangular lattice in the presence of random couplings [18].
It may then also be a realization of the unusual magnetic
states observed in YbMgGaO, and Sr,CuTe;_,W,Oq, and
possibly in many other disordered spin-liquid candidates as
well. The possibility of creating this state with a “designer
Hamiltonian” within the J-Q family of models is very
significant, as this unfrustrated (in the geometric sense)
system is amenable to large-scale QMC studies without the
sign problems plaguing simulations of models with frus-
tration. Thus, the RS state in these systems can be charac-
terized essentially completely—far beyond the analytical
calculations in Ref. [18] and the exact diagonalization
(ED) numerics on small frustrated Heisenberg lattices in
Refs. [13—17], and on slightly larger triangular lattices by
density-matrix renormalization-group (DMRG) calculations
in Ref. [20]. In particular, we are able to reliably study the
AFM-RS quantum-phase transition.

The paper is organized as follows: In Sec. II, we discuss
the broader context of our work and provide specifics
of the models considered. In addition to the main focus on
different kinds of disorder in the J-Q model, we also
discuss a simpler case as a point of reference: the statically
columnar-dimerized Heisenberg model in which localized
moments different from the VBS spinons form in the
neighborhood of removed sites. In Sec. 111, in order to aid in
the presentation and interpretation of the extensive QMC
results in the later sections, we discuss qualitatively the
phenomena and mechanisms that we identify as responsible
for the RS state, specifically, the pairing of localized spinons
and the role of VBS domain walls in mediating effective
magnetic interactions. In Sec. IV, we present the results of
ground-state projector QMC calculations of static properties
of all the models considered, with the main focus on the
order parameters and correlation functions in the RS phase in
the cases where this state is attained. We demonstrate the
existence of a universal continuous AFM-RS quantum-phase
transition. In Sec. V, we discuss the susceptibility results at
T > 0, which allow us to extract the dynamic exponent at the
AFM-RS transition and in the RS phase. In Sec. VI, we
provide evidence for the mechanism underlying the formation
of the RS state: spinon interactions mediated by VBS domain
walls. We conclude in Sec. VII with a brief summary and
further discussion of our results and their significance in the
context of both theory and experiments. We reanalyze the
recent susceptibility data for Sr,CuTe;_,W,Oq with x in
the range of 0.2-0.5 [25] and demonstrate that the divergence
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at low T is slower than 1/T, consistent with what we find for
the RS phase.

II. BACKGROUND AND MODELS

A. Infinite-randomness fixed points
and the random-singlet phase

Theoretically, when randomness is a relevant perturba-
tion under RG transformations, fixed points corresponding
to ground-state phases and critical points appear beyond
those realized in pure, translationally invariant systems
[27,28]. In some cases, the RG flow converges to nonzero
but finite disorder, e.g., at critical points in many quantum-
spin glasses [29-32], boson systems with random poten-
tials [33] or random hopping [34], and Heisenberg
antiferromagnets [35-37]. However, the randomness can
also increase without bounds in the RG flow, leading to an
infinite-randomness fixed point (IRFP). This broad class of
fixed points has been extensively studied using strong-
disorder RG (SDRG) methods in quantum systems in one
[38-45] and higher dimensions [46-51] (in addition to
many applications in classical statistical physics [52]). The
most striking general property of the IRFPs is an infinite
dynamic exponent z; i.e., the scaling relationship between
energy (¢) and length (/) scales is exponential instead of the
conventional power-law relation e ~ [7*. Moreover, rare
instances of long-distance entangled spins (or particles)
lead to different behaviors of the mean and typical
correlation functions versus distance r, decaying, respec-
tively, as a power law and exponentially.

An important example of an IRFP is the 1D RS phase
realized in the S = 1/2 Heisenberg and XX chains with
random-exchange couplings [38-41]. Here, the SDRG
procedure gives the ground state as a single “frozen”
configuration of valence bonds (singlet spin pairs), with
a characteristic bond-length distribution. The long-distance
entangled spins (long valence bonds) lead to mean spin
correlations decaying as =2 [39,41] (while the typical
correlations decay exponentially), and the entanglement
entropy diverges logarithmically with the system size [42].

IRFPs have been identified also in 2D systems, primarily
in transverse-field Ising models [48-50]. However, no
convincing case of such a phase or critical point has been
reported in 2D quantum magnets with SU(2) spin-isotropic
interactions, such as the standard Heisenberg exchange
[35,36,48], as far as we are aware. In the XX model
[U(1) symmetry] as well, no such fixed point was found
[48], though within a certain approximation in the SDRG
method a spurious IRFP fixed point appears [51].
Experimentally, it was argued that an IRFP can be realized
at the superconductor-metal transition in Ga thin films [53].

If an RS state exists in 2D systems with SU(2) spin
interactions, which we focus on, it should exhibit alge-
braically decaying mean correlation functions, as in the
1D case. We are not aware of any strict definition of an

RS state in 2D, and here we simply use this term for a
nonuniform singlet state without any long-range order but
with power-law decaying correlation functions. Such a state
should roughly correspond to a product of frozen singlet
pairs as in the 1D case, perhaps with some other distribu-
tion of valence-bond lengths and nontrivial spatial bond
correlations.

If the 2D RS state also corresponds to an IRFP, the
dynamic exponent should presumably be infinite as well.
However, an RS state which has finite z can also in principle
exist, although such a state corresponding to a RG fixed
point at finite-disorder strength does not exist in random
Heisenberg chains. Finite-disorder fixed points have been
obtained in SDRG calculations on the 2D Heisenberg model
with various types of disorder [35,36,48], but it is not clear
whether the SDRG method, by its construction and under-
lying assumptions, produces the correct fixed point when it
does not flow to infinite disorder.

As we mention in the Introduction, Sec. I, there are some
experimental indications of 2D disorder-induced spin
liquids with finite z in frustrated quantum magnets accord-
ing to interpretations supported by numerical studies of the
S = 1/2 Heisenberg antiferromagnet with random cou-
plings on the triangular and kagome lattices [13—15,20] and
also on the honeycomb [16] and square [17] lattice with
frustrated interactions. These spin-liquid-like states may
very well be realizations of an RS state, as proposed.
However, a full characterization of the putative RS ground
state and its low-temperature thermodynamic properties
(i.e., the form of the asymptotic long-distance correlations
and the value of the dynamic exponent) was not possible
because of the limited lattice sizes accessible to ED [13—17]
and DMRG [20] calculations. The recently developed
scenario of the RS state arising out of a VBS on the
frustrated triangular lattice [18] contains ingredients—VBS
domains and localized spinons—that were not discussed in
the context of the numerical works.

Here, we consider a class of S = 1/2 J-Q quantum-spin
models on the 2D square lattice, with no geometric frus-
tration but with interactions leading to weakened AFM order
or nonmagnetic VBS states on uniform lattices. In systems
with random couplings, the dynamic exponent is finite and
varying throughout the RS phase, which is a clear indication
of a class of finite-disorder RG fixed points. Our results
suggest a mechanism of pairing of localized spinons, which
leads to the RS state instead of a weakly ordered AFM state
(which had been regarded as the most likely state forming in
the random VBS in the absence of frustrated interactions
[18]). Importantly, this RS state in an unfrustrated, bipartite
system can be induced also in cases where the pure host
system is not yet in the VBS state (though not in the standard
Heisenberg model with random nearest-neighbor couplings
[54]) because local VBS domains are still created in response
to the disorder. This observation, along with other consid-
erations, suggests a possible universal scenario that connects
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our square-lattice RS state directly to the abovementioned
works on frustrated models with various host states
[13-16,18,20]. To definitely confirm this universality would
require more detailed work on the frustrated systems,
however, since the frustrated systems have not been char-
acterized to the extent that we are able to do here for the
random J-Q models.

B. Random-singlet state in the 2D J-O model

We study a square-lattice Heisenberg antiferromagnet
with nearest-neighbor exchange J augmented with certain
multispin interactions of strength Q (the J-Q model). The
unadulterated translationally invariant model is defined by
the Hamiltonian [55,56]

H==J] Py=0 Y PyPyPu. (1)
(if) ( )

ijklmn

where P;; is the singlet projector for two S = 1/2 spins,

1
In the sums in Eq. (1), (ij) indicates nearest-neighbor sites,
and the index pairs i, kI, and mn in (i jklmn) are neighbors
forming a horizontal or vertical column, as illustrated in
Fig. 1. The summations are over all pairs and columns so
that the Hamiltonian respects all the symmetries of the
square lattice, including the 90° rotation symmetry when
Jy=J,=Jand Q, = Q, = Q as we assume in Eq. (1);
we do not consider the more general cases J, #J, or
Q, # O, here. We introduce various forms of disorder in
the model, including site dilution and random-J and -Q
couplings drawn from suitable distributions; detailed def-
initions of the different cases are presented in Sec. IV.

In the uniform system, the Q interactions compete against
the exchange terms J, disfavoring the strong AFM order
present for Q = 0 (the standard 2D Heisenberg model [57])
by producing correlated local singlets. The interactions are
not frustrated in the standard (geometric) sense, however, and
the model is amenable to large-scale QMC simulations
for all positive values of the ratio g = Q/J (with J > 0,
Q > 0 being of primary interest) [58]. The ground state is

o) Oo==0 0 0 @
Omm® |1 o OmmO o
0 Ommp O © @

FIG. 1. Illustration of the terms of the J-Q model used in this
work. The circles are sites on the square lattice labeled in
accordance with the Hamiltonian Eq. (1). The red bars connecting
the two sites are the singlet projectors, and the connected bars in
the Q terms indicate products.

long-range AFM ordered for g < g.., with g. = 1.50 [55] and
is a spontaneously dimerized VBS for g > g.. In the VBS
phase, the Z, symmetry of four degenerate columnar-dimer
patterns is broken when L — .

A columnar VBS state and an AFM-VBS transition
is also realized if the Q interaction (often called Q5) in
Eq. (1) is replaced by a simpler one with only two singlet
projectors (or Q,) [59]. The critical coupling ratio g,. is then
much larger g. ~ 22, and the VBS order is rather weak
throughout the phase. A much larger number of studies
have been devoted to the issue of deconfined quantum
criticality within this model [59-66]. Disorder effects on
the VBS state are easier to study with the more extended Q5
term in Eq. (1), and here we demonstrate RS behavior for a
significant range of coupling ratios when either the J or the
Q interactions are random. We expect these disorder effects
to be generic for VBS phases on bipartite lattices.

Before the advent of the J-Q model, VBS physics was
normally associated with geometric frustration in models
such as the J-J' Heisenberg model with nearest- (J) and
next-nearest-neighbor (J') couplings. These systems are not
amenable to large-scale QMC studies because of mixed-
sign sampling weights (the sign problem), except at the
variational level when sampling suitably parametrized and
optimized wave functions [67,68]. While great progress on
frustrated models has been made in the last several years
with DMRG and methods based on tensor product states
(see, e.g., the recent papers [69—72] for applications to the
J-J' Heisenberg model), various convergence issues or
limited system sizes still make it impossible to carry out
calculations as reliable as QMC simulations of sign-problem-
free models.

The J-Q models exhibit many of the phenomena of
long-standing interest in the context of frustrated quantum
magnetism, in particular, the AFM-VBS transition [73],
which appears to realize the exotic deconfined quantum-
critical (DQC) point scenario [74,75]. It is presently not
clear whether exactly this transition is also realized in
nonbipartite quantum magnets, e.g., in the square-lattice
Heisenberg model with first and second neighbor
interactions—there may instead be an extended algebraic
spin-liquid phase between the AFM and VBS phases
[68—70]. The DQC phenomenon has nevertheless attracted
a great deal of interest, as it is a prominent example of a
quantum-phase transition beyond the standard Landau-
Ginzburg-Wilson framework. The J-Q models offer unique
opportunities to study the emergent degrees of freedom
(d.o.f.)—spinons and gauge fields—that are the ingredients
of the field-theory description of the DQC point and the
VBS phase. A very interesting question is how these d.o.f.
respond to quenched disorder; this issue is one aspect of
the work presented here.

By the Imry-Ma argument [76], in the presence of even
an infinitesimal degree of randomness in the local inter-
actions, the VBS can no longer exist as a long-range
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ordered state due to different columnar-dimerization patterns
being energetically favored in different parts of the lattice.
Thus, the uniform VBS breaks up into finite domains of
different VBS patterns. An extreme case (in the sense of
very small VBS domains) of such a disordered dimer state
has been dubbed the valence-bond glass [77]. It essentially
consists of a random arrangement of short valence bonds and
has been discussed in the experimental context of herberts-
mithite [8,9] and in certain 3D frustrated quantum magnets
[78,79]. The kagome spin S = 1/2 lattice of herbertsmithite
is to some degree diluted with nonmagnetic impurities, and
these also liberate spinons from the singlet ground state [12].
It was argued that these spinons interact and form a gapless
critical RS state. In this case, the spinons can be regarded
as a by-product of the dilution, and in the original picture of
the valence-bond glass without dilution [77], there were no
such spinons.

In analogy with one-dimensional spin chains with VBS
ground states [41,80], and considering the nature of the
elementary domain walls in 2D VBS states [26], one should
expect a VBS broken up into domains to also have localized
spinons at the nexus of domain walls. Therefore, interesting
magnetic properties due to local moments can arise even
without the explicit introduction of moments by dilution.
Indeed, it was very recently argued [18] that a spin-liquid-
like state (referred to as an RS state) arises in this way on the
triangular lattice when the pristine host system is a VBS.
The RS state there is formed as a direct consequence of the
randomly interacting localized spinons at the nexus of
domain walls. Though spinons do not appear in the scenario
discussed in the context of the ED [13—17] and DMRG [20]
studies of frustrated systems, localized spinons may still give
rise to the physical properties observed in these numerical
calculations even though they were not studied explicitly
(which would also not be easy with the very small lattices
considered). On the square lattice with bipartite interactions,
this kind of state has not been previously expected, however,
and it was argued that the most likely scenario for systems
like the random J-Q model is that the liberated spinons
form a subsystem with AFM order instead of a fully
disordered RS state [18].

An example illustrated in Fig. 2 of a well-understood
system in which residual AFM forms among impurity spins
is the diluted columnar-dimerized Heisenberg model,
which we later use as a benchmark case for our numerical
analysis techniques. For sufficiently large ratio j, = J,/J,
of the intra- to interdimer couplings, in the quantum-
paramagnetic phase, the removed sites leave behind “dan-
¢ling” spins at the sites near the broken dimers, and these
moments form a subsystem with AFM order due to
effective bipartite interactions mediated by the inert spin-
gapped dimer host [81]. Thus, the quantum-phase transition
out of the AFM ground state at j, ~ 1.91 in the intact
system [58,82,83] is destroyed and replaced by a crossover
from strong to weak AFM order [84,85]. In a disordered

FIG. 2. The statically dimerized J;-J, Heisenberg model with
thin black bonds and thick red bonds representing exchange
couplings S, - S; of strength J, and J,, respectively, between § =
1/2 spins. The A and B sublattices are indicated with solid and
open black circles. The larger blue circles indicate randomly
removed sites. For the intact system with j, = J,/J; larger than
Joe = 1.91[58,82,83], the ground state is approximately a product
of singlets on the strong bonds, and upon dilution, the “dangling
spins” remaining at the “broken dimer” adjacent to each removed
spin constitute localized magnetic S = 1/2 moments.

VBS on the square lattice, one might imagine that the
disorder-induced spinons should be subject to a similar
ordering mechanism [18]. However, our results and argu-
ments suggest that the correlated nature of spinon-antispi-
non pairs (and larger complexes of even numbers of spinons)
was not taken fully into account previously. In particular,
we argue that a key missing ingredient in the analysis of
bipartite systems (Kimchi et al. [18]) is that the VBS domain
walls act as channels of enhanced spinon-spinon inter-
actions within the groups of even numbers of spinons, thus
leading to stronger than expected tendency to local singlet
formation and, apparently, no residual AFM ordering.

The RS state proposed on the triangular lattice may
eventually be unstable to the formation of a quantum-spin
glass (a state characterized by randomly frozen moments
instead of singlets) according to the arguments by Kimchi
et al. [18]. RS physics could then still appear on long length
scales and be experimentally relevant, although the asymp-
totic properties of the system, e.g., the thermodynamics at
very low temperatures, would be different. This kind of
crossover, with distinct RS behavior up to some length
scale or down to some energy scale, may also be expected
in the event that the bipartite RS would be unstable to AFM
ordering. Here, we find 7 = 0 RS physics in the random
J-Q model and no signs of crossover into weak AFM order
up to the largest lattices studied, 64 x 64 sites. We also find
nontrivial 7 > O properties that we associate with the RS
state. Moreover, we find a distinct transition point with
universal critical exponents separating the RS and AFM
states. Thus, the RS state appears to be stable.

Though it is not immediately clear whether the RS phase
that we identify and characterize here corresponds to the
same fixed point as the state identified on the triangular
lattice by Kimchi et al. [18], this would be the simplest
scenario. We show here that the RS state can also form in

041040-5



LIU, SHAO, LIN, GUO, and SANDVIK

PHYS. REV. X 8, 041040 (2018)

some cases even though the bipartite host system is not yet
VBS ordered but still in the AFM state, as long as there are
sufficient interactions (here, Q terms) favoring the for-
mation of some local VBS domains. This role should also
be played by standard frustrated interactions in systems
with VBS states as well as other states, such as spin liquids
or weakly ordered AFMs. The RS state in the disordered
J-Q model can then indeed correspond to the same RG
fixed point as the states discussed previously in the context
of a variety of frustrated host systems, including ED studies
[13—-17] and DMRG calculations [20]. In the numerical
works, the physical picture presented for the nature of the
RS state was different, however, with an emphasis in
Refs. [13—17] put on the singlet pairs (Anderson localiza-
tion of singlets) [15] and no reference to the localized
spinons and VBS domains emphasized in our work here
and in Ref. [18].

In Secs. IV and V, we present 7 =0 and 7 > 0 QMC
results for the Hamiltonian Eq. (1) with random-J and
random-Q couplings, as well as for a site-diluted system
with no randomness in the remaining J and Q interactions.
For reference, we also present results for the diluted J;-J,
Heisenberg model in Fig. 2. To characterize the ground
states of these systems in an unbiased way, we use a
ground-state projector QMC method formulated in the
valence-bond basis [86,87], and to obtain properties at
T > 0, we use the stochastic series expansion (SSE) QMC
method [88]. To make the results sections more accessible
and concise, in Sec. I1I we first outline the physical scenario
that arises out of the many different calculations reported in
the subsequent sections.

III. DOMAIN WALLS AND SPINONS IN THE
DISORDERED VALENCE-BOND SOLID

On the 2D square lattice and with the bipartite nature of a
model such as the J-Q model, the main question regarding
the disordered VBS state is whether the spinons localizing
at each nexus of four domain walls [26] will form long-
range AFM order or some other collective state with only
short-range or algebraic spin-spin correlations. As already
discussed in Sec. II B, one might suspect [18] that AFM
order should exist for all values of g = Q/J, in analogy
with the fate of the quantum paramagnet and Néel-
paramagnetic quantum-phase transition in Heisenberg mod-
els with static dimerization when spins are randomly diluted
(Fig. 2). This picture neglects important spatial correlations
among the localized spinons, however, as well as the nature
of the VBS domain walls that connect the spinons.

A. Bound spinons as excitations of the pure VBS

To understand the spatial spinon correlations, consider
first an individual, localized spinon created by a topological
defect in the VBS (in a pure or random system). As
illustrated in Fig. 3, the four lattice bonds pointing out from

(b)

FIG. 3. (a) Illustration of a spinon forming at an unpaired spin
at the nexus of domain walls separating the four different
columnar VBS patterns on the square lattice. (b) The four
VBS patterns associated with angles ¢ in a simplified view of
the VBS vortex, with only the bonds closest to the core shown in
the same color coding as in (a). A similar vortex can also be
constructed starting from core bonds rotated by 90° relative to
those shown here.

the site of an unpaired spin (the core of the spinon)
correspond to the four different VBS patterns. Another
bond arrangement at the unpaired spin can also form, with
the bonds rotated by 90° relative to those in the figure [26],
but our simulations of the J-Q model often show the “star”
configuration at the spinon (but this local arrangement
should not change the properties of the domain walls
discussed in Ref. [26]). The four bonds and the corre-
sponding extended VBS domains can be associated with
angles ¢ as indicated. Note that the energetically favored
domain walls correspond to a z/2 phase twist [26], while
walls with 7 phase change are unstable and break up into
two /2 walls (as shown explicitly in Ref. [89]). The z/2
domain wall is the origin of the classification of the
symmetry of the VBS as the cyclic Z, group, or “clock”
symmetry [26,74]. Within a domain wall, the angle ¢
(properly defined by coarse graining and averaging over
fluctuations) changes continuously, and it is clear that this
kind of defect is a vortexlike topological defect of the VBS.
Such a vortex forming around a vacancy has been studied
with the J-Q model and a field-theoretical description [90].
A spinon should be considered as a composite object of the
VBS vortex with the unpaired spin at its core.

Note that a spinon can be associated with either sub-
lattice A or B, and the way in which the angle ¢ changes,
increasing or decreasing, when going around the spinon in
a given direction depends on the sublattice. Thus, we can
also refer to the two cases as vortices (sublattice A) or
antivortices (sublattice B), or spinon and antispinon. This
classification remains valid also in the presence of longer
valence bonds, as long as only bonds connecting the two
sublattices are allowed. This restriction is applicable with
bipartite interactions, where bonds connecting sites on the
same sublattice are always eliminated when a state written
in the valence-bond basis is time evolved [91]. Note that
fluctuations of the VBS vortices involving longer bonds
also lead to the unpaired spin fluctuating around the vortex,
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FIG. 4. Illustration of multispinon complexes: a spinon pair
(left) with the spinon and antispinon marked as black and white
circles, respectively, and a quadruplet (right) consisting of two
spinons and two antispinons. Two trivial domains, the yellow and
red circles, are also shown. The color coding of the VBS domains
is as in Fig. 3 and all domain walls are of the elementary type
where the VBS angle twists by A¢ = z/2.

instead of being completely localized at the center of the
vortex core (and of course the core itself becomes a more
extended object).

When exciting the uniform VBS singlet ground state into
its low-lying § =1 states, spinons always have to be
introduced as pairs of spinons and antispinons, and these
remain bound to each other as dispersing gapped “triplons.”
In a simplified static picture, when separating the two
members of a triplon, domains form such that each spinon
is connected to all four types of domains as in Fig. 3. As
shown in Fig. 4, this arrangement leads to a four-stranded
confining string, akin to the (more complicated) quark-
confining strings in quantum chromodynamics [92]. Here
we do not show the details of the bonds within the domains,
only the colors corresponding to the coding in Fig. 3. As
already mentioned, in principle, there will also be valence
bonds of length greater than one lattice spacing, but the
pictures remain valid as long as the probability of longer
bonds decays sufficiently rapidly with the bond length. If
we consider the total-spin singlet state of the two spinons
(an S = 0 excitation of the VBS), there will also be a bond
connecting the spinon and the antispinon sites. Such a long
bond corresponds to a small gap between the singlet and
triplet excitations (vanishing in the limit of large separa-
tion). In the nonrandom VBS, the spinons cannot actually
be far separated in this way because other spinons can be
excited from the VBS ground state as the string energy
becomes sufficiently high. The confining string will then
break, thus, limiting the number of bound spinon-antispinon
states, again analogous to the case of quark confinement
(mesons).

B. Localized spinons in the disordered VBS

In a system with random couplings, different VBS angles
¢ €{0,7/2,7,37/2} will be favored in different parts of
the system, and the domain size will be governed by the

competition of the energy cost of the domain walls and the
energy gains due to the disorder. In classical systems,
according to the Imry-Ma argument [76], energy minimi-
zation always leads to domain formation at 7 =0 in
dimensionality D < 2, while for D > 2, the uniform state
is stable in the presence of weak disorder. Considering
entropy effects, the uniform state is also unstable at 7 > 0
in D = 2. Similarly, one can expect quantum fluctuations to
also always lead to domain formation in systems with two
spatial dimensions at 7 =0 [18]. At least for weak
disorder, the domain walls should still be of the z/2-twist
type. These domain walls can meet in various ways without
breaking bonds, but the case of a nexus of four different
domains is special and requires the breaking of bonds into
unpaired spinons, as in Fig. 3.

As in the uniform VBS state discussed above, spinons
forming in a VBS broken up into domains must also always
appear in groups of an even number—half of them spinons
and half of them antispinons. In Fig. 4, a quadruplet is also
shown along with the spinon pair already discussed. It is
this inherent correlation among spinons and, importantly,
the tendency to singlet formation within the groups, that we
believe prohibit the formation of AFM order in the random
VBS arising out of the columnar VBS in the J-Q model.
The effective interactions between the spinons should be
mediated through the domain walls (and we show explicit
evidence for this) because they have much smaller local
mass gaps than the bulk of the VBS domains (through
which interactions between different spinon groups have to
be mediated). We also later comment on this picture in the
context of SDRG theory.

C. Basic properties of the RS state

According to our findings reported in Sec. IV, the above-
described disordered VBS state in the J-Q model with
random couplings (either random J or random Q, both of
which we study, or both random, which we do not consider)
should be classified as an RS state, a nonuniform spin liquid
with mean spin correlations decaying with distance as r~2.
The form of the spin correlation function is thus the same as
inthe 1D RS phase, and the dimer (bond singlet) correlations
decay with a higher power, likely r—*, which again would be
the same as in 1D [41]. Unlike the 1D RS state, we do not
find a divergent dynamic exponent, however. By investigat-
ing the temperature dependence of the uniform magnetic
susceptibility, we find z = 2 (T-independent susceptibility)
at the AFM-RS phase boundary and z > 2 (power-law
divergent susceptibility) inside the RS phase.

In further support of a disordered VBS state with no AFM
order, we also compare the model with random couplings
with a site-diluted J-Q model. Here, like in the diluted J,-J,
model in Fig. 2, there will be effective moments associated
with the removed sites. Thus, while there may also be
localized pair-correlated spinons associated with the meet-
ing points of four domain walls, now there are also moments
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FIG. 5. Schematic ground-state phase diagrams of models such
as the J-Q model in the presence of disorder. Here, A represents a
disorder strength, and g is a tuning parameter existing also in the
pure system (e.g., g = Q/J in the J-Q model). In the pure model,
A = 0, there is a DQC point (red circles) separating the AFM and
VBS phases. The VBS is destroyed, breaking up into domains for
any A > 0. In (a), which applies to the model with site dilution,
there is no phase transition vs g when A > 0, only a crossover
(indicated by the wedge) between the standard AFM state and a
state with finite VBS domains in which weak AFM order forms
among localized effective moments. In (b), which applies to the
case of random coupling constants, there is a true continuous
quantum-phase transition between the AFM and RS phases for at
least some range of A > 0.

at random locations without any intrinsic pairing of A and B
sublattice moments. The vacancies should also lead to
topological defects similar to those discussed above, but,
since there is no constraint on their sublattice occupation, it
will typically not be possible to pair all the released moments
up into spinon-antispinon singlets. The picture of weakly
interacting singlet pairs leading to the RS state is then
inapplicable. Indeed, in this case we find a VBS broken up
into domains and weak AFM order, and no RS state exists in
the ground-state phase diagram.

In Fig. 5, we sketch the generic phase diagrams expected
based on our findings for the J-Q model in the presence of
the different types of disorder discussed in this paper. Here
we use a disorder strength denoted by A on the vertical axis
and outlined phases and phase boundaries in the plane
(9,A), where g is the parameter driving the AFM-VBS
transition in the clean system (A =0). In our actual
calculations, we vary g = Q/J and study several examples
of disorder in J or Q, but we do not draw full phase
diagrams. we merely detect the relevant phase transitions
and study the properties of the phases in certain cases to
demonstrate their existence. We expect the phase diagrams
in Fig. 5 to be generic for disordered 2D quantum magnets
that host AFM-VBS quantum-phase transitions in the
absence of disorder.

Note the way the AFM-RS phase boundary is drawn in
Fig. 5 as tilted into the AFM phase; i.e., one can reach the
RS state not only from the VBS phase of the pure system

but also (for some types of disorder) from the AFM state
even when it is quite far from the AFM-VBS transition.
This destruction of the AFM state can be understood as a
tendency to local VBS domain formation in the presence of
disorder. On the square lattice, the Heisenberg model with
only nearest-neighbor couplings J, disorder in the form of
random unfrustrated J’s, does not induce an RS phase [54],
and a critical strength of frustrated interactions is presum-
ably required to induce it, like in the other frustrated
systems [13-16,18-20]. The Q interactions of the J-Q
model explicitly favor local correlated singlets and appa-
rently mimic the effects of geometrically frustrated inter-
actions in their ability to generate the RS state.

IV. GROUND-STATE PROPERTIES

Here we present QMC results for the J-Q model defined
in Eq. (1) in the presence of disorder in the form of random
J or random Q. In most cases, we use a bimodal distribution
of couplings J;; € {0, A} or Q;jxima € {0, A}, with equal
probability for the two values, but in some cases, we also
consider uniform distributions with the couplings bounded
by the above values. To contrast random couplings and site
dilution, we also consider the J-Q model where a given
fraction of the sites, randomly selected, are missing. All
operators in Eq. (1) touching one or several missing sites are
then removed from the Hamiltonian.

To benchmark our calculations for the J-Q model against
a case where it is known that site dilution induces AFM
order in a quantum paramagnetic host, we also consider
the diluted statically dimerized Heisenberg model illus-
trated in Fig. 2. In all cases, we average the QMC results
over a large number of independent realizations of the
disorder (hundreds to thousands) on square lattices with
N = L x L sites and periodic boundary conditions.

Below, in Sec. IV A, we first briefly describe the QMC
algorithm used in the ground-state calculations and also
introduce the main observables we use to characterize the
systems. In the following subsections, we present results
for all the models: the diluted J-J, model in Sec. IV B, the
random-J and random-Q systems in Secs. [V C and IV D,
respectively, and finally the diluted J-Q model in Sec. IV F

A. Ground-state projector method

The QMC method we use here projects out the ground
state from a trial wave function |¥(0)) written in the
valence-bond basis consisting of all possible tilings of
the square lattice into bipartite singlet bonds. Acting with
(—H)™ on this state, we obtain an un-normalized state
|¥(m)); thus, the expectation values of operators A are
evaluated in the form

_ (AN
= ) )

for sufficiently large m. The different propagation paths
contributing to |¥(m)) are sampled by expressing H as a
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sum over the J and Q terms in Eq. (1) and carrying out
Monte Carlo updates on the corresponding strings (prod-
ucts) of m such operators acting on |¥(0)). In this process,
the spin d.o.f. are put back in by also sampling the 1| and
1 contributions to each valence bond (where one can
show that the signs associated with the singlet always
cancel out for systems with bipartite interactions) [58]. This
way, the projector QMC method in practice becomes very
similar to the finite-temperature SSE method [88], with the
main difference being that the periodic imaginary-time
boundary conditions in the SSE method are replaced by
boundary conditions given by the trial state |¥(0)). The
exact choice of this state is not critical, though a good
variational state can improve the convergence rate in m
significantly.

The advantage of the projector approach relative to
taking the limit 7 — 0 in SSE calculations is that the
valence bonds restrict the system to the singlet sector (and
other sectors can also be accessed by simple modifications).
Thus, low-lying § > 0 states that require very low temper-
atures to be filtered out in 7" > 0 calculations are excluded
from the outset. For further technical details on the method,
we refer to the literature [58,87].

In the valence-bond basis, expectation values are
expressed using transition graphs [93,94] obtained by
superimposing the bond configuration from the left and
right projected states in Eq. (3). Spin-rotationally-averaged
quantities can be expressed using the loops of the transition
graphs; e.g., the spin-spin correlation function between
two sites i and j vanish if the two sites are in different loops
and is £3/4 for sites in the same loop (with the plus and
minus sign corresponding to sites on the same and different
sublattices, respectively). Higher-order correlation func-
tions involve more complicated expressions with the
transition-graph loops [95].

1. Order parameters and correlations

Here we focus on the order parameters of the AFM and
VBS phases. The former is the conventional sublattice
(staggered) magnetization

1 N
E— —1)%YiS.

M= 52 (Z)7S; )
where the coordinates x;, y; € {0, L — 1}. Since the sim-
ulations do not break the spin-rotation symmetry, we
evaluate the expectation value of the squared order param-
eter (M?), which has a simple loop expression. The VBS
order can form with horizontal or vertical bonds, and these
are captured by the bond-order parameters

1

D, = NZ(_I)sz.y : Sx+1,yv (Sa)
X,y
1 :
Dy - NZ(_I))SX.)} : Sx,y+lv (Sb)

X,y

where, for convenience, we switch to a notation where the
double subscripts on S, , refer to the integer coordinates
{0, ..., L — 1} on the square lattice. In this case as well, we
need the squared order parameter (D?) = (D2) + (D3),
which has a reasonably simple direct transition-graph loop
estimator [95].

With the above order parameters, we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order, the proper definition of the
cumulant is

UM:§<1—§<<ML;>>2>, (6)

where the coefficients are chosen such that, with increasing
system size, U,, — 1 in the AFM phase and U,, — 0 if
there is no AFM order. For (M*) as well, there is a simple
direct loop expression [95]. In the case of VBS order, the
coefficients of the cumulant should be chosen as appro-
priate for a two-component order parameter, thus,

(D%)

UDZZ—W

(7)

Here, (D*) involves eight-spin correlation functions that in
practice are too difficult to compute efficiently [95]. We
therefore invoke an approximation in Eq. (7) that does not
impact the scaling properties of the cumulant; we simply
evaluate (D,,D,) using the loop estimator for the two-
point operators (5a) and (5b) and then use these classical
numbers to evaluate D> and D*. While the expectation
values entering in Eq. (7) are then not strictly the correct
quantum-mechanical expectation values, they still reflect
perfectly the absence or presence of VBS order in the
system, and U, maintains the desired properties that we
discuss above [96].

In addition to the squared order parameters (M?) and
(D?) evaluated on the full lattice as we describe above, we
also consider the distance-dependent spin and dimer
correlation functions,

Cs(r) - <Sx$y : Sx+rx.y+r_‘.>ﬂ (Sa)
Cd(r) = <(Sx,y : Sx+1,y)(sx+rx.y+r). : Sx+1+rx.y+r\,)>
- <Sx,y ' Sx+1.y>zv (Sb)

where we spatially average over the reference coordinates
(x,y) for each disorder sample. In the case of the spin
correlations, we also consider the probability distribution of
values without averaging over (x,y) or disorder realiza-
tions. The spin correlations have a staggered sign (—1)"+"",
while the sign of the dimer correlator with the x-oriented
bond as above is (—1)"* (and we take the proper average
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with the y-oriented ones). When presenting the results, we
remove these signs. In C,(r), it is sometimes better to use
the difference between even and odd distances instead of
subtracting the squared mean in Eq. (8b).

2. Spinon strings

In addition to the physical observables in the singlet
sector that we discuss above, it is also useful to consider the
lowest state with total spin S = 1, in which some aspects of
spinons can be probed directly. In the valence-bond basis,
an S = 1 state can be expressed with a “broken bond,” e.g.,
with one bond replaced by two 7 spins, one each on
sublattice A and B (or with one bond treated as a triplet)
[86,97,98]. These unpaired spins will propagate under the
action of the Hamiltonian, and one can characterize their
collective nature as bound or unbound, and, in the former
case, quantify the size of the bound state [73,98].
Reflecting the nonorthogonality of the valence-bond states,
when forming a transition graph out of bra and ket states,
the spinons do not have to occupy the same sites in the two
states. Referring to the bra and ket sites occupied by the
unpaired spins as a, @’ and b, b’ on sublattices A and B,
respectively, open strings of valence bonds will form in the
transition graph between a and a’ and between b and b’, as
illustrated in Fig. 6. The extended nature of the strings
reflect the intrinsic size of the spinons [98].

Here we characterize an S = 1 state by simply using the
number of sites involved in the spinon strings. As we see in
Sec. IV D, the mean number of sites in the strings scales
very differently in the AFM and RS states, and this provides a
way, along with other methods, to locate the phase transition
between these two states. In addition, in some cases (in
Sec. VI), we also use the difference in ground-state energy
between the S = 1 and S = 0 sectors to extract the spin gap.
The spatial distribution of the spinon strings can also give
information on the structure of the lowest S =1 wave
function; this is be investigated in Sec. VI. For technical
details on how to carry out the simulations with broken
valence bonds, we refer to Refs. [86,89,97,98].

B. Site-diluted J,-J, static dimer model

We begin our discussion of QMC results with a brief study
of a statically dimerized system, where in the uniform system
there is a quantum-phase transition from an AFM to a trivial
quantum paramagnet due to singlet formation at the stronger
bonds. In the case of the columnar model illustrated in Fig. 2,
the critical coupling ratio j,. =~ 1.91[58,82,83]. For j, > j,..,
it is well known that effective S = 1/2 moments localize
around diluted sites in such a system and that these moments
interact with each other by nonfrustrated effective couplings
mediated by the gapped host system [81], thus, inducing
AFM order also in the previously quantum-disordered phase
[84,85]. Here we use this system as a means of illustrating
how this weak-dilution-induced AFM order is manifested
in the quantities that we later study in the more interesting

LS S IS I
S 200 2 2 2
) 00 2 )
D001 = M X

(b)

FIG. 6. Transition graphs in the S =1 ground state of an
L =16 J-Q system without disorder in the VBS (a) and AFM
(b) phase. For clarity, open boundaries are used here to avoid
bonds crossing the boundaries. Red and blue arches correspond to
bra and ket valence bonds, with thicker bonds representing the
two open strings (depicted in different color shades for clarity)
that terminate at unpaired spins (one in the bra and one in the ket
state). These end spins are always on sublattice A in one of the
strings and B in the other one. In (a), defects in the columnar
symmetry-broken VBS pattern originate both from the presence
of the spinons and by the intrinsic VBS fluctuations. Formation of
a clearly columnar state can be observed only for much larger
system sizes [55].

models. For these illustrations, we take the vacancy fraction
p = 1/32, with a canonical ensemble such that exactly N /32
sites are removed, with equal numbers on the two sublattices.
This density of vacancies is far below the classical perco-
lation threshold p. = 0.407, beyond which no long-range
order can exist.

Figure 7 shows results for both the squared sublattice
magnetization and its Binder cumulant. The latter turns out
to be a more sensitive quantity for detecting weak order.
If there is a critical point separating the AFM phase from a
non-AFM phase, the cumulants for two different system
sizes, graphed versus the control parameter, should cross
each other at a point that drifts toward the critical point with
increasing L. However, as shown in Fig. 7(a), the crossing
points in this case drift rapidly toward higher j, values, and
no convergence with increasing L to a critical coupling can
be found. In the inset of Fig. 7(a), the size dependence at
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FIG. 7. Results for the diluted J,-J, model at vacancy fraction
p = 1/32. (a) AFM Binder cumulant vs the coupling ratio for
different system sizes. The inset shows the size dependence for
Jj» =3 and 5 for both diluted (circles) and intact (triangles)
systems. (b) The size dependence of the squared sublattice
magnetization for several values of the coupling ratio. Error
bars are smaller than the symbol size in all cases.

two values of the coupling ratio deep inside the quantum
paramagnet are shown. Here one can observe nonmono-
tonic behaviors indicating asymptotic flows toward the
value U, = 1 expected for long-range ordered AFM states.
This behavior can be seen even though the order parameter
itself shown in Fig. 7(b) is very small. Here all the curves
for different j, should extrapolate to (M?) >0 when
L — oo, but for large j,, the values are very small and
not easy to extract precisely. With the behavior of the
Binder cumulants, we can nevertheless confirm that there is
long-range order at least up to j, =5, and there is no
reason to expect any other phase for still larger j,.

The reason for the decreasing AFM order with increasing
coupling ratio j, deserves some discussion. This behavior
can have more than one source and the most important
should be the following: (i) The localized moments induce
some AFM order in their vicinity, and so each diluted site
can contribute effectively more than one unit of staggered
magnetization. This effect decreases with increasing j,
as the host becomes less susceptible to induced order.
(i) Some of the local moments will form singlets and do
not contribute (or contribute very little) to the overall AFM
ordering. This effect may also increase with increasing j,,
as the effective interactions among moments at fixed
distance become weaker and the distribution of couplings
becomes broader. Therefore, some moment pairs will
become more specifically coupled to each other than to
other more distant spins in their surroundings. The AFM

order cannot be destroyed by these effects, however,
as there will always be unpairable moments on sufficiently
large length scales, which is supported by previous
numerical studies [84,85].

C. Random-Q model

We next consider the intact lattice with randomness in
the Q interactions, using an extreme case of bimodal
coupling distribution where each Q term in Eq. (1) is
either absent or present (with equal probability). Here we
take the strength of the present six-spin couplings as 2Q
so that the parameter Q is the average six-spin coupling. As
Q increases, the effective value of the disorder strength,
A = Q in Fig. 5(b), also increases when defined in relation
to the constant J coupling. We demonstrate a quantum-
phase transition between the AFM phase and the phase that
we characterize as an RS phase as the coupling ratio Q/J
increases. We argue that the phase diagram is of the type
schematically illustrated in Fig. 5(b), though we do not
consider the full phase boundary versus A. We demonstrate
the existence of a quantum-critical point separating the
two phases along one path in parameter space and also
characterize the ground-state properties of the RS phase in
various ways.

1. VBS domains and apparent lack of AFM order

First, in Fig. 8, we visualize the VBS domains forming in
this kind of system for large Q/J, where the pure system is
deep inside the VBS phase. Here we observe several
instances of meeting points of four domain walls, where
spinons are expected to be localized. The clearest example
of such a spinon region is indicated by a circle in the lower
right corner in Fig. 8. Note that the static dimer pattern,
which in Fig. 8 is represented by the nearest-neighbor spin
correlations, can be misleading due to the fact that it does
not convey completely the quantum fluctuations. A thin
line or the absence of a line on a given site implies large
fluctuations of the associated spins, as further explained in
the caption of Fig. 8, but the nature of those fluctuations is
not apparent. Later, in Sec. VI, we also visualize the local
spin fluctuations and demonstrate that they are small within
the bulk of VBS domains and large at regions correspond-
ing to spinons and domain walls. Despite the possible
shortcomings of this type of visualization, it nevertheless
makes clear the typical domain size and the manner in
which the domains meet. A notable feature is that there are
mainly domain walls of the type where the angle ¢ (Fig. 3)
changes by z/2, as would be expected according to the
discussion in Sec. III. Some very short segments of z
domain walls can also be seen, with a line of bonds oriented
perpendicularly to those of the adjacent domains located in
the gap between those domains. The 7 domain walls in a
pure system with a twofold degenerate VBS are gapless
with deconfined spinons [92], and in a disordered system
with a pinned # domain wall one can expect localized
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FIG. 8. Visualization of the VBS pattern in the J-Q model
generated in simulations with one realization of random bimodal
couplings Q € {0,1} and J =0 on a periodic 64 x 64 lattice.
The colored links visualize the corresponding correlations
(S;-S;) between the spins i and j connected by the link, with
the line thickness indicating the magnitude of the correlation.
A given link is drawn only if it is the strongest link for both spins i
and j, and the color coding corresponds to the convention defined
in Fig. 3. The domain boundaries are drawn by hand (turquoise
curves). The circle indicates an example of a spinon, at which
four domain walls meet (as in Fig. 3 but with a different bond
arrangement at the nexus of the domains). The rectangle encloses
a segment of a 7 domain wall in which two spinons are located.

spinons to form pairwise as well. These spinons can also be
regarded as meeting points of four domains, with two of
the domains being extremely narrow (chainlike). Examples
of local VBS patterns indicative of such spinons can also be
seen in Fig. 8 in the form of z phase shifts between the VBS
patterns of chain segments between two domains. One such
domain wall is enclosed by a rectangle in the figure.

The main question now is whether AFM order is
induced among the localized spinons that presumably
exist in the random VBS environment. We again study
the AFM Binder cumulant Eq. (6) as a function of the Q
interaction. For convenience, to span the full range of
interactions, we graph Uy, versus Q/(J + Q) in Fig. 9(a).
Interestingly, unlike the diluted J;-J, model, Fig. 7 (and
also the diluted J-Q model to be discussed later in
Sec. IVF), in this case it appears that the cumulants
for different system sizes develop a common crossing
point as L increases: the standard signal of a quantum-
phase transition of the AFM state. Furthermore, as shown
in Fig. 9(b), for values of Q/J larger than the apparent
asymptotic crossing point the cumulants decrease steadily
toward zero, and there are no indications of any upturn
expected if the state has weak AFM order. One could of
course wonder whether a turning point might emerge for
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FIG. 9. AFM Binder cumulant of the random-Q model. In (a),
the results for several different system sizes are graphed versus
the coupling ratio Q/(J + Q), and in (b), the results for three
different cases inside the RS phase are graphed vs the inverse
system size along with power-law fits.

even larger system sizes, but the very different behaviors
of the crossing points between the diluted models, where
they drift strongly as the system size increases (as shown
in Fig. 7 in the case of the J;-J, model), suggests that the
states really are different.

2. Existence of a phase transition

The possibility of AFM order for large Q/J in the
random-Q model will be excluded if we can convincingly
establish the existence of a quantum-critical point where
the AFM order parameter and related quantities exhibit
critical scaling. To this end, we analyze the drift with L of
the cumulant crossing points and also consider an alter-
native way of locating the critical point.

As we discuss in Sec. IVA, QMC simulations in the
valence-bond basis allow also for studies of the lowest
triplet state, which is associated with strings representing
spinons in the sampled transition graphs (see Fig. 6). In an
AFM state, one can expect the spinon strings to cover a
finite fraction of the system (and then the spinons are not
well-defined particles [98]). We therefore define the string
fraction 4 as the mean fraction of sites covered by one of the
spinon strings. In Fig. 10, we demonstrate that, indeed, A
approaches a constant when L increases inside the AFM
phase, while in the RS phase, 1 « L~!. We do not have a
rigorous explanation for the latter behavior, but it appears to
be a very robust feature of the RS phase. Superficially, it
seems to indicate that the spinons are not completely
localized but involve of the order of L spins. However,
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FIG. 10. Finite-size scaling properties of the string fraction 4 of
the random-Q model in the AFM state at Q/(J + Q) = 0.2 and
deep in the RS phase at Q/(J + Q) = 1.In (a), Ais scaled by L to
demonstrate 4 o< L~! in the RS phase (the inset shows the results
on a more detailed scale). The results in (b) illustrate the expected
size-independent string fraction in the AFM phase. Error bars are
smaller than the symbols.

it should be noted that many spinons can be involved in
forming the lowest triplet, and the spinon strings will
migrate during the simulations between all of them. The
strings then also partially occupy the domain walls (see
further discussion of this issue in Sec. VI C), and the mean
string fraction is not just probing an individual localized
spinon. The precise meaning of the length of the spinon
strings in disordered systems should be further investi-
gated; here we merely exploit the apparent utility of 4 for
locating the AFM-RS transition.

Interestingly, as shown in Fig. 11(a), when graphed
versus the coupling ratio, LA for different system sizes
exhibits crossing points. This would not necessarily be
expected when the behavior throughout the RS phase is
A~ L', but it is still possible due to scaling corrections;
indeed, the fact that the crossings occur at smaller relative
angles when L increases and all the curves are close to each
other for large coupling ratios suggest that corrections to
the dominant power law are responsible. While the crossing
point is still quite well defined and suggestive of a critical
point, the weak size dependence inside the putative RS
phase makes it hard to accurately extract the crossing points
between curves for system sizes L and 2L when L is large.
Nevertheless, we have extracted several crossing points and
compare them with the crossing points extracted from
Binder cumulant data such as those in Fig. 9. As shown in
Fig. 11(b), the size dependence is consistent with flows to a

30F E
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FIG. 11. (a) String fraction multiplied by L vs the coupling ratio
Q/(J + Q) of the random-Q model for several system sizes. In
(b), crossing points Q*/J extracted from system size pairs
(L,2L) of data sets such as those in (a) are graphed vs the
inverse system size, along with crossing points extracted from the
Binder cumulant U, in Fig. 9(a). The curves are fits to a common
constant (the critical value Q./J = 1.24 4+ 0.13) with corrections
« L™, where w~ 1.4 and 0.8 for the U,, and AL crossings,
respectively.

common value (the critical point) when L — oo, with
power-law corrections in 1/L. The two data sets approach
the transition from different sides, which is helpful for
locating the critical point. We do not have any physical
explanation for the different behaviors of the two different
data sets, but note that the prefactors of scaling corrections
are not universal, and there is no a priori reason to expect
that two different finite-size estimates of a critical point
should approach it from the same side of the transition.

Since the number of data points for both crossing
quantities is rather small, and a common extrapolated
L — oo point appears visually very likely, in Fig. 11(b)
we carry out a constrained fit with a common infinite-
size point. This fit delivers Q./J = 1.24 +0.13 (the
error bar representing 1 standard deviation). An
independent fit to only the U, points gives a fully
compatible result, while a fit to only the AL points gives
a slightly higher value, 1.4 + 0.1. In the latter case, the
number of data points is very small (the number of
d.o.f. of the three-parameter fit is only 2), and the error
bar is therefore not reliable. Considering the statistically
sound joint fit, we take it as strong evidence that both
U, and LA are valid indicators of a quantum-critical
point separating the AFM phase and a nonmagnetic
phase that we argue is an RS phase.
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FIG. 12. Absolute values of the mean long-distance spin (a) and
dimer (b) correlations at three coupling ratios inside the RS phase
of the random-Q model. Results are shown at the largest distance
on the periodic L x L lattices. The three lines in (a) correspond
to decay of the form « L2, and the line in (b) shows the form
o« L™

3. Correlation functions

Next, we consider the mean spin and dimer correlation
functions. Figure 12(a) shows the spin correlations Eq. (8a)
at the largest distance on the periodic lattices, r = Lv/2,
versus the system size L. For three different coupling
ratios inside the RS phase, we find the same behavior: a
power-law decay corresponding to the distance dependence
C,(r) o r~* with o = 2. Instead of carrying out line fits to
find a, here we just show comparisons with the form with
a = 2, but the individual fits in all cases are also consistent
with this value. Interestingly, C(r) o r~2 is also the form at
the RS fixed point in 1D [39], though in that case there are
apparently also multiplicative logarithmic corrections [41]
that we do not find here in 2D. In the case of the dimer
correlations defined in Eq. (8b), Fig. 12(b) shows results at
the longest distance where we extract the relevant con-
nected piece of C,(r) as the difference between even and
odd distances r, which produces less noisy results
than the method of subtracting the mean value in Eq. (8b).
Here the relative error bars are still rather large for the larger
systems, and we show only consistency with the form
C4(r) « r=*, which again is the same form as in 1D (up to
the log corrections found in 1D) [41].

It is also interesting to investigate the probability dis-
tribution of the values of the correlation functions in the
spatially nonuniform system. Here we again consider the
longest distance r;; = L+/2 on the periodic square lattice
and accumulate in histograms all the individual spin

correlations C;; = C(r;;) for spins at sites i, j separated
by this distance, with a large number of disorder realiza-
tions used to produce reasonably smooth distributions.
In this case, it is important to run rather long simulations
for each individual disorder realization so that the statistical
errors do not influence the distributions significantly for
the smaller instances of C(r;;) (in contrast to the mean-
disorder-averaged values, where one has only to make sure
that the individual simulations are equilibrated, and the
final statistical error is dictated by the number of disorder
instances). There will always be some problems with large
relative errors for the smallest correlations, and therefore,
we expect the distributions presented below to be most
reliable at the upper end of the distribution.

To investigate the scaling of the distributions, we first
attempt a scaling variable similar to one applicable to end-
to-end spin correlations of the random transverse-field
Ising chain, which realizes an IRFP [99],

v=—1In(C;;)L™, 9)

ij
and transform the histograms to the distribution P(v). In
Ref. [99], the exponent @ = 1/2, but here this does not
work, and we therefore consider a as a fitting parameter.
This indeed works quite well for the larger system sizes if
a =~ 1/3, as shown in Fig. 13(a). We also need the resulting

P(v)

o oo

NN

o
o
o

® O

FIG. 13. Two types of histograms showing the distribution of the
spin correlations at distance r = (L/2, L/2). In (a), the exponent a
in the variable » in Eq. (9) is set to a = 1/3, close to its optimal
value for collapse of the data for the larger systems. The blue fitted
curve on the left side of the distribution corresponds to the power-
law behavior P(v) « " with n = 11. In (b), the scaling variable
x =In(C;;L?) is used.
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data-collapsed distribution to be consistent with the mean
correlation function,

(Cy) = / ™ dve P(v), (10)

0

for which we previously found (C;;) o L™2. We can obtain
a power law if the behavior of the probability distribution
P(v) for the scaled variable v follows a power law close to
0: P(v) o »". It is easy to see that the contribution to the
mean value from small » then decays as (C;;) Lalnt),
and with @ = 1/3 we therefore need n = 5. The behavior in
Fig. 13(a) is not consistent with this value of n, instead
giving an exponent n more than twice as large (correspond-
ing to (C;j) « L™), as shown with a fitted curve in the
figure. However, the part of the distribution away from the
region where the power law applies still changes the scaling
of the mean value to the observed L2 form for the rather
small systems we have access to, for which e %" in
Eq. (10) is not yet very small when v = 2-3. For large
system sizes, the power-law region would always dominate
the integral, and with the fitted form we then obtain an L™*
decay. Since our data do not extend very close to v = 0, we
cannot exclude that the distribution still changes and
evolves into the v° form as v — 0 and (C;;) o L2,

Considering the apparent inconsistencies arising with
the scaling variable v above, we explore an alternative form
of the distribution. Figure 13(b) shows distributions P(x)
with the scaling variable x defined as

x =In(C;;L?). (11)

In this case, any P(x) trivially gives the desired L2 decay
of the mean. Though the data collapse is not as good as in
Fig. 13(a), the behavior does seem to improve with
increasing L, especially at the high end of x.

A scaling variable of the form (9) and P(v)  v" for
small » implies different behaviors of the typical correla-
tions (defined conveniently by the peak of the distribution)
and the conventional mean value: exponentially versus
power-law decaying. At the IRFP, this behavior is a
consequence of the divergent dynamic exponent [99]. As
we show in Sec. V, the RS state in the random J-Q model
has a finite dynamic exponent, and the scaling with the
variable in Eq. (11), which implies the same power-law
decay of the mean and typical values, may appear more
plausible from this perspective. However, the scaling with
the logarithmic variable in Fig. 13(a) works noticeably
better, and we cannot exclude that mean and typical values
will scale differently even though z is finite. It would
clearly be useful to study larger system sizes and further
test the two scenarios for the distributions. The inverse-
square distance dependence of the mean correlations
already appears to be well established by the good scaling

for a wide range of system sizes and three different Q/J
values in Fig. 12.

D. Random-J model

In the random-J model, all Q couplings are included, and
the J couplings are drawn from a distribution. We consider
bimodal as well as continuous distributions and find
qualitatively the same kind of behaviors as above in the
random-Q model. We therefore provide only a few illus-
trative results showing these similarities.

Figure 14 shows the results for the order parameters and
Binder cumulants at Q/J = 2 for the extreme bimodal case
where half of the J couplings are set to 0 and the rest to 1
(which we take here as the value of J in the ratio Q/J).
For reference, we compare the size dependence of these
quantities with the corresponding pure system (all / = 1).
The results indicate that both order parameters vanish when
L — oo, with the VBS Binder cumulant showing a non-
monotonic behavior with a drop toward zero starting when
L is of the order of the typical VBS domain size. For
Q/J = 2, we conclude that the system is in the RS phase.

To confirm the existence of a critical point separating the
AFM and RS phases, Fig. 15(a) shows scans for several
system sizes of the Binder cumulants versus Q/J for the
same bimodal J distribution as in Fig. 14. For U, we again
see crossing points apparently converging toward a critical
point, similar to the behavior in the random-Q case in
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FIG. 14. VBS (a) and AFM (b) order parameters and the
corresponding Binder cumulants (c) versus the inverse system
size for the model with bimodal J couplings (50% each of J = 0
and J = 1) at Q = 2. Results for the pure model with J =1 are
shown for comparison in (a) and (b).
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FIG. 15. (a) Binder cumulants vs Q/J for several system sizes
of the bimodal random-J model. (b) Crossing points between
cumulants for system sizes (L,2L) versus 1/L. Crossing points
of the size-normalized spinon string fraction LA (similar to those
shown in Fig. 11) are also shown. Fits (the curves shown) to the
latter data set and that for the U, crossing points are carried out
using power-law corrections « L™ (with @ ~ 1.5 and 2.3 for the
Uy and LA set, respectively), with the constraint of the same
value of the crossing point, Q./J = 0.65 £ 0.02, when L — oo.

Fig. 9. The (L,2L) crossing points are graphed versus the
inverse system sizes in Fig. 15(b), along with the crossing
points of the scaled string fraction LA. These two finite-size
estimates of the critical point again approach Q. from
different directions. Requiring the fits with corrections
« L™ to have the same value of Q./J but allowing for
different values of @, we obtain Q./J = 0.65 £ 0.02 and
the exponents @ = 1.5 (for the cumulant crossings) and 2.3
(for the string quantity). Given the rather small number of
points and not very large system sizes, the exponents
should be regarded as “effective exponents” that are still
influenced by neglected higher-order corrections. Since we
have only four AL points in this case, the individual fit to
this quantity is not reliable, but an individual fit to the U,
data gives results perfectly consistent with the joint fit.
Figure 15(a) also shows the behavior of the VBS cumulants.
It is clear that the crossing points here do not converge but
flow to larger Q/J as the system size increases, as would
be expected when arbitrary weak disorder destroys the VBS
phase. The corresponding (L,2L) crossing points are
graphed versus 1/L in Fig. 15(b).

Overall, with the results presented above and in other
cases, we find very similar behaviors for the random-Q and
random-J models, indicating that the RS phase induced by
these types of disorders is the same one. One notable aspect
of the specific random-J model for which we present

results here is that the RS phase can arise not only out of the
VBS phase of the pure model but also from the AFM state.
The critical coupling extracted in Fig. 15 is at Q/J =~ 0.65,
where the pure model with all / = 1 Heisenberg couplings
is still well inside the AFM phase (the AFM-VBS transition
of the pure system taking place at Q/J =~ 1.50). With the
way we define the bimodal coupling strengths with J = 0
and J = 1 at random locations, we can reach the RS from
the AFM phase simply by removing some fraction of the J
interactions when Q is between 0.65 and 1.50. This random
removal of J couplings enhances the ability of the QO terms
to cause VBS formation, which in the random system take
only the form of a domain-forming VBS. Thus, it seems
very plausible that the same RS state will also be generated
if the host system includes some frustrated interactions that
weaken the AFM order and favor local formation of VBS
domains in a disordered system, instead of the Q terms
considered for that purpose here. Such frustrated disor-
dered systems can include the Heisenberg model on the
triangular lattice, which is equivalent to the square lattice
with half of the diagonal couplings activated. It then
appears likely that the RS state we identify here on the
square lattice is actually the same state as that discussed
previously for frustrated systems. However, further char-
acterization of the frustrated systems is needed to confirm
this. We discuss possible scenarios for RG fixed points
and flows further in Sec. VIL

E. Universality of the AFM-RS transition

Given our results presented above, it appears most likely
that the AFM-RS transition is universal and that the RS
phase itself has universal properties, such as the 1/r2
power-law decay of the mean spin correlations (but we
show in Sec. V that the dynamic exponent is not universal
inside the RS phase but varies continuously—though it also
is universal at the AFM-RS transition). An often used
characteristic of a critical point is the value of the Binder
cumulant. This quantity is universal, in the sense that it is
independent on microscopic details, but, unlike many other
universal quantities, such as critical exponents, it depends
on boundary conditions and aspect ratios of the system
[100-102]. In the projector QMC method, we effectively
take the limit of the time-space aspect ratio /L — oo, and
the system geometry is also the same for both the random-
Q and random-J models. Thus, we have identical boundary
conditions and aspect ratios and expect the same value of
the Binder cumulant at the AFM-RS transition point.

In Fig. 16, we show results for three disorder types for
which we have sufficient data to carry out meaningful
studies of the scaling of the AFM cumulant at the (L, 2L)
crossing points; in addition to the bimodal Q and J cases,
we also show the results for a continuous distributions
of J, with values drawn uniformly from the range [0, 2].
Remarkably, the cumulants for all cases appear not only to
flow to the same point in the limit of infinite size, but even
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FIG. 16. Binder cumulants vs the inverse system size at the
(L,2L) crossing points for systems with bimodal Q and J
distributions as well as a uniform distribution of J from the
range [0, 2]. The line is a collective fit to the data for the two
bimodal cases.

the leading correction in 1/L, including the prefactor,
seems to be the same. This correction appears to be almost
linear, and we analyze the data under this assumption,
though it is possible that the form is L™ with @ just close
to 1. For the two bimodal distributions, all the data fall on
the line as closely as would be statistically expected (with
excellent goodness of fit), while for the continuous dis-
tribution, we see that the data for the smaller sizes deviate
more significantly, indicating that the higher-order correc-
tions do depend on the kind of the disorder distribution.
These results clearly lend further support to the existence of
a universal AFM-RS critical point, and, therefore, to the
existence of the RS phase.

The slope of the Binder cumulant evaluated at the
infinite-L critical point or at crossing points can be used
to extract the critical correlation-length exponent v,

dUu
-~ — Ll/u bLl/u—w - 12
a7 a + + (12)

9=9c

where g is the control parameter used, here g = Q/J, and w
is the exponent of the leading scaling correction (and a, b
are nonuniversal constants). In practice, it is again con-
venient to use pairs of system sizes, e.g., Ly = L and
L, =2L, and replace g. by the crossing point ¢g*(L) of
the two cumulants. Then, one can show that (see, e.g.,
Ref. [73])

1 (U@L 1
_ln(2)ln<U/(L)>_;+CL +---, (13)

vi(L)

where U’ denotes the derivative at the crossing point, and ¢
is a nonuniversal constant. Here we obtain the derivatives
from the polynomial fits used to interpolate the crossing
points from data sets such as those in Fig. 9.

In Fig. 17, we graph the results for 1/v* for the same
disorder types as in Fig. 16. In the case of the bimodal J
and Q distributions, the size dependence is weak, and the
results indicate that v~ 2. For the weaker, continuous J
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= t it |
T I 1
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1/L

FIG. 17. Inverse system size dependence of the correlation
length exponent defined according to Eq. (13). The disorder
distributions are the same as those in Fig. 16. The conjectured
exponent v = 2 is indicated by the dashed line.

distribution, the values of 1/v* are overall larger. However,
it is possible that only the bimodal distributions represent
strong enough disorder for carrying out reliable extrapo-
lations to infinite size based on the current system sizes,
i.e., the corrections to the asymptotic exponent may be
larger for the uniform J distribution. An intriguing possibility
is that all systems have v = 2, which is also the universal
value of this exponent at the 2D superfluid to Bose-glass
transition [33], though the symmetries there are different, and
there is no a priori reason to expect the exponents to be the
same. Further work is required to test this scenario.

F. Site-diluted J-Q model

In the site-diluted J-Q model, J or Q terms in Eq. (1)
acting on one or more vacancies are excluded from the
Hamiltonian. We consider small vacancy concentrations p
and always remove an equal number of sites on the two
sublattices. In the gapped VBS host, when Q > Q,, with
0./J =150 [55], we expect the vacancies to act as
nucleation centers for VBS vortices [90]. Here, no spinon
will appear in the VBS vortex core as there is an empty site.
However, with the random distribution of the vacancies,
there will be local sublattice imbalance, i.e., an unequal
number of vortex cores on the two sublattices; within a group
of n vacancies, there will be an imbalance of order \/ﬁ that
makes impossible the short-distance pairing of all vacancy
vortices and antivortices. Therefore, additional vortices will
form away from the vacancies, and these topological defects
will source unpaired spins (spinons). There are reasons to
believe that these spinons cannot be paired up into singlets in
the way this happens in the RS state because of the local
imbalance between A and B spinons. The mechanism of
primarily short-distance pairing responsible for the RS state
is, thus, missing, and AFM order should form as in the J-J,
model studied in Sec. IV B.

The results for p = 1/32 at two different values of the
coupling ratio are shown in Fig. 18. Here in Fig. 18(a), we
can again see, as we did in the case of the J;-J, model in
Fig. 7, how the AFM Binder cumulant first decreases with
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FIG. 18. Binder cumulants of the AFM (a) and VBS (b) order
parameters of the site-diluted J-Q model at Q/J =2 and 4,
graphed vs the inverse system size. The dilution fraction is
p = 1/32, with exactly half of the vacancies in each sublattice.

increasing system size but then starts to grow when the
number of moments becomes sufficient for AFM order to
form. This crossover occurs for larger sizes for the larger
Q/J value, which is again similar to the behavior found
for increasing coupling ratio J,/J; in the J;-J, model.
Figure 18(b) shows that the cumulant of the dimer order
parameter approaches zero with increasing L, as expected
for a VBS breaking up into domains. These results lend
support to a phase diagram of the type in Fig. 5(a), with no
phase transition for A > 0, just a crossover between strong
and weak AFM order.

V. FINITE-TEMPERATURE PROPERTIES
AND THE DYNAMIC EXPONENT

Finite-temperature properties are useful for extracting
the dynamic exponent z and may be the most direct route
to connect to experiments. Here, we consider the uniform
magnetic susceptibility,

N
m, =Y S, (14)

and the local susceptibility at location x defined by the
Kubo integral

Zoe(x) = / " (53 ()53(0), (15)

where S%(7) is the standard imaginary-time-dependent spin
accessible in QMC simulations. Here we use the SSE
method and refer to the literature, e.g., Ref. [58], for further

technical information. In this section, we average the local
susceptibility over all the sites x of the system (as well
as over disorder realizations) and call this averaged quantity
Yioc- In Sec. VI, we show an example of the spatial depen-
dence of y,.(x) for a fixed disorder realization.

A. Power-law behaviors

At a conventional quantum-critical point, or in an
extended quantum-critical phase, since the magnetization
is a conserved quantity, the susceptibility Eq. (14) should
scale with the temperature as [33,103]

X < TP/, (16)

where D =2 in our case. In contrast, the local suscep-
tibility Eq. (15) is sensitive to the fluctuations of the
nonconserved critical order parameter. Generalizing the
result by Fisher et al. [33] for a critical point of a disordered
boson system (the Bose glass to superfluid point) to the
critical RS phase, the mean spin-spin correlation function
in imaginary time at zero spatial separation should have
the form

(S5(7)$5(0)) o = (Prem2imle = g=2/2 - (17)

where in the equality we use our finding that the equal-time
correlation function C(r) o r~(P+2=241) [33] always decays
with distance as 1/7% so that # = 2 — z. The local suscep-
tibility (15) is then predicted to take the following forms

for z =2,

a+bln(1 ,
Xloc = { - ( /T) (18)

cT?+ 1, for z > 2,

with nonuniversal constants a, b, c. Here and in Eq. (16),
it is interesting to note that the uniform and local suscep-
tibilities should take the same divergent form if z > 2,
while for z =2, the logarithmic divergence in y,. is
not present in y,, which instead should be temperature
independent (up to possible additive corrections).

For the above forms of y, and y;,. to be valid, we not
only have to reach sufficiently low in 7, but also the system
size has to reach the range where there is no longer any size
dependence left. This requirement limits the temperatures
we can reach, as demonstrated in Fig. 19 for the case of the
uniform susceptibility of the random-Q model close to the
critical point and inside the RS phase. We can still clearly
observe critical behaviors emerging for a range of low
temperatures for the largest system sizes. In Fig. 19(a), at
Q/J = 1.20, which should be very close to the AFM-RS
transition according to the results in Fig. 11(b), we find
very little temperature dependence (except for the lowest
temperatures, where there are still clearly some effects
of finite size), indicating, by Eq. (16), that z =D =2 at
the transition. In principle, one should also expect some
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FIG. 19. Temperature dependence of the uniform susceptibility
of the random-Q model for several different system sizes.
(a) shows results at Q/J = 1.2, which is within the error bars
of the estimated AFM-RS critical point (Fig. 11), while the
system in (b) is inside the RS phase at Q/J = 2. The horizontal
line in (a) corresponds to the scaling expected if the dynamic
exponent z = 2. The curve in (b) shows a fit of the L = 64 data to
the form y, = ¢+ bT~* with the exponent a = 0.60 + 0.08
corresponding to z =2/(1 —a) =~ 5.

corrections to the constant behavior, but apparently those
are very small in this case.

If the dynamic exponent at the AFM-RS transition
indeed takes the value z = 2, then according to Eq. (18)
the local susceptibility should exhibit a logarithmic diver-
gence. As shown in Fig. 20, this indeed appears to be the
case. Here we fit the low-T behavior to the first line in
Eq. (18), which already contains a constant (unlike the
uniform susceptibility in Fig. 19, where we include a
constant as a correction to the leading form).

0.20 =16l |
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52 0.15F R
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FIG. 20. Temperature dependence of the local susceptibility of
the random-Q model at its AFM-RS transition for several
different system sizes. The line is a fit of the L = 64 low-T
points to the logarithmically divergent form in Eq. (18).
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FIG. 21. Temperature dependence of the uniform (a) and local
(b) susceptibility of the bimodal random-J model at its estimated
critical point Q,/J = 0.65 [see Fig. 15(b)]. The horizontal line in
(a) indicates the size-independent behavior expected from
Eq. (16) if z =2, while the line in (b) is a fit to logarithmic
form in Eq. (18).

To test the universality of the scaling of the susceptibil-
ities at the transition, in Fig. 21 we show the results for the
bimodal random-J model at its critical point extracted in
Fig. 15(b). We compare results for two different system
sizes to demonstrate that the thermodynamic limit should
be reproduced for the larger size (L = 64). We again see a
significant low-T regime where y, appears to be temper-
ature independent, while the local susceptibility diverges
logarithmically, supporting an AFM-RS transition with
z = 2 independent of model details.

Well inside the RS phase, at Q/J = 2 in the random-Q
model, as shown in Fig. 19(b) we find a clearly divergent
low-T behavior of y,. Since the overall magnitude of the
susceptibility originating from the localized spinons is still
not very large at these temperatures, when fitting to the
expected power-law form, we also include a constant, as a
natural leading correction to the asymptotic divergent form.
This works well, and the value of the exponent given by the
fit corresponds to z = 5. Thus, we find that z increases as
the RS phase is entered.

Figure 22 shows results even further inside the RS phase,
along with fits such as those discussed above. Here we
also show results for the local susceptibility, which at first
sight appears to diverge slower, though the ultimate power
laws should be the same if z > 2, according to Eqgs. (16)
and (18). However, with independent constant corrections
added, both y, and y;,. can be fitted with the same power
laws (using joint fits). These fits give the exponent
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FIG. 22. Temperature dependence of the uniform and local
susceptibilities of the random-Q model deep inside the RS phase,
at Q/J =4 and J/Q = 0. The curves show fits of the low-T data
to the predicted forms, Eq. (16) for y,, and the second line of
Eq. (18) for y,., enforcing common exponents for the two
quantities. The fits give 1-2/z =0.60 £0.10 (Q/J =4) and
0.72+£0.06 (J/Q = 0).

1-2/z=10.60=£0.10 and 0.72 £ 0.06 for Q/J = 4, and
J/Q =0, respectively; i.e., the dynamic exponents are
zx5at Q/J =4 and z~7 when Q/J — .

In the case J = 0, it should be noted that the bimodal
disorder distribution that we use here, where half the Q
couplings are set to zero, can lead to isolated spins that
contribute o 1/7 to the susceptibility. However, we avoid
this issue by “patching” such rare isolated spins by adding a
randomly chosen Q interaction for each of those sites to
connect them to the rest of the system. The differences
between the patched and original systems are barely
noticeable in the disorder-averaged quantities.

The larger role of the correction (the constant terms used
in the fits in Fig. 22) in y,,. than in y, can likely be traced to
the fact that the local susceptibility only contains a small
fraction of the dominant staggered response at g = (x, )
in momentum space, and, therefore, one may expect large
corrections from all the other momenta, at which the response
is weaker. An alternative way to detect the dominant dynamic
response, but that we have not yet pursued, would be to
compute the susceptibility at ¢ = (z, 7).

B. Griffiths-McCoy singularities

To properly classify the proposed RS state, we need to
consider the fact that disordered systems generically have
regions in parameter space called Griffiths, or Griffiths-
McCoy, phases. These phases or regions are characterized by

spatial “comingling” of two phases [104,105]. Fluctuations
in the quenched disorder can favor a phase B within a limited
part of a system that is overall in a phase A. Griffiths phases,
which do not always have well-understood RG fixed-point
analogues (but sometimes they do [106]), appear close to
critical points and are normally associated with weaker
singularities than the actual critical points (for reviews,
see Refs. [27,28]). The singularities arise from exponentially
rare regions (e.g., large domains of phase B inside phase A)
and have the most profound effects on dynamical properties.

In quantum systems, Griffiths phases typically have large
but finite dynamic exponents, with associated divergent
susceptibilities if z > D. The large z values (long time-
scales) motivate the often used term “glass” for these
phases, though a Griffiths phase is not normally associated
with the multitude of thermodynamic states (by replica
symmetry breaking and related phenomena) of classical
and quantum-spin glasses (and it was also claimed that
the valence-bond glass state undergoes replica symmetry
breaking [77], but this may be a consequence of a classical
treatment). Examples of Griffiths phases include the Bose
glass in the Bose-Hubbard model with random potentials
[33] and the Mott glass in particle-hole symmetric boson
systems where randomness is introduced in the hopping (and
there are indications that this state can also form with random
potentials due to emergent particle-hole symmetry [107]).
The spin analogue of particle-hole symmetry is also present
in 2D random-exchange Heisenberg antiferromagnets,
where Mott-glass phases have been identified [108,109].

An important question is whether the RS state we identify
in the random J-Q model is also a Griffiths phase. We argue
that it is not because equal-time correlations in Griffiths
phases should decay exponentially with distance (a funda-
mental consequence of the rare-region mechanism), while we
find strong evidence for power-law decaying correlations.

There is a further strong argument against the RS phase
being a Griffiths phase: If, in the language above, we consider
the AFM as phase A, there is no obvious phase B with which
A can comingle to form the RS phase as a Griffiths phase. The
RS phase is then actually that phase B, and, in principle,
Griffiths singularities could appear due to comingling of
the AFM and RS phases close to the phase boundary.
However, since the AFM and RS phases are both gapless,
the Griffiths singularities would be very hard to detect and
would very unlikely be responsible for the power laws we
identify here. Most likely, they would cause only scaling
corrections and no separately identifiable Griffiths phase in
addition to the AFM and RS phases.

RS states and Griffiths phases have been contrasted in
detail in Heisenberg chains [110]. In a chain with the same
disorder distribution on all links, the RS state forms generi-
cally. However, if there is furthermore an alternating strength
of the mean couplings (static dimerization), in which case
the pure system is gapped and has exponentially decaying
correlations, a critical disorder strength is required to induce
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the RS state. The weakly disordered system is in a Griffiths
phase, where rare RS regions in the otherwise gapped chain
imply gapless excitations of the system. However, the spin
correlations in this phase remain exponentially decaying.
The RS state itself is not a Griffiths phase.

VI. SPINON INTERACTION MECHANISM

The way the localized spinons interact with each other is
a crucial ingredient in the formation of the RS state. In
order for singlets to be gradually “frozen out” as the energy
scale is reduced (as in the Ma-Dasgupta strong-coupling
RG procedure [38,46]), and for AFM order not to form
on large length scales, in 2D it seems necessary that the
spinon-spinon interactions are not completely random.
This scenario is evidenced by the fact that 2D SDRG
calculations on S = 1/2 systems with various coupling
distributions have so far not been able to generate a phase
similar to the RS phase identified here [36,37]. In the J-Q
model, the observation that spinons are created in pairs
(spinons and antispinons) when VBS domains are formed
already implies a correlation that favors closer typical
distance between a spinon and the nearest antispinon
because the domain walls will provide an effective attrac-
tive potential due to the domain-wall energy increasing
with distance between a spinon and antispinon site con-
nected by a wall. There is, however, potentially also another
effect; namely, the effective magnetic interactions between
the spinons are likely mediated mainly through the domain
walls. The putative role of domain walls as mediators of
spin correlations was mentioned in Ref. [18] but was not
developed into an actual mechanism suppressing AFM order
and causing the singlet formation in the RS state. Here we
provide evidence for such a mechanism within our models
on the square lattice. We note that the effective interactions
should have the same bipartite nature as the microscopic
interactions in the pure system, as was discussed generically
in Ref. [18] (and earlier in specific cases, e.g., in Ref. [111]).

A. Uniform domain wall

First, let us consider a uniform domain wall in the pure J-Q
model in its VBS state. According to the DQC theory [74],
the thickness of a domain wall between VBS domains, across
which the angle ¢ defined in Fig. 3 changes by A¢ = 7/2, is
not governed by the standard correlation length £ but by a
longer length scale &' (i.e., this length diverges faster than &
as the DQC point is approached). This second length affects
the scaling of the energy density of the domain wall as the
critical point is approached [75,89], which may also have a
counterpart at the AFM-RS transition. We only mention this
here and do not explore the domain-wall thickness further.
Instead, we discuss the spin gap of a domain wall, i.e., the
energy difference between the S = 0 ground state and the
lowest S = 1 state in a system with adomain wall imposed by
boundary conditions.

FIG. 23. Domain wall on a 32 x 32 lattice for a system with
J =0, Q = 1. The bonds are colored according to the convention
in Fig. 3, and the line thickness represents the expectation value
—(S;-S;). The left and right open boundaries are modified at
the Hamiltonian level to lock in VBS patterns differing in angle
by A¢ = x/2. Note that a 2 x 2 plaquette with equal correlation
on all edges seen in the middle of the system corresponds to the
VBS angle ¢ = n/4.

Figure 23 shows an example of a domain wall, where
the bond thickness on a 32 x 32 lattice corresponds to the
magnitude of the spin correlation on that bond, and the
colors of the bonds are coded as in Fig. 3. The boundary
conditions are periodic in the vertical direction, but in the
horizontal direction the interactions are modified (see
Ref. [89]) so that the edges are locked into VBS realizations
differing by the angle A¢ = 7/2 of an elementary domain
wall. Here it should be noted that the length scale over
which the angle ¢ changes in Fig. 23 is not the intrinsic
domain-wall width because the location of the wall also has
quantum fluctuations that smear it out when the expectation
values are computed. The spin gap of the wall is still a
completely well-defined quantity, as long as the S =1
excitation (observed, e.g., with the spinon strings illustrated
in Fig. 6) is not repelled from the wall. We have confirmed
that the excited spin is attracted to the domain wall (which
by itself implies, by energy minimization, a smaller gap on
the wall than in the bulk VBS away from the wall).

The spin gap is obtained by simply taking the difference
between total ground-state energies computed in the two
spin sectors. Figure 24 shows the results for the uniform
system without domain walls (obtained with fully periodic
L x L lattices) and with domain walls on lattices with two
different aspect ratios, as a test of the expected independ-
ence on the lattice geometry when L — oo. For small
systems with a wall, the gap is strongly influenced by the
boundary modifications, which here extend three rows into
the system on each side, and one should not draw any
conclusions on the differences between the system with and
without the domain wall until L is much larger and the wall
has converged to its intrinsic thickness. For large L, it is
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FIG. 24. Singlet-triplet gaps of the nonrandom system at J = 0,
Q =1 with and without a domain wall. The bulk VBS gap
corresponds to the L — oo limit of the results for the system with
periodic boundaries. For systems with a domain wall (illustrated
in Fig. 23) induced by modified open boundaries in the horizontal
direction, two different aspect ratios L, /L, are considered as a
check of a unique intrinsic gap of the domain wall when L, — 0.

clear that the gap on the domain wall A/Q= 1.5 is
significantly smaller than in the bulk A/Q ~ 1.7, as one
might expect just from the fact that the domain wall has
weaker order, i.e., more fluctuations, than the bulk VBS.
Thus, in a nonrandom system, a domain wall will be a more
effective mediator of correlations, and thereby of effective
interactions between impurity spins, than in the bulk VBS.

B. Local susceptibility

The above results for a pure infinitely long domain wall
should be taken only as suggestive of enhanced spinon
interactions along domain walls in the disordered system.
We can obtain further evidence by examining the spatial
variations of the local susceptibility, Eq. (15), for individual
disorder realizations (see Ref. [97] for similar calculations
for a diluted Heisenberg system). A large susceptibility can
be taken as a sign of a small local gap through the sum rule
(here written only for 7' = 0)

Zloc(r) = 2[) da)w_lsloc(r’ w)v (19)

where Sj,.(r, ) is the local dynamic spin structure factor,
which satisfies another sum rule,

|7 d0Si(r.0) = siu) = (535 = 20
0

For any finite system, the spectral weight in S, (r, ®) does
not extend all the way down to @ = 0, and in a single-mode
approximation, where there is only a single 6 function at
@ = A, we can extract the local gap as A(r) = 2S,.(r)/
Zi0e(Y) = [2%10¢(r)] 7. In the realistic case where there is a
broader distribution of spectral weight, y..(r) can still be
regarded as a proxy for the typical local low-energy scale,
and it should then also be a measure of the local ability

FIG. 25. Visualization of the local susceptibility for the same
coupling realization of the random-Q model for which the VBS
domains are illustrated in Fig. 8 and with the same hand-drawn
domain boundaries (turquoise curves). The values of the suscep-
tibility defined in Eq. (15) are rescaled so that the maximum is 1,
and the color coding is shown on the bar on the right side. Note
that in some cases, a nexus of four domain walls is dark because it
does not correspond to a spinon. This can be seen by comparing
with Fig. 8, where it can be seen that the cases in question involve
only two different domains (thus, no spinon is present).

of a region of the system to mediate effective spin-spin
interactions.

In Fig. 25, we show the spatial dependence of the local
susceptibility for the same Q disorder realization as in the
illustration of VBS domains in Fig. 8. Several bright spots
on the susceptibility map can be observed, and many of
them can be matched with meeting points of four VBS
domain walls, where spinons should localize. Naturally, the
sites on which the spinons reside should have enhanced
susceptibility (and note that a single spinon will be spread
out over several sites due to quantum fluctuations). There
are also bright regions in Fig. 25 along many of the domain
walls, while in the bulk of large VBS domains, there are
no bright spots. These observations support the notion that
the domain walls act as mediators of spinon-spinon
interactions, which should play an important role in the
formation of the RS state.

C. Spinon strings

As seen in Eq. (19), the local static susceptibility repre-
sents an inverse-frequency weighted average over a local
dynamic response function. By selection rules, the relevant
excited states have total spin § = 1. We can also access
specifically the lowest S =1 state by projector QMC
simulations in the extended valence-bond basis with two
unpaired spins, as we discuss in Sec. IVA 2. Previously,
we used the mean length of the spinon strings in this basis
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(see Fig. 6) as a means to detect the AFM-RS transition. The
strings can also provide spatial information in the form of the
site-dependent string density, which for a string with 7 sites
in a given configuration (transition graph) is p, = 1/n for
sites r covered by the string and O otherwise [ 112]. Averaging
over the simulation, we obtain the mean string density
p(x,y), which should reflect the spatial structure of the
lowest S = 1 wave function. A quantity similar to the string
density was previously studied in a site-diluted Heisenberg
model at the percolation point, and it gave useful information
on the nature of quasilocalized moments in that case [97].
In the picture we outline for the RS state, the lowest S = 1
state should be formed mainly from the localized S = 1/2
spinons corresponding to breaking some of the singlets
formed among groups of spinons. In a large system, the
lowest excitation may not involve all the spinons, but in the
relatively small systems we can access here, there is typically
some string density in all regions identifiable as spinons.
We expect a given string to be mainly confined to a region
corresponding to a localized spinon, but the strings will also
migrate between spinons (those involved significantly in the
lowest S = 1 state), and this should lead to elevated string
density also on the domain walls. This migration of spinons
should take place mainly within the same sublattice, i.e., a
sublattice-X spinon X € {A, B} will migrate predominantly
between spinons located on the X sublattice (with interesting
violations of this rule to be discussed in Sec. VID).
Fluctuations of the strings between nearby A and B spinon
regions should also take place along domain walls connect-
ing them, reflecting the anticipated role of the domain walls
in mediating antiferromagnetic spinon-spinon interactions.
In order to have a clear example of the string density in
regions of spinons and domain walls, we show a case of the
random-J model with a small number of spinons in Fig. 26.
Here the domains are larger than in the previous random-Q
instance considered (Figs. 8 and 25), and in Fig. 26(a), one
can clearly identify four cases of meeting points of four
domain walls. Accordingly, in Fig. 26(b) there are four
islands of high string density (where the periodic boundary
conditions should be noted). The two upper islands have
much higher integrated string density than the other two,
indicating that the lowest excitation mainly corresponds to
breaking up a singlet formed between those two spinons.
On the linear color scale in Fig. 26(b), one cannot easily
detect any structure corresponding to the domain walls.
When considering instead a logarithmic scale, Fig. 26(c),
we can see channels formed in the regions corresponding
to domain walls in Fig. 26(a), though these channels are
clearly much more spread out than the domain walls
visualized as in Fig. 26(a). Note again, however, that the
representation in Fig. 26(a) is based on mean values in
which the spatial fluctuations of the domain walls are not
apparent. There are domain walls also within the com-
pletely dark regions, but those walls do not represent short
paths connecting spinons. The spinon-spinon interactions

FIG. 26. Example of domain structure and spinon string density
for an instance of the bimodal random-J model. In (a), the bonds
are color coded as in Fig. 8. The mean spinon string density
p(x,y) is graphed on a linear scale in (b), with the color bar
corresponding to p € [0,0.002]. The actual maximum value is
p~0.017, but all p > 0.002 are shown as white in order to make
the weaker features more visible. In (c), the color scale is for
In(p) € [-15,-3] (the full range of the computed values). The
labels 1-4 for the spinon regions in (b) are referenced in Fig. 28.

should be carried mainly along the shortest domain walls
connecting spinons.

In Figs. 26(b) and 26(c), checkerboard patterns can be
observed in the spinon regions. The pattern arises from the
sublattice imbalance of the strings, which always cover an
odd number of sites and the end points of which always stay
on the same sublattice. Thus, the string density originating
from an X-sublattice spinon X € {A, B} is higher on the X
sublattice.

041040-23



LIU, SHAO, LIN, GUO, and SANDVIK

PHYS. REV. X 8, 041040 (2018)

D. Dynamic spinons

The string density shown in Figs. 26(b) and 26(c) is the
total density, with equal contributions from the A and B
sublattice strings. Figure 27 shows the A and B densities
separately. Here we can see clearly that the A and B strings are
attracted predominantly, but not exclusively, to different
regions of the lattice. The small but noticeable coexistence
of the two spinon strings within the same regions requires
dynamical aspects of the spinons that are not captured within
the essentially static picture of the localized spinons that we
have had in mind throughout the discussion of the results
so far. In particular, the results in Fig. 27 imply that one
cannot consider a region of high string density as occupied
by either a spinon or an antispinon, but there is some degree
of both spinon and antispinon in each vortex region.

As apparent from the basic picture of a spinon in Fig. 3, we
can attach sublattice labels A and B to spinons and anti-
spinons, respectively, as we have frequently done. Thus,
a spinon can be characterized by two labels, the spin-z
component ¢ € 1, as well as the sublattice label X €
{A, B} (spinon, antispinon). If we consider two regions, 1
and 2, in which spinons can exist, a singlet can be written as

Vs = ar(Tiados —d1atos) + ac(Tipdoa = LiT24),
(21)

FIG. 27. The total string density p in Fig. 26(b) resolved into
contributions from the individual A [p, in (a) and (c)] and B [pp
in (b) and (d)] strings. The scale is linear in (a) and (b), spanning
the range [0, 0.003] (and white is used for larger values, up to
0.0097 for p, and 0.017 for pp). In (c) and (d), the same data are

shown on a logarithmic scale, with the color bar corresponding
to In(p, ). In(pp) € [-15, =3].

where 1,4 means that the spinon in region 1 is on sublattice
A with spin 1, etc., and we demand that the two spinons
cannot simultaneously occupy the same region. If region 1
is predominantly occupied by the spinon (i.e., it sits on
sublattice A) and region 2 is occupied by the antispinon, then
we consider the first term as the regular (R) term and the
second (C) term is the cross term, and |ag| > |ac|. Naturally,
it is the details of the disordered couplings that determine
which of the terms is the regular one—essentially, as in the
static spinon picture. The static description implies that
ac = 0, but what we see in Fig. 27 is that cross terms in
fact must exist, not only in the simple two-spinon system but
also in systems with more than two spinons. Thus, it is not
completely correct to say that disorder leads to localized
spinons of type A or B as dictated by the VBS vortices and
antivortices, but the physics is more complicated and
involves quantum fluctuations that exchange not only the
spins forming singlets but also the sublattice labels of the
different spinon regions, with the constraint of a total-spin
singlet and equal numbers of A and B labels.

In the simple picture of a spinon as a vortex in the VBS
structure as drawn in Fig. 3, the unpaired spin is tied to the
core of the VBS vortex. It seems unlikely that the VBS
vortices in a disordered system can migrate substantially,
since they are formed due to the local random environment.
The unpaired spins, however, can migrate, and this is made
easier owing to the presence of valence bonds longer than
the shortest bonds in the simple picture in Fig. 3. The
longer valence bonds also connect only spins on different
sublattices, and in the case of a single VBS vortex on an
infinite lattice, the unpaired spin cannot dissociate com-
pletely from the vortex core as long as there is VBS order
and the probability of very long bonds decays exponen-
tially with the bond length. Thus, an X-type spinon X €
{A, B} is the composite object of a VBS X-type vortex and
an unpaired spin on sublattice X. However, in the case of a
disorder-induced vortex-antivortex pair, there will be some
probability of an unpaired spin on the A sublattice to
migrate to the antivortex associated with the B sublattice,
and vice versa. Thus, the unpaired spins are not completely
tied to the VBS vortices on their own native sublattices.
Here we consider the unpaired spins as the spinons (on
sublattice A) and antispinons (on sublattice B) and refer to
the VBS vortices and antivortices as separate objects. A
spinon (antispinon) is still predominantly associated with a
VBS vortex centered on sublattice A (antivortex centered
on sublattice B). We disregard the presumably low prob-
ability of a spinon and antispinon existing simultaneously
at the same VBS vortex or antivortex.

It is important to note that there is no symmetry
analogous to the SU(2) symmetry of the spins in the
sublattice labels; instead, one should think of the spinons
and antispinons as moving in different random potentials
(likely with some repulsive interactions between spinons
and antispinons in the same vortex region, though we do
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FIG. 28. Spinon wave-function components for singlet and
triplets of two spinons and two antispinons, with the circles in
order ;i corresponding to the bright (spinon) regions in Fig. 26.
Spinons (on sublattice A) and antispinons (on sublattice B) are
denoted by solid and open circles, respectively, and singlet pairs
are indicated by lines connecting circles. Unpaired red circles
correspond to up spins (or other triplet states of the pairs). The
components enclosed by solid green squares represent the
dominant components of the wave functions as discussed in
connection with Fig. 27, and the dashed green boxes indicate
further regular components in the triplet sector. All other
configurations correspond to cross terms existing when spinons
and antispinons can trade places.

not quantify this). It is remarkable that these potentials, as is
apparent in Fig. 27, both have minimums at roughly the
same locations (the VBS vortices), instead of the spinons
being repelled by the VBS antivortices and antispinons
being repelled by the VBS vortices. This suggests a picture
of the excited spinons as itinerant particles that can tunnel
through channels corresponding to the domain walls
between regions attracting both A and B spinons but with
a typically large difference in the depth of the A and B
potential wells (A and B spinons being more attracted to
type A and B VBS vortices, respectively). The excitations
(of which we study only the lowest one here) should be
localized in the sense that a given spinon migrates only
substantially between a limited subset of the VBS vortices.

It is instructive to construct a general wave function for
four spinons satisfying the above constraint and to analyze
the A and B string densities in Fig. 27 within that formal
framework. Figure 28 shows all possible singlet and triplet
components of wave functions for two spinons and two
antispinons. Here, the four circles are arranged to corre-
spond closely to the four regions of elevated string density
in Fig. 27 (which form roughly the corners of a square). The
single dominant bright spot occupied by the B string and the
two bright spots (one of which is dominant) containing the A
string can be achieved in the triplet channel if the predomi-
nant wave-function components are the two enclosed by the
solid-line boxes in Fig. 28. The dashed-line boxes enclose
the two other triplet components corresponding to the same

A, B arrangements but with the dimmer A-string spot in
Fig. 27(b) having one of the unpaired spins instead of the
brighter spot. Based on these triplet components, we can
deduce that the dominant singlet components are those two
indicated by squares. All other components, in both the
singlet and the triplet sectors, are analogues of the cross term
in the two-spinon state Eq. (22), and they have smaller
amplitudes that can, in principle, be roughly estimated from
the integrated densities within the different spots in Fig. 27.
Doubly occupied vortices should also have some contribu-
tions in the wave function, but for simplicity we neglect
those here.

It is not completely clear what the consequences are
of these dynamical spinon effects. Most likely, the fluctua-
tions are secondary effects, and the RS fixed point can
be realized even with frozen A, B labels. However, this
hypothesis still needs to be tested. It is possible that the A-B
exchange processes actually contribute to the effective
spinon-spinon interactions and, thus, further reinforce the
scenario of spinon-antispinon singlet pairing as the mecha-
nism responsible for the RS phase.

VII. CONCLUSIONS AND DISCUSSION

A. Summary

Using the J-Q model, we demonstrate that an RS phase
can be induced by disorder in a quantum-spin system even
though all microscopic interactions are bipartite, lacking
the geometric frustration that so far was believed to be a
necessary ingredient for this type of 2D state. The RS phase
is characterized by algebraically decaying mean spin and
dimer correlations, with distance dependence r~2 and
o r~*, respectively. For the continuous AFM-RS transition,
we have sufficient evidence to conjecture universal critical
exponents: v = 2, n = 0, and z = 2 (with v affected by the
largest uncertainty). The 2 form of the spin correlation
function also applies inside the RS phase, and this implies
the exponent relation # = 2 — z based on standard defi-
nitions of critical correlation functions [33]. The dynamic
exponent z increases from 2 as the RS phase is entered
according to our results for a corresponding power-law
divergent uniform and local magnetic susceptibilities. The
observed consistency of the scaling forms for y,(7) and
Yioc(T) [Egs. (16) and (18)], with the latter derived under
the condition of the exponent relation # = 2 — z obtained at
T = 0, provides strong evidence for a critical RS phase in
which the standard quantum-critical scaling laws apply.

The key physical mechanism underlying the RS phase
argued in the case of the triangular lattice by Kimchi et al.
[19] and observed directly here in our simulations of the
square lattice is the pairwise creation of localized spinons
(spinon-antispinon pairs) as the VBS is broken up into
domains in the presence of disorder (which is similar also
to the previously observed RS state arising out of the
dimerized phase of the J-Q chain [41]). This correlated
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spinon distribution leads to a network of weakly interacting
spinon pairs and no long-range AFM order, in sharp contrast
to the case of weak AFM order in systems with completely
randomly distributed unfrustrated magnetic moments. We
also argue that the VBS domain walls connecting spinons act
as channels mediating the effective spinon-spinon inter-
actions within the pairs. Moreover, we find a dynamical
effect whereby the individual spatial regions containing the
spinons cannot be associated purely with spinons or anti-
spinons, but there is some mixing originating from migra-
tion of unpaired spins between the VBS vortices and
antivortices. A given VBS vortex can still be classified
either as predominantly a spinon or an antispinon according
to the vortex type, and the mixing may not be necessary for
describing the RS fixed point.

Because of the presence of spinons and their dominant
role in the physical properties of the RS state, this state
should not be referred to as a valence-bond glass, which is a
term normally reserved for a state with random arrange-
ments of short valence bonds, with critical dimer correla-
tions but no liberated spinons [77] (though in the literature
other kinds of states have also been referred to using the
same term, e.g., in Refs. [13—15]). The spin correlations in
the valence-bond glass were not discussed explicitly in
Ref. [77], but they should decay exponentially in such a 2D
state with only short valence bonds.

It is interesting to compare the critical exponents we
obtain here at the AFM-RS transition with those at the
transition between a superfluid and a Bose glass in the
Bose-Hubbard model with random potentials [33]. Though
the symmetries are different, the superfluid breaking U(1)
symmetry and the AFM state considered here breaking
O(3) symmetry, the exponents that we obtain here appear
to be the same or satisfy the same bounds. At the Bose-
glass transition in D dimensions, the dynamic exponent
z = D, the same as z = 2 = D that we find here. Also, the
correlation length exponent v = 2 at the Bose-glass tran-
sition, which we are not able to fully confirm in the case of
the AFM-RS transition but is conjectured based on the
results shown in Fig. 17. Moreover, in the Bose-glass case,
the anomalous dimension should satisfy the bound 7 > 0.
The mean spin correlations decaying as 1/r> in the RS
phase and at the AFM-RS phase boundary corresponds to
n =0 at the transition and the bound is satisfied. Apart
from the obviously different symmetries, the BG phase
is a Griffiths phase, which we argue is not the case for the
RS phase. Therefore, the two transitions should not be
expected to belong to the same universality class. The fact
that the exponents nevertheless appear to be the same is
intriguing and deserves further study.

It appears most likely that the RS state identified here
is the same one, in the RG sense, as those previously
conjectured in frustrated systems [13-20], though the lack
of definitive quantitative results in the previous works (e.g.,
exponents governing various power-law behaviors) makes

it difficult to definitely ascertain this at the moment. For
example, it was argued that the low-T" susceptibility follows
a Curie form in the frustrated honeycomb Heisenberg
model in the RS phase [16], while we demonstrate here
a T~¢ behavior with varying a <1 in the random J-Q
model (and a — 0 as the AFM phase is approached).
However, ED studies of lattices with only up to approx-
imately 20 sites cannot be used to reliably address the
detailed form of the divergence, as we see even with much
larger systems here. In the work of Kimchi et al. [18] as
well, it was not possible to obtain quantitative values of
most of the exponents pertaining to the RS phase in the
triangular lattice, though we note a more recent work in
which scaling forms for the heat capacity (which we have
not yet investigated) were obtained under various condi-
tions and compared with experiments [19]. We note, in
particular, that the previous works have not discussed any
details of the AFM-RS phase transitions for which we
obtain specific results here on power laws both at 7 =0
and T > 0. In any case, there are no apparent contradictions
between our RS state and that of Kimchi et al., and, given
that the proposed mechanisms underlying the formation of
these states are similar, a common RS fixed point appears
plausible. We still discuss below our results in the context
of other possible scenarios.

B. Fixed points

In the case of the triangular lattice, it was pointed out that
the RS phase may eventually, at the longest length scales,
be unstable to the formation of a spin-glass state [18].
Similarly, the square-lattice random J-Q model might
possibly be unstable to the formation of weak AFM order,
though we see no signs of this up to the largest lattice
studied here (L = 64). The fact that we observe such good
scaling up to these system sizes at the very least implies that
an RS fixed point exists (in the models studied here or
outside but close to the present model space) and is
responsible for the observed behaviors. The question then
is whether there is one or two fixed points—one for
bipartite interactions and one for frustrated interactions
(perhaps above some critical strength of the frustration).
We discuss possible RG scenarios for either case.

(1) There is a single RS fixed point. Let us call this the
bipartite RS fixed point (BRSFP), even though it may
attract also frustrated systems. A random system flowing to
this fixed point has a true RS ground state. One possibility
is that the BRSFP is stable for bipartite interactions but
unstable when frustrated interactions are included; in that
case, an interesting question is whether the fixed point is
unstable in the presence of arbitrarily weak frustration or
only above a critical frustration strength. Adapting the
picture of Kimchi et al. [18] to this scenario, the flow away
from the BRSFP would eventually lead to a spin-glass fixed
point if the frustration is sufficiently strong [113]. Another
possibility is that the BRSFP is also unstable in many
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bipartite systems (i.e., reaching it would require fine-tuning
of parameters), and in that case the flow would be toward
an AFM ordered fixed point. Even then, provided that the
length scale at which the flow deviates from the BRSFP is
sufficiently large, there will still be experimentally observ-
able consequences of the proximity to the BRSFP fixed
point (e.g., the temperature-dependent susceptibilities stud-
ied in Sec. V).

(i) There are two fixed points: the BRSFP that we
discuss above as well as a frustrated-RS fixed point
(FRSFP). In this case, frustrated interactions, arbitrarily
weak or above a critical strength, would cause a flow
toward the FRSFP. These fixed points (both of them or
only one of them) could also require fine-tuning, in
principle. As in scenario (i), eventual flows away from
the fixed points would still lead to experimentally observ-
able consequences if the flows lead sufficiently close to the
fixed points. If different, the BRSFP and FRSFP must have
some differences in their operator contents, and there
should then be some ways to distinguish them in numerical
model studies and in experiments. As we mention above, so
far there are no explicit indications of two fixed points
based on existing numerics.

In addition to the several fixed points that we mention
above—the BRSFP, FRSFP, AFM, and the spin glass—
there could also be various other “random spin-liquid”
fixed points in a wider space of disordered frustrated and
bipartite quantum magnets. Experimentally, the question of
how to distinguish between a spin glass and a random spin
liquid has attracted considerable attention [21,114], and the
issue is as of now unresolved. On general grounds, one
would expect gapped (topological) spin liquids to be stable
to weak disorder, while gapless (algebraic) spin liquids may
generically flow to RS fixed points (either the BRSFP or
the FRSFP).

In conjunction with the RS mechanism, we discuss the
association between sublattices, VBS vortices, and spinons
in Sec. VID. When frustrated interactions are added to a
system on the square lattice, as long as the local VBS
domains remain of the columnar type, the vortices and
antivortices can still be uniquely associated with sublattices
A and B, even though the unpaired spins (the spinon strings
discussed in Sec. VI D) are not strictly confined to a given
sublattice. However, as long as the frustration is not too
strong, there will still be a sublattice preferred by the
unpaired spin in a given vortex or antivortex in the same
way as in the unfrustrated system, and the RS mechanism
we discuss should remain valid. On other nonbipartite
lattices, the division of sites into sublattices A and B is no
longer possible, but there will still be both vortices and
antivortices classified according to how the VBS angle
changes when going around a vortex. An unpaired spin
should also still be primarily associated with either a vortex or
an antivortex. As long as the effective spinon-spinon inter-
actions within a vortex-antivortex pair are antiferromagnetic,

which has been argued to be the case by Kimchi et al. [18]
in the case of the triangular lattice, the picture of dominantly
short-distance pairing of the spinons (through their lattice
correlations and interactions mediated by the domain walls)
should apply. This mechanism would again suggest a
common RS fixed point for frustrated and unfrustrated
systems, though potentially strong frustration could invali-
date the picture of local VBS domains and lead to a different
state (e.g., a spin glass, as discussed by Kimchi et al. [18]).

If indeed the BRSFP encompasses the J-Q model as
well as the multitude of frustrated quantum magnets, the
ability to study bipartite systems with large-scale unbiased
QMC simulations has significant consequences in the
context of experiments. It will then be possible to relate
observed power laws directly to unbiased calculations, e.g.,
to test relationships between the power laws for different
physical observables. Although the J-Q model does not
represent the correct microscopic interactions of specific
materials, its phases can still contain the experimentally
relevant low-energy physics. This is in the spirit of designer
Hamiltonians [115], which are tailored to realize collective
quantum states and quantum-phase transitions, while at
the same time being amenable to numerical calculations,
especially sign-free QMC simulations, on large scales
without approximations. Given some of they key results
that we obtain here, such as the =2 form of the decay of
the mean spin correlation functions and the temperature-
independent magnetic susceptibility at the AFM-RS tran-
sition (and the divergent behavior with a varying exponent
inside the RS phase), targeted calculations and scaling
analysis aiming at these specific universal characteristics
can hopefully soon be carried out also for the frustrated
models. This would allow tests of our conjecture of a
common RS fixed point for bipartite and frustrated systems.

One promising calculational route here is tensor network
states tailored specifically to disordered spin models
[116,117]. Though such calculations are certainly chal-
lenging, it may still be possible to reach larger system sizes
than in the previous exact ED and DMRG studies. There
has also been recent progress in improved DMRG methods
for disordered systems [118], which may help in reaching
larger system sizes. In the presence of weak frustration in
the J-Q model (or other relevant systems), it may be
possible to obtain some QMC results even though the sign
problem will limit the accessible system sizes and temper-
atures. In this context, it would also be useful to explore
other bases in which the algorithms are formulated, with the
goal of eliminating or strongly reducing the sign problem
in some parameter regions, as in recent work on uniform
frustrated quantum magnets [119-121].

A crucial question is whether and how the RS fixed point
(s) can be obtained in SDRG calculations. The key physical
ingredients underlying the RS phase—VBS domains and
localized spinons—are unlikely generated correctly in the
initial (high-energy) stages of the SDRG procedure applied
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directly to microscopic bipartite Heisenberg Hamiltonians;
in 1D, the method can only partially reproduce VBS
domains [41]. It is furthermore very difficult to apply
the SDRG approach to more complicated interactions like
the six-spin Q terms used here (which are difficult to deal
with even in 1D systems [41]) since many kinds of effective
couplings can be generated. It may be more fruitful to
consider SDRG calculations carried out on a suitably
constructed effective subsystem of the localized spinon-
antispinon pairs with their domain-wall-mediated inter-
actions. With the A-B sublattice correlation effect built into
such an effective model, in combination with suitable
inter- and intrapair coupling distributions, singlets should
gradually freeze out one by one in a SDRG procedure. Like
in 1D, a rare-event mechanism [38,39] would likely be
responsible for some pairing over larger distances, which is
required for obtaining power-law correlations. It would
be interesting to carry out SDRG calculations on effective
models of randomly located spinons with different degrees
of pair formation among A and B sublattice spins.

C. Experiments

A promising system for realizing a square-lattice RS
state is the quasi-2D material Sr,CuTe;_, W ,Og, which was
initially synthesized at x = 0, 0.5, and 1 [23], and more
recently also for several other values of x € [0, 1] [24,25].
The corresponding isostructural compounds Sr,CuTeOg
and Sr,CuWOg have dominant nearest- and next-nearest-
neighbor spin interactions, respectively, owing to the differ-
ent orbital properties of the plaquette centered Te and W ions.
With random distribution of these ions, it was argued in
Ref. [24] that an RS-type state forms in a sizable region of
0 < x < 1, though detailed comparisons with specific RS
predictions were still lacking. In Ref. [25], it was instead
argued that the state of the random system is a valence-bond
glass with a singlet gap. Within our scenario, the RS state on
the square lattice could form as a consequence of couplings
locally favoring VBS domains, and this could possibly be the
case when the /| and J, couplings are mixed at random, even
though the pure J; and J, systems are magnetically ordered
(with Néel and stripe AFM order for J; and J, couplings,
respectively). Note that the uniform frustrated Heisenberg
model with variable J,/J; has a VBS phase in its phase
diagram [68-70].

An intriguing observation [24,25] is a divergent low-T
susceptibility for x € [0.2,0.5]. This divergence was inter-
preted as a Curie tail originating from isolated magnetic
moments in the random systems. In light of the findings we
present here for the susceptibility in the RS state, we reanalyze
the susceptibility data of Ref. [25] (Fig. 2) in the regime of
Te-W mixing x where RS physics may pertain. Figure 29
shows the low-temperature susceptibility for the W fraction x
in the range 0.2-0.5 fitted to the form y,, = yq + ¢7%. We
use two different temperature windows for these fits, 77 < 4 K
(shown asred curves) and 7" < 3 K (blue curves). In all cases,
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FIG. 29. Experimental susceptibility data (black circles) for
the random quantum magnet Sr,CuTe;_ W, O¢ from Ref. [25].
The panels correspond to W fractions x = 0.2, 0.3, 0.4, 0.5, as
indicated. Logarithmic scales are used for all axes. The curves are
of the form y, = yo + ¢T~¢, with red and blue corresponding,
respectively, to 7 < 4 K and T < 3 K data used in the fits. The
temperature exponents (a; for 7 <4 K and a, for 7 < 3 K)
obtained from the fits are also indicated in the panels.

we find that the divergence is slower than the Curie law.
For the T < 4 K fits, we obtain exponents a in the range
0.73-0.82, while the range is 0.62—0.73 when the lower cutoff
is used. An important observation is that the exponent
consistently decreases when the temperature cutoff is
reduced. This makes it seem unlikely that the low-T suscep-
tibility follows the Curie law, though we note that reasonable
fits can also be obtained with a = 1; these fits work
approximately up to considerably higher temperatures than
those shown in Fig. 29, but the low-7" data are not as closely
matched as with the fits in Fig. 29.

While these data fits are not conclusive, the findings
motivate further experimental studies and analysis based on
the concrete RS predictions we report here. Experiments at
still lower temperatures would be desirable in this regard.
It would be particularly interesting to test our prediction
of a temperature-independent low-7" susceptibility at the
AFM-RS transition.

D. Future extensions

Many interesting QMC calculations are called for as
extensions of the initial study of the random J-Q model
presented here. For example, the evolution of the RS phase
as a function of an external magnetic field (which was
recently studied in the triangular lattice [19]) is very
interesting theoretically and also from the experimental
perspective. The field can be included in SSE simulations
of the J-Q model [122,123]. Dynamical signatures, e.g., the
dynamic spin-structure factor, can also be studied using SSE
supplemented by analytic continuation techniques [124],
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and it will be interesting to compare the 2D RS phase with
the random-exchange Heisenberg chain, which was also
recently studied with the abovementioned techniques [125].
We also note that the specific heat played a major role in the
experiments in Ref. [25] and also theoretically in the context
of other materials in Ref. [19]. We do not report specific heat
QMC results here because they require significantly more
computational resources than the susceptibility. We plan to
calculate the specific heat in future work.

The diluted J-Q model also deserves further studies.
Here we merely confirm that it does not have an RS ground
state but hosts weak AFM order. However, the system
mixes aspects of vacancy-induced moments and RS phys-
ics, and potentially, it could exhibit clear RS behaviors on
intermediate length scales; e.g., it may show an anomalous
divergent susceptibility similar to that of a system with RS
ground state. This kind of behavior was indeed suggested
recently in the context of random spin liquids in frustrated
quantum magnets, where experimentally one may expect
the presence of more than one type of impurity moment,
including localized spinons, and these different interacting
moments may collectively cause a non-Curie susceptibility
[126]. Given the similarities we discuss here between the O
terms and frustrated interactions, it would be interesting
to investigate the susceptibility and other experimentally
relevant 7 > 0 properties of the diluted J-Q model. Other
variants of the J-Q model can also be studied in order to
test the universality of the RS-AFM transition and the RS
state, e.g., the J-Q, model with two instead of three singlet
projectors in Eq. (1) and Fig. 1 [127].
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