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Radiation-pressure-induced optomechanical coupling permits exquisite control of micro- and meso-
scopic mechanical oscillators. This ability to manipulate and even damp mechanical motion with light—a
process known as dynamical backaction cooling—has become the basis for a range of novel phenomena
within the burgeoning field of cavity optomechanics, spanning from dissipation engineering to quantum-
state preparation. As this field moves toward more complex systems and dynamics, there has been growing
interest in the prospect of cooling traveling-wave phonons in continuous optomechanical waveguides.
Here, we demonstrate optomechanical cooling in a continuous system for the first time. By leveraging the
dispersive symmetry breaking produced by intermodal Brillouin scattering, we achieve continuous-mode
optomechanical cooling in an extended 2.3-cm silicon waveguide, reducing the temperature of a band of
traveling-wave phonons by more than 30 K from room temperature. This work reveals that optomechanical
cooling is possible in macroscopic linear waveguide systems without an optical cavity or discrete acoustic
modes. Moreover, through an intriguing type of wave-vector-resolved phonon spectroscopy, we show that
this system permits optomechanical control over continuously accessible groups of phonons and produces
a new form of nonreciprocal reservoir engineering. Beyond this study, this work represents a first step
toward a range of classical and quantum traveling-wave operations in continuous optomechanical systems.
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I. INTRODUCTION

The ability to control and harness optical forces
within mesoscale systems has enabled a range of cavity-
optomechanical devices as the basis for numerous classical
and quantum operations [1]. Integral to these developments
is a technique called sideband cooling, in which dynamical
backaction is used to produce a net cooling effect on a
mechanical oscillator [2–5]. In the framework of cavity
optomechanics, this is accomplished using an optical cavity
to enhance and manipulate optomechanical coupling to
discrete phonon modes. This strategy for optomechanical
cooling is central to a host of novel functionalities and
dynamics, ranging from precisionmetrology [6] to quantum-
state generation [7–9] and fundamental tests of quantum
decoherence [10]. Beyond single-mode cavity optome-
chanics, intriguing opportunities are presented by extended
optomechanical systems that possess many degrees of
freedom. For example, multimode optomechanical devices

[11–14], cavityless optomechanical systems [15], optome-
chanical arrays [16–20], and waveguide-coupled resonators
[21–24] offer new strategies for everything from reservoir
engineering [19,25,26] to quantum networking on a chip
[13,21–24].
An intriguing limiting case of these systems is known as

continuum optomechanics [27], in which optical fields are
used to control and manipulate sound waves in a transla-
tionally invariant medium [27,28]. These extended, opti-
cally transparent systems give rise to a continuum of
optically addressable acoustic states [29] and could open
the door to novel forms of squeezing [13], optomechanical
quantum networks [22,30,31], and quantum nonlinear
optics [32] with unprecedented optical and acoustic band-
width. An important step toward these novel operations is
the ability to selectively heat or cool traveling-wave phonon
fields within continuous optomechanical waveguides.
Moreover, this form of continuum optomechanical cooling
has great potential for controlling noise and shaping opto-
mechanical interactions in the context of important Brillouin-
based photonic technologies.
As a form of distributed optomechanical coupling,

Brillouin interactions could provide a promising avenue
for controlling groups of phonons in continuous systems
and have recently been proposed as a potential method for
achieving continuum optomechanical cooling [33,34].
While spontaneous Brillouin scattering has been used to
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cool phonon modes within discrete cavity-optomechanical
systems [35], Brillouin cooling in a continuous system
has yet to be demonstrated. Recent theoretical work has
proposed the use of high-gain Brillouin-active waveguides
to achieve continuum optomechanical cooling [33].
However, this analysis suggested that cooling of this type
might be beyond the reach of most experimental systems.
In this paper, we demonstrate phonon cooling in a

continuous optomechanical system for the first time.
Using a phase-matched Brillouin process in a multimode
optomechanical waveguide, we are able to selectively
address and cool phonons within a continuous band of
accessible states—without the need for an optical or
acoustic resonator. Because of the wave-vector-selective
nature of this process, we show that Brillouin interactions
produce much larger cooling rates than previously pre-
dicted; the interband Brillouin coupling in this macroscopic
(centimeter-scale) waveguide system is sufficient to reduce
the temperature of a band of traveling-wave phonons by
more than 30 K from room temperature. Leveraging this
phase-matched interaction, we perform wave-vector-
resolved phonon spectroscopy and demonstrate wave-
vector-tunable phonon control. In this way, we are able
to selectively probe and cool continuously accessible
groups of phonons simply by tuning the wavelength of
the incident light. In addition, we develop a succinct
theoretical framework to understand our observations and
present general guidelines for continuum optomechanical
cooling in extended waveguide systems. Since this con-
tinuous system does not possess discrete acoustic modes,
we show that this type of cooling can be viewed as a form of
wave-vector-selective reservoir engineering that yields
nonreciprocal phonon transport, opening the door to new
strategies for managing noise in Brillouin-based photonic
systems.

II. RESULTS

We demonstrate continuous-mode phonon cooling by
leveraging a guided-wave optomechanical process termed
intermodal Brillouin scattering [36,37], within a 2.3-cm-
long photonic-phononic waveguide. This optomechanical
silicon waveguide is fabricated from a single-crystal
silicon-on-insulator (SOI) wafer (for more information,
see Appendix E). Throughout the device, light is guided by
total internal reflection using a ridge waveguide structure,
which supports low-loss guidance of TE-like symmetric
and antisymmetric spatialmodes [seeFigs. 1(hii) and 1(hiii)],
with propagation constants given by k1ðωÞ and k2ðωÞ,
respectively. By removing the oxide undercladding, the
suspended interaction regions [see Fig. 1(c)] also support
a 6-GHz guided elastic wave, which mediates efficient
(GB ≅ 470 W−1m−1) nonlinear coupling between the two
optical modes. This phonon field has an intrinsic dissipation
rate [Γ=ð2πÞ] of 14.2 MHz, corresponding to a decay length
(lc) of 60 μm. The cross section of this device is designed

for maximal intermodal Brillouin coupling, with transverse
dimensions identical to the device studied in Ref. [37].
This hybrid photonic-phononic waveguide structure is con-
tinuously suspended by an array of nanoscale tethers,
permitting seamless traveling-wave couplingover centimeter
length scales.
We realize optomechanical cooling in this continuous

waveguide system through spontaneous Brillouin scattering.
Probe light of frequency ωp [green in Fig. 1(a)] is coupled
in the symmetric optical spatial mode of the multimode
optomechanical waveguide, which interacts with thermally
driven phonons through spontaneous intermodal Brillouin
scattering. Forward- and backward-propagating phonons
produce Stokes and anti-Stokes sidebands, respectively.
Both of these scatteredwaves propagate in the antisymmetric
spatial mode of the Brillouin-active waveguide [Figs. 1(a)
and 1(b)].
In this system, intermodal Brillouin scattering produces a

form of phase-matching-induced symmetry breaking—or
decoupling between the Stokes (heating) and anti-Stokes
(cooling) processes—that is quite distinct from that of
sideband cooling in cavity-optomechanical systems. This
symmetry breaking arises because the Stokes and anti-
Stokes processes are mediated by distinct groups of
phonons that propagate in opposite directions; specifically,
phase matching requires that qsðΩBÞ ¼ k1ðωpÞ − k2ðωsÞ
and qasðΩBÞ ¼ k2ðωasÞ − k1ðωpÞ, where ωs and ωas are the
respective Stokes and anti-Stokes frequencies, and qsðΩBÞ
and qasðΩBÞ are the respective propagation constants of
the Stokes and anti-Stokes phonons at the Brillouin
frequency ΩB. As a result, the Stokes process is mediated
by a forward-propagating acoustic field, while the anti-
Stokes process is mediated by a backward-propagating
acoustic field, as illustrated in Figs. 1(d)–1(f) (for further
discussion, see Ref. [37]). Thus, phase-matched forward-
traveling phonons experience heating, while phase-matched
backward-traveling phonons experience cooling [see
Figs. 1(b) and 1(g)]. Note that these behaviors are in contrast
to those of forward intramodal Brillouin processes, which do
not exhibit phase-matching-induced symmetry breaking or
produce cooling [38]. After traversing the Brillouin-active
waveguide, the probe and spontaneously generated side-
bands are demultiplexed using an integrated mode multi-
plexer, which routes the Stokes and anti-Stokes light off
chip for spectral analysis, as illustrated in Fig. 1(a). As shown
in Fig. 1(b), the spectral width of each sideband (Γs, Γas)
gives a direct measure of the associated dissipation rates and
lifetimes of the phonons that mediate the Stokes and anti-
Stokes processes, respectively [39].
Through this phase-matched process, spontaneous inter-

modal Brillouin scattering directly modifies the thermody-
namic state of the traveling-wave Stokes and anti-Stokes
phonon fields. For the phase-matched backward-propagating
(anti-Stokes) phonons, the presence of a strong probe field
produces an additional damping mechanism; phonons
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annihilated by this scattering process are converted to anti-
Stokes photons, which escape the system at a rate much
greater than the intrinsic dissipation rate of the phonon
field. As a result, the anti-Stokes process reduces the
average lifetime and occupation of the phonon field;
cooling of the anti-Stokes phonons is manifest as both a
reduction in the phonon lifetime—or broadening of the
spontaneous linewidth (Γas)—and a decrease of the anti-
Stokes scattering efficiency (eas). By contrast, the presence
of a strong probe field yields linewidth narrowing of the
Stokes sideband and increases the Stokes scattering effi-
ciency (es). These two intrinsically decoupled processes
occur simultaneously, heating forward-propagating pho-
nons and cooling backward-propagating phonons in this
continuous-waveguide system [see Fig. 1(g)]. Under these

conditions, the forward- and backward-propagating pho-
non fluxes are no longer balanced, yielding a form of
nonreciprocal phonon transport [see Fig. 1(g)].

A. Observation of continuum
optomechanical cooling

We examine the effects of continuum optomechanical
cooling by performing optical heterodyne spectroscopy on
the spontaneously scattered light. Figure 2(a) diagrams the
experimental setup used for these measurements, which
are conducted at room temperature and atmospheric pres-
sure. Probe light of wavelength 1535.5 nm is generated
by a continuous-wave (cw) tunable external cavity laser
and split along two paths. One arm synthesizes an optical
local oscillator (LO) for heterodyne detection by passing

(a) (b)

(d) (e) (f ) (g) (h)

(c)

FIG. 1. Panel (a) illustrates the waveguide system and basic operation scheme. Probe light (green) of frequency ωp is coupled into the
symmetric spatial mode of a Brillouin-active silicon waveguide through an integrated mode multiplexer (M1). This light interacts with
forward- and backward-propagating thermal phonon fields, which produce respective Stokes (red) and anti-Stokes (blue) sidebands that
propagate in the antisymmetric spatial mode. An integrated mode multiplexer (M2) then demultiplexes the scattered light for spectral
analysis. (b) illustrates the optical Stokes and anti-Stokes spectra produced by spontaneous intermodal Brillouin scattering due to (bi)
forward- and (bii) backward-propagating phonons, respectively. The spectral width of each sideband reveals the temporal dissipation
rates and lifetimes of the phonons participating in the Stokes and anti-Stokes processes. Panel (c) depicts the suspended silicon ridge
waveguide that guides both optical and acoustic waves. Panels (d)–(f) illustrate the energy-conservation and phase-matching
requirements for these spontaneous Brillouin processes. (d) and (e) plot the optical dispersion relations for the symmetric and
antisymmetric optical modes as well as the phonons that mediate Stokes and anti-Stokes scattering. In the Stokes process, the phonon
that mediates scattering from the initial state (open circle) to the final state (closed circle) is a forward-propagating field. By contrast, as
diagrammed in (e), phase matching dictates that the phonon responsible for anti-Stokes scattering must be a backward-propagating
wave. These two phonons must satisfy the acoustic dispersion relation for the Lamb-like acoustic mode that mediates intermodal
scattering, as shown in (f). In this system, the Stokes and anti-Stokes phonons are essentially degenerate in both Brillouin frequency and
wave-vector magnitude but propagate in opposite directions. (g) This spontaneous process simultaneously reduces the thermal
occupation hnðqÞi of phase-matched backward-propagating phonons and increases that of the phase-matched forward-propagating
phonons. As a result, an incident laser field drives the average momentum of the thermal bath of phonons out of equilibrium, producing a
net phonon flux. (hi) diagrams the cross-sectional geometry of the hybrid photonic-phononic waveguide. Panels (hii) and (hiii) plot the
x-polarized component of the TE-like symmetric [Ex

1ðx; yÞ] and antisymmetric [Ex
2ðx; yÞ] simulated mode profiles, respectively. (hiv)

shows the simulated strain profile of the 6-GHz elastic mode that mediates spontaneous intermodal scattering. Here, we plot εxx, which
is the dominant component in the intermodal acousto-optic coupling.
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the light through an acousto-optic frequency shifter, which
blueshifts the light by Δ ¼ 2π × 44 MHz. In the second
arm, the probe wave intensity is controlled using an erbium-
doped fiber amplifier (EDFA) and a variable optical attenu-
ator (VOA) before being coupled on chip. Following the

Brillouin-active waveguide, the spontaneously scattered light
is separated from the probe wave using an integrated mode
multiplexer and routed off chip, where it is combined with
the optical local oscillator for spectral analysis. By allowing
the Stokes and anti-Stokes light to interfere with the LO

(a)

(b) (c)

(d) (e)

[ ]

FIG. 2. Experimental heterodyne setup and measurements of spontaneous intermodal Brillouin scattering. Panel (a) diagrams the
heterodyne scheme used to modify and probe the phonon dynamics. Experiments are performed at room temperature and atmospheric
pressure. A cw laser source (vacuum wavelength of 1535.5 nm) is used to synthesize a strong probe wave (upper arm) and a 44-MHz
blueshifted optical local oscillator for heterodyne detection (lower arm). The probe wave intensity is controlled using an EDFA and a
VOA before being coupled on chip, where it interacts with a thermal phonon field via intermodal Brillouin scattering. The scattered light
propagates in the antisymmetric spatial mode, and then it is combined with the optical LO. The interference of the Stokes and anti-
Stokes waves with the optical LO on a photoreceiver produces unique microwave spectra centered at ΩB þ 2π × 44 MHz and
ΩB − 2π × 44 MHz, respectively. Panel (b) plots a series of Stokes and anti-Stokes heterodyne spectra at four distinct probe powers.
Note the power-dependent asymmetry between the Stokes and anti-Stokes spectra in both the peak spectral density and spectral width.
(c) shows the relative scattering efficiencies of the Stokes and anti-Stokes processes (and respective phonon occupations) as the probe
power is increased. Panel (d) plots the fitted linewidths of the Stokes and anti-Stokes spectra. The temperature is estimated using the
model derived in Appendix A. These measurements reveal that the collective lifetime of the anti-Stokes phonons is reduced, while that
of the Stokes phonons is enhanced. At a maximum probe power of 42 mW, this asymmetry in spectral width corresponds to more than
30 K of cooling or heating from room temperature. (e) plots the peak spectral density of these spectra as a function of probe power. The
overall decrease in scattering efficiencies can be attributed to the power-dependent transmission of the integrated mode multiplexer
(M2). As a first-order benchmark, the observed scattering efficiencies for the Stokes and anti-Stokes process are approximately
3.3 × 10−8, in agreement with the predicted value (3.15 × 10−8) for spontaneous forward Brillouin scattering [39].
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on a fast photoreceiver, the optical signals of interest are
converted to distinct microwave tones (of frequencyΩB þ Δ
and ΩB − Δ corresponding to Stokes and anti-Stokes optical
frequencies of ωp − ΩB and ωp þΩB, respectively), which
can then be rapidly recorded using a radio-frequency
spectrum analyzer. In this way, heterodyne spectroscopy
permits sensitive, frequency-resolved, high-resolution spec-
tral measurements of Stokes and anti-Stokes sidebands
simultaneously. Since the scattered Stokes and anti-Stokes
waves are produced by a linear scattering between the probe
and phonon fields through a spontaneous process (see
Appendix A), this heterodyne measurement reveals the
spectra of the phase-matched phonons.
From these measurements, we observe a power-

dependent asymmetry in both scattering efficiency and
linewidth of the spontaneously generated Stokes and anti-
Stokes sidebands, in agreement with our theoretical
predictions (see Appendix A). Figure 2(b) plots a series
of heterodyne Stokes and anti-Stokes spectra at various
probe powers. At low powers, the Stokes and anti-Stokes
spectra exhibit nearly identical scattering efficiencies and
linewidths. However, as the probe power increases, the
peak spectral density of the Stokes wave increases at a
rate greater than that of the anti-Stokes wave [Fig. 2(e)].
In addition, the anti-Stokes (Stokes) spectrum exhibits
appreciable spectral broadening (narrowing), revealing a
Brillouin-induced reduction (increase) in phonon lifetime
[see Fig. 2(d)]. This linewidth broadening corresponds to
a reduction in anti-Stokes phonon population by approx-
imately 11%, or 32 K of effective cooling relative to room
temperature.

B. Pump-probe experiments

A unique aspect of this system is the ability to optically
address and control groups of phonons within a continu-
ous band of acoustic states. These dynamics, which arise
from the optical phase-matching conditions, also permit
a form of wave-vector-resolved phonon spectroscopy that
allows us to measure the noise spectral density and
phonon occupation as a function of acoustic wave vector.
This demonstration illustrates a powerful type of phonon
control that is not possible in discrete cavity-optomechan-
ical systems. To examine these properties, we perform an
additional set of experiments in which we use a strong
laser field to cool a group of phonons while measuring the
phonon occupancies with a distinct probing field.
As illustrated in Fig. 3(a), these experiments use an

additional continuous-wave pump source of frequency

ωð2Þ
p (distinct from the probe frequency ωð1Þ

p ) to cool the
phonon field through spontaneous Brillouin scattering.
Using a much weaker probe field, we simultaneously
measure the scattered probe sidebands over a range of
probe wavelengths to characterize the modification of
the phonon dynamics induced by the strong pump wave.
Because of the optical phase-matching conditions, the

center frequencies of the pump and the probe waves
determine the set of phonon wave vectors with which each
field interacts (for more details, see Appendices B and C).
Thus, pump and probe waves with different center
frequencies will address groups of phonons with distinct
wave vectors. In this way, phase matching permits us to
probe the phonon dynamics as a function of acoustic wave
vector simply by tuning the wavelength of the probe field.
This form of wave-vector-resolved phonon spectroscopy
is performed by coupling both the pump and probe waves
into the symmetric mode of the Brillouin-active wave-
guide. Through spontaneous intermodal Brillouin scatter-
ing, these waves produce two distinct sets of Stokes and
anti-Stokes sidebands that propagate in the antisymmetric
optical spatial mode.
To analyze the phonon dynamics, we isolate the

spontaneously generated probe sidebands from the fields
generated by the pump wave using the frequency selec-
tivity provided by heterodyne detection. By synthesizing a
LO from the probe wave and combining the scattered
fields with the LO on a high-speed photoreceiver
[Fig. 3(a)], the Stokes and anti-Stokes light generated
by the probe and pump waves produce unique sets of
microwave tones that are easily distinguished using a
spectrum analyzer. Throughout these experiments, the
Stokes (þ) and anti-Stokes (−) signals produced by the
probe wave appear at respective microwave frequencies
ΩB � Δ. By contrast, the scattered light associated with
the pump produces microwave signals at vastly different

frequencies [jðωð2Þ
p �ΩBÞ − ðωð1Þ

p þ ΔÞj] that vary with

pump-probe detuning. Thus, provided that jωð2Þ
p −ωð1Þ

p j=
ð2πÞ>100MHz and jωð2Þ

p −ðωð1Þ
p �ΩBÞj=ð2πÞ>100MHz,

the Stokes and anti-Stokes sidebands are easily distin-
guished from the signals produced by the pump wave.
This experimental scheme allows us to perform thermal

phonon spectroscopy and observe the cooling effects
produced by the pump wave as a function of phonon wave
vector. This is accomplished by keeping the pump wave-
length fixed while performing heterodyne spectral analysis
of the scattered probe sidebands over a range of probe
wavelengths and pump powers. The results plotted
in Fig. 3(b) show the dissipation rate difference between
Stokes and anti-Stokes spectra and the estimated anti-
Stokes phonon occupation as a function of phonon wave
vector. Each data point represents the average change in
dissipation rate (and phonon number) that is obtained from
a series of spectral measurements as the pump power is
increased. Example spectra of the scattered probe side-
bands when the probe wave is (is not) phase matched to the
same group of phonons as the pump wave are plotted
in Figs. 3(bii) and 3(bi). These pump-probe experiments
show that spontaneous Brillouin scattering produces cool-
ing over a narrow band of phonon wave vectors, with a
wave-vector bandwidth inversely proportional to the length
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of the device (see Appendix C). As a result, this form of
optomechanical cooling produces a cold window in wave-
vector space, distinct from the cold frequency windows
typically produced by optomechanical resonators [22,24].
Thus, this waveguide system gives access to a continuum of
phonon modes that can be optomechanically controlled as a
function of acoustic wave vector.

C. Cooling dynamics

Our experimental observations can be explained by a
succinct spatiotemporal model, which captures the essential

dynamics of continuum optomechanical cooling (see
Appendices A and B). Starting from a Hamiltonian
formalism that describes traveling-wave optomechanical
interactions [39,40], we calculate the coupled equations of
motion for the phonon and anti-Stokes fields. For the
purposes of this derivation, we describe the optical fields as
functions of position and the phonon field as a continuous
sum over wave-vector mode amplitudes. This choice is
particularly convenient because the phonon density of
states is constant in wave-vector space, and the mode
occupation is well defined for each phonon wave vector.

(a)

(b)

FIG. 3. Pump-probe spontaneous Brillouin scattering experimental setup and measurements. Panel (a) diagrams the experimental
scheme used for the pump-probe experiments. These measurements involve two tunable cw lasers. The first, labeled the probe laser
(indexed by superscript ð1Þ), which has a fixed power of 8 mW, is used to probe the phonon dynamics. The second source, labeled the
pump laser (indexed by superscript ð2Þ), is used to modify the phonon dynamics. The optical local oscillator used for heterodyne
detection is synthesized from the probe wave using an AOM. (ai) Optical spectrum incident on the fast photoreceiver and (aii) the
resulting microwave spectrum. Since the optical LO (blueshifted 44 MHz by the AOM) is synthesized from the probe source,
the heterodyne Stokes and anti-Stokes signals centered at (ΩB þ Δ and ΩB − Δ , respectively) originate entirely from the
spontaneously scattered probe light. Panel (b) shows the difference in Stokes and anti-Stokes phonon dissipation rates (spectral
widths of the Stokes and anti-Stokes sidebands produced by the probe laser) as a function of probe wavelength, while the pump

wavelength remains fixed at λð2Þp ¼ 1535.6 nm. Each data point represents the difference between Stokes and anti-Stokes dissipation

rates at a pump power (Pð2Þ
p ) of 30 mWobtained by fitting the measured spectral widths over a series of ten different pump powers. The

average standard deviation is 0.375 MHz. The theoretical trend [see Eq. (3)] is superimposed. The phonon wave vector is calculated
from the effective phase and group indices of the two optical spatial modes supported by the silicon waveguide (see Appendices C
and F), and the anti-Stokes phonon occupation is estimated by a comparison with the spatiotemporal theory. This comparison is verified
by additional high-resolution pump-probe experiments (see Appendix D). (bi) Example spectra (of the probe sidebands) when the probe
wave is not phase matched to the same group of phonons as the pump wave. In this case, the dissipation rates for the Stokes and anti-
Stokes phonons remain constant as the pump power increases. (bii) Example spectra (of the probe sidebands) when the probe wave is
phase matched to the same group of phonons as the pump wave. Here, increasing the pump power enhances the dissipation rate
asymmetry (see also Appendix D). These data reveal that the pump wave reduces the phonon occupation over a narrow band of phonon
wave vectors, with a bandwidth given by Δq ¼ 2.78=L (see Appendix C).
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Because of the disparate dissipation rates for the optical
(γ) and acoustic fields (Γ), we can use separation of time
scales (i.e., Γ ≪ γ) to greatly simplify the equations of
motion, which allows us to eliminate the temporal
dynamics of the anti-Stokes field. In this limit, the anti-
Stokes field adiabatically follows the temporal dynamics
given by the stochastically (or thermally) driven phonon
field.
As derived in Appendix A, the separation of timescales

yields a solution for the effective amplitude of the group of
phase-matched phonons that interact with the anti-Stokes
field, which is given by

βðtÞ ¼
Z

L

0

dz0
Z

∞

−∞
dq0

Z
∞

0

dt0
�
1 −

ΓGBPpðL − z0Þ
4

t0
�

× ηq0 ðt − t0Þe−Γ
2
t0eiðq0−ΔkasÞz0 : ð1Þ

Here, L is the length of the interaction region, Δkas is the
wave-vector difference between two optical fields (i.e.,
Δkas ≡ kas − kp), ηqðtÞ is a Langevin force describing the
stochastic thermal driving of the elastic field, and GB is the
Brillouin gain coefficient of the Brillouin-active waveguide
(with units of W−1 m−1).
From Eq. (1), we find that the occupation of the phonon

field [hnðΔkasÞi] relative to the thermal value [hnthðΔkasÞi] is
given by

hnðΔkasÞi
hnthðΔkasÞi

¼ hβ†ðtÞβðtÞi
hβ†thðtÞβthðtÞi

≈ 1 −
GBPpL

4
≈

Γ
Γas;eff

ð2Þ

in the limit when ðGBPpL=4Þ2 ≪ 1. Above, Γas;eff is defined
as Γas;eff ¼ Γð1þ GBPpL=4Þ (see Appendix A). From
Eq. (2), we observe that the additional optomechanical
damping yields a net reduction in the anti-Stokes phonon
occupation.
We next summarize the salient results of our pump-

probe analysis, which elucidates the role of phase match-
ing in the cooling process (presented in Appendix B).
The presence of a pump wave yields additional terms in
the interaction Hamiltonian, producing a coupled set of
equations that describe the phonon dynamics. We find it
convenient to solve the coupled phonon dynamics in terms
of the fields βð1ÞðtÞ and βð2ÞðtÞ representing the phonon
bands that interact with the probe and pump waves,
respectively.
To simplify our analysis, we assume that the probe

wave power is weak (Pð1Þ
p ) and that the pump wave (of

power Pð2Þ
p ) modifies the phonon population to first order

[i.e., GBP
ð1Þ
p L=4 ≪ 1 and ðGBP

ð2Þ
p L=4Þ2 ≪ 1], conditions

that are well satisfied for our pump-probe experiments.
In this case, the occupation of the phonon bands interacting

with the weak probe wave (relative to the thermal value) is
given by

hnð1ÞðΔkasÞi
hnð1Þth ðΔkasÞi

¼ hβð1Þ†ðtÞβð1ÞðtÞi
hβð1Þ†th ðtÞβð1Þth ðtÞi

≈ 1 −
GBP

ð2Þ
p L
4

sinc2
�ðΔkð2Þas − Δkð1Þas ÞL

2

�
:

ð3Þ
Here, superscripts ð1Þ and ð2Þ index the optical fields

sourced by the probe and pump waves, respectively.

Thus, Δkð1Þas and Δkð2Þas are the phase-matching conditions
of the probe and pump waves, respectively [i.e.,
qas ¼ Δkas ≡ k2ðωp þ ΩBÞ − k1ðωpÞ; see Appendix C
for more details]. The theoretical trend in Fig. 3(b) is
obtained directly from Eq. (3), which agrees well with our
experimental data. In the case of optimal phase matching

(i.e., Δkð2Þas ¼ Δkð1Þas ) and low pump power, this result
agrees with the cooling effect produced in the single-
probe case [see Eq. (2)].
This analysis, in conjunction with our experimental

observations, reveals that the optical fields phase match
to a narrow band of phonon wave vectors, with a phase-
matching bandwidth (full width at half maximum)
determined by the length of the system (i.e., Δq ¼
Δkð2Þas − Δkð1Þas ¼ 2.78=L; see Appendix C). This depend-
ence is particularly striking given that the phonon field
is heavily damped in the spatial domain, with an
intrinsic decay length of less than 60 μm (approxi-
mately 400 times shorter than the device length).
Nevertheless, due to the disparate velocities of the
interacting light and sound fields, optical phase match-
ing plays the dominant role in selecting the phonon
wave vectors that participate in the heating and cooling
processes. In this way, the phase-matched optomechan-
ical cooling process can be understood as a form of
wave-vector-selective reservoir engineering.
An important consequence of these dynamics is that

the degree of phonon cooling depends on the length of
the device. However, we note that although the cooling
efficiency increases with device length, optomechanical
cooling occurs over a narrower bandwidth of phonon
wave vectors. In addition, the cooling behavior is con-
tingent upon the separation of timescales, which places a
limit on the length of the device. If this separation of
timescales (γ ≫ Γ) is not satisfied, energy transferred
from the acoustic field to the optical fields will return to
the acoustic field rather than escaping the system. Thus,
longer systems can face a fundamental challenge to
achieve Brillouin cooling; the lower limit of the optical
dissipation rate set by the transit time cannot be smaller
than the acoustic dissipation rate. This condition sets a
practical limitation to the length over which cooling can
occur, namely, that L ≪ vg=Γ.
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III. DISCUSSION

In this paper, we report phonon cooling in a continuous
optomechanical system, and we show that this form of
cooling is possible without an optical cavity or discrete
acoustic modes. This demonstration represents an impor-
tant entry point for new types of optomechanical operations
not possible in single-mode (i.e., lumped-element or zero-
dimensional) cavity-optomechanical systems [27]. One
intriguing possibility is the use of this type of cooling
for reservoir engineering [41] and nonreciprocal control
of thermal phonon transport [26]. Without the frequency
constraints imposed by optical cavities, continuum opto-
mechanical cooling could prove advantageous for bath and
dissipation engineering over exceptionally large optical
and phonon bandwidths [1]. As a result, this process shows
great promise as a way to control noise and dissipation in a
range of Brillouin photonic devices that use a continuum of
phonon modes as the basis for optical amplification, low-
noise laser oscillation, and high-fidelity signal processing.
Building on this work, this form of continuum opto-

mechanical cooling may be readily adapted to a range of
operating conditions and Brillouin systems. For instance,
the strength and character of these interactions could be
dramatically enhanced in silicon by operating at long
wavelengths (i.e., λp > 2.1 μm), where two-photon
absorption (TPA) and, consequently, TPA-induced
free-carrier absorption (FCA) vanish precipitously. The
high-power handling afforded in this wavelength range
could permit cooling from room to cryogenic temper-
atures (see Appendix A). Alternatively, other high-gain
Brillouin platforms, which exhibit the necessary phase-
matching-induced symmetry breaking and separation of
timescales (i.e., γ ≫ Γ), may be well suited to observe and
harness continuum optomechanical cooling. These con-
ditions may be satisfied in either fiber or chip-scale
systems using intermodal [42], interpolarization [36], or
backward Brillouin scattering. In particular, there may be
great potential to harness this form of optomechanical
control in chalcogenide waveguide systems [43,44],
which have demonstrated strong spontaneous Brillouin
scattering [43,44]. Irrespective of the material system,
this effect could be further enhanced by operating at
cryogenic temperatures where the phononic dissipation
and Brillouin gain have been observed to increase
dramatically [15].
This flexible cooling physics opens the door to new

strategies for managing thermal noise and shaping opto-
mechanical interactions in a large class of traveling-
wave systems that may be incompatible with optical cavities
or cavity-optomechanics techniques. These include fre-
quency-agile microwave photonic filters [45] and
Brillouin laser oscillators [46–48], which are fundamentally
limited by thermal-mechanical noise [49–51] and possess
dynamics that can be tailored through dissipation

engineering [48,52]. In these systems, continuum opto-
mechanical cooling could prove advantageous for miti-
gating deleterious thermal-mechanical noise and shaping
traveling-wave optomechanical dynamics in a continuous
in situ fashion. Thus, incorporating continuum opto-
mechanical cooling into these device technologies may
become a promising strategy for enhancing and tailoring
the performance of microwave photonic filters [44,45,
51,53,54], Brillouin laser gyroscopes [55], photonic-
phononic memory [29,56], and Brillouin oscillator-based
microwave synthesizers [57]. Furthermore, our results
represent an important entry point for mitigating unwanted
noise sources within optical communication channels for
high-fidelity classical [58] and quantum operations [32,59].
In summary, we demonstrate traveling-wave phonon

cooling in a continuous optomechanical system. This
cooling is made possible by the large coupling rates
and phase-matching-induced symmetry breaking pro-
duced by intermodal Brillouin scattering within an opto-
mechanical silicon waveguide. Through a novel type of
thermal phonon spectroscopy, we show that spontaneous
Brillouin scattering produces a cold wave-vector window
in which traveling-wave phonons are optomechanically
cooled. This result represents a first step toward wave-
vector-tunable thermodynamic phonon control and may
open the door to new types of reservoir engineering,
nonreciprocal phonon transport, enhanced performance in
Brillouin photonic systems, and strategies of encoding
information in the phononic degrees of freedom in
continuous systems.
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APPENDIX A: CONTINUUM
OPTOMECHANICAL COOLING

DYNAMICS

This Appendix outlines a derivation for the effect of
spontaneous intermodal Brillouin scattering on the anti-
Stokes phonon lifetime and population. The intrinsic
decoupling between Stokes and anti-Stokes processes
allows us to derive the dynamics of each process separately.
Starting from the formalism developed in Ref. [39], the
Hamiltonian for the spontaneous Brillouin interaction can
be expressed as
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H ¼ ℏ
Z

∞

−∞
dz0A†

pðz0; tÞω1ðk̂z0 ÞApðz0; tÞ þ ℏ
Z

∞

−∞
dz0A†

asðz0; tÞω2ðk̂z0 ÞAasðz0; tÞ

þ ℏ
Z

∞

−∞
dq0Ωq0b

†
q0bq0 þ

ℏffiffiffiffiffiffi
2π

p
Z

∞

−∞
dq0

Z
L

0

dz0g0A
†
asðz0; tÞApðz0; tÞbq0eiðq0−ΔkasÞz0

þ ℏffiffiffiffiffiffi
2π

p
Z

∞

−∞
dq0

Z
L

0

dz0g�0Aasðz0; tÞA†
pðz0; tÞb†q0e−iðq

0−ΔkasÞz0 : ðA1Þ

Here, the wave-vector difference between the pump and
anti-Stokes fields is defined by Δkas ≡ k2ðωasÞ − k1ðωpÞ,
g0 is the Brillouin coupling rate given by the acousto-optic
overlap and photoelastic tensor, and the Taylor expansion
of the symmetric and antisymmetric optical-mode
dispersion relations in the z basis are given by ωiðk̂zÞ≡P∞

n¼0ð1=n!Þð∂nωi=∂knÞ½−ið∂=∂zÞ�n. We note that g0 rep-
resents the distributed optomechanical coupling (with units
of ½Hz� ffiffiffiffiffiffiffi½m�p

), which is distinct from the lumped-element
optomechanical coupling in cavity-optomechanical systems.
From the Heisenberg equations of motion, we calculate

the spatiotemporal dynamics of the continuous phonon
and anti-Stokes fields. Using the fact that ½Aasðz0; tÞ;
A†
asðz; tÞ� ¼ δðz − z0Þ and ½bq0 ðtÞ; b†qðtÞ� ¼ δðq − q0Þ [39],

these equations are computed to be

_bqðtÞ¼−iΩqbqðtÞ−
Γ
2
bqðtÞþηqðtÞ

−
ig�0A

†
pðtÞffiffiffiffiffiffi
2π

p
Z

L

0

dz0Aasðz0; tÞe−iðq−ΔkasÞz0 ;

_Aasðz;tÞ¼−vg;2
∂
∂zAasðz; tÞ− iωasAasðz; tÞ

−
γ

2
Aasðz; tÞ−

ig0ApðtÞffiffiffiffiffiffi
2π

p
Z

∞

−∞
dq0bq0 ðtÞeiðq0−ΔkasÞz:

ðA2Þ

Here, we pause briefly to summarize the steps and
assumptions involved in this derivation. We assume the
that the probe wave (Ap) remains undepleted through the
spontaneous process [i.e., Apðz; tÞ ¼ ApðtÞ], which is very
well satisfied in the present system. To include the effects of
dissipation, we introduce the phonon decay rate Γ and an
associated Langevin stochastic driving term ηqðtÞ, which
maintains the system in thermal equilibrium in the absence
of optical forcing; ηqðtÞ has a two-time correlation function

given by hη†q0 ðt0ÞηqðtÞi ¼ Qδðt − t0Þδðq − q0Þ, where Q is
given by the thermal equilibrium properties of the system
and is consistent with the fluctuation dissipation theorem;
in this case, Q ¼ nthΓ, where nth is given by the Planck
distribution [nth ¼ fexp½ℏΩB=ðkBTÞ� − 1g−1]. We treat the
optical fields classically and ignore the Langevin driving
force associated with the optical anti-Stokes dissipation rate
(γ), since the thermal occupation of the optical anti-Stokes

field is, for our purposes, negligible (i.e., nas;th ≅ 10−14).
For the anti-Stokes field, we limit the Taylor expansion of
the optical dispersion relation to first order and ignore
higher-order dispersion.
Next,wemove into the rotating frame to formally solve the

equation of motion for the anti-Stokes field. By introducing
Aasðz; tÞ ¼ Āasðz; tÞe−iωt, Apðz; tÞ ¼ Āpðz; tÞe−iωpt, and
bqðtÞ ¼ b̄qðtÞe−iΩt (where Ω ¼ ω − ωp), the equation of
motion for the anti-Stokes wave in the rotating frame
becomes

_̄Aasðz;tÞ¼−vg;2
∂
∂zĀasðz; tÞþ

�
−iðωas−ωÞ− γ

2

�
Āasðz; tÞ

−
ig0ĀpðtÞffiffiffiffiffiffi

2π
p

Z
∞

−∞
dq0b̄q0 ðtÞeiðq0−ΔkasÞz: ðA3Þ

Since in this system, γ ≫ Γ and γ ≫ jωas − ωj, we can
adiabatically eliminate the temporal dynamics of the anti-

Stokes field (i.e., _̄Aas ¼ 0). In other words, because the anti-
Stokes field is heavily damped in time, the temporal
dynamics of the anti-Stokes field adiabatically follow those
of the phonon field. In this limit, the anti-Stokes mode
envelope amplitude is given by

Āasðz; tÞ ¼
−ig0ĀpðtÞ
vg;2

ffiffiffiffiffiffi
2π

p
Z

z

0

dz0

×
Z

∞

−∞
dq0b̄q0e

iðq0−ΔkasÞz0− γ
2vg;2

ðz−z0Þ
: ðA4Þ

Since 2vg;2 ≫ γL, the factor expf−ðγ=2vg;2Þðz − z0Þg
within the integrand is, to a good approximation, unity. As
a result, we can insert this solution into the equation of
motion for the phonon field to find

_̄bq ¼ −iðΩq − ΩÞb̄q −
Γ
2
b̄q þ ηqðtÞ

−
jg0j2jĀpj2
vg;2ð2πÞ

Z
L

0

dz0
Z

z0

0

dz00

×
Z

∞

−∞
dq0b̄q0eiðq

0−ΔkasÞz00−iðq−ΔkasÞz0 : ðA5Þ

We proceed by first performing the integrals over space.
The resulting integrand can then be separated into real
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and imaginary parts. We are interested in the case where
q ¼ Δkas and Ω ¼ ΩΔkas , or when the phonon wave vector
is defined by optimal phase matching with the optical
fields. These conditions yield

_̄bΔkas ¼ −
Γ
2
b̄Δkas þ ηΔkasðtÞ

−
jg0j2jApj2
vg;2ð2πÞ

Z
∞

−∞
dq0b̄q0

�
1 − cos ½LðΔkas − q0Þ�

ðΔkas − q0Þ2

þ i
Lðq0 − ΔkasÞ þ sin ½LðΔkas − q0Þ�

ðΔkas − q0Þ2
�
: ðA6Þ

The real and imaginary coefficients multiplying b̄q0 in the
integrand are sharply peaked even and odd functions (about
q0 ¼ Δkas), respectively. We also note that b̄q0 is nearly
symmetrically distributed about q0 ¼ Δkas due to the
thermal distribution. These conditions yield an approximate
equation of motion for the phonon field given by

_bΔkas ¼ −iΩΔkasbΔkas −
Γas;eff

2
bΔkas þ ηΔkasðtÞ; ðA7Þ

where Γas;eff ¼ Γð1þ GBPpL=4Þ.
Here, Pp is the probe power and GB is the Brillouin

gain coefficient (with units W−1m−1) defined by GB ¼
4jg0j2jApj2=ðPpΓvg;2Þ. Equation (A7) reveals that the
presence of the strong pump modifies the equation of
motion for the phonon through an additional damping term.
The anti-Stokes process annihilates a phonon and a pump
photon to generate an anti-Stokes (or blueshifted) photon.
Hence, the anti-Stokes process reduces the lifetime of the
phonon, evident as a correction to the damping rate.
We now return to Eq. (A5) in order to make a trans-

formation that simplifies our analysis and provides a direct
connection to our measurements. We begin by defining

βðz; tÞ≡
Z

z

0

dz0
Z

∞

−∞
dq0b̄q0 ðtÞeiðq0−ΔkasÞz0 ;

ξðz; tÞ≡
Z

z

0

dz0
Z

∞

−∞
dq0ηq0 ðtÞeiðq0−ΔkasÞz0 : ðA8Þ

Here, βðz; tÞ represents the amplitude of the band of phase-
matched phonons that interact with the probe wave [see
Eq. (A4)], and ξðz; tÞ is the Langevin force under this
transformation. Reexpressing Eq. (A5) in terms of βðz; tÞ
and ξðz; tÞ yields

_βðz; tÞ ¼ −
Γ
2
βðz; tÞ þ ξðz; tÞ − jg0j2jApj2

vg;2

Z
z

0

dz0βðz0; tÞ:

ðA9Þ

We proceed by performing a Fourier transform in time
and taking a spatial derivative, which yields

dB½z;ω�
dz

¼ −
χGBPpΓ

4
B½z;ω� þ χ

Z
∞

−∞
dq0η̃q0eiðq

0−Δkð1Þas Þz:

ðA10Þ

Here, we define χ ≡ 1=ð−iωþ Γ=2Þ, B½z;ω� is the
Fourier transform of βðz; tÞ, and η̃q0 is the Fourier-
transformed Langevin force [i.e., η̃q0 ½ω� ¼ F ½ηq0 �≡
1=ð2πÞ R∞

−∞ ηq0 ðtÞe−iωt]. We also use the fact that
jg0j2jApj2=vg;2 ¼ GBPpΓ=4 [39].
Solving Eq. (A10) yields

B½z;ω� ¼
Z

z

0

dz0
Z

∞

−∞
dq0χη̃q0e−

χΓPpðz−z0Þ
4 eiðq0−ΔkasÞz0 : ðA11Þ

To simplify the inverse Fourier transform, we Taylor
expand e−½χΓPpðz−z0Þ=4� to first order, which is a good
approximation in view of the probe power, Brillouin gain
coefficient, and length of this system. We then perform an
inverse Fourier transform via the convolution theorem,
yielding the solution for βðz; tÞ, which is given by

βðz; tÞ ¼
Z

z

0

dz0
Z

∞

−∞
dq0

Z
∞

0

dt0
�
1 −

ΓGBPpðz − z0Þ
4

t0
�

× ηq0 ðt − t0Þe−Γ
2
t0eiðq0−ΔkasÞz0 : ðA12Þ

In the absence of the probe field (i.e., Pp ¼ 0), the
solution for the thermal phonon field [i.e., βthðz; tÞ] is
given by

βthðz;tÞ¼
Z

z

0

dz0
Z

∞

−∞
dq0

Z
∞

0

dt0ηq0 ðt− t0Þe−Γ
2
t0eiðq0−ΔkasÞz0 :

ðA13Þ

As a result, the modified occupation of the band of
phonons interacting with the probe wave [hnðΔkasÞi]
relative the thermal occupation [hnthðΔkasÞi] is given by

hnðΔkasÞi
hnthðΔkasÞi

¼ hβ†ðL; tÞβðL; tÞi
hβ†thðL; tÞβthðL; tÞi

¼ 1 −
GBPpL

4
þG2

BP
2
pL2

24

≈ 1 −
GBPpL

4

≈
Γ

Γas;eff
; ðA14Þ

where the approximations assume that ðGBPpL=4Þ2 ≪ 1.
From Eq. (A14), we observe that the additional damping
produced by spontaneous anti-Stokes scattering pushes the
phonon field out of thermal equilibrium, yielding a reduc-
tion in the phonon occupation.
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As a point of comparison, we can rewrite GBPpL in
terms of an effective optical decay rate (γeff ) given by the
transit time, such that

GBPpL ¼ 4jg0j2jApj2L
Γvg;2

¼ 4jg0j2jApj2
Γγeff

; ðA15Þ

where γeff ¼ vg;2=L. jApj2 represents the number of probe
photons per unit length, and g0 is the distributed opto-
mechanical coupling. Recast in this form, GBPpL more
closely resembles the expression for cooling in cavity-
optomechanical systems [1]—although additional distinc-
tions emerge in the high GBPpL limit [see Eq. (A18)].
Following a similar derivation, one can show that the

effective dissipation rate for Stokes phonons is Γs;eff ¼
Γð1 − GBPpL=4Þ, and the phonon occupation is

hnðΔksÞi
hnthðΔksÞi

¼ 1þGBPpL

4
þ G2

BP
2
pL2

24

≈ 1þGBPpL

4

≈
Γ

Γs;eff
: ðA16Þ

Thus, the spontaneous Stokes process reduces the damp-
ing and increases the thermal occupation of the phonon
field.

1. Continuum optomechanical cooling with
large gain-power-length products

Thus far, we have focused on the case where
ðGBPpL=4Þ2 ≪ 1, which is a good approximation given
the experimental parameters of our system. Next, we make
our treatment more general in order to capture the dynamics
over a range of cooling strengths, including the case of large
gain-power-length products orwhere ðGBPpL=4Þ2 ≫ 1.We
begin by solving Eq. (A9) through a Laplace transform in z.
This yields the following solution for βðz; tÞ given by

βðz; tÞ ¼
Z

t

−∞
dt0e−Γ

2
ðt−t0Þξðz; t0Þ

−
Z

t

−∞
dt0

Z
z

0

dz0e−Γ
2
ðt−t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ḡðt − t0Þ
z − z0

s

× J1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ḡðt − t0Þðz − z0Þ

q
�ξðz0; t0Þ; ðA17Þ

where Ḡ≡ jg0j2jApj2=vg;2. Next, we calculate the effective
phonon occupation by taking hβ†ðL; tÞβðL; tÞi relative to
the thermal value [hβ†thðL; tÞβthðL; tÞi] yielding

hβ†βi
hβ†thβthi

¼ 1þ Γ
L

�
−
Z

t

−∞
dt0

Z
L

0

dz0z0e−Γðt−t0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ḡðt − t0Þ
ðL − z0Þ

s
J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ḡðt − t0ÞðL − z0Þ

q �

þ
Z

t

−∞
dt0

Z
L

0

dz0
Z

L

0

dz00e−Γðt−t0Þ minðz0; z00Þ

×
Ḡðt − t0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðL − z0ÞðL − z00Þp J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ḡðt − t0ÞðL − z0Þ

q �

× J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ḡðt − t0ÞðL − z00Þ

q ��
; ðA18Þ

where minðz0; z00Þ≡ ðz0 þ z00Þ=2 − jz0 − z00j=2. Since com-
pleting the integration becomes intractable analytically, we
proceed by calculating the phonon population numerically.
As an example, Fig. 4 plots the effective occupation
number as a function of the device length using parameters
that may be accessible by operating at long wavelengths
(λp > 2.1 μm).We note that these continuum optomechan-
ical cooling dynamics are quite distinct from those
obtained when cooling discrete phonon modes in the
context of cavity optomechanics [1].

APPENDIX B: PUMP-PROBE COOLING THEORY

In this Appendix, we derive the dynamics of our pump-
probe experiments (Fig. 3) and show how phase matching
allows us to perform wave-vector-resolved measurements
of the phonon occupation. In these measurements, we use
a strong pump wave (of amplitude Að2Þ

p ) to modify the
phonon dynamics and a weak probe wave (of amplitude

Að1Þ
p ) to measure the phonon occupation. In this case, the

interaction Hamiltonian of the system is given by

FIG. 4. Theoretical fractional phonon occupation [numerical
integration of Eq. (A18)] as a function of the device length.
For the calculated curve GB ¼ 470 W−1 m−1, Pp ¼ 1 W, and
ΩB ¼ 2π × 6.02 GHz—parameters that may be accessible in
silicon optomechanical waveguides at mid-IR wavelengths. We
note that at large gain-power-length products (i.e., GBPpL ≫ 1),
the Stokes light must be suppressed or removed from the system
to avoid pump depletion.
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Hint ¼
ℏffiffiffiffiffiffi
2π

p
�Z

∞

−∞
dq0

Z
L

0

dz0g0A
ð1Þ†
as ðz0; tÞAð1Þ

p ðz0; tÞbq0eiðq0−Δk
ð1Þ
as Þz0 þ

Z
∞

−∞
dq0

Z
L

0

dz0g�0A
ð1Þ
as ðz0; tÞAð1Þ†

p ðz0; tÞb†q0e−iðq
0−Δkð1Þas Þz0

þ
Z

∞

−∞
dq0

Z
L

0

dz0g0A
ð2Þ†
as ðz0; tÞAð2Þ

p ðz0; tÞbq0eiðq0−Δk
ð2Þ
as Þz0 þ

Z
∞

−∞
dq0

Z
L

0

dz0g�0A
ð2Þ
as ðz0; tÞAð2Þ†

p ðz0; tÞb†q0e−iðq
0−Δkð2Þas Þz0

�
:

ðB1Þ

Here, superscripts ð1Þ and ð2Þ index the optical fields sourced by the probe and pump waves, respectively. We note that the

phase-matching conditionsΔkð1Þas andΔkð2Þas are given simply by the wavelengths of the probe and pump waves, respectively,
which in general are distinct (for further details, see Appendix C). We next compute and simplify the equations of motion
following the same approach used to develop Eqs. (A1)–(A5). This leads to the following equation for the phonon field of
wave vector q:

_̄bq ¼ −iðΩq − ΩÞb̄q −
Γ
2
b̄q − ηqðtÞ −

jg0j2jĀð1Þ
p j2

vg;2ð2πÞ
Z

L

0

dz0
Z

z0

0

dz00
Z

∞

−∞
dq0b̄q0eiðq

0−Δkð1Þas Þz00−iðq−Δkð1Þas Þz0

−
jg0j2jĀð2Þ

p j2
vg;2ð2πÞ

Z
L

0

dz0
Z

z0

0

dz00
Z

∞

−∞
dq0b̄q0eiðq

0−Δkð2Þas Þz00−iðq−Δkð2Þas Þz0 : ðB2Þ

From Eq. (B2), it is evident that both the probe and the pump waves can contribute to Brillouin cooling as long as they
satisfy phase matching. As such, Eq. (B2) produces a system of equations describing the coupled dynamics of the phonon

bands interacting with the probe and pump waves (i.e., setting q ¼ Δkð1Þas and q ¼ Δkð2Þas , respectively).
We now transform Eq. (B2) using the same procedure used to obtain Eq. (A9). We begin by defining

βðmÞðz; tÞ≡
Z

z

0

dz0
Z

∞

−∞
dq0b̄q0 ðtÞeiðq0−Δk

ðmÞ
as Þz0 ; ðB3Þ

where m ¼ ð1; 2Þ. From Eq. (B3), it can be seen that βð1Þðz; tÞ and βð2Þðz; tÞ represent the narrow bands of phonons that
interact with the probe and pump waves, respectively, as dictated by phase matching. Rewriting Eq. (B2) in terms of these
new spatially dependent functions yields the following coupled integral equations given by

_βð1Þðz; tÞ ¼ −
Γ
2
βð1Þðz; tÞ þ ξð1Þðz; tÞ − jg0j2jAð1Þ

p j2
vg;2

Z
z

0

dz0βð1Þðz0; tÞ − jg0j2jAð2Þ
p j2

vg;2

Z
z

0

dz0βð2Þðz0; tÞeiðΔkð2Þas −Δk
ð1Þ
as Þz0 ;

_βð2Þðz; tÞ ¼ −
Γ
2
βð2Þðz; tÞ þ ξð2Þðz; tÞ − jg0j2jAð1Þ

p j2
vg;2

Z
z

0

dz0βð2Þðz0; tÞ − jg0j2jAð1Þ
p j2

vg;2

Z
z

0

dz0βð1Þðz0; tÞeiðΔkð1Þas −Δk
ð2Þ
as Þz0 : ðB4Þ

Here, ξð1;2Þðz; tÞ is the Langevin force describing the thermal fluctuations of these phonon bands, defined by

ξð1;2Þðz; tÞ≡ R
z
0 dz

0 R∞
−∞ dq0ηq0 ðtÞeiðq0−Δk

ð1;2Þ
as Þz0 . We next note that jg0j2jAð1;2Þ

p j2=vg;2 ¼ GBP
ð1;2Þ
p Γ=4, where Pð1;2Þ

p is the
power of the probe and pump waves, respectively. Rewriting Eq. (B4) in terms of these constants and taking the Fourier
transform in time yields

−iωBð1Þ½z;ω� ¼ −
Γ
2
Bð1Þ½z;ω� þ ξ̃ð1Þ½z;ω� −GBP

ð1Þ
p Γ
4

Z
z

0

dz0Bð1Þ½z0;ω� − GBP
ð2Þ
p Γ
4

Z
z

0

dz0Bð2Þ½z0;ω�eiðΔkð2Þas −Δk
ð1Þ
as Þz0 ; ðB5Þ

−iωBð2Þ½z;ω� ¼ −
Γ
2
Bð2Þ½z;ω� þ ξ̃ð2Þ½z;ω� −GBP

ð2Þ
p Γ
4

Z
z

0

dz0Bð2Þ½z0;ω� − GBP
ð1Þ
p Γ
4

Z
z

0

dz0Bð1Þ½z0;ω�eiðΔkð1Þas −Δk
ð2Þ
as Þz0 : ðB6Þ

Here, Bð1;2Þ½z;ω� and ξ̃ð1;2Þ½z;ω� are the Fourier-transformed phonon fields and Langevin force, respectively. Taking the
spatial derivative of these equations yields

dBð1Þ½z;ω�
dz

¼ −
χGBP

ð1Þ
p Γ

4
Bð1Þ½z;ω� − χGBP

ð2Þ
p Γ

4
Bð2Þ½z;ω�eiðΔkð2Þas −Δk

ð1Þ
as Þz þ χ

Z
∞

−∞
dq0η̃q0eiðq

0−Δkð1Þas Þz;

dBð2Þ½z;ω�
dz

¼ −
χGBP

ð2Þ
p Γ

4
Bð2Þ½z;ω� − χGBP

ð1Þ
p Γ

4
Bð1Þ½z;ω�eiðΔkð2Þas −Δk

ð1Þ
as Þz þ χ

Z
∞

−∞
dq0η̃q0eiðq

0−Δkð2Þas Þz: ðB7Þ
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Here, χ ≡ 1=ð−iωþ Γ=2Þ, and η̃q0 is the Fourier-transformed Langevin force [i.e., η̃q0 ½ω� ¼ F ½ηq0 �≡
1=ð2πÞ R∞

−∞ ηq0 ðtÞe−iωt]. We solve Eq. (B7) perturbatively in a manner that is consistent with our experimental parameters.
Here we assume that the probe wave is weak and that the strong pump wave modifies the phonon dynamics to first order.
This analysis requires thatGBP

ð1Þ
p L=4 ≪ 1 and ðGBP

ð2Þ
p L=4Þ2 ≪ 1, which is well satisfied in our pump-probe experiments.

Under this approximation, Eq. (B7) simplifies to

Bð1Þ½z;ω� ¼
Z

∞

−∞
dq0

Z
z

0

dz0χη̃q0eiðq
0−Δkð1Þas Þz0 −

GBP
ð2Þ
p Γ
4

Z
L

0

dz0Bð2Þ½z0;ω�eiðΔkð2Þas −Δk
ð1Þ
as Þz0 ;

Bð2Þ½z;ω� ¼
Z

∞

−∞
dq0

Z
z

0

dz0χη̃q0eiðq
0−Δkð2Þas Þz0 : ðB8Þ

Substituting Bð2Þ½z;ω� into the equation for Bð1Þ½z;ω� and performing the inverse Fourier transform yields

βð1Þðz; tÞ ¼
Z

∞

−∞
dq0

Z
z

0

dz0
Z

∞

0

dt0ηq0 ðt − t0Þe−Γ
2
t0eiðq0−Δk

ð1Þ
as Þz0 −

GBP
ð2Þ
p Γ
4

Z
∞

−∞
dq0

Z
z

0

dz0
Z

z0

0

dz00
Z

∞

0

× dt0ηq0 ðt − t0Þt0e−Γ
2
t0eiðq0−Δk

ð2Þ
as Þz00eiðΔk

ð2Þ
as −Δk

ð1Þ
as Þz0 : ðB9Þ

From Eq. (B9), we compute the occupation of the group of phonons interacting with the probe wave relative to the
equilibrium value. This computation yields

hnð1ÞðΔkasÞi
hnð1Þth ðΔkasÞi

¼ hβð1Þ†ðL; tÞβð1ÞðL; tÞi
hβð1Þ†th ðL; tÞβð1Þth ðL; tÞi

¼ 1 −
GBP

ð2Þ
p L
4

sinc2
�ðΔkð2Þas − Δkð1Þas ÞL

2

�
þO

��
GBP

ð2Þ
p L
4

�
2
�

≈ 1 −
GBP

ð2Þ
p L
4

sinc2
�ðΔkð2Þas − Δkð1Þas ÞL

2

�
: ðB10Þ

Equation (B10) is the central result of thisAppendix. Thus, if the necessary conditions are satisfied [i.e.,GBP
ð1Þ
p L=4 ≪ 1 and

ðGBP
ð2Þ
p L=4Þ2 ≪ 1], we can, to an excellent approximation, use the anti-Stokes light generated from the probe wave

tomeasure the phonon occupation and effective temperature of the band of phonons that are phase matched to the probewave.
It is evident that Eq. (B10) reaches a minimum when the pump wave is optimally phase matched to the probe wave

(i.e.,Δkð2Þas ¼ Δkð1Þas ), which occurs when the probe and pumpwavelengths are equal λð1Þp ¼ λð2Þp (see Sec. II B). In this case, the
phonon occupation is

hnð1ÞðΔkasÞi
hnð1Þth ðΔkasÞi

≈ 1 −
GBP

ð2Þ
p L
4

; ðB11Þ

which, as a cross-check, agrees with the single-probe theory [see Eq. (A14)].

APPENDIX C: PHASE-MATCHING BANDWIDTH

Incorporating the known parameters of our system, we next calculate the phase-matching bandwidth of phonon wave
vectors that are appreciably cooled through spontaneous intermodal Brillouin scattering. We begin by stating the phase-

matching condition required by the anti-Stokes scattering process of the probe wave, namely, that qð1Þas ðΩBÞ ¼
Δkð1Þas ≡ k2ðωð1Þ

p þ ΩBÞ − k1ðωð1Þ
p Þ, where qð1Þas ðΩBÞ is the wave vector of the phonon field interacting with the probe

wave. Thus, the wave vector of the phonon field is dictated by the frequencies and propagation constants of the two optical
fields. Now, if we consider the phonon wave vector that interacts with the pump frequency [qð2Þas ðΩBÞ], such that
ωð2Þ
p ¼ ωð1Þ

p þ Δω, we find that the difference in the two phonon wave vectors is given by

qð2Þas ðΩBÞ − qð1Þas ðΩBÞ ¼ Δkð2Þas − Δkð1Þas ¼ k2ðωð2Þ
p þ ΩBÞ − k1ðωð2Þ

p Þ − ½k2ðωð1Þ
p þΩBÞ − k1ðωð1Þ

p Þ�: ðC1Þ
Ignoring higher-order dispersion, we can simplify this expression in terms of the group velocities of the two interacting

optical spatial modes (vg;1 and vg;2 for the symmetric and antisymmetric spatial mode, respectively). This simplification
yields an expression given by

Δkð2Þas − Δkð1Þas ¼
�
1

vg;2
−

1

vg;1

�
Δω: ðC2Þ
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Here, Δω ¼ ωð2Þ
p − ωð1Þ

p . The phase-matching bandwidth
is given by Eq. (B10), which is shown in Fig. 3. As a
result, the full width at half maximum (FWHM) is

ðΔkð2Þas − Δkð1Þas Þ ¼ 2.78=L. Thus, in k space, the phase-
matching bandwidth is simply determined by the length
of the waveguide. As a result, the FWHM of the phase-
matching bandwidth (in Δf ¼ Δω=2π) becomes

FWHM ¼ 2.78
πL

�
1

j 1
vg;1

− 1
vg;2

j
�
: ðC3Þ

Inserting the parameters of this silicon system (detailed
in Appendix F), we find that the phase-matching bandwidth
is 91.4 GHz (0.72 nm). This calculation finds good
qualitative agreement with the phase-matching bandwidth
exhibited by the pump-probe experiments (see Fig. 3).
Thus, by shifting the probe wavelength by several nano-
meters, we can cool an entirely different group of phonons.
In this way, the conditions set by phase matching permit
cooling of continuously accessible groups of phonons in a
wave-vector-selective fashion.

APPENDIX D: ADDITIONAL MEASUREMENTS

In this Appendix, we present additional pump-probe measurements, which are shown in Fig. 5. These pump-probe
experiments are performed using the setup diagrammed in Fig. 3(a), with a fixed on-chip probe power of 8 mW and a
variable pump power. We first perform a series of spontaneous measurements when the pump is within the phase-matching

(a)

(b)

FIG. 5. Pump-probe spontaneous Brillouin scattering measurements. Panel (ai)-(aii) plots the salient effects of a strong pump wave on
the probe spectra when the pump is within the phase-matching bandwidth (λð2Þp ¼ 1535.6 nm, λð1Þp ¼ 1535.53 nm). When this phase-
matching condition is satisfied (i.e., the pump wave is interacting with the same band of phonon wave vectors), we observe that the anti-
Stokes (Stokes) probe spectra experiences linewidth broadening (narrowing) as the pump power is increased (see panel (ai)), revealing
that the pump wave coherently modifies the lifetimes of the Stokes and anti-Stokes phonons. Panel (aii) plots the ratio of Stokes to anti-
Stokes power (proportional to the ratio of phonon occupations) as a function of total on-chip power and the theoretical trend from the
expected change in Stokes and anti-Stokes phonon occupations. Panel (bi)-(bii) plots the spectral widths and relative powers of the
Stokes and anti-Stokes light (along with associated theoretical trends) when the pump wave is not phase-matched to the phonons

interacting with the probe wave (λð2Þp ¼ 1537.3 nm, λð1Þp ¼ 1535.53 nm). We observe that the spectral widths and ratio of Stokes to anti-
Stokes powers remains constant as a function of pump power, which is consistent with the theoretical trend (black). Note that the
constant dissipation rate asymmetry is due to the presence of the probe wave.
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bandwidth (λð2Þp ¼ 1535.6 nm, λð1Þp ¼ 1535.53 nm). The
salient properties of these measurements are plotted as a
function of total on-chip power in Figs. 5(ai) and 5(aii).
Figure 5(ai) plots the dissipation rates of the Stokes and
anti-Stokes spectra of the sidebands produced by the probe
wave, while Fig. 5(aii) plots the ratio of Stokes to anti-
Stokes phonon occupations. From these data, it is evident
that as the pump power increases, the anti-Stokes phonons
experience a shorter lifetime and consequently a reduction
in population, while the Stokes phonon lifetime and
population are enhanced. By contrast, for the case when
the pump is outside the phase-matching bandwidth, the
linewidth and occupation asymmetry between the Stokes
and anti-Stokes spectra remain unchanged as the pump
power increases, as seen in Figs. 5(bi) and 5(bii).
These results (1) demonstrate that the dissipation rates

can be used to faithfully estimate the phonon occupations
[as evident in Eq. (A14)] and (2) rule out the possibility that
these effects are due to optical-only gain filtering (i.e.,
spectral narrowing or broadening associated with optical
nonlinear gain or loss, respectively).

APPENDIX E: DEVICE FABRICATION

The Brillouin-active waveguide devices are fabricated
from a single-crystal SOI wafer with a 3-μm SiO2 layer
beneath a 215-nm layer of crystalline silicon (see
Refs. [37,48,60] for ancillary details). Optical ridge
waveguides are patterned using electron-beam lithogra-
phy on negative hydrogen silsesquioxane photoresist.
After development in MicropositTM MFTM-312, a reactive
ion chlorine etch (RIE) is used to remove 80 nm of silicon,
yielding the ridge height diagrammed in Fig. 1(hi).
Subsequently, we pattern an array of slots—which both
serve as phononic mirrors and eventually permit suspen-
sion through a wet etch—using electron-beam lithography
with a positive ZEP520A photoresist. We next develop
these features in xylenes and perform another RIE chlorine
etch that removes the remainder of the silicon within the
slots, exposing the oxide undercladding. Following the RIE
process, we perform a wet etch using 49% hydrofluoric acid,
which removes the oxide underneath the waveguide, yield-
ing the suspended hybrid photonic-phononic waveguide
diagramed in Fig. 1(c). The suspended waveguide device
is 2.305 cm long and is continuously suspended by an array
of 451 nanoscale tethers.

APPENDIX F: IMPORTANT PARAMETERS
AND DATA ANALYSIS

All of the parameters in our model are corroborated
by independent measurements and simulations (i.e., no
fitting parameters). In this Appendix, we list the important
parameters of our system and give an account of how each
is determined.

Parameters Value

L 2.305 cm
vg;1 7.385 × 107 m=s
vg;2 7.163 × 107 m=s
Δkas −4.5 × 105 m−1

γ 2π × 180 MHz
Γ 2π × 14.2 MHz
GB 470 W−1 m−1

ΩB 2π × 6.02 GHz

L, the length of the system, is simply given by the length
of the suspended region of the device. The group velocities
of the symmetric and antisymmetric optical spatial modes
(vg;1 and vg;2, respectively) are determined through race-
track-ring free-spectral-range measurements (see the
Supplemental Material of Ref. [48]). The wave-vector
mismatch between the two optical spatial modes
[Δkas ¼ k2ðωp þ ΩBÞ − k1ðωpÞ] is found through finite-
element simulations. As required by phase matching, this
wave-vector mismatch gives the wave vector of the phonon
field (i.e., q ¼ Δkas). γ, the optical dissipation rate of the
antisymmetric optical spatial mode, is given by the linear
propagation loss of the antisymmetric optical waveguide
mode (i.e., γ ¼ vg;2α2, where α2 is the linear propagation
loss of the antisymmetric optical spatial mode.).
The acoustic dissipation rate (Γ) is given by the spectral

width of the spontaneous Stokes and anti-Stokes spectra at
low probe powers. The Brillouin gain coefficient (GB) is
found from nonlinear laser spectroscopy measurements
presented in Ref. [37]. These measurements are performed
on a device of identical dimensions. ΩB, the Brillouin
frequency, is determined through the heterodyne spectros-
copy presented in this work.
In addition to these parameters, we use the nonlinear

loss coefficients given in the Supplemental Material of
Ref. [37] to determine the average on-chip probe and
scattered powers.

1. Nonlinear optical effects

In this section, we summarize the relevant nonlinear
optical effects that must be accounted for in our
measurements.
The optical Kerr effect, while relevant in other Brillouin

processes such as forward intramodal stimulated Brillouin
scattering [60], does not play a significant role in the
cooling dynamics due to the stringent phase-matching
conditions placed by intermodal Brillouin scattering.
This is particularly evident in the single-probe measure-
ments, in which intermodal phase matching and energy
conservation entirely prohibit FWM. Intermodal phase
matching also limits the potential FWM interactions in
the pump-probe measurements. The only interactions
allowed are very weak (< 10% of scattered powers) since
they require the scattered signals to participate as “pump”
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photons. Moreover, compared to spontaneous Brillouin
scattering, FWM is a broadband process with a very limited
effect on the spectral widths (typically ≪ 1% changes) of
the observed spectra.
TPA and TPA-induced FCA are well-known nonlinear

loss mechanisms in silicon and are characterized in this
optomechanical waveguide system [37]. To account for
these effects, we use the nonlinear loss coefficients given in
the Supplemental Material of Ref. [37] to determine the
average on-chip probe and scattered powers. At large probe
powers (41 mW), the nonlinear losses are relatively modest,
producing only 0.22 dB of intramodal (symmetric optical
mode) and 0.11 dB of intermodal loss (antisymmetric
optical mode).
Linear absorption, TPA, and FCA can also produce

residual heating. To quantify the degree of overall device
heating, we perform thermo-optic measurements on an
intermodal ring resonator that is composed of a suspended
optomechanical silicon waveguide of identical cross-
sectional geometry. Using the well-known thermo-optic
coefficient in silicon [61], we estimate a heating coefficient
of approximately 0.03 K=mW of on-chip power. This
corresponds to an overall heating of 1.35 K at a probe
power of 41 mW.
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