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We develop first-principles theory of kinetic plasma turbulence governed by the Vlasov-Maxwell-
Landau equations in the limit of vanishing collision rates. Following an exact renormalization-group
approach pioneered by Onsager, we demonstrate the existence of a “collisionless range” of scales (lengths
and velocities) in one-particle phase space where the ideal Vlasov-Maxwell equations are satisfied in a
“coarse-grained sense.” Entropy conservation may nevertheless be violated in that range by a “dissipative
anomaly” due to nonlinear entropy cascade. We derive “4=5th-law-type” expressions for the entropy flux,
which allow us to characterize the singularities (structure-function scaling exponents) required for its
nonvanishing. Conservation laws of mass, momentum, and energy are not afflicted with anomalous
transfers in the collisionless limit. In a subsequent limit of small gyroradii, however, anomalous
contributions to inertial-range energy balance may appear due to both cascade of bulk energy and
turbulent redistribution of internal energy in phase space. In that same limit, the “generalized Ohm’s law”
derived from the particle momentum balances reduces to an “ideal Ohm’s law” but only in a coarse-grained
sense that does not imply magnetic flux freezing and that permits magnetic reconnection at all inertial-
range scales. We compare our results with prior theory based on the gyrokinetic (high-gyrofrequency) limit,
with numerical simulations, and with spacecraft measurements of the solar wind and terrestrial
magnetosphere.
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I. INTRODUCTION

In turbulent plasmas at very high temperatures and low
densities, the collisions of constituent particles are so
infrequent that fluid models assuming small mean-free-
path lengths are invalid, and the plasma must be described
by kinetic equations for the particle distribution functions
[1]. A prime example of societal importance is magnetic
confinement fusion [2], where turbulent transport essen-
tially limits performance but where mean-free-path lengths
at typical operating conditions are approximately 10 km,
much larger than the size of the device. The solar wind is
one of the best-studied examples of a turbulent plasma in
nature, with a wealth of in situ spacecraft measurements
showing turbulentlike spectra down to lengths of order a
kilometer, but the mean free path for electron-ion collisions
in the near-Earth solar wind is approximately 1 A.U. [3].

The terrestrial magnetosphere is likewise a nearly collision-
less plasma with turbulence occurring either typically
(magnetosheath) or sporadically (magnetopause) [4]. The
Magnetospheric Multiscale Mission (MMS) [5,6] is cur-
rently measuring proton and electron velocity distribution
functions in this environment at high phase-space reso-
lution and cadence. Exploration of this velocity space has
been described as the “next frontier” of kinetic heliophysics
[7]. More generally, turbulent, nearly collisionless plasma
environments are ubiquitous in astrophysics. The inter-
stellar medium exhibits an approximately Kolmogorov
spectrum of electron density over approximately 13 orders
of magnitude, the so-called “big power law in the sky”
[8–10], but almost a third of this range lies below the ion
mean-free-path length of approximately 107 km.
These diverse physics challenges call for fundamental

theory of kinetic plasma turbulence. Recently, a first-
principles paradigm has emerged for fluid turbulence based
upon a mathematical analysis pioneered by Onsager for
incompressible fluids [11–13]. In this “ideal turbulence”
theory, the dissipative anomaly—or nonvanishing dissipa-
tion of kinetic energy in the inviscid limit—is explained as
a consequence of nonlinear energy cascade for “coarse-
grained” or “distributional” solutions of the incompressible
Euler equations. Onsager’s analysis can be understood as
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an exact, nonperturbative application of the principle of
renormalization-group (RG) invariance [14–16], and it
predicts the fluid Hölder singularities necessary for turbu-
lent energy cascade. This ideal turbulence theory for
incompressible fluids has recently been supported by
rigorous mathematical developments following from the
Nash-Kuiper theorem and Gromov’s h principle [17,18].
The physical domain of the Onsager theory has also been
extended recently to compressible fluids, both nonrelativ-
istic [19,20] and relativistic [21], with cascade of thermo-
dynamic entropy and anomalous entropy production as
central concepts.
The purpose of this paper is to develop a similar exact

theory for kinetic turbulence of nearly collisionless plas-
mas. It was suggested already some time ago by Krommes
and Hu [22,23] that collisional production of kinetic
entropy should remain nonzero in plasmas with vanishing
collision rates. Empirical evidence for such an “anomalous
entropy production” has since been obtained by numerical
simulations of gyrokinetic turbulence, both forced and
decaying (see Sec. VII B for a review). In the gyrokinetic
formulation, Schekochihin et al. [24,25] made an explicit
analogy with the inertial range of incompressible turbu-
lence and proposed a gyrokinetic “entropy cascade”
through a range of scales in phase space where collisions
can be neglected. Here we derive this picture for the full
Vlasov-Maxwell-Landau equations of a weakly coupled,
multispecies plasma by extending Onsager’s exact, non-
perturbative RG analysis to phase space. The “collisionless
range” of scales is shown to be governed by coarse-grained
or distributional solutions of the Vlasov-Maxwell kinetic
equations with an entropy-production anomaly due to a
nonlinear entropy cascade. We derive expressions for the
entropy flux through phase-space scales that are analogous
to the “4=5th law” of Kolmogorov [26,27] for energy flux
in incompressible turbulence, and we exploit them to
deduce the singularities of particle distributions and ele-
ctromagnetic fields that are required in order to sustain the
cascade of entropy.
Such a careful, systematic mathematical framework for

kinetic plasma turbulence is valuable not only for its
predictive power and conceptual clarity, but also it is
necessary to avoid inconsistencies and apparent contra-
dictions that arise from naive, informal discussions. There
is an analogy with the theory of collisional transport in
plasmas which, prior to the systematic derivation by
Braginskii [28], led frequently to “paradoxes which have
been the source of various errors and ambiguities”
(Ref. [28], p. 213). An even closer analogy is the situation
in elementary particle physics prior to the discovery of the
axial anomaly in quantum-gauge theories. Naively, both the
vector and axial-vector currents are conserved in massless
spinor electrodynamics, but the simultaneous assumption
of both conservation laws leads to the Veltman-Sutherland
“paradox” and the “forbidden” soft pion decay π0 → γγ.

As is well known, this paradox is resolved by the chiral
anomaly, which modifies the naive conservation of axial
current and which accounts for the experimentally observed
neutral-pion decay in a pseudovector coupling calculation
[29,30]. The origin of the axial anomaly lies in the
ultraviolet divergences that appear when quantum fields,
which exist only as distributions or generalized functions,
are naively multiplied pointwise. Careful regularization of
these divergences, e.g., by gauge-invariant “point splitting”
of the spinor fields, yields the anomaly in axial charge
conservation. The turbulent dissipative anomaly in the
naive conservation of kinetic energy arises in a very similar
manner, as stressed by Polyakov [31,32] and already
understood long ago by Onsager [11,12].
The need for sophistication in treating kinetic plasma

turbulence is quite clear from the fact that the collisionless
range of scales is governed by the Vlasov-Maxwell
equations, in a certain sense, but entropy is nevertheless
not conserved, as it would be for smooth solutions of the
Vlasov-Maxwell equations in the standard sense. Similar
cautionary remarks apply not just to entropy conservation
in a turbulent plasma but also to other quantities which are
naively conserved. For example, it is true that the ideal
Ohm’s law is valid (in a certain sense) in the inertial range
of the solar wind at scales much larger than the ion
gyroradius, but this law does not hold in a manner that
implies conservation of magnetic flux at those scales, as is
frequently asserted [24,33–35]. This fact has important
implications for the problem of magnetic reconnection in a
turbulent plasma [15,36]. We treat this problem here in the
framework of the Vlasov-Maxwell-Landau kinetic theory
by considering the momentum conservation of the various
charged-particle species and the “generalized Ohm’s law”
derived from them. We also discuss the energy balances of
the particle species and of the electromagnetic fields
in order to investigate the possibility of energy cascades
in kinetic plasma turbulence. Energy and momentum in
totality (particlesþ fields) are conserved in the Vlasov-
Maxwell-Landau model so that no dissipative anomaly of
total energy or momentum is possible. There can, however,
be anomalous transfers between different components of
energy (electromagnetic, kinetic energy of bulk velocities,
kinetic energy of fluctuation velocities), and also in phase
space. We investigate this possibility in the limit of
vanishing collision rates and also in subsidiary limits, such
as vanishingly small gyroradii.
A notable aspect of the analysis presented here is that it

involves almost no discussion of the rich array of linear
waves supported by a plasma (shear Alfvén waves, slow or
fast magnetosonic waves, ion acoustic waves, kinetic
Alfvén waves, whistler waves, etc.). This contrasts with
the vast majority of works, where plasma turbulence is
regarded by default as an array of interacting linear waves.
The dominance of this wave point of view is due in part to
its great empirical success with the imprint of linear waves,
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such as their dispersion relations and eigenmodes, often
clearly observed even in strongly interacting turbulent
plasmas. On the other hand, it is also true that the
mathematics of linear plasma waves is very familiar and
well developed [37], whereas exact nonlinear theory of
kinetic plasma turbulence is less straightforward and far
fewer works are devoted to it [38,39]. In their recent
discussion of the wave-turbulence dichotomy, Coburn et al.
[39] have remarked that

“For most of the space age our view of solar wind
fluctuations (magnetic, velocity, density, etc.) has been
based on the theory of plasma waves. Attempts to
incorporate turbulence concepts into this thinking have
often been treated as little more than an afterthought
that is either a secondary dynamic or a concept in direct
conflict with the wave interpretation.”—Ref. [39], p. 1.

It is the main purpose of the present paper to satisfy this
need and to provide exact, first-principles theory of the
nonlinear cascades in kinetic turbulence of nearly collison-
less plasmas. We remain mostly silent on the linear wave
aspects, but this involves no rejection of their importance.
A complete theory of kinetic plasma turbulence certainly
requires a full synthesis of the linear wave and nonlinear
cascade points of view.

II. VLASOV-MAXWELL-LANDAU EQUATIONS

The theory of kinetic plasma turbulence in the present
paper is developed within the framework of the Vlasov-
Maxwell-Landau equations for a weakly coupled plasma,
with a large Debye number or plasma parameter, Λ ¼
nλ3D ≫ 1 (where λD is the Debye length). In order to
provide background and to set notations, we briefly
describe this system and its basic properties, the dimen-
sionless number groups which characterize its solutions,
and important prior work on the collisionless limit.

A. Basic equations

The Vlasov-Maxwell-Landau equations describe the
evolution of the distribution functions fsðx; v; tÞ in one-
particle phase space of S species of particles with charges
qs and masses ms, s ¼ 1;…; S, and of the smoothed
electromagnetic fields Eðx; tÞ, Bðx; tÞ conditionally aver-
aged over microscopic molecular states with given particle
distributions fs, s ¼ 1;…; S; see, e.g., Refs. [1,40,41].
These equations in the nonrelativistic case [42] have the
form of a Boltzmann-type kinetic equation for each species

∂tfs þ v · ∇xfs þ qsE� · ∇pfs ¼ CsðfÞ ð2:1Þ

or

∂tfs þ ∇x · ðvfsÞ þ ∇p · ðqsE�fsÞ ¼ CsðfÞ ð2:2Þ

for s ¼ 1;…; S and the conditionally averaged Maxwell
equations

∇x ·E ¼ 4π
X
s

qsns;

∇x × B −
1

c
∂tE ¼ 4π

c
j;

∇x ×Eþ 1

c
∂tB ¼ 0; ∇x · B ¼ 0 ð2:3Þ

with electric field in the rest frame of the particle population
with velocity v given by

E� ¼ Eþ 1

c
v ×B ð2:4Þ

with particle number density

nsðx; tÞ ¼
Z

d3vfsðx; v; tÞ; ð2:5Þ

mass density ρs ¼ msns, and momentum density

ρsðx; tÞusðx; tÞ ¼
Z

d3vmsvfsðx; v; tÞ ð2:6Þ

for s ¼ 1;…; S and with total electric current density

jðx; tÞ ¼
X
s

qsnsðx; tÞusðx; tÞ: ð2:7Þ

Equations (2.1) and (2.2) are equivalent because the vector
field ðv; qsE�Þ is Hamiltonian and has zero phase-space
divergence ∇x · v þ ∇p · ðqsE�Þ ¼ 0. Note that we avoid
additional factors of ms in the equations by introducing the
momentum variable p ¼ msv for each species. To complete
the description, we need to specify the collision operator for
species s given by

CsðfÞ ¼
X
s0
Css0 ðfs; fs0 Þ ð2:8Þ

summed over collisions with species s0. Here, we consider
the Landau collision operator [43]

Css0 ðfs; fs0 Þ ¼ 2πq2sq2s0 lnΛ

× ∇p ·

�Z
d3v0

Πv−v0

jv − v0j ð∇p − ∇p0 Þðfsfs0 Þ
�
;

ð2:9Þ

where fs ¼ fsðx; v; tÞ, fs0 ¼ fs0 ðx; v0; tÞ, where Πw ¼ I −
ww=jwj2 is the projection orthogonal to w, and where the
plasma parameter Λ arises as a cutoff in the collision
integral for impact factors greater than the Debye length
(and, in principle, depends upon s, s0 pairs). Although the

CASCADES AND DISSIPATIVE ANOMALIES IN NEARLY … PHYS. REV. X 8, 041020 (2018)

041020-3



system of equations (2.1)–(2.9) is a standard kinetic model
for a plasma [1], it has never been rigorously derived from a
microscopic description [44,45], and global existence of
(strong) solutions is an open problem [46]. Physically,
alternative collision integrals such as that of Lenard [47]
and Balescu [48] might give improved accuracy when
large-velocity bumps or tails develop in the distribution
functions [49]. However, so long as these improved
collision integrals satisfy an H theorem and have similar
differential form as the Landau operator (albeit with higher-
order nonlinearity), then the analysis of the present paper
carries over.

B. Conservation laws and H theorem

Essential properties of the kinetic equations are the local
conservation laws for the various quantities preserved by
collisions. The mass for each particle species is conserved
when collisions do not transform one species to another so
that

R
d3vCss0 ¼ 0, and the ms moment of Eq. (2.1) in

integration over velocity v then gives

∂tρs þ ∇x · ðρsusÞ ¼ 0: ð2:10Þ

The momentum balance for species s is obtained from the
first moment of Eq. (2.1) with msv or

∂tðρsusÞ þ ∇x · ðρsusus þ PsÞ ¼ qsnsE�s þRs; ð2:11Þ

where the pressure tensor is

Ps ¼
Z

d3vmsðv − usÞðv − usÞfs; ð2:12Þ

the electric field in the bulk rest frame of species s is

E�s ¼ Eþ 1

c
us × B; ð2:13Þ

and the drag force on species s is

Rs ¼
X
s0

Z
d3vmsvCss0 : ð2:14Þ

When
P

s Rs ¼ 0, the total momentum of the particles and
fields is conserved. Finally, taking the moment of Eq. (2.1)
with ð1=2Þmsjvj2 gives kinetic energy balances for each
species s,

∂tEs þ∇x · ðEsus þPs ·us þ qsÞ ¼ js ·EþRs ·us þQs

ð2:15Þ

with js ¼ qsnsus the partial electric current of species s,
with kinetic energy density

Es ¼
Z

d3v
1

2
msjvj2fs; ð2:16Þ

with heat flux

qs ¼
Z

d3v
1

2
msjv − usj2ðv − usÞfs; ð2:17Þ

and with collisional heat exchange with other species

Qs ¼
X
s0

Z
d3v

1

2
msjv − usj2Css0 : ð2:18Þ

The total energy of the particles and fields is conserved
when collisions are elastic and

P
sðRs · us þQsÞ ¼P

ss0
R
d3vð1=2Þmsjvj2Css0 ¼ 0. The Landau operator

(2.9), as well known, has all of these properties.
One can further subdivide the energy density Es of

species s into a bulk kinetic energy density ð1=2Þρsjusj2
and an “internal” [50] or fluctuation energy density

ϵs ≔
1

2
TrPs ¼

Z
d3v

1

2
msjv − usj2fs: ð2:19Þ

Note that ϵs ¼ ð3=2Þps if the pressure tensor is decom-
posed into a scalar pressure ps and a traceless, anisotropic

pressure tensor P
∘
s, as Ps ¼ psIþ P

∘
s. It is easy using

Eqs. (2.10) and (2.11) to derive the balance equation for
bulk kinetic energy of species s,

∂t

�
1

2
ρsjusj2

�
þ ∇x ·

�
1

2
ρsjusj2us þ Ps · us

�
¼ Ps∶∇xus þ js · EþRs · us; ð2:20Þ

and then by subtracting Eq. (2.20) from Eq. (2.15) to obtain
the balance equation for internal or fluctuational energy:

∂tϵs þ ∇x · ðϵsus þ qsÞ ¼ −Ps∶∇xus þQs: ð2:21Þ

It is notable that fields directly exchange energy only with
the bulk flows via the Ohmic term js ·E, and subsequently
energy is transferred between bulk flows and fluctuations
by the pressure-strain term Ps∶∇xus [51].
Very fundamental to our theory of kinetic plasma

turbulence is the phase-space entropy density of species s:

ð2:22Þ

As well known, this quantity simply counts the number of
microstates of particle species s compatible with the given
macroscopic distribution fs [52]. Using Eq. (2.1), the
density is easily shown to satisfy the phase-space
balance equation:
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ð2:23Þ

When integrated over v and summed over s, this equation
gives the balance of total particle entropy density in space

ð2:24Þ

of the form

∂tstot þ ∇x · JS ¼ σ ð2:25Þ

with spatial entropy current density

ð2:26Þ

and local entropy-production rate

σðx; tÞ ≔ −
X
s

Z
d3v ln fsCs

¼
X
ss0

Γss0

2

Z
d3v

Z
d3v0

jΠv−v0 ð∇p − ∇p0 Þðfsfs0 Þj2
fsfs0 jv − v0j

≥ 0: ð2:27Þ

Here we introduce the shorthand notation Γss0 ¼ q2sq2s0 lnΛ.
The non-negativity of the entropy production in Eq. (2.27)
is the statement of the H theorem for the Landau collision
operator.

C. Dimensionless quantities

We now consider the Vlasov-Maxwell-Landau equations
in a dimensionless form. For each species s ¼ 1;…; S, we
take as characteristic length the largest scale of variation Ls
of the distribution function of species s. The characteristic
velocity for species s is taken to be its thermal velocity vth;s
and the characteristic time to be τs ¼ Ls=vth;s. The char-
acteristic magnitude of fs is taken as hnsi=v3th;s, where hnsi
is the mean density of species s. We thus introduce
dimensionless variables,

x̂¼ x=Ls; t̂¼ t=τs; v̂¼ v=vth;s; f̂s ¼ v3th;sfs=hnsi
ð2:28Þ

for each separate species s ¼ 1;…; S. In order to non-
dimensionalize electromagnetic variables, we introduce an
effective density n0 and length scale L0 so that typical field
magnitudes are E0 ∼ B0 ∼ en0L0 and we then take

x̂¼x=L0; t̂¼ct=L0; Ê¼E=E0; B̂¼B=B0: ð2:29Þ

Using qs ¼ Zse, the inhomogeneous Maxwell equations in
these rescaled variables become

∇x̂ · Ê ¼ 4π
X
s

hnsi
n0

Zsn̂s;

∇x̂ × B̂ − ∂ t̂Ê ¼ 4π
X
s

hnsi
n0

vth;s
c

Zsn̂sûs; ð2:30Þ

while the homogeneous Maxwell equations are unchanged
in form. Note that the length scale L0 drops out of the
rescaled equations (2.30), and one of the factors n0, L0 can
be chosen as desired, e.g., to be a typical magnitude of hnsi
or of Ls, if these are of similar orders of magnitude for all
s ¼ 1;…; S. With the rescaled variables in Eq. (2.28) and
the rescaled field strengths in Eq. (2.29), one then obtains
the dimensionless kinetic equation for species s as

∂ t̂f̂s þ v̂ · ∇x̂f̂s þ ðZs=β0sÞÊ� · ∇p̂f̂s

¼
X
s0
Γ̂ss0Ĉsðf̂s; f̂s0 Þ; ð2:31Þ

where

Ê� ¼ Êþ vth;s
c

v̂ × B̂; ð2:32Þ

β0s ¼
msv2th;s
eB0Ls

¼ msv2th;shnsi
B2
0

�
n0
hnsi

��
L0

Ls

�
; ð2:33Þ

Γ̂ss0 ¼
2πq2sq2s0 hns0 i lnΛ

m2
sv3th;s0

τs: ð2:34Þ

Note that the standard beta parameter for species s is βs ¼
msv2th;shnsi=ðB2

0=4πÞ and is nearly the same as the quantity

β0s defined in Eq. (2.33). The meaning of the constants Γ̂ss0

is elucidated by recalling that the Spitzer-Harm collision
rate [53,54] for particle pair s, s0 is

νss0 ¼
2πq2sq2s0ns0 lnΛ
μ2s;s0 ðvrels;s0 Þ3

ð2:35Þ

up to a prefactor of order unity, where μs;s0 is the reduced
mass for pairs s, s0 given by 1=μs;s0 ¼ ð1=msÞ þ ð1=ms0 Þ
and where vrels;s0 is the typical relative velocity of particles of
species s, s0, or maxfvth;s; vth;s0 g on order of magnitude.
Thus, the quantity Γ̂ss0 defined in Eq. (2.34) is essentially
equal to νss0τs or the ratio of the characteristic time τs of
species s and the mean free time for its collisions with
species s0. We follow Refs. [24,25] in referring to Doss0 ¼
1=Γ̂ss0 as the Dorland number for the pair s, s0 [55]. In
terms of the mean free path ls;s0 ¼ vth;s=νs;s0 for collisions
of species s with s0, we can also write the Dorland number
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as ls;s0=Ls. We thus see that Doss0 is a measure of the
collisionality of the plasma with the plasma being nearly
collisionless when 1=Γ̂ ¼ Do ≔ mins;s0Doss0 ≫ 1. Here-
after, we consider this weakly collisional regime with all
other dimensionless parameters (β0s, hnsi=n0, etc.)
assumed to have magnitudes of order unity. We remove
hats ˆð·Þ on all variables for simplicity of notations.

D. Collisionless limit and dissipative anomaly

The collisional terms in the kinetic equation (2.1)
formally disappear in the limit Γ ≔ maxss0Γss0 → 0, and
its solutions may be expected to converge, in a certain
sense, to solutions of the collisionless Vlasov-Maxwell
equations. Naively, the entropy production (2.27) also
vanishes in this limit because the prefactors Γss0 → 0.
However, this need not be the case if the velocity gradients
of the distribution functions that appear in the collision
integral diverge in the same limit. The simplest mechanism
for producing large velocity gradients is the free streaming
or ballistic advection of spatial structure, which underlies
linear Landau damping [56] and which has long been
known to produce “velocity-space filamentation” in colli-
sionless Vlasov simulations (e.g., see the review [57] with
many earlier references). In the papers of Krommes and Hu
[22] and Krommes [23], it was pointed out that entropy-
production rates in a long-time statistical steady state of a
plasma obtained by taking the limit t → ∞ first are
determined entirely by the forcing and, thus, must remain
constant in the subsequent limit Γ → 0. References [22,23]
argued that the required fine structure in velocity space
could be produced by ballistic streaming and drew an
explicit analogy with nonvanishing viscous dissipation of
kinetic energy for fluid turbulence in the high-Reynolds-
number limit, or what is called the “dissipative anomaly”
[16]. In following the work of Schekochihin et al. [24,25]
within the gyrokinetic approach to plasma turbulence, it
was pointed out that the analogue of a high-Reynolds-
number “inertial range” can exist at subion scales in
position and velocity space for high-Dorland-number
plasma turbulence, with ion entropy cascading through
that range by a nonlinear perpendicular phase-mixing
mechanism [58]. Employing phenomenological arguments,
the authors of Refs. [24,25] argued that small scales in
velocity space are produced more efficiently by nonlinear
entropy cascade than by the simpler ballistic phase-mixing
mechanism.
In the present paper, we further develop the connection

between high-Reynolds-number turbulence and nearly
collisionless (high-Dorland-number) plasma kinetics but
without making the more restrictive assumptions necessary
for validity of a gyrokinetic description (i.e., without
assuming evolution timescales for any species s long
compared with its gyrofrequency). We show that the
existence of a turbulent cascade of entropy emerges as a
natural consequence of the conjecture of Refs. [22–25] that

collisional entropy production persists in the collisionless
limit. We formalize the latter conjecture as the precise
hypothesis that the entropy production (2.27) converges in
the collisionless limit

lim
Γ→0

σðx; tÞ ¼ σ⋆ðx; tÞ ð2:36Þ

as a measure in x space for each t. This formulation is
motivated by the analogy with energy dissipation in
incompressible fluid turbulence [16] and also by the case
of compressible fluids where, for shock solutions, the
entropy production converges in exactly this fashion in
the infinite Reynolds-number limit [20]. There is, however,
a strengthened version of the hypothesis which is also
natural and which involves the collisional entropy-produc-
tion density in the two-particle phase space or

ςðx; v; v0; tÞ ≔
X
ss0

Γss0

2

jΠv−v0 ð∇p − ∇p0 Þðfsfs0 Þj2
fsfs0 jv − v0j ð2:37Þ

so that σðx; tÞ ¼ R
d3v

R
d3v0ςðx; v; v0; tÞ. This density

involves only a single position variable x, since a pair of
particles must pass through the same space point (to within
a Debye radius) in order to experience an unscreened
Coulomb collision. As obvious from the definition (2.37),
this phase-space density involves only velocity gradients of
the particle distributions and not space gradients. It may
therefore be expected to remain a continuous function of x
in the limit Γ → 0 if the particle distributions likewise
remain continuous in x and v (e.g., as gyrokinetic theory
suggests; see Sec. VII A). In that case, it is reasonable to
make the stronger hypothesis that the two-particle phase-
space density of entropy production converges

lim
Γ→0

ςðx; v; v0; tÞ ¼ ς⋆ðx; v; v0; tÞ ð2:38Þ

as a finite measure in ðv; v0Þ space for every ðx; tÞ. Of
course, this assumption implies that in Eq. (2.36) but now
even pointwise in x rather than simply as a measure. The
validity of both these hypotheses can be explored in
numerical simulations of the Vlasov-Maxwell-Landau
system, similar as in Refs. [59,60]. In the present paper,
we explore their theoretical consequences. As we see, the
Onsager ideal turbulence theory [16] carries over under
these assumptions to plasma kinetics and predicts proper-
ties of the collisionless limit of Vlasov-Maxwell-Landau
(VML) solutions with anomalous entropy production. This
analysis leads to the concept of “weak” or coarse-grained
solutions of the Vlasov-Maxwell (VM) equations with
irreversible entropy production by nonlinear entropy cas-
cade in phase space.
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III. PHASE-SPACE COARSE GRAINING

The most obvious requirement for nonvanishing of the
entropy production as in Eqs. (2.36) or (2.38) is divergence
of velocity gradients of the particle distribution functions in
the limit Γ → 0 or an “ultraviolet divergence” at small
scales in velocity space. One should furthermore expect
that space gradients of the particle distribution functions
will diverge as well in the collisionless limit. Note that the
characteristic curves of the VM equation are the
Hamiltonian particle motions in an electromagnetic field,
and, for nontrivial fields, these motions generally lead to
large space gradients as well as to large velocity gradients.
Such divergences make it impossible to interpret the VML
equations naively in this limit, and the pursuit of a
dynamical description which can remain valid requires a
suitable regularization. Here we follow closely the dis-
cussion for hydrodynamic turbulence in Ref. [16] and make
use of a similar coarse graining or “block-spin” regulari-
zation in the one-particle phase space.

A. Definition of coarse graining

For any time-dependent function aðx; v; tÞ on the one-
particle phase space, we define its coarse graining [61] at
position resolution l and velocity resolution u by

āðx̄; v̄; tÞ ¼
Z

d3rGlðrÞ
Z

d3wHuðwÞaðx̄þ r; v̄ þ w; tÞ;

ð3:1Þ
where HuðwÞ ¼ u−3Hðw=uÞ for a kernel H satisfying the
properties

HðwÞ ≥ 0 ðnon-negativeÞ;Z
d3wHðwÞ ¼ 1 ðnormalizedÞ;Z

d3wwHðwÞ ¼ 0 ðcenteredÞ;Z
d3wjwj2HðwÞ ¼ 1 ðunit varianceÞ: ð3:2Þ

We also assume that H is smooth and rapidly deca-
ying, e.g., H ∈ C∞

c ðR3Þ, and for convenience, we as-
sume isotropy or H ¼ HðwÞ with w ¼ jwj so thatR
d3wwiwjHðwÞ ¼ ð1=3Þδij. In the same manner, GlðrÞ ¼

l−3Gðr=lÞ for a kernel G satisfying the analogous proper-
ties. It is sometimes useful to rewrite the definition (3.1) as

āðx̄; v̄; tÞ ¼ haðx̄þ r; v̄ þ w; tÞil;u; ð3:3Þ
where the local average h·il;u is over displacements r, w
with respect to the distribution GlðrÞHuðwÞ. In our dis-
cussion below, we also sometimes employ coarse graining
only with respect to position or only with respect to
velocity, which we denote by

ālðx̄; v; tÞ ¼
Z

d3rGlðrÞaðx̄þ r; v; tÞ

¼ haðx̄þ r; v; tÞil;

āuðx; v̄; tÞ ¼
Z

d3wHuðwÞaðx; v̄ þ w; tÞ

¼ haðx; v̄ þ w; tÞiu: ð3:4Þ

There is consistency between these various notions of
coarse graining if a phase-space function lacks dependence
on one variable. For example, if b ¼ bðx; tÞ is independent
of v, then b̄ ¼ b̄l, and we need not distinguish these two
quantities. Likewise, if c ¼ cðv; tÞ is independent of x,
then c̄ ¼ c̄u.
One more concept that we employ extensively in our

analysis below is that of coarse-graining cumulants
τ̄ðf1;…; fpÞ. These are defined as usual [64,65] through
the iterative expansion of coarse-grained products into
finite sums of cumulants:

a1…an ¼
X
I

YrI
r¼1

τ̄ða
iðrÞ
1

;…; a
iðrÞpr
Þ; ð3:5Þ

where the sum is over all distinct partitions I of f1;…; ng
into rI disjoint subsets fiðrÞ1 ;…; iðrÞpr g of pr members each,
r ¼ 1;…; rI , so that

PrI
r¼1 pr ¼ n for each partition I. By

solving the iterated expansions for cumulants in terms of
coarse-grained products, one obtains, e.g.,

τ̄ða1Þ ¼ ā1; τ̄ða1; a2Þ ¼ a1a2 − ā1ā2;

τ̄ða1; a2; a3Þ ¼ a1a2a3 − a1a2ā3 − a1a3ā2 − a2a3ā1

þ 2ā1ā2ā3; ð3:6Þ

and so forth for cumulants of higher order. A relation that is
crucial to our analysis is

τ̄ða1; a2Þ ¼ hδa1δa2i − hδa1ihδa2i; ð3:7Þ

where δr;waðx; v; tÞ ¼ aðxþ r; v þ w; tÞ − aðx; v; tÞ is the
increment for a phase-space displacement ðr;wÞ [15,16].
A similar result holds for the second-order cumulant
τ̄lðb1; b2Þ defined with respect to the average h·ir over r
and with the increment taken to be δrb. The same remark
holds for τ̄uðc1; c2Þ, average h·iu over w, and increment
δwc. In fact, expressions for higher-order cumulants in
terms of increments hold as well, completely analogous to
Eq. (3.7) for second-order cumulants [15,16].
The phase-space coarse-graining operation (3.1) clearly

regularizes all gradients so that ∇x̄ā and ∇v̄ā are finite and
smooth, even if quantity a exists only as a distribution on
phase space. Moreover, one can derive expressions for
these gradients in terms of increments
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∇x̄āðx̄; v̄; tÞ

¼ −
1

l

Z
d3rð∇GÞlðrÞ

Z
d3wHuðwÞðδraÞðx̄; v̄ þ w; tÞ

ð3:8Þ

and

∇v̄āðx̄; v̄; tÞ

¼ −
1

u

Z
d3rGlðrÞ

Z
d3wð∇HÞuðwÞðδwaÞðx̄þ r; v̄; tÞ

ð3:9Þ

by exploiting
R
d3rð∇GÞlðrÞ ¼

R
d3wð∇HÞuðwÞ ¼ 0.

These formulas permit one to estimate the order of
magnitude of the coarse-grained gradients. We emphasize
that the length scale l and velocity scale u introduced by
our coarse-graining regularization are completely arbitrary.
No objective physical fact can depend upon their precise
values. The coarse graining (3.1) is a purely passive
operation which corresponds to observing a given phase-
space function aðx; v; tÞ with some chosen resolutions l in
position and u in velocity. As we see below, the arbitrari-
ness of these regularization scales can be exploited to
deduce exact consequences analogous to RG invariance in
quantum-field theory and statistical physics [14] and
analogous to Onsager’s ideal turbulence theory for incom-
pressible fluid turbulence [16].

B. Phase-space Favre average

In the theory of compressible fluid turbulence, a mass-
density weighted average was introduced by Favre [66]
within a statistical ensemble approach to compressible fluid
turbulence. Density weighting may be employed also for
coarse-graining averages; e.g., Refs. [19,20,67]. It should
be emphasized that the use of density weighting is not
obligatory, but it has the advantage that it reduces the
number of terms in coarse-grained equations and generally
provides each term with an intuitive physical interpretation.
Therefore, we employ weighted coarse graining here as
well but with the novelty that coarse-graining averages are
weighted by the phase-space particle distributions rather
than by mass densities. For a field a ¼ aðx; v; tÞ, we thus
define its phase-space Favre average at scales l, uweighted
by the particle distribution of species s as

âs ≔ afs=f̄s: ð3:10Þ

We contrast this with the traditional physical-space Favre
average at scale l for a field b ¼ bðx; tÞ with no v
dependence, which is weighted by the mass density of
species s so that

b̃s ≔ bρs=ρ̄s ¼ bns=n̄s: ð3:11Þ

Even for a purely spatial field b ¼ bðx; tÞ with no v
dependence, these two averages do not agree,

b̂sðx̄; v̄; tÞ ≠ b̃sðx̄; tÞ; ð3:12Þ
because the correlations between positions and velocities in
the distribution function fsðx; v; tÞ induce a nontrivial v̄
dependence in b̂s. There is, however, an easily derived
consistency relationZ

d3v̄b̂sf̄s ¼ bns ¼ b̃sn̄s ¼ b̃s

Z
d3v̄f̄s; ð3:13Þ

which holds for any b ¼ bðx; tÞ.
Just as for unweighted coarse graining, one may define

phase-space Favre cumulants τ̂sða1;…; anÞ through the
iterative decompositions

ð da1…anÞs ¼
X
I

YrI
r¼1

τ̂sðaiðrÞ
1

;…; a
iðrÞpr
Þ ð3:14Þ

for n ¼ 1; 2; 3;… Likewise, one may define physical-space
Favre cumulants τ̃sðb1;…; bnÞ with respect to the standard
Favre average for bi ¼ biðx; tÞ, i ¼ 1; 2; 3;… Since Favre
averaging is just a convenience, one may always express
Favre cumulants in terms of unweighted cumulants, e.g.,
for τ̂sðaÞ ¼ âs,

âs ¼ āþ 1

f̄s
τ̄ða; fsÞ; ð3:15Þ

τ̂sða1; a2Þ ¼ τ̄ða1; a2Þ þ
1

f̄s
τ̄ða1; a2; fsÞ

−
1

f̄s2
τ̄ða1; fsÞτ̄ða2; fsÞ; ð3:16Þ

and so forth. Because the unweighted cumulants
τ̄ða1;…; anÞ can be expressed in terms of increments δai
i ¼ 1;…; n via relations such as Eq. (3.7), it follows that
the Favre cumulants τ̂ða1;…; anÞ can be expressed in terms
of increments δfs and δai, i ¼ 1;…; n.

C. Coarse-grained distribution

Basic dynamical objects for the coarse-graining regu-
larization are the coarse-grained distributions f̄sðx̄; v̄; tÞ for
each particle species s ¼ 1;…; S. Before we consider their
evolution, however, we note some simple properties of the
coarse-grained distributions that follow directly from their
definition. First, one easily obtains the velocity moments up
to quadratic order asZ

d3v̄msf̄sðx̄; v̄; tÞ ¼ ρ̄sðx̄; tÞ; ð3:17Þ
Z

d3v̄msv̄f̄sðx̄; v̄; tÞ ¼ ρsusðx̄; tÞ; ð3:18Þ
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Z
d3v̄msv̄ v̄ f̄sðx̄; v̄; tÞ ¼

�
ρsusus þ Ps þ

1

3
ρsu2I

�
ðx̄; tÞ;

ð3:19Þ

where to obtain the last two relations we useR
d3wwHuðwÞ ¼ 0 and

R
d3wwwHuðwÞ ¼ ð1=3Þu2I.

Simple consequences of the above three moment condi-
tions are then Z

d3v̄ v̄ f̄s=
Z

d3v̄f̄s ¼ ũs; ð3:20Þ

Z
d3v̄

1

2
msjv̄j2f̄s ¼ Ēs þ

1

2
ρ̄su2; ð3:21Þ

andZ
d3v̄msðv̄− ũsÞðv̄− ũsÞf̄s ¼ ρ̄sτ̃ðus;usÞ þ P̄s þ

1

3
ρ̄su2I:

ð3:22Þ

To interpret the last three results, note that f̄sðx̄; v̄; tÞ
represents an imperfectly measured distribution function
for particle species s observed with resolution l in
positions and resolution u in velocities. The relation
(3.20) states that the bulk flow velocity for the measured
distribution coincides with the Favre average of the true
bulk velocity. Likewise, the relations (3.21) and (3.22) give
the resolved energy density and resolved pressure tensor
calculated from the measured distribution. Aside from the
extra isotropic term ð1=3Þρ̄su2I, the resolved pressure
tensor is given by

P̄�
s ¼ P̄s þ ρ̄sτ̃ðus;usÞ; ð3:23Þ

which we call the intrinsic resolved pressure tensor. Note
that no calculation involving only the measured distribution
function f̄sðx̄; v̄; tÞ can yield separately the coarse-grained
pressure tensor P̄s or the subscale stress tensor ρ̄sτ̃ðus;usÞ,
and only the combination is intrinsically defined for the
measured distribution. The intrinsic pressure tensor defined
in (3.23) is similar to the concept of “intrinsic resolved
internal energy” that was introduced in Ref. [20] for a
turbulent compressible fluid, which is likewise the only
internal energy obtained from coarse-grained observations
of the basic fluid variables. In kinetic theory, we may define
the intrinsic resolved internal energy by ϵ̄s�¼ð1=2ÞtrðP�

sÞ or

ϵ̄s
� ¼ ϵ̄s þ

1

2
ρ̄sτ̃ðus;usÞ ð3:24Þ

using the shorthand notation τ̃ðb;b0Þ ¼ P
3
i¼1 τ̃ðbi; b0iÞ. We

then see that Ēs ¼ ð1=2Þρ̄sjũsj2 þ ϵ̄s
�. The quantity ϵ̄s

� in

Eq. (3.24) is the only internal or fluctuational energy that can
be obtained from the imperfectly measured distribution
function f̄sðx̄; v̄; tÞ, for which energy in kinetic fluctuations
ϵs and energy in unresolved turbulent fluctuations of the
bulk velocity ũs are indistinguishable.
Finally, we note one of the most important properties of

the coarse-grained distributions. Because the phase-space
entropy density is concave in fs, one has the basic
inequality

ð3:25Þ

Thus, as is well known (e.g., Ref. [68], Chap. XII), the
entropy of each species s can increase only under coarse
graining:

ð3:26Þ

This result implies that if the increase of total particle
entropy StotðfÞ ≔

P
s SðfsÞ is persistent in the collisionless

limit Γ → 0, then an observer with only coarse-grained
measurements of the phase-space distribution functions at
finite resolutions l, u will also observe an increase in
Stotðf̄Þ ¼

P
s Sðf̄sÞ. As we show now, however, the

entropy production observed at fixed scales l, u is not
due to the direct effect of collisions in the limit Γ → 0.

IV. COARSE-GRAINED VLASOV-MAXWELL
EQUATIONS

The coarse-grained particle distribution functions and
coarse-grained electromagnetic fields may have a well-
defined dynamics in the collisionless limit, as all of their
gradients necessarily remain finite. The dynamics at fixed
resolutions l, u in fact is governed by a coarse-grained
version of the collisionless Vlasov-Maxwell equations
valid for very large (but finite) Dorland number.

A. Negligibility of collisions

The equations for the particle distribution functions
coarse grained at scales l, u are

∂tf̄s þ ∇x̄ · ðvfsÞ þ ∇p̄ · ðqsE�fsÞ ¼ CsðfÞ; ð4:1Þ

since the coarse-graining operation commutes with all
partial derivatives. The coarse-grained collision operator
is given by C̄s ¼

P
s0 C̄ss0 with
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C̄ss0 ðx̄; v̄; tÞ ¼
Z

d3rGlðrÞ
Z

d3vHuðv − v̄ÞCss0 ðx̄þ r; v; tÞ

¼ −
Γss0

msu

Z
d3rGlðrÞ

Z
d3vð∇HÞuðv − v̄Þ ·

Z
d3v0

Πv−v0

jv − v0j · ð∇p − ∇p0 Þðfsfs0 Þ: ð4:2Þ

Here we use the specific form of the Landau collision integral (2.9) and integrate by parts once to move the ∇v derivative to
the kernel Hu. In the final expression in Eq. (4.2), fs ¼ fsðxþ r; v; tÞ, fs0 ¼ fs0 ðxþ r; v0; tÞ.
We now show that C̄ss0 → 0 as Γ → 0 by deriving an appropriate upper bound.We first factorize the integrand in Eq. (4.2)

into a product of two terms to give

C̄ss0 ðx̄; v̄;tÞ¼−
Γss0

msu

Z
d3r

Z
d3v

Z
d3v0G1=2

l ðrÞð∇HÞuðv− v̄Þ
�

fsfs0

jv−v0j
�

1=2
·

G1=2
l ðrÞΠv−v0

ðfsfs0 jv−v0jÞ1=2 ð∇p−∇p0 Þðfsfs0 Þ; ð4:3Þ

and then apply the Cauchy-Schwarz inequality to obtain

jC̄ss0 ðx̄; v̄; tÞj ≤
Γss0

msu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3r

Z
d3v

Z
d3v0GlðrÞjð∇HÞuðv − v̄Þj2 fsfs0

jv − v0j

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3r

Z
d3v

Z
d3v0

GlðrÞjΠv−v0 ð∇p − ∇p0 Þðfsfs0 Þj2
fsfs0 jv − v0j

s
: ð4:4Þ

The integral under the first square root contains a factor
1=jv − v0j in its integrand diverging as v0 → v, but this is an
integrable singularity in 3D. It is not hard to show under
reasonable assumptions on the particle distributions that
this integral remains finite as Γ → 0 (Appendix B 1). The
integral under the second square root is, to within a factor,
the spatial coarse graining of the s, s0 term in the local
entropy production defined in Eq. (2.27). We therefore
obtain an upper bound with Cf;l;u independent of Γ,

jC̄ss0 ðx̄; v̄; tÞj ≤ Cf;l;uðx̄; v̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γss0 σ̄ðx̄; tÞ;

p
ð4:5Þ

which is vanishing in the limit Γ → 0 with l, u fixed. Since
it is the coarse-grained entropy production which appears in
this bound, we need only to assume that σðx; tÞ → σ⋆ðx; tÞ
as a measure [Eq. (2.36)] and not pointwise in x or in any
stronger sense [e.g., Eq. (2.38)].
The conclusion of this argument is that for any fixed

scales l, u, then for sufficiently large (but finite) Dorland
numbers, the fields f̄s, s ¼ 1;…; S, and Ē, B̄will satisfy, to
any desired degree of accuracy, the coarse-grained Vlasov-
Maxwell equations:

∂tf̄s þ ∇x̄ · ðvfsÞ þ ∇p̄ · ðqsE�fsÞ ¼ 0;

s ¼ 1;…; S;

∇x̄ · Ē ¼ 4π
X
s

qsn̄s;

∇x̄ × B̄ −
1

c
∂tĒ ¼ 4π

c
ȷ̄;

∇x̄ × Ēþ 1

c
∂tB̄ ¼ 0; ∇x̄ · B̄ ¼ 0: ð4:6Þ

The validity of the coarse-grained Maxwell equations is
immediate, of course, because of the linearity of the
Maxwell equations in fs, s ¼ 1;…; S, and E, B. For
any fixed value of the Dorland number Do ≫ 1, the range
of scales l, u where collisions have no direct effect and
where the above “coarse-grained VM equations” are well
satisfied shall be called the collisionless range of kinetic
turbulence. This concept is completely analogous to the
inertial range of hydrodynamic turbulence, where likewise,
viscosity has no direct effect and “coarse-grained Euler
equations” are valid. This is essentially the same analogy
suggested in Refs. [24,25] but now derived and interpreted
in a precise fashion.
Explicit estimates of the cutoff scales lc, uc where

collisions become important can be obtained from our
analysis. Since the derivation involves material in later
sections of the paper and is somewhat out of logical order,
we present the details in Appendix C. Here we just remark
briefly that estimate (4.5) can be improved to

C̄ss0 ðx̄; v̄; tÞ ≤ C00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νss0 ς̄s;l;uðx̄; v̄; tÞf̄sðx̄; v̄; tÞ

q
×
vth;ss0

u
;

ð4:7Þ

where ς̄s;l;uðx̄; v̄; tÞ is a coarse-grained collisional entropy-
production rate of particle species s per phase-space
volume, vth;ss0 ¼ maxfvth;s; vth;s0g, and νss0 is the Spitzer-
Harm collision rate (2.35) for particles of species s, s0. By
making the stronger hypothesis (2.38) on nonvanishing
entropy production, one can infer that ς̄s;l;uðx̄; v̄; tÞ remains
finite in the limit Do → ∞, so that estimate (4.7) also
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implies that collisions can be neglected at fixed l, u in the
limit. Furthermore, from Eq. (4.7) one can infer the
following condition to determine cutoff scales lc, uc,

ðωeddy
s;l;uÞ2
ωdiss
s;l;u

≃ νss0

�
vth;ss0

u

�
2

; ð4:8Þ

where ωeddy
s;l;uðx̄; v̄; tÞ is a suitably defined “eddy turnover

rate” and where ωdiss
s;l;uðx̄; v̄; tÞ is a coarse-grained colli-

sional “dissipation rate” at scales l, u in phase space (see
Appendix C). When ωeddy

s;l;u ∼ ωdiss
s;l;u, the condition (4.8)

essentially coincides with the heuristic criterion proposed
in the gyrokinetic literature [see Ref. [25], Sec. II and
Ref. [24], Eq. (251)] but now derived locally in phase space
and thus consistent with possible intermittency.
Since Eq. (4.8) imposes only a single condition on two

parameters l, u, an additional relation is required to
completely determine lc, uc. In gyrokinetic turbulence
theory, this is taken to be a relation u=vth;s ∼ l=ρs that
connects scaling in position space and velocity space, with
ρs the gyroradius for species s (see Eq. (17) in Ref. [25] and
Eq. (252) in Ref. [24]). From the renormalization-group
point of view, however, l, u are two independent regu-
larization scales determined by completely arbitrary reso-
lutions of observations [14]. One can thus impose any
additional constraint whatsoever, such as

l ∼ ρsðu=vth;sÞβ; β > 0 ð4:9Þ

so long as l, u vanish together. The scales lðβÞ
c , uðβÞc where

collisions first become non-negligible in the coarse-grained
VM equations (4.6) will necessarily be β dependent, but no
objective physical statement can depend upon which value
of β is adopted in Eq. (4.9). On the other hand, there may be
a “natural choice” which makes the description simpler
(just as any curvilinear coordinate system may be adopted
to describe a given physics problem, but some coordinate
choices are far more convenient). In particular, for the case
of kinetic turbulence, there may be a physical relation
between the scales of phase-space “eddies” in position
space l and velocity space u, which determines a natural
choice of β and which removes this freedom in the
definition of lc, uc.
If suitable (strong) limits of the VML solutions exist

[69], fs, E, B → f⋆s, E⋆, B⋆ as Do → ∞, then the coarse-
grained VM equations (4.6) will hold for those limit fields
with any choice of l, u. This is equivalent to the statement
that the limit fields f⋆s, E⋆, B⋆ are weak or distributional
solutions of the Vlasov-Maxwell equations (Propositions 1
and 2 in Ref. [62]). In other words, the limit fields will
satisfy

∂tf⋆s þ ∇x · ðvf⋆sÞ þ ∇p · ðqsðE⋆Þ�f⋆sÞ ¼ 0;

s ¼ 1;…; S;

∇x ·E⋆ ¼ 4π
X
s

qsn⋆s;

∇x ×B⋆ −
1

c
∂tE⋆ ¼ 4π

c
j⋆;

∇x ×E⋆ þ
1

c
∂tB⋆ ¼ 0; ∇x ·B⋆ ¼ 0 ð4:10Þ

in the sense of distributions. Here we may note that there is
rigorous mathematical theory on the global existence of
weak solutions of the VM equations, the state of the art of
which is represented essentially by the work of DiPerna and
Lions [71]. Those authors prove that for any initial data f0s,
s ¼ 1;…; S, and E0, B0 which satisfy the conditionsZ

d3x
Z

d3vð1þjvj2Þf0s <∞;
Z

d3x
Z

d3vf20s <∞;

s¼ 1;…;S;

∇x ·E0 ¼
X
s

qs

Z
d3vf0s; ∇x ·B0 ¼ 0;Z

d3x½jE0j2þjB0j2�<∞; ð4:11Þ

then weak or distributional solutions of the VM equations
with these initial conditions exist globally in time (but may
not be unique). We discuss some properties of these known
weak solutions further below. We note here only that the
weak solutions in the DiPerna-Lions theory [71] are not
obtained as collisionless limits of solutions of the VML
equations or other Boltzmann-type equations and that such
limits have not to date been mathematically proved (or
disproved) to exist [72]. Better mathematical understanding
of the collisionless limit would provide important new
concepts and tools for the theory of kinetic plasma
turbulence. We emphasize, however, that we do not need
to assume in this work that limits fs, E, B → f⋆s, E⋆, B⋆
must exist for Do → ∞. Our principal conclusions are
independent of this hypothesis.

B. Eddy drift and effective fields

Although the coarse-grained VM equations hold to any
desired accuracy for fixed l, u when Do ≫ 1, this does not
mean that the VM equations in the naive sense hold for the
coarse-grained fields f̄s, s ¼ 1;…; S, and Ē, B̄. To explain
this point clearly, we write Eqs. (4.6) in a form as close as
possible to the ordinary VM equations. This can be done in
a simple way by using the concept of the phase-space Favre
average introduced in Sec. III B to write vfs ¼ v̂sf̄s and
E�fs ¼ Ê�sf̄s so that the “coarse-grained Vlasov equa-
tion” becomes
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∂tf̄s þ ∇x̄ · ðv̂sf̄sÞ þ ∇p̄ · ðqsÊ�sf̄sÞ ¼ 0: ð4:12Þ

If the effective fields v̂s, Ê�s introduced in this fashion were
the same as v̄ and Ēþ ðv̄=cÞ × B̄, then the coarse-grained
quantities f̄s, s ¼ 1;…; S, and Ē, B̄ would satisfy the VM
equations in the conventional sense. In the example of
hydrodynamic turbulence, however, v̄v ¼ v̄ v̄þτ ≠ v̄ v̄,
because of the additional “subscale” or “turbulent” stress
τ that was introduced by integrating out small eddies. In the
same manner, we show now that v̂s, Ê�s do not coincide
with v̄, Ēþ ðv̄=cÞ × B̄ but contain additional contributions
because of the elimination of “small eddies” in the
phase space.
We note first directly from the definition of Favre

average that

v̂s ¼ v̄ þ ŵsðx̄; v̄; tÞ ð4:13Þ

with an eddy-drift velocity given by

ŵs ≔
1

f̄s
hwfsðx̄þ r; v̄ þ w; tÞil;u

¼ 1

f̄s
hwδwf̄s;lðx̄; v̄Þiu: ð4:14Þ

The second expression is obtained by performing first the
h·il average over r and then using the property hwiu ¼ 0.
This expression is useful in making estimates of the
magnitude of ŵs. The physical meaning of this “eddy
drift” is that the local mean velocity of the population of
particles within distances l, u of the phase point ðx̄; v̄Þ does
not coincide with v̄, and ŵs is the average drift velocity of
this population relative to v̄ itself.
One can likewise derive for the effective fields in

Eq. (4.12) the expressions

Ê�s ¼ Ês þ
1

c
v̄ × B̂s þ

1

c
dðw × BÞs ð4:15Þ

with

Êsðx̄; v̄; tÞ ¼ Ēðx̄; tÞ þ 1

f̄s
τ̄ðE; fsÞ

¼ Ēðx̄; tÞ þ 1

f̄s
τ̄lðE; f̄s;uÞ; ð4:16Þ

also

B̂sðx̄; v̄; tÞ ¼ B̄ðx̄; tÞ þ 1

f̄s
τ̄ðB; fsÞ

¼ B̄ðx̄; tÞ þ 1

f̄s
τ̄lðB; f̄s;uÞ ð4:17Þ

and

dðw ×BÞsðx̄; v̄; tÞ

¼ 1

f̄s
hw ×Bðx̄þ r; tÞfsðx̄þ r; v̄ þ w; tÞil;u

¼ 1

f̄s
hw ×Bðx̄þ r; tÞδwfsðx̄þ r; v̄Þil;u: ð4:18Þ

These results are again direct consequences of the defi-
nition of Favre coarse graining. The derivation of Eq. (4.18)
is quite similar to that of Eq. (4.14). The first lines in
Eqs. (4.16) and (4.17) follow by the general relation (3.15)
between Favre and unweighted coarse graining, and the
second lines in Eqs. (4.16) and (4.17) follow from the v
independence of E, B, which allows the h·iu average over
w to be performed first.
Notice that the Favre-averaged fields Ês, B̂s become

velocity dependent due to the terms τ̄lðE; f̄s;uÞ,
τ̄lðB; f̄s;uÞ, which account for the fine-scale correlations
of particles and fields. This dependence is similar to the
velocity dependence of conditionally averaged fields in
the derivation of the Vlasov-Maxwell system from the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, except
that the latter dependence arises from multiparticle statistical
correlations anddisappearswhenmolecular chaosholds (e.g.,
Ref. [40], Sec. III. 1. 1). In the collisionless range of kinetic
turbulence, on the other hand, the correlations arise from
turbulent fluctuations in the phase space, and they do not
vanish under any physically plausible assumptions. As we
see, these correlations are a major contributor to kinetic
turbulent cascades. Similar correlations arise microscopically
at the next order in the expansion in the plasma parameter,
leading to the collision integral expressed in the form
CsðfÞ ¼ −qs∇p · hδE�δfsi, where the average here is over
the statistics of the individual ions [e.g., see Ref. [41],
Eq. (26.13)]. Thus, the contributions in Eq. (4.12), which
arise from the correlation terms τ̄lðE; f̄s;uÞ, τ̄lðB; f̄s;uÞ in
Ê�s, represent “collisions” of turbulent eddies. It is interesting
that in the exact theory presented here at the level of theVML
description, these nonlinear wave-particle interaction terms
can explicitly drive a cascade in velocity space. In the
gyrokinetic approximation, there is no corresponding term
which can create phase-space fine-scale structure by direct
“advection” invelocity space, and the necessary fine structure
for persistent entropy dissipation arises instead from the
velocity dependence of ring averages (Ref. [24], p. 345).
Using the second lines of each of the formulas (4.14) and

(4.16)–(4.18), we can estimate the magnitudes of all of the
contributions to ŵs and Ê�s in Eqs. (4.13) and (4.15):

ŵsðx̄; v̄; tÞ ¼ Oðuδufs=fsÞ; ð4:19Þ

Êsðx̄; v̄; tÞ ¼ Ēðx̄; tÞ þOðδlEδlfs=fsÞ; ð4:20Þ

v̄ × B̂sðx̄; v̄; tÞ ¼ v̄ × B̄ðx̄; tÞ þOðv̄δlBδlfs=fsÞ; ð4:21Þ
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dðw ×BÞsðx̄; v̄; tÞ ¼ OðuBδufs=fsÞ: ð4:22Þ

Here we use the shorthand notations

δlfs ≔ sup
jrj<l

jδrfsj; δufs ≔ sup
jwj<u

jδwfsj; ð4:23Þ

and likewise for all other quantities. The estimates (4.19)–
(4.22) are all exact upper bounds, but they can also be taken
as order-of-magnitude estimates of the terms (4.14) and
(4.16)–(4.18) if one assumes that there are no significant
cancellations in the local phase-space averages defining
those terms. (As we discuss later, this is probably a dubious
assumption.) We see explicitly from Eqs. (4.19)–(4.22) that
the quantities v̂s, Ê�s appearing in the coarse-grained
Vlasov equations are different from v̄, Ēþ ðv̄=cÞ × B̄
and, thus, f̄s, s ¼ 1;…; S, and Ē, B̄ do not satisfy the
VM equations in the conventional sense.
From a conceptual point of view, the quantities v̂s, Ê�s

are scale-dependent “renormalizations” of the “bare” quan-
tities v, E� that appear in the “fine-grained” VML equa-
tions (2.1)–(2.3). The particle distribution functions
measured in any real experiment will always have some
finite resolutions l, u in position and velocity space and
thus correspond to the coarse-grained distributions
f̄sðx̄; v̄; tÞ and not to the fine-grained distributions
fsðx; v; tÞ that exactly satisfy the Vlasov-Landau equa-
tion (2.1). At sufficiently large but finite Do and with fixed
resolutions l, u, these measured distributions f̄s satisfy to
any desired degree the renormalized equation (4.12), which
is only equivalent to a Vlasov equation in the “coarse-
grained sense” [Eq. (4.6)]. By contrast, any fine-grained
distributions f⋆sðx; v; tÞ obtained in the strong limit Do →
∞ exactly satisfy the collisionless Vlasov equation (4.10)
but only in a distributional sense. The limits f⋆s are singular
Vlasov solutions with nondifferentiable dependence on
position and velocity, which can never be strictly observed
in nature. They are idealized mathematical objects, which
are approached better and better by the smooth VML
solutions as Do increases and as the fine-grained distribu-
tions fs become more and more nearly singular.

V. ENTROPY CASCADE IN PHASE SPACE

The results in the previous section resolve the paradox
that the Vlasov-Maxwell equations are valid at fixed scales
l, u as Γ → 0, in the sense of Eq. (4.6), and yet entropy
Stotðf̄Þ increases at those scales even without any direct
contribution from collisions. As we now show, the entropy
production in the coarse-grained description at fixed
resolutions l, u is due to a nonlinear entropy cascade
through phase-space scales, in exact analogy to the kinetic
energy cascade in incompressible fluid turbulence.

A. Coarse-grained entropy balance

The first important observation is that the coarse-grained
Vlasov equation in Eqs. (4.6) or (4.12) satisfies no
Liouville theorem so that f̄s is not conserved along
characteristic curves of v̂s, Ês. Instead, direct calculation
yields along characteristics that

∂tf̄s þ v̂s · ∇x̄f̄s þ qsÊ�s · ∇p̄f̄s

¼ −ð∇x̄ · v̂s þ qs∇p̄ · Ê�sÞf̄s ð5:1Þ

with generally ∇x̄ · v̂s þ qs∇p̄ · Ê�s ≠ 0. Below, we give
explicit expressions for this phase-space divergence which
show clearly that it need not vanish. As a simple conse-
quence of Eq. (5.1), one obtains the following phase-space
balance equation satisfied by the entropy density of the
coarse-grained distribution for species s:

ð5:2Þ

where

ςflux;sl;u ðx̄; v̄; tÞ ≔ ð∇x̄ · v̂s þ qs∇p̄ · Ê�sÞf̄s: ð5:3Þ

The quantity ςflux;sl;u ðx̄; v̄; tÞ represents the rate of transfer of
entropy of species s from unresolved scales < l, u in the
phase space, where it is created by collisions, up to the
resolved scales > l, u locally for each phase-space point
ðx̄; v̄Þ [75]. It is exactly analogous to the local energy flux
Πlðx; tÞ for incompressible fluid turbulence [Ref. [16],
Eq. (3.8)], except for a change in sign. Because of the sign
difference, ςflux;sl;u is better regarded as a flux of negentropy,
or negative entropy, to small scales in phase space,
which is there dissipated by collisions. We recall here that
the “generalized energy” in gyrokinetics is the electromag-
netic field energy minus the entropy of particles (see
Refs. [24,25] and the discussion in Sec. VII A).
Negentropy also plays a central role in the ideal turbulence
theory for compressible fluids [20,21,62].
The sign of ςflux;sl;u ðx̄; v̄; tÞ will vary from point to point in

phase space and also with scales l, u. However, its integral
over velocity and summation over s,

σfluxl;u ðx̄; tÞ ≔
X
s

Z
d3v̄ςflux;sl;u ðx̄; v̄; tÞ ð5:4Þ

must be positive on average. Indeed, velocity integration of
Eq. (5.2) and summation over s yields

∂tstotðf̄Þ þ ∇x̄ · JresS;lu ¼ σfluxl;u ð5:5Þ

with space density of total resolved entropy
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ð5:6Þ

and with resolved entropy current density

ð5:7Þ

Averaging Eq. (2.25) over space, we first choose Do
sufficiently large so that

d
dt

hstotðfÞi ¼ hσi ≐ hσ⋆i > 0 ð5:8Þ

with h·i representing the space average. We then sub-
sequently choose l, u sufficiently small so that the average
of Eq. (5.5) over space gives

hσfluxl;u i ¼
d
dt

hstotðf̄Þi ≐
d
dt

hstotðfÞi: ð5:9Þ

Comparing the two expressions for ðd=dtÞhstotðfÞi in
Eqs. (5.8) and (5.9), one concludes that for Do ≫ 1 there
is a range of sufficiently small l, u such that

hσfluxl;u i ≐ hσ⋆i > 0: ð5:10Þ

Thus, there is a range of nearly constant negentropy flux
which, furthermore, is positive, corresponding to a forward
cascade of negentropy or an inverse cascade of the standard
entropy [77].
We can derive a more general result if we assume that

(strong) limits exist fs → f⋆s as Do → ∞. In that case, one
has the limiting entropy balance

∂tstotðf⋆Þ þ ∇x · JS⋆ ¼ σ⋆ ð5:11Þ

in the sense of distributions directly from Eq. (2.25).
Furthermore, one has in the limit l, u → 0 that stotðf̄⋆Þ →
stotðf⋆Þ in the sense of distributions for the total entropy
defined in Eq. (2.24) and likewise as l, u → 0,

JresS⋆;lu ¼ −
X
s

Z
d3v̄ vf⋆s ln f̄⋆s

→ −
X
s

Z
d3vvf⋆s ln f⋆s ¼ JS⋆ ð5:12Þ

in the sense of distributions for the entropy current density
defined in Eq. (2.26). Because Eq. (5.5) follows for f̄⋆s,
s ¼ 1;…; S as a consequence of Eq. (4.10), one can also
conclude that

lim
l;u→0

σflux⋆;l;u ¼ lim
l;u→0

½∂tstotðf̄⋆Þ þ ∇x · JresS⋆;lu�

¼ ∂tstotðf⋆Þ þ ∇ · JS⋆
¼ σ⋆ > 0 ð5:13Þ

in the sense of distributions, where Eq. (5.11) is used in the
last step. Equation (5.13) is equivalent to the statement that
for any smooth, compactly supported function on space-
time, φðx; tÞ ≥ 0 with

R
d3x

R
dtφ ¼ 1, then, for the local

space-time average defined by φ,

lim
l;u→0

Z
d3x

Z
dtφðx; tÞσflux⋆;l;uðx; tÞ

¼
Z

d3x
Z

dtφðx; tÞσ⋆ðx; tÞ > 0: ð5:14Þ

This equality is obviously a stronger statement than
Eq. (5.10), which requires a global space average. The
result (5.13) or (5.14) is analogous to the local relation (in
the sense of distributions) between kinetic energy flux and
viscous energy dissipation derived for incompressible fluid
turbulence by Duchon and Robert [78].
The balance for total entropy obtained in Eq. (5.11) as

Do → ∞ with f⋆s, s ¼ 1;…; S a set of weak or distribu-
tional solutions of the Vlasov-Maxwell equations (4.10) is
an example of what is called an “anomalous balance” in
quantum-field theory and condensed-matter physics
[16,31,32]. A positive source term σ� > 0 implies increas-
ing total entropy for the weak solutions, whereas total
entropy is conserved for smooth solutions of the Vlasov-
Maxwell equations. The nonvanishing entropy production
σ⋆ > 0 is an example of a dissipative anomaly like that
predicted by Onsager [12,16] for incompressible Euler
solutions describing hydrodynamic turbulence as Re → ∞.
As in the fluid case, such anomalies are possible only if the
solutions are sufficiently “singular” or “rough.” We next
derive the analogue of 4=5th laws which express the
entropy flux (5.3) in terms of increments of particle
distributions and fields and which allow us to establish
exact constraints on the degree of singularity or rugosity
required for the turbulent solutions to sustain a nonvanish-
ing negentropy flux to small scales in phase space.

B. 4=5th laws for entropy flux

The formula (5.3) for the entropy flux through scales in
phase space can be further evaluated with the expressions
for v̂s, Ês given in Eqs. (4.13)–(4.18). The net contribution
of v̄ and Ēþ ðv̄=cÞ × B̄ to the divergence in Eq. (5.3) is
clearly zero, and the nonvanishing contributions arise from
the subscale correlation terms. From Eqs. (4.14)–(4.18),
these quantities all have the general form A=f̄s, where A is
an expression for the subscale correlation. Since
∇ · ðA=f̄sÞf̄s ¼ ∇ ·A −A · ∇ log f̄s, the contributions to

the entropy flux ςflux;sl;u consist generally of a total
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divergence term ∇ ·A and a second term proportional to
∇f̄s. More precisely,

ð∇x̄ · ŵsÞf̄s ¼ ∇x̄ · ðŵsf̄sÞ − ŵs · ∇x̄f̄s ð5:15Þ

and

qsð∇p̄ · ÊsÞf̄s ¼ −∇p̄ · k�s
S þ k�s

S · ∇p̄ log f̄s ð5:16Þ

with

k�s
S ≔−qs

�
τ̄lðE; f̄s;uÞþ

1

c
v̄× τ̄lðB; f̄s;uÞþ

1

c
dðw×BÞsf̄s

�
:

ð5:17Þ

We now make an important observation that “flux terms” in
coarse-grained balance equations are generally defined
pointwise in phase space only up to total divergences,
which may be considered as contributions to transport in
phase space rather than as transfer between scales. In this
spirit, the quantity k�s

S defined in Eq. (5.17) may be taken to
represent a turbulent transport of entropy in momentum
space. Likewise, the quantity

j�sS ¼ −ŵsf̄s ¼ −hwfsil;u ð5:18Þ

may be considered to be turbulent transport of entropy in
position space. Using these definitions, we may now
rewrite the coarse-grained entropy balance (5.2) as

ð5:19Þ

where the source term on the right-hand side

ς�flux;sl;u ðx̄; v̄; tÞ ≔ j�sS · ∇x̄ log f̄s þ k�s
S · ∇p̄ log f̄s ð5:20Þ

is another possible representation of entropy flux across
scales l, u in phase space, alternative to Eq. (5.3) [79].
This expression for entropy flux has an intuitive physical

interpretation when expressed in terms of

λ½fs� ≔ δS½f�=δfsðx; vÞ ¼ −ðlog fs þ 1Þ; ð5:21Þ

the potential “entropical conjugate” to fs. Turbulent
entropy production is obviously positive whenever the
turbulent transport vectors j�sS , k

�s
S are antialigned with

the corresponding gradients ∇x̄λ½f̄s�, ∇p̄λ½f̄s�. The sign
need not be positive everywhere in phase space of course,
but it may often be negative. However, the considerations in
Sec. VA on the sign of σfluxl;u all carry over to the
corresponding quantity

σ�fluxl;u ðx̄; tÞ ≔
X
s

Z
d3v̄ς�flux;sl;u ðx̄; v̄; tÞ: ð5:22Þ

This fact is obvious for the space average because the two
quantities differ only by a divergence term and thus
hσ�fluxl;u i ¼ hσfluxl;u i. Furthermore, the pointwise distributional
limits of these two quantities must also coincide, taking
first Do → ∞ and then

lim
l;u→0

σ�flux⋆;l;u ¼ σ⋆ ≥ 0; ð5:23Þ

where σ⋆ is the same quantity that appears in Eq. (5.13) as
the distributional limit of σflux⋆;l;u. More generally, the

distributional limits of ς�flux;sl;u and ςflux;sl;u must coincide.
This result follows again because of the fact that these
quantities differ only by terms of the form ∇ ·A. The
gradient ∇ can always be shifted after smearing in phase
space to the test function φðx;p; tÞ via an integration by
parts, whereas estimates (4.19)–(4.22) of the correlation
termsA show that each of these vanishes as l, u → 0 under
very mild assumptions, e.g., continuity of the limiting
solutions E⋆, B⋆, f⋆s, s ¼ 1;…; S [81].
The most compelling reason to prefer the modified

quantity ς�flux;sl;u in Eq. (5.20) as a measure of “entropy

flux” is that the original definition ςflux;sl;u in Eq. (5.3) suffers
large cancellations when integrated over phase space, and
the net contribution to the entropy cascade, in fact, arises
from the much smaller quantity ς�flux;sl;u . Indeed, the con-

tributions to ςflux;sl;u from the ∇ ·A terms are quadratic in
increments, like typical turbulent transport terms in space,
whereas all of the contributions to ς�flux;sl;u are cubic in
increments, like typical turbulent fluxes, and thus generally
smaller in magnitude. Specifically, the entropy flux defined
in Eq. (5.20) consists of four contributions

ς�flux;sl;u ¼ −ŵs · ∇x̄f̄s − ðqs=msÞτ̄lðE; f̄s;uÞ · ∇v̄f̄s=f̄s

þ ðqs=mscÞτ̄lðB; f̄s;uÞ · ðv̄ × ∇v̄Þf̄s=f̄s
− ðqs=mscÞ dðw × BÞs · ∇v̄f̄s: ð5:24Þ

These four quantities can all be expressed in terms of
phase-space increments of the VML solutions fs,
s ¼ 1;…; S, and E, B by means of the general relation
(3.7) for the correlation terms τ̄lðE; f̄s;uÞ, τ̄lðB; f̄s;uÞ, the
identities (4.14) and (4.18) for ŵs, dðw ×BÞs, and Eqs. (3.8)
and (3.9) for the gradients ∇x̄f̄s, ∇v̄f̄s. These expressions
provide exact 4=5th laws for entropy cascade in kinetic
turbulence (see Appendix D for explicit formulas and
further discussion), which have previously been obtained
only in 2D gyrokinetic turbulence [82,83]. Exploiting
them, we can make order-of-magnitude estimates of each
of the four terms contributing to the phase-space entropy
flux in Eq. (5.24):
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−ŵs · ∇x̄f̄s ¼ O

�
uðδufsÞðδlfsÞ

lfs

�
; ð5:25Þ

−
qs
ms

τ̄lðE; f̄s;uÞ ·
∇v̄f̄s
f̄s

¼ O

�
qsðδlEÞðδlfsÞðδufsÞ

msufs

�
;

ð5:26Þ

qs
msc

τ̄lðB; f̄s;uÞ ·
ðv̄×∇v̄Þf̄s

f̄s
¼O

�
v̄qsðδlBÞðδufsÞðδlfsÞ

cmsufs

�
;

ð5:27Þ

−
qs
msc

dðw ×BÞs · ∇v̄f̄s ¼ O

�
qsBðδufsÞ2
mscfs

�
: ð5:28Þ

These estimates all hold as exact upper bounds. One
can already see from these estimates the possibility to
have a nonvanishing entropy flux as l, u → 0, because the
diverging factors 1=l, 1=u in Eqs. (5.25)–(5.27) that arose
from gradients in space and velocity may compensate for
the vanishing increment factors. Note that there is an exact
cancellation u=u ¼ 1 in the estimate (5.28), which implies
that there can be no such compensation for this particular
term, which vanishes whenever the particle distributions fs,
s ¼ 1;…; S remain continuous as Do → ∞. A persistent
entropy flux in that limit is therefore expected to arise only
from the first three contributions (5.25)–(5.27) to the
modified entropy flux ς�flux;sl;u in Eq. (5.20).
Each of the three contributions to entropy flux has a clear

physical significance. The two terms (5.26) and (5.27) are
entropy transfer due to nonlinear wave-particle interactions
arising from turbulent fluctuations of electric and magnetic
fields, respectively. The term (5.25) represents instead
entropy transfer due to phase mixing arising from linear
advection. In the theory of Landau damping [56], linear
phase mixing is well recognized as a mechanism that can
transfer entropy to small scales in velocity space, both in
the physics [22,23,84,85] and mathematics (Ref. [86],
Sec. II. 7) literatures. To be clear, there is no Onsager-
type “entropy dissipation anomaly” in traditional Landau
damping with an initially smooth, decaying perturbation
of a Vlasov-Maxwell equilibrium, which is an entropy-
conserving process. Because the particle distribution
remains smooth (but with linearly growing velocity gra-
dients), the flux of entropy vanishes at sufficiently small
scales invelocity space. In a forced, steady state, on the other
hand, the phase-mixing mechanism can produce an entropy
cascade to arbitrarily small scales [22,23,84,85], but this
requires an extremely singular particle distribution. In fact, if
we impose the gyrokinetic relation l=ρs ∼ u=vth;s, we see
from our Eq. (5.25) that the linear-advection contribution to
entropy flux is bounded by ðδufsÞ2=fs and hence vanishes
as u → 0 whenever the distribution function fs remains
continuous or even square integrable (see Ref. [82]) in the

collisionless limit. This general result agrees with the linear
kinetic model calculation in Ref. [85], Eq. (4.25) showing
that total “free energy” diverges in the limit of vanishing
collisional damping [87]. Our Eq. (5.25) implies that in
nonlinear kinetic turbulence, where particle distributions are
expected to remain even Hölder continuous, the linear
advection contribution to entropy flux will generally be
subdominant compared to the wave-particle interaction
contributions (5.26) and (5.27), although this conclusion
obviously can depend upon the arbitrary relation (4.9)which
is adopted between scales l, u.
As cautioned earlier, the phase-space coarse-graining

averages involved in the definitions of the four terms in
Eq. (5.24) may involve substantial cancellations.
Furthermore, the four individual terms are all quantities
of indefinite sign—although non-negative when summed
together and averaged—so that additional cancellations
will certainly occur in integrating these over phase space.
The bounds (5.25)–(5.28) on the entropy flux contributions
derived above may therefore be considerable overestimates.
As we see in our discussion of the gyrokinetic predictions
in Secs. VII A and VII B, there are reasons to expect that
extensive cancellations will indeed occur, which are missed
by the above rather crude upper bounds. Despite their
giving only upper bounds, the estimates (5.25)–(5.28)
nevertheless suffice to derive nontrivial exact constraints
on scaling properties of turbulent solutions in order to be
consistent with a nonvanishing entropy flux to small scales
in phase space.

C. Scaling exponent constraints

The scaling exponents that we discuss are those which
appear in the structure functions of (absolute) increments of
phase-space variables aðx; vÞ, which are defined similarly
as for the hydrodynamic case [Ref. [16], Eq. (4.5)] by

SapðrÞ ≔ hjδrajpi; Ra
pðwÞ ≔ hjδwajpi: ð5:29Þ

Here the notation h·i stands for a local average over some
bounded open region O in phase space, that is,

hai ≔ 1

jOj
Z Z

O
d3xd3vaðx; vÞ; ð5:30Þ

where jOj is the phase volume of the regionO. The average
depends, of course, on the particular region which is
selected. This region may be the entire part of phase space
where entropy cascade occurs if that has finite phase
volume [89] or any bounded, open subregion. Our results
give local conditions for entropy cascade to occur within
any such chosen domain of phase space. Note that the
structure functions defined by Eq. (5.29) are directly related
to local Lp norms in phase space:

SapðrÞ ¼ kδrakpp; Ra
pðwÞ ¼ kδwakpp ð5:31Þ
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(see, e.g., Ref. [70]). Basic properties of such Lp norms are
our main analytical tools, in particular. the well-known
Hölder inequality and also the nesting property of the
norms, or kakp ≤ kakp0 for p0 ≥ p. Note that we may
consider the above structure functions as well for variables
b that are functions of x only, or variables c that are
functions of v only. If the region considered has product
formO ¼ Ox ×Ov for bounded open subsetsOx andOv of
position space and velocity space, respectively, then the
local phase-space structure functions reduce to the corre-
sponding (local) structure functions in position space or
velocity space.
We seek conditions that must hold in order for there to be

constant entropy flux as in Eq. (5.10), that is, for space
average hσ�fluxl;u i¼hσ⋆i in a range of scales l, u, which
extends down to l, u ¼ 0 for Do → ∞. In light of Eq. (5.4),
this situation can occur only if for some regionO and some s,

lim
l;u→0

hς�flux;sl;u i ≠ 0: ð5:32Þ

As we show now, this condition imposes constraints on the
structure-function scaling exponents ζEp, ζBp, ζ

fs
p , ξ

fs
p , s ¼

1;…; S of the solution variables a ¼ E, B, fs, s ¼ 1;…; S.
For any such variable a, we can define the exponents by
assuming that scaling laws hold of the form

SapðrÞ ∼ Cpa
p
rms

�jrj
La

�
ζap
; Ra

pðwÞ ∼Dpa
p
rms

�jwj
Va

�
ξap

ð5:33Þ

for jrj ∼ l, jwj ∼ u in the range of l, u where nonvanishing
flux condition (5.32) holds. Equivalently, and somewhat
more conveniently, we may discuss exponents σEp, σBp, σ

fs
p ,

ρfsp , s ¼ 1;…; S defined by the scaling laws

kδrakp∼C1=p
p arms

�jrj
La

�
;
σap kδwakp∼D1=p

p arms

�jwj
Va

�
ρap

ð5:34Þ

with σap ¼ ζap=p and ρap ¼ ξap=p. Although it is natural to
assume that scaling laws such as Eqs. (5.33) or (5.34) will
hold, this assumption is not necessary. If the infinite-Do
limit, variable a⋆ exists and its pth-order moments hja⋆jpi
are finite, then we can instead take

σap ¼ lim inf
jrj→0

log kδra⋆kp
log jrj ; ρap ¼ lim inf

jwj→0

log kδwa⋆kp
log jwj ;

ð5:35Þ

where the limit infimum is guaranteed to exist. The
exponents defined by Eq. (5.35) coincide with those given
by the scaling laws (5.33) or (5.34), whenever the latter laws

hold. Otherwise, σap and ρap give the (fractional) smoothness
in position and velocity, respectively, of the phase-space
variable a in Lp-mean sense, or the maximal “Besov
exponents” (see Refs. [90–92]).
We now show that nonsmoothness or “roughness” of the

solutions E, B, fs, s ¼ 1;…; S is required in order to
permit a nonvanishing flux as in Eq. (5.32). For this, it is
enough to obtain bounds on the norms

kς�flux;sl;u k1 ≤ kς�flux;sl;u kp=3; p ≥ 3 ð5:36Þ

that vanish if the solutions are too smooth. By the triangle
inequality, we need bounds on the Lp=3 norms of the three
contributions to entropy flux in Eqs. (5.16)–(5.19) [noting
that the fourth contribution (5.20) to flux will always vanish
as l, u → 0 when pth moments of B and fs are finite].
Simple applications of the nesting property and the Hölder
inequality give

kŵs · ∇x̄f̄skp=3 ¼ O

�
ukδufskpkδlfskp

lminffsg
�
; ð5:37Þ

���� qs
ms

τ̄lðE; f̄s;uÞ ·
∇v̄f̄s
f̄s

����
p=3

¼ O

�
qskδlEkpkδlfskpkδufskp

msuminffsg
�
; ð5:38Þ

���� qs
msc

τ̄lðB; f̄s;uÞ ·
ðv̄ × ∇v̄Þf̄s

f̄s

����
p=3

¼ O

�
maxfv̄gqskδlBkpkδlfskpkδufskp

cmsuminffsg
�
: ð5:39Þ

Here we define

kδlfskp ≔ sup
jrj<l

kδrfskp; kδufskp ≔ sup
jwj<u

kδwfskp:

ð5:40Þ

We also assume strict positivity of the distribution, or
minffsg ¼ minðx;vÞ∈Ofsðx; v; tÞ > 0, which means that
there are no “perfect holes” in the distribution function
of species s where fs ¼ 0. This assumption does not, of
course, rule out conventional phase-space holes where the
density fs becomes much smaller than the density in
surrounding regions but remains nonzero [94].
We now try to get the tightest bound on the entropy flux

by minimizing the sum of the bound (5.37) on the advective
phase-mixing contribution and the bound on the total field-
particle-interaction contribution

CASCADES AND DISSIPATIVE ANOMALIES IN NEARLY … PHYS. REV. X 8, 041020 (2018)

041020-17



���� qs
ms

�
τ̄lðE; f̄s;uÞ þ

1

c
v̄ × τ̄lðB; f̄s;uÞ

�
·
∇v̄f̄s
f̄s

����
p=3

¼ O

�
qsmaxfkδlEkp; δlBkpgkδufskpkδlfskp

msuminffsg
�
ð5:41Þ

obtained by combining estimates (5.38) and (5.39) and by
noting that maxfv̄g ≤ c. As we emphasize throughout this
work, there is complete freedom in choosing the two scales
l, u, as long as they are sufficiently small. They represent
an arbitrary choice of resolution of the turbulent cascade
process. Hence, we can exploit this arbitrariness and choose
u to be the value which minimizes the sum of the bounds
(5.37) and (5.41) with l fixed. Elementary calculus gives

u¼ ½lmaxfkδlEkp;kδlBkpg�1=2¼OðlðσFpþ1Þ=2Þ; ð5:42Þ

which also coincides with the choice of u for which the two
bounds (5.37) and (5.41) are “balanced” or have compa-
rable magnitudes. In Eq. (5.42), we introduce the exponent
σFp ¼ minfσEp; σBpg which gives the minimal pth-order
smoothness of the electromagnetic field. Putting together
all of the previous estimates, then for the choice of u
determined by Eq. (5.42), we have����ςflux;sl;u kp=3 ¼ O

�
u
l
kδlfskpkδufskp

�
¼ OðlðσFp−1Þ=2 · lσfsp · lρfsp ðσFpþ1Þ=2Þ: ð5:43Þ

Clearly, the upper bound (5.43) for p ≥ 3 will vanish as l,
u → 0 if

1

2
ðσFp − 1Þ þ σfsp þ 1

2
ρfsp ðσFp þ 1Þ > 0: ð5:44Þ

We thus arrive at the exponent inequality

σFp þ 2σfsp þ ρfsp ðσFp þ 1Þ ≤ 1; p ≥ 3 ð5:45Þ

as a necessary condition for nonvanishing entropy cascade
to small scales in phase space.
If we assume for simplicity that σFp ¼ σfsp ¼ ρfsp ¼ σp for

all fields, with some single σp (“uniscaling”), then the
above inequality (5.45) requires that 4σp þ σ2p ≤ 1 or σp ≤
σcr ¼

ffiffiffi
5

p
− 2 ≐ 0.2361 as the condition for nonvanishing

entropy cascade. This result must not be interpreted as a
prediction that the “mean field value” σcr ≐ 0.2361 will be
the scaling that physically occurs. Our result (5.45) should
be compared with the inequality for velocity scaling
exponents ζup ≤ p=3 or σup ≤ 1=3 when p ≥ 3, which
was first derived by Constantin et al. [95] (see also
Refs. [16,96]) as a necessary condition for kinetic energy
cascade in incompressible fluid turbulence. Empirical

results from experiments and simulations in that case
indicate that σu3 ≐ 1=3 (just slightly smaller) but that σup
for p ≫ 3 is considerably smaller than the Kolmogorov
value 1=3. This is due to the effect of “intermittency” in
which the energy-cascade rate becomes strongly fluctuat-
ing in space and time [16,27]. For very large p values, the
scaling of velocity structure functions is determined by
more singular structures with σup much less than 1=3.
However, these singular structures are also more sporadic
and thus contribute relatively little to energy cascade. There
are presumably similar phase-space intermittency effects in
the entropy cascade of kinetic plasma turbulence, e.g.,
associated to sheets of strong electric current density [97].
Thus, our exponent inequality (5.45) is probably far from
equality for p ≫ 3.
In gyrokinetic turbulence, we expect that even for p near

3 the physically observed exponents σEp, σBp, σ
fs
p , ρ

fs
p , s ¼

1;…; Swill satisfy the bound (5.45) as an inequality, with a
sizable gap, rather than as an equality. As we see in
Sec. VII A, the gyrokinetic predictions for scaling expo-
nents in various entropy cascade ranges satisfy our bound
(5.45) easily with a considerable gap. This should be
expected because our estimates take into account no
physical effects of plasma wave oscillations or fast particle
gyrations which can lead to strong depletion of non-
linearity. For example, in weak wave turbulence, rapid
wave oscillations are known to cancel completely all
nonlinear wave interactions except those with resonant
wave frequencies [98,99]. In general, the effects of wave
oscillations or particle gyrations will lead to large cancel-
lations in the exact expression (5.24) for entropy flux so
that the upper bounds (5.25)–(5.28) will be large over-
estimates. Because of the depletion of nonlinearity, more
singular structures must develop to support the entropy
cascade, and the physically occurring exponents will not
yield an equality in our condition (5.45). For the same
reason, Eq. (5.42) cannot be regarded as a physical relation
between position and velocity scales l, u in a gyrokinetic
entropy cascade range [100]. As we discuss in Sec. VII A,
further analytical progress on gyrokinetic turbulence will
require the control of delicate cancellations in Eq. (5.24),
our exact 4=5th-law expressions for entropy flux.
In summary, our analysis shows that the solutions E, B,

fs, s ¼ 1;…; S of the VML equations cannot remain
smooth if there is persistent entropy production in the
limit Do → ∞. In fact, the solutions cannot have even a
fractional smoothness which remains too high or else
entropy cascade is not possible. It is important to emphasize
that the singularities that are required by our analysis need
not develop in finite time from smooth Vlasov-Maxwell
solutions with regular initial data. This is obvious for the
collisionless limit of long-time steady states as first
considered by Krommes and Hu [22,23], which corre-
sponds to the limit first t → ∞ and then Do → ∞. In this
limit, phase-space mixing by ballistic streaming or other
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mechanisms has an infinite time to create fine structure
down to collisional scales, and only subsequently are the
collisional scales taken to zero. In freely decaying turbu-
lence without external forcing, singularities may be input as
initial data, e.g., the solar wind originating in the super-
heated corona might have preexisting turbulent fluctuations
at all scales down to the Debye length. If smooth solutions
of the collisionless Vlasov-Maxwell equations can indeed
blow up in finite time, then this would provide an additional
source of singularities. It is still unknown whether initially
smooth solutions of the (semirelativistic) system (2.1)–
(2.3) at vanishing collisionality will remain smooth,
although it is known that any singularity formation requires
particles moving with velocities near light speed (see
Ref. [101], Proposition 9).
More directly relevant for kinetic turbulence are theo-

rems on the regularity of weak solutions of the Vlasov-
Maxwell equations. The current best results seem to be
those of Ref. [102] for the DiPerna-Lions weak solutions of
the (relativistic) Vlasov-Maxwell system, under an
assumption that the particle energy densities Esðx; tÞ are
square-integrable functions. By an application of averaging
lemmas [71] and “nonresonant smoothing” for particles
with velocities bounded away from light speed [103], the
latter paper proves that electromagnetic fields have regu-
larity exponent σF2 > 6=ð14þ ffiffiffiffiffiffiffiffi

142
p Þ ≐ 0.2315. This value

is remarkably close numerically to the critical value σcr ¼ffiffiffi
5

p
− 2 ≐ 0.2361 for the nonvanishing entropy cascade,

which we show to require σp ≤ σcr for p ≥ 3, under the
additional assumption that all solution fields scale with the
same exponent. Of course, there is no reason that such a
uniscaling must hold, and even if it does, intermittency of
the cascade can allow σF2 > σcr. However, the above
numerical coincidence does show that monofractal (non-
intermittent) uniscaling solutions of the Vlasov-Maxwell
equations with nonvanishing entropy production can exist
in a narrow range only (if at all). Further conditional
regularity results along the lines of Refs. [102,103] would
be very valuable, e.g., assuming some regularity exponents
σfsp , ρ

fs
p of particle distributions and deriving corresponding

minimal regularity exponents σFp of the electromagnetic
fields. Such results would cast considerable light on the
range of scaling exponents allowed for the dissipative weak
solutions of Vlasov-Maxwell equations hypothesized in
this work.

VI. BALANCES OF CONSERVED QUANTITIES
IN THE COLLISIONLESS LIMIT

In this section, we discuss the collisionless limit dynam-
ics of quantities conserved for the total system
(particlesþ fields) governed by the VML equations (2.1)–
(2.3), namely, the mass of each particle species, the total
momentum, and the total energy. Since these quantities are
absolutely conserved for any degree of collisionality, the

weak solutions of the VM equations (4.10) obtained in
the limit Do → ∞ cannot develop any anomalies in the
balances of these quantities of the same sort as the entropy-
production anomaly (5.13). On the other hand, there are
collisional conversions of one form of these conserved
quantities into other forms, and these conversion terms
may, in principle, remain nonzero and “anomalous” as
Do → ∞. Such a situation occurs in the infinite Reynolds-
number limit of compressible fluids, e.g., where total
energy (kineticþ internal) is conserved but energy cascade
leads to anomalous conversion of kinetic energy into
internal energy [19,20]. We show here that such an
anomalous conversion does not occur in kinetic turbulence
of nearly collisionless plasmas and that all collisional
conversion terms vanish in the limit Do → ∞ under
reasonable assumptions. We establish this both from the
fine-grained point of view and in the coarse-grained
description with finite resolutions l, u in position and
velocity space.
The results of the present section confirm naive expect-

ations on the collisionless limit, while taking into account
nondifferentiability of limiting solutions. Results that are
less expected can emerge, however, when one considers
subsequent limits such as ρi=Li ≪ 1 (well satisfied in the
solar wind) and ρe=ρi ≪ 1 (marginally satisfied in the solar
wind), where ρi and ρe are ion and electron gyroradii,
respectively. In these secondary limits, anomalies by
energy cascade through scales or anomalous conversion
between different forms of energy may appear which are
described by the scale-resolved energy balance in phase
space that we derive below. Likewise, the coarse-grained
balance of electron momentum that we derive is the
generalized Ohm’s law valid in a turbulent plasma at a
given length scale, which can lead to anomalous break-
down of magnetic flux conservation and of the “frozen-in”
property of field lines [15,104].
The limits ρi=Li ≪ 1 and ρe=ρi ≪ 1 that we mention

above have been discussed for a turbulent plasma generally
within a gyrokinetic description, which becomes valid for
gyrofrequencies much larger than rates of change of
resolved scales [24,25]. In these gyrokinetic analyses,
energy and entropy balances are intertwined, whereas in
the full kinetic description by VML equations, their balance
equations are completely separate in general. Nevertheless,
our coarse graining in phase space provides a regularization
of short-distance divergences that can appear in these
subsidiary limits, and it thus provides a suitable non-
perturbative tool for analysis of gyrokinetic turbulence.
We discuss gyrokinetics briefly in the following section
after we derive the collisionless limit of the basic con-
servation laws here.

A. Mass balances

Since we assume that collisions do not transform one
particle species into another, there is no contribution from
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the collision integral to fine-grained mass balances (2.10).
Assuming that strong limits of VML solutions exist as
Do → ∞, the distributional mass balance equations
∂tρ⋆s þ ∇ · ðρ⋆su⋆sÞ ¼ 0 hold as a direct limit of
Eq. (2.10). This same result may be obtained by integrating
over v the weak Vlasov equation (4.10) for the limiting
particle distribution f⋆s.
The coarse-grained mass balance at length scale l for

each particle species s,

∂tρ̄s þ ∇ · ðρsusÞ ¼ 0 ð6:1Þ

can be easily derived either by coarse graining the fine-
grained balance (2.10) or by integrating the coarse-grained
Vlasov equation (4.12) over v̄ and using

R
d3v̄v̂sf̄s ¼R

d3v̄ vfs ¼ ρsus. In terms of spatial Favre averages,
Eq. (6.1) can be written as

∂tρ̄s þ ∇ · ðρ̄sũsÞ ¼ 0: ð6:2Þ

This is the same equation which holds for coarse-grained
mass densities in compressible fluid theories [19,20].

B. Momentum balances

We now derive the momentum balances that hold in the
collisionless limit Do → ∞. The total momentum densityP

sρsus þ ð1=4πcÞE ×B of particles and fields satisfies a
local conservation law for any degree of collisionality so
that it is not possible to have a dissipative anomaly of total
momentum. However, it is possible, in principle, that
collisional momentum transfers between different particle
species might remain nonvanishing due to the divergence of
velocity gradients in the limit. We show that this does not
happen under mild conditions.

1. Fine-grained momentum balances

The drag force on species s from collisions with species
s0 can be estimated for the Landau collision integral (2.9)
by using integration by parts and the Cauchy-Schwarz
inequality in a similar fashion as for the estimation of C̄ss0

in Eqs. (4.2)–(4.5):

Rss0 ≔
Z

d3vmsvCss0

¼ −Γss0

Z
d3v

Z
d3v0

Πv−v0

jv − v0j · ð∇p − ∇p0 Þðfsfs0 Þ

¼ −Γss0

Z
d3v

Z
d3v0

�
fsfs0

jv − v0j
�

1=2

×
Πv−v0

ðfsfs0 jv − v0jÞ1=2 ð∇p − ∇p0 Þðfsfs0 Þ ð6:3Þ

so that

jRss0 ðx; tÞj

≤
ffiffiffiffiffiffiffi
Γss0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3v

Z
d3v0

fsfs0

jv − v0j

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γss0

Z
d3v

Z
d3v0

jΠv−v0 ð∇p − ∇p0 Þðfsfs0 Þj2
fsfs0 jv − v0j

s
≤ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γss0σðx; tÞ:

p
ð6:4Þ

As shown in Appendix B 2, the integral under the first
square-root factor remains finite as Do → ∞ under very
mild assumptions on the particle distribution functions. The
integral under the second square root is σðx; tÞ as defined in
Eq. (2.27) and, invoking the hypothesis (2.38) on the
entropy production in two-particle phase space, this quan-
tity remains finite pointwise in ðx; tÞ as Do → ∞. Thus, the
collisional drag force Rss0 vanishes ∝

ffiffiffiffiffiffiffi
Γss0

p
for all s, s0 in

the collisionless limit. Assuming that a suitable strong limit
exists fs, E, B → f⋆s, E⋆, B⋆ as Do → ∞, which thus
satisfies the Vlasov-Maxwell equations (4.10), then the
fine-grained momentum balance for species s in that limit
solution becomes

∂tðρ⋆su⋆sÞþ∇x ·ðρ⋆su⋆su⋆sþP⋆sÞ¼qsn⋆sðE⋆Þ�s: ð6:5Þ

This is just the result that would be naively expected in the
collisionless limit with all interspecies momentum transfer
due to collisionless wave-particle interactions.

2. Coarse-grained momentum balances

A phase-space momentum balance at fixed resolutions l,
u can be obtained by multiplying the coarse-grained kinetic
equation (4.1) with v̄ to obtain

∂tðmsv̄f̄sÞ þ ∇x̄ · ðmsv̂sv̄f̄sÞ þ ∇p̄ · ðmsqsÊ�sv̄f̄sÞ
¼ qsÊ�sf̄s þmsv̄C̄sðfÞ: ð6:6Þ

In the limit as Do → ∞ recall from Eq. (4.5) that C̄sðfÞ →
0 pointwise in phase space so that one may neglect the final
term in the nearly collisionless limit for fixed l, u. By
integrating Eq. (6.6) over velocities, it follows that

∂tðρsusÞ þ ∇ · ðρusus þ PsÞ ¼ qsðnsE�sÞ ð6:7Þ
for any fixed l, u and sufficiently large Do. Here we
use the fact that the coarse-grained drag force R̄s ¼R
d3v̄ v̄ C̄sðfÞ → 0 in the limit as Do → ∞, assuming some

uniform integrability in velocity of v̄C̄sðfÞ. In the idealized
limit Do → ∞ at fixed l, one therefore obtains

∂tðρ⋆su⋆sÞþ∇x ·ðρ⋆su⋆su⋆sþP⋆sÞ¼qsn⋆sðE⋆Þ�s; ð6:8Þ

a result consistent with Eq. (6.5) and which can also be
obtained by coarse graining that equation after first taking
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the collisionless limit. The previous two equations can both
be rewritten in terms of spatial Favre averages, with
Eq. (6.7), e.g., expressed equivalently as

∂tðρ̄sũsÞ þ ∇ · ðρ̄sũsũs þ P̄�
sÞ ¼ qsn̄sẼ�s ð6:9Þ

using the definitions (3.11) and (3.23). These equations for
s ¼ 1;…; S fully specify the coarse-grained momentum
balances of the particles in the collisionless limit.
On the other hand, the momentum balance for the

electromagnetic fields resolved to a spatial scale l follows
from the coarse-grained Maxwell equations (4.6):

∂t

�
1

4πc
Ē × B̄

�
þ ∇ ·

�
1

4π

�
B̄ B̄−

1

2
jB̄j2I

�
þ 1

4π

�
Ē Ē−

1

2
jĒj2I

��
¼ −

�
ϱ̄ Ēþ 1

c
ȷ̄ × B̄

�
; ð6:10Þ

where the Lorentz reaction force on the right-hand side acts
as a source or sink of electromagnetic field momentum. It
contains the coarse-grained charge and electric current
densities, which are obtained from

ϱ̄ ¼
X
s

qsn̄s; ȷ̄ ¼
X
s

qsn̄sũs: ð6:11Þ

An opposing Lorentz force is obtained by summing the
right-hand sides of Eq. (6.9) over s ¼ 1;…; S, so that the
coarse-grained balance of total momentum from Eqs. (6.9)
and (6.10) becomes

∂t

�X
s

ρ̄sũs þ
1

4πc
Ē × B̄

�
þ ∇ ·

�
ðρ̄sũsũs þ P�

sÞ

þ 1

4π

�
B̄ B̄−

1

2
jB̄j2I

�
þ 1

4π

�
Ē Ē−

1

2
jĒj2I

��
¼ τ̄lðϱ;EÞ þ ð1=cÞτ̄lðj×; BÞ; ð6:12Þ

where we use the rather obvious notation for the
cross-product vector with kth component ½τ̄ðj×; BÞ�k ≔
ϵklmτ̄ðjl;BmÞ and ϵklm the 3D completely antisymmetric
Levi-Cività tensor. Note, however, that the Lorentz force
and its reaction force calculated from the coarse-grained
Vlasov-Maxwell system (4.6) do not exactly cancel, and
the total momentum at scales greater than l is not exactly
conserved. The right-hand side of Eq. (6.12) represents a
flux of momentum from unresolved scales < l to resolved
scales > l. Since total momentum is exactly conserved for
the Vlasov-Maxwell-Landau system (2.1)–(2.3) at any
degree of collisionality, this “momentum cascade” must
vanish as l → 0 for a physical solution obtained in the

limit Do → ∞. The estimates τ̄lðϱ;EÞ ∼ ðδlϱÞðδlEÞ,
τ̄lðj×; BÞ ∼ ðδljÞðδlBÞ following from Eq. (3.7) show
that this flux of momentum will vanish as l → 0
whenever limits ϱ⋆, j⋆, E⋆, B⋆ remain spatially con-
tinuous or even when the limits satisfy weaker conditions
that imply vanishing of the increments in a spatial-mean
sense [105].

C. Energy balances

We finally derive the energy balances that hold in the
collisionless limit Do → ∞. Since total energy densityP

s Es þ ½1=ð8πÞ�ðjEj2 þ jBj2Þ of particles and fields is
locally conserved by solutions of the VML system (2.1)–
(2.3) for any degree of collisionality, there can be no
anomaly in the conservation of total energy as Do → ∞.
Just as for momentum conservation, however, there are
collisional conversions of energy from one type to
another which might remain nonzero in the collisionless
limit. We show here that such an anomalous energy
conversion does not occur in the limit Do → ∞, even if
large velocity gradients develop in the particle distribu-
tion functions. We show this both in the fine-grained
description and for the coarse-grained equations at fixed
position and velocity resolutions l, u in the collisionless
limit. Our energy balance equations describe the trans-
fers of energy simultaneously in phase space and across
scales l, u in phase space. We thus recover and
generalize previous work of Howes [7] and Klein et al.
[106] on fine-grained kinetic energy balance in phase
space and of Yang et al. [51,107] on coarse-grained
kinetic energy balance of bulk plasma flows in physical
space and in length scale l.

1. Fine-grained energy balances

A phase-space density of kinetic energy for particle
species s was defined in Refs. [7,106] as wsðx; v; tÞ ¼
ð1=2Þmsjvj2fsðx; v; tÞ. The evolution of this density is
easily obtained from the Vlasov-Landau kinetic equa-
tion (2.1) to be

∂tws þ ∇x · ðvwsÞ þ ∇p · ðqsE�wsÞ
¼ qsv ·Efs þ ð1=2Þmsjvj2CsðfÞ: ð6:13Þ

The second term on the right arising from collision integral
Cs ¼

P
s0 Css0 can be rewritten using the identity

1

2
msjvj2Css0

¼ ∇v ·

�
1

2
Γss0 jvj2

Z
d3v0

Πv−v0

jv − v0j · ð∇p − ∇p0 Þðfsfs0 Þ
�

þRss0 ðx; v; tÞ ð6:14Þ

with the divergence term representing a flux of kinetic
energy in velocity space produced by collisions and with
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the second term representing the (signed) conversion of
kinetic energy of species s by collisions at phase point
ðx; vÞ into kinetic energy of species s0 given by

Rss0 ðx; v; tÞ ≔ −Γss0

Z
d3v0

v · Πv−v0

jv − v0j · ð∇p − ∇p0 Þðfsfs0 Þ

¼ −
Γss0

2

Z
d3v0

ðv þ v0Þ · Πv−v0

jv − v0j
· ð∇p − ∇p0 Þðfsfs0 Þ: ð6:15Þ

The expression in the second line is obtained by writing
v ¼ 1

2
ðv þ v0Þ þ 1

2
ðv − v0Þ and using w ·Πw ¼ 0. A simple

estimate of this conversion term may be obtained by
grouping the integrand into factors as

Rss0 ¼ −
1

2
Γss0

Z
d3v0ðv þ v0Þ

�
fsfs0

jv − v0j
�

1=2

·
Πv−v0

ðfsfs0 jv − v0jÞ1=2 ð∇p − ∇p0 Þðfsfs0 Þ ð6:16Þ

and applying the Cauchy-Schwarz inequality to obtainZ
d3vjRss0 ðx; v; tÞj

≤ Γss0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

Z
d3v

Z
d3v0

jv þ v0j2
jv − v0j fsfs0

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3v

Z
d3v0

jΠv−v0 ð∇p − ∇p0 Þðfsfs0 Þj2
fsfs0 jv − v0j

s
≤ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γss0σðx; tÞ

p
; ð6:17Þ

where the integral under the first square root is shown
in Appendix B 3 to be finite under mild assumptions.
It follows that Rss0 → 0 in the sense of distributions as
Do → ∞. Note that the divergence term in Eq. (6.14) can
also be shown to vanish in the sense of distributions by
using an argument very similar to that for the term C̄ss0 in
Eq. (4.2). We therefore conclude that in the limit Do → ∞,
the phase-space energy density satisfies

∂tw⋆s þ∇x · ðvw⋆sÞ þ∇p · ½qsðE⋆Þ�w⋆s� ¼ qsv ·E⋆f⋆s:
ð6:18Þ

This is formally identical with the equation for w⋆s argued
to hold in the collisionless limit by Ref. [7] Eq. (2) or
Ref. [106] Eq. (2.6) but rewritten in a form that is
meaningful and valid (in the distributional sense) even
when, as expected, the particle distribution f⋆s becomes
nondifferentiable in position and velocity.
Since the physical-space energy density of particle

species s is given by Es ¼
R
d3vws, we obtain from

Eq. (6.18) by integrating over velocities and by using
definitions (2.12) and (2.17) that

∂tE⋆sþ∇x ·ðE⋆su⋆sþP⋆s ·u⋆sþq⋆sÞ¼ j⋆s ·E⋆: ð6:19Þ

This same equation can be obtained from the Do → ∞ limit
of Eq. (2.15) for Es, noting that its collisional contribution

Qss0 þRss0 · us ¼
Z

d3v
1

2
msjvj2Css0 ð6:20Þ

vanishes as Do → ∞ by an estimate identical to Eq. (6.17).
Similarly, since Rs · us → 0 as Do → ∞, one obtains from
Eq. (2.20) the limiting equation for the bulk kinetic energy:

∂t

�
1

2
ρ⋆sju⋆sj2

�
þ ∇x ·

�
1

2
ρ⋆sju⋆sj2u⋆s þ P⋆s · u⋆s

�
¼ P⋆s∶∇xu⋆s þ j⋆s ·E⋆: ð6:21Þ

From the vanishing of Eq. (6.20), we infer also thatQs → 0
as Do → 0 and thus obtain from Eq. (2.21) the limiting
balance equation for the internal or fluctuational energy:

∂tϵ⋆s þ ∇x · ðϵ⋆su⋆s þ q⋆sÞ ¼ −P⋆s∶∇xu⋆s: ð6:22Þ

The results (6.19), (6.21), and (6.22) coincide formally with
the results naively expected in the collisionless regime but
are derived without assuming space differentiability of
solutions.
Notice that the pressure-strain term on the right-hand

sides of Eqs. (6.21) and (6.22) must be carefully defined as
a distributional limit P⋆s∶∇xu⋆s ¼ D- limDo→∞Ps∶∇xus.
For the similar situation with compressible fluid turbulence,
see Ref. [20]. If the limiting fields P⋆s and ∇xu⋆s exist as
ordinary functions, then this distributional product will
coincide with the ordinary pointwise product of functions.
If u⋆s is not classically differentiable, however, then this
notion of product differs from the naive one. The degree of
smoothness of u⋆s is a priori not entirely obvious. The
inequality (5.45) on scaling exponents of E⋆, B⋆, f⋆s
shows that these fields cannot be space differentiable if
there is a nonvanishing entropy-production anomaly for
species s. The velocity field u⋆s, on the other hand, is
obtained from zeroth and first velocity moments of f⋆s by
the Eqs. (2.5) and (2.6), and such moments are generally
smoother than the particle distribution function appearing
in the integrand (e.g., see Sec. 3 of Ref. [71]). It is thus
possible that ∇xf⋆s exists only as a distribution or gener-
alized function, while ∇xu⋆s exists as an ordinary function
[108]. Further detailed investigation, both analytical and
empirical, is required to settle this issue.

2. Coarse-grained energy balances

We now consider the energy balances for solutions of the
coarse-grained VM equations (4.6) that are obtained in the
nearly collisionless limit.
Total energy.—We may define a coarse-grained version

of the phase-space kinetic energy density of particle species
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s as w̄sðx̄; v̄; tÞ ≔ ð1=2Þmsjv̄j2f̄sðx̄; v̄; tÞ. It follows directly
from the coarse-grained Vlasov-Landau equation (4.1) that
this energy density satisfies

∂tw̄s þ ∇x̄ · ðv̂sw̄sÞ þ ∇p̄ · ðqsÊ�sw̄sÞ
¼ qsv̄ · Ê�sf̄s þ ð1=2Þmsjv̄j2C̄sðfÞ: ð6:23Þ

The “renormalized” quantities v̂s, Ê�s are those given in
Eqs. (4.13)–(4.15). Because of the vanishing of the coarse-
grained collision integral from estimate (4.5), we see that
for fixed l, u and for sufficiently large (but finite) Do, the
collisionless equation

∂tw̄sþ∇x̄ ·ðv̂sw̄sÞþ∇p̄ ·ðqsÊ�sw̄sÞ¼qsv̄ ·Ê�sf̄s ð6:24Þ

is satisfied to any specified accuracy. In the idealized limit
Do → ∞, Eq. (6.4) becomes

∂t

�
1

2
msjv̄j2f̄⋆s

�
þ∇x̄ ·

�
1

2
msjv̄j2vf⋆s

�
þ∇p̄ ·

�
1

2
msjv̄j2qsðE⋆Þ�f⋆s

�
¼ v̄ ·qsðE⋆Þ�f⋆s; ð6:25Þ

which further reduces to Eq. (6.18) proposed in
Refs. [7,106] in the limit as l, u → 0. It must be stressed,
however, that in dealing with real experimental data at fixed
resolutions l, u, it is Eq. (6.24) which will be satisfied by
the measured energy density w̄s and not Eq. (6.18) sug-
gested in Refs. [7,106]. The unresolved plasma turbulence
at scales below l, u may lead to significant renormalization
effects in the quantities v̂s, Ê�s appearing in Eq. (6.24).
The spatial energy distribution of solutions to the coarse-

grained Vlasov-Maxwell system (4.6) is governed for
kinetic energy of particles by the equation that comes
from integrating Eq. (6.24) over v̄ and using definitions
(2.12) and (2.17):

∂tĒs þ ∇x̄ · ðEsus þ Ps · us þ qsÞ ¼ js ·E: ð6:26Þ

The same result is also obtained by coarse graining
Eq. (2.15) and using Rs · us þQs ¼

R
d3v̄ 1

2
jv̄j2C̄sðfÞ →

0 as Do → ∞. On the other hand, the evolution of the
energy density of the resolved electromagnetic field is
obtained from the coarse-grained Maxwell equations by the
Poynting theorem:

∂t

�jĒj2 þ jB̄j2
8π

�
þ ∇x̄ ·

�
cĒ × B̄

4π

�
¼ −ȷ̄ · Ē: ð6:27Þ

Summing Eq. (6.26) over s and adding Eq. (6.27) gives the
balance equation for total energy density of coarse-grained
solutions as

∂t

�X
s

Ēs þ
jĒj2 þ jB̄j2

8π

�
þ∇x̄ ·

�X
s

Esus þPs ·us þ qsþ
cĒ× B̄
4π

�
¼ τ̄lðj;EÞ:

ð6:28Þ

Just as for the coarse-grained momentum balance
(6.12), there is a source term on the right-hand side of
Eq. (6.28) which represents a flux of energy from unre-
solved scales< l to resolved scales> l. Since total energy
(particlesþ fields) is conserved for the VML system (2.1)–
(2.3), this flux of energy must vanish for any collisi-
onless limit of such solutions. Because of the estimate
τ̄lðj;EÞ ∼ ðδljÞðδlEÞ from Eq. (3.7), the energy flux
indeed vanishes as l → 0 whenever limits ϱ⋆, j⋆, E⋆,
B⋆ are spatially continuous or satisfy even weaker regu-
larity conditions [109].
As an aside, we note that current mathematical theory for

global solutions of the Vlasov-Maxwell system does not
provide weak solutions that conserve energy but instead
guarantees only that total energy for solutions is non-
increasing in time (cf. Ref. [71], p. 740, remark 4). The
arguments for energy conservation which we make above
may not apply because the DiPerna-Lions theory guaran-
tees only that fs, E, and B are square integrable and that
second moments of fs with respect to v exist. Such
regularity properties are not enough to allow Eq. (6.28)
to be even written down because they do not guarantee that
heat fluxes qs (third moments) are finite. Even if energy
density integrated over all space is considered, which
eliminates the undefined qs term, the DiPerna-Lions
solutions are not guaranteed to satisfy the weak regularity
conditions of the type discussed in Ref. [106] that imply
that τ̄lðj;EÞ → 0 as l → 0. While solutions with decreas-
ing total energy are physically unrealistic as collisionless
limits of VML solutions, one cannot rule out that weak
Vlasov-Maxwell solutions with decreasing total energy
might occur in other physical contexts (e.g., see discussion
in Sec. VIII).
Kinetic energy of bulk velocities.—The balance equa-

tion (6.26) describes the dynamics of the total kinetic
energy of species s calculated from the particle distribution
resolved to scales l, u. However, one may furthermore
divide the energy density Ēs into separate contributions
from the resolved bulk velocity ũs as defined in Eq. (3.20)
and from the (intrinsic) resolved internal energy ϵ̄s defined
in Eq. (3.24). In particular, the contributions from the bulk
velocity ũs and from the coarse-grained fields Ē, B̄ are
often considered to be the only turbulent energy contribu-
tions at length scale l because these low-frequency fields
are described by “fluidlike” equations and experience a
continual, reversible energy exchange due to Alfvénic wave
oscillations [e.g., Ref. [110], Sec. 2(c)]. In this view, ϵ̄s
represents a quasithermal energy or energy of kinetic
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fluctuations not directly participating in the “turbulence” at
scale l. We do not subscribe to this view, but it is
nevertheless interesting to consider separately the kinetic
energy dynamics of bulk flow and of the fluctuations.
The balance equation for the bulk kinetic energy

ð1=2Þρ̄sjũsj2 in the nearly collisionless limit is easily
obtained from coarse-grained mass conservation (6.2)
and coarse-grained momentum conservation (6.9) yielding

∂t

�
1

2
ρ̄sjũsj2

�
þ ∇x̄ ·

�
1

2
ρ̄sjũsj2ũs þ P̄�

s · ũs

�
¼ ½ρ̄sτ̃ðus;usÞ þ P̄s�∶∇x̄ũs þ qsn̄sẼ�s · ũs

¼ P̄�
s∶∇x̄ũs þ qsn̄sẼ�s · ũs: ð6:29Þ

This same equation has been derived earlier in Ref. [107]
for kinetic plasma turbulence, and it is very similar to the
analogous equations for resolved kinetic energy in com-
pressible fluid turbulence [19,20]. Obviously, the term
qsn̄sẼ�s · ũs represents resolved wave-particle interactions.
Based on the fluid turbulence analogy, the term
−ρ̄sτ̃ðus;usÞ∶∇x̄ũs may be taken to represent energy flux
arising from turbulent cascade, while −P̄s∶∇x̄ũs represents
resolved pressure work. It should be remembered, however,
that only the intrinsic resolved pressure tensor P̄�

s is
calculable from the distribution function f̄s resolved to
scales l, u, and it is impossible from such coarse mea-
surements of the particle distributions to compute the
separate contributions of ρ̄sτ̃ðus;usÞ and P̄s.
The limit in Eq. (6.29) with first Do → ∞ and then

l → 0 must recover Eq. (6.21) for ð1=2Þρ⋆sju⋆sj2 if the
strong limitsE → E⋆,B → B⋆, fs → f⋆s exist as Do → 0.
Indeed, since all of the other terms in Eq. (6.29) then
converge distributionally to the corresponding terms in
Eq. (6.21), one must have

D- lim
l→0

P̄�⋆s∶∇xũ⋆s ¼ P⋆s∶∇xu⋆s; ð6:30Þ

where the product on the right-hand side is the same
quantity that appears in Eq. (6.21). The result (6.30), if
correct, means that there is no “pressure-work defect” of
the type that appears in compressible fluid shocks [20].
This result would be expected, in particular, if the gradient
∇xu⋆s exists as an ordinary function. In that case,

D- lim
l→0

ρ̄⋆sτ̃ðu⋆s;u⋆sÞ∶∇x̄ũ⋆s ¼ 0 ð6:31Þ

as well. This last relation can be interpreted as the statement
that there is a vanishing energy flux in the order of limits,
first Do → ∞ and then l → 0. This is a quite reasonable
conclusion, since the collisional transfer of energy from
species s to other species, Rs · us, vanishes as Do → ∞

according to Eq. (6.4). Thus, there is physically no “sink”
for an energy cascade to small scales.
This tentative conclusion that there is “no energy cascade

to small scales in a collisionless plasma” must be carefully
interpreted. The solar wind is a nearly collisionless plasma
with Kolmogorov-type spectra observed at scales above the
(thermal) ion gyroradius ρi that are generally interpreted as
an energy-cascade inertial range of primarily incompress-
ible shear Alfvén waves. In fact, there is direct evidence of
nonzero energy flux in this range from empirical studies of
third-order structure functions (e.g., Refs. [39,111]). This
cascade is described by the balance equation of the resolved
mechanical energy in the bulk velocities of the particles
(mostly from protons or Hþ ions) and electromagnetic
fields obtained by combining the Eqs. (6.27) and (6.29),

∂t

�X
s

1

2
ρ̄sjũsj2 þ

jĒj2 þ jB̄j2
8π

�
þ ∇x̄ ·

�X
s

�
1

2
ρ̄sjũsj2ũs þ P̄�

s · ũs

�
þ cĒ × B̄

4π

�
¼

X
s

ðP̄�
s∶∇x̄ũs þ ȷ̄s · ε̃sÞ ð6:32Þ

with ε̃s an “electromotive force” generated by unresolved
turbulent fluctuations of bulk velocity and density for
particles of species s,

ε̃s≔
1

c
τ̃ðus×; BÞþ

1

n̄s

�
τ̄ðns;EÞþ

1

c
ũs× τ̄ðns;BÞ

�
ð6:33Þ

so that Ql;F ≔
P

sȷ̄s · ε̃s represents a flux of electromag-
netic energy to the unresolved scales. Thus, for length
scales l in the range Li ≫ l ≫ ρi, one would expect
nonvanishing values of the ion kinetic energy flux Ql;i ≔
−ρ̄iτ̃ðui;uiÞ∶∇x̄ũi and of Ql;F. This does not contradict
the conclusion (6.31), which involves the limit l → 0 with
ρi fixed or, equivalently, length scales l ≪ ρi. In order to
develop an Onsager-type theoretical description of the
energy-cascade inertial range of the solar wind at scales
l ≫ ρi, one would need to consider after the limit Do → ∞
a subsequent limit ρi=Li → 0 corresponding to a long
energy inertial range of scales. It is quite plausible that
limits exist E⋆ → E•, B⋆ → B•, f⋆s → f•s, s ¼ i, e as
ρi=Li → 0, leading to a kinetic description with a turbulent
cascade of ion kinetic energy:

Q•i ≔ D- lim
l→0

ρ̄•iτ̃ðu•i;u•iÞ∶∇x̄ũ•i ≠ 0: ð6:34Þ

More precisely, one expects that this limit lies within the
regime of validity [112] of a gyrokinetic description
[24,25]. A full treatment of the ρi=Li → 0 limit is beyond
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the scope of the current paper, but we discuss briefly the
relationship of our analysis with gyrokinetic theory in
Sec. VII A. We likewise do not consider in detail the limit
ρe=ρi → 0 (heavy-ion limit) which idealizes the “ion
dissipation range” of the solar wind over the interval of
length scales l satisfying ρi ≫ l ≫ ρe [113], where a
gyrokinetic description is expected to be valid at least for
the electrons (see Sec. VII A for brief remarks).
Kinetic energy of fluctuations.—The balance equation

for ϵ̄�s ¼ ϵ̄s þ 1
2
ρ̄sτ̃ðus;usÞ can be obtained by subtracting

Eq. (6.26) for Ēs and Eq. (6.29) for ð1=2Þρ̄sjũsj2, giving

∂tϵ̄
�
s þ ∇x̄ ·

�
ϵsus þ q̄s þ τ̄ðPs;usÞ

− P̄s · τ̃ðρs;usÞ=ρ̄s þ
1

2
ρ̄sτ̃ðus;us;usÞ

�
¼ −P̄�

s∶∇x̄ũs þ qsn̄sτ̃ðE�s;usÞ: ð6:35Þ

Note that the term −P̄�
s∶∇x̄ũs on the right-hand side differs

only in sign from the corresponding term on the right-hand
side of Eq. (6.29) so that this quantity acts to exchange
kinetic energy between bulk flow and fluctuations. Even

after taking the limit Do → ∞, Eq. (6.35) is quite distinct
from the equation obtained by coarse graining Eq. (6.22)
for the fine-grained limit field ϵ⋆s or

∂tϵ̄⋆s þ ∇x · ðϵ⋆su⋆s þ q̄⋆sÞ ¼ −P⋆s∶∇xu⋆s: ð6:36Þ

In particular, note that Eq. (6.35) contains a nonvanishing
wave-particle interaction term qsn̄sτ̃ðE�s;usÞ which is
entirely absent from Eq. (6.36). These two equations must
agree in the limit l → 0, on the other hand, and in that limit
the term qsn̄⋆sτ̃ðE⋆�s;u⋆sÞ → 0 under plausible regularity
assumptions, as in Ref. [106].
It is interesting to refine the spatial-balance equa-

tion (6.35) for kinetic energy of fluctuations in order to
follow the transfer through phase space. For that purpose,
we define a phase-space density of fluctuation energy at
scales l, u by

z̄sðx̄; v̄; tÞ ≔
1

2
msjv̄ − ũsj2f̄sðx̄; v̄; tÞ ð6:37Þ

so that ϵ̄�s ¼
R
d3v̄z̄s. A tedious calculation (see

Appendix A) yields the following balance equation for z̄s:

∂tz̄s þ∇x̄ · ½v̂sz̄s þ P̄�
s · ðũs − v̄Þf̄s=n̄s� þ∇p̄ · ðqsÊ�sz̄sÞ

¼ ρ̄sτ̃ðus;usÞ∶∇x̄½ðũs − v̄Þf̄s=n̄s�−msðv̂sv̄f̄s − v̄ v̄ f̄s;lÞ∶∇x̄ũsðturbulent redistribution of energyÞ
þ P̄s∶∇x̄½ðũs − v̄Þf̄s=n̄s�ðenergy redistribution by resolved pressureÞ−ms½v̄ v̄ f̄s;l − ũsv̄f̄s − v̂sũsf̄s þ ũsũsf̄s

− τ̃ðus;usÞf̄s�∶∇x̄ũsðwork by mean velocity gradientÞ−msτ̃ðus;usÞ∶∇x̄ũsf̄sðenergy input from turbulent cascadeÞ
þ qsðv̄− ũsÞ · ðÊ�s − Ẽ�sÞf̄s½energy input and redistribution by the electromagnetic ðEMÞ field�: ð6:38Þ

Equation (6.38) for z̄s gives more insight into the flow of
kinetic energy through phase space than does the corre-
sponding Eq. (6.24) for w̄s because it describes locally in
phase space the turbulent interactions of the kinetic velocity
fluctuations with the bulk velocity for particle species s.
The five terms on the right-hand side are arranged so that
the first two vanish after integration over v̄, and the last
three terms yield after integration the expressions

−P̄s∶∇x̄ũs; −ρ̄sτ̃ðus;usÞ∶∇x̄ũs; qsnsτ̃ðE�s;usÞ;
ð6:39Þ

which appear as sources of ϵ̄�s in Eq. (6.35). The physical
meaning of these five terms is briefly indicated in paren-
theses beneath each. As we discuss below Eq. (6.29), it
might be argued to be more appropriate to combine the first

two energy redistribution terms. This would yield an
expression proportional to the intrinsic stress tensor P̄�

s
rather than separate contributions proportional to
ρ̄sτ̃ðus;usÞ and P̄s. Likewise, it might be more appropriate
to combine the third and fourth terms, since both represent
work performed by the resolved strain, acting against the
stress of fluctuating velocities, on the one hand, and against
the mean stress, on the other hand.
Nothing very exciting emerges from Eq. (6.38) in the

limit Do → ∞ alone [114], but more interesting possibil-
ities emerge if one considers the secondary limit
ρi=Li → 0, which permits an asymptotic energy cascade
to small scales. If one assumes that strong limits exist
E⋆ → E•,B⋆ → B•, f⋆s → f•s, s ¼ i, e as ρi=Li → 0, then
taking this limit in Eq. (6.38) (after first taking Do → ∞)
and only then taking l; u → 0 gives

CASCADES AND DISSIPATIVE ANOMALIES IN NEARLY … PHYS. REV. X 8, 041020 (2018)

041020-25



∂tz•s þ ∇x ·

�
vz•s þ P•s∘ðu•s − vÞ f•s

n•s

�
þ ∇p · ½ðqsðE•Þ�z•s�

¼ R•sðx; v; tÞðturbulent redistribution of energyÞ þ P•s
∘∘ ∇x½ðu•s − vÞf•s=n•s�

× ðenergy redistribution by resolved pressureÞ −msðv − u•sÞðv − u•sÞ ∘∘ ∇xu•sðwork by mean velocity gradientÞ
þQ•sðx; tÞ∘f•sðenergy input from turbulent cascadeÞ: ð6:40Þ

The four terms on the right-hand side of Eq. (6.40) are
taken to be distributional limits of the corresponding first
four terms on the right-hand side of Eq. (6.38). As one can
see, there is a possible anomalous redistribution of energy
R•s, which vanishes upon integration over velocities and a
possible anomalous input of energy Q•s from turbulent
cascade. These conclusions must be considered tentative,
since they require a rigorous study of the limit ρi=Li → 0,
which we do not attempt here. In the next section, we
discuss the problem very briefly.

VII. RELATION TO PRIOR WORKS

A. Gyrokinetic turbulence

All prior work on entropy cascade in plasma turbulence
is developed essentially within the framework of gyroki-
netics. We therefore must briefly review gyrokinetic theory
and its physical basis in order to make comparisons with
our own work.

1. Concise review of gyrokinetic theory

Nonlinear gyrokinetic equations capable of describing
turbulent cascades were first derived in the seminal paper
of Frieman and Chen [115] and subsequently extensively
investigated theoretically and numerically by the plasma
fusion community. Modern approaches to nonlinear
gyrokinetics exploit powerful Hamiltonian and geometric
methods [116,117]. The application of gyrokinetics to
astrophysical and space plasmas was pioneered in papers
of Schekochihin et al. [24,25] and Howes et al. [118],
which also first proposed and developed the theory of
entropy cascades in plasma turbulence. Our review of
gyrokinetic theory and especially the role of entropy in
gyrokinetic turbulence follow closely the discussions in
Refs. [24,25,118]. More general gyrokinetic theories of
entropy cascade are possible (e.g., Ref. [33]), but the
scaling predictions are less developed in those general-
izations, and the original theoretical work therefore
provides a more adequate basis of comparison with
our results.
Although not necessary to achieve a gyrokinetic

reduction [116,117], many treatments, including that of
Refs. [24,25,118], start from a decomposition of fields into
“background” and “fluctuation” contributions

fs ¼ Fs þ δfs; B ¼ B0 þ δB; E ¼ δEðE0 ¼ 0Þ
ð7:1Þ

with the further assumption of (i) fluctuation amplitudes
small relative to backgrounds:

δfs=Fs ∼ δB⊥=B0 ∼ δBk=B0 ∼ cδE⊥=vth;sB0 ∼ ϵ; ð7:2Þ

where ϵ ≪ 1 is a dimensionless parameter that quantifies
this smallness, and the subscripts k and ⊥ denote vector
components parallel and perpendicular to B0, respectively.
With u⊥ ∼ cδE⊥=B0 giving the E ×B drift velocity, the
fourth condition in Eq. (7.1) can be restated as u⊥=vth;s ∼ ϵ.
For applications to astrophysical and space plasmas (e.g.,
the solar wind), the condition (i) is perhaps the most
dubious of the various assumptions discussed here. A
second assumption very essential for the validity of
gyrokinetics is (ii) frequency of fluctuations small relative
to the gyrofrequency:

ω=Ωs ∼ ϵ: ð7:3Þ

This condition is often found to be satisfied over very broad
ranges of scales in a turbulent plasma. It imposes no direct
restriction on the perpendicular length scale l⊥ or
perpendicular wave number k⊥ ∼ 1=l⊥ relative to the
thermal gyroradius ρs, which may be taken to satisfy
k⊥ρs ∼ 1. However, if one takes ω ∼ vth;skk in order to
admit Landau resonances, then (iii) scale anisotropy of
fluctuations is required:

kk=k⊥ ∼ ϵ: ð7:4Þ

This condition is also often observed to be satisfied
over wide ranges of scales. If electric fields are assumed
electrostatic, δE ¼ −∇φ, to leading order, then scale
anisotropy implies δEk=δE⊥ ∼ ϵ. Whenever the above
conditions hold initially, then gyrokinetic theory implies
that they are dynamically maintained with a slow evo-
lution of the background fields on approximately 1=ϵ3Ωs
timescales.
Gyrokinetic theory obtains closed evolutionary

equations by seeking approximations to solutions of the
Vlasov-Maxwell-Landau equations as asymptotic series
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δa ∼
P

i≥1 δa
ðiÞϵi for all fluctuation fields δa, as ϵ → 0.

Following Refs. [24,25,118], we consider here the simple
case where all background distributions are isotropic
Maxwellian Fs ¼ nsðms=2πTsÞ3=2 expð−msv2=2TsÞ with
temperature Ts of species s (in energy units) and where the
background magnetic field is uniform, B0 ¼ B0ẑ. Then we
find in Refs. [24,25,118] that

δfð1Þs ¼ −
qsφðx; tÞ

Ts
Fsðv; tÞ þ hsðXs; v; v⊥; tÞ; ð7:5Þ

where the first term gives the adiabatic Boltzmann
response, and the second term hs is the ring distribution
function which describes for each species s the distribution
of the gyrocenters

Xs ¼ xþ v⊥ × ẑ=Ωs: ð7:6Þ

The time evolution of the ring distribution functions hs is
obtained from the gyrokinetic equations:

∂hs
∂t þ vk

∂hs
∂z þ c

B0

fhχiXs
; hsg

¼ qsFs

Ts

∂hχiXs

∂t þ
�∂hs

∂t
�

c
; ð7:7Þ

where the gyrokinetic electromagnetic potential is defined
by χ ≔ φ − v ·A=c in terms of the usual scalar φ and
vector A potentials where

haiXs
¼ 1

2π

Z
2π

0

dθa½Xs − v⊥ðθÞ × ẑ=Ωs; vk; v⊥ðθÞ; t�

ð7:8Þ

is the ring average over cyclotron motions with velocities
v⊥ðθÞ ¼ v⊥½ðsin θÞx̂þ ðcos θÞŷ�, the spatial Poisson
bracket is defined by fa; bg ≔ ẑ · ð∇Xs

a × ∇Xs
bÞ, and

ð∂hs=∂tÞc is the collisional contribution from the linearized
and gyroaveraged Landau operator. The evolution of the
electromagnetic fields φ, Ak, δBk is likewise obtained from
the Maxwell equations in a reduced gyroaveraged form [see
Ref. [118], Eqs. (26)–(28)]. Together with the kinetic
equations for the ring distribution functions hs, these
equations completely specify the dynamics. One has the
freedom in these equations to take

R
d3xφ ¼ R

d3xhs ¼ 0,
and, in fact, to any order in the expansion in ϵ, one can
impose

R
d3xδfs ¼ 0. The nonlinear Poisson bracket term

arises, of course, from the wave-particle interaction term
ðqs=msÞðE� · ∇vÞfs in the Vlasov-Landau equation (2.1).

The v gradient of δfð1Þs contributes an Xs gradient of hs
because of the v⊥ dependence of the gyrocenter Xs in
Eq. (7.6). Although there is no direct advection in velocity

space for the gyrokinetic equation, the Poisson bracket term
represents this effect, which creates fine-scale velocity
structure.

2. Gyrokinetic H theorems

The gyrokinetic H theorem for entropy is discussed
in Refs. [24,25,118], whose results we briefly sum-
marize. Assuming the smallness of fluctuations (7.1)
the phase-space entropy density (2.22) can be Taylor
expanded as

ð7:9Þ

With
R
d3xδfs ¼ 0, the entropy of species s becomes

SðfsÞ ¼ SðFsÞ −
Z

d3x
Z

d3v
ðδfsÞ2
2Fs

: ð7:10Þ

The second law of Eqs. (2.25)–(2.27) can be written as

d
dt

X
s

SðfsÞ ¼ −
X
ss0

Z
d3x

Z
d3v ln fsCss0 ðfs; fs0 Þ ≥ 0

ð7:11Þ
with the logarithm on the rhs expanded as

ln fs ≐ lnFs þ
δfs
Fs

: ð7:12Þ

For a Maxwellian Fs with temperature Ts,

lnFs ¼ −
msv2

2Ts
þ logðcns=T3=2

s Þ ð7:13Þ

for a constant c, and thus the contribution from lnFs on the
rhs of Eq. (7.11) vanishes because of the equationsR
d3vCss0 ¼ 0 and

P
ss0

R
d3vð1=2Þmsjvj2Css0 ¼ 0. The

contribution from δfs=Fs in Eq. (7.11) then gives the final
quadratic-order H theorem

d
dt

X
s

�
SðFsÞ −

Z
d3x

Z
d3v

ðδfsÞ2
2Fs

�
¼ −

X
s

Z
d3x

Z
d3v

δfs
Fs

�∂δfs
∂t

�
c
≥ 0; ð7:14Þ

where�∂δfs
∂t

�
c
¼

X
s0
½Css0 ðFs; δfs0 Þ þ Css0 ðδfs; Fs0 Þ� ð7:15Þ

is the linearized collision integral, and the conditionR
d3xδfs ¼ 0 is used again to eliminate the contribution

from Css0 ðFs; Fs0 Þ on the rhs of Eq. (7.14).
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In Refs. [24,25,118], this H theorem has been further
reformulated as an equation for the dissipation of a
generalized energy or free energy. Noting that the entropy
per volume for the Maxwellian Fs is

SðFsÞ=V ¼ ns lnðT3=2
s =cnsÞ þ

3

2
ns; ð7:16Þ

then Ref. [118] Appendix B 1 shows that to leading order
dns=dt ¼ 0 [their Eq. (B3)]. Thus, the entropy balance for a
single species s reduces per volume to

1

Ts

dE0s

dt
−

d
dt

�Z
d3x
V

Z
d3v

ðδfsÞ2
2Fs

�
¼ −

Z
d3x
V

Z
d3v

δfs
Fs

�∂δfs
∂t

�
c
þ 1

Ts
Qs ð7:17Þ

with E0s ¼ ð3=2ÞnsTs the kinetic energy density for the
Maxwellian Fs, and Qs the collisional heat exchange
defined in Eq. (2.18). Equation (7.17) is the “heating
equation” derived as Eq. (B15) of Ref. [118]
Appendix B 2. As already discussed there, this heating
equation implies that the temperatures Ts evolve on a
timescale of approximately 1=ϵ3Ωs, an orderOðϵ−2Þ longer
than the evolution timescale 1=ϵΩs of the ring distribution
functions hs. Because of the condition

R
d3xδfs ¼ 0, one

has also

E0s ¼
Z

d3x
V

Z
d3v

1

2
msjvj2fs; ð7:18Þ

which shows that E0s is just the volume average of the
particle energy density Es defined in Eq. (2.16). Using this
equation and the slow time evolution of Ts, Eq. (7.17) is
rewritten to leading order as [24,25,118]

d
dt

Z
d3x
V

Z
d3v

�
1

2
msjvj2fs −

TsðδfsÞ2
2Fs

�
¼ −

Z
d3x
V

Z
d3v

Tsδfs
Fs

�∂δfs
∂t

�
c
þQs; ð7:19Þ

which is equivalent to Eq. (B11) in Ref. [118]
Appendix B 1 or Eq. (9) in Ref. [25]. Summing over s
gives a valid formulation of the H theorem for gyroki-
netics, but the quantity in the square brackets is sign
indefinite. Using conservation of total energy with space
density E ¼ P

s Es þ 1
8π ðjEj2 þ jBj2Þ, one can instead

introduce a free energy or generalized energy with
volume-average density

W ¼
Z

d3x
V

�X
s

Z
d3v

TsðδfsÞ2
2Fs

þ jEj2 þ jBj2
8π

�
;

ð7:20Þ

which is non-negative and also dissipated according to
the balance equation

dW
dt

¼
X
s

Z
d3x
V

Z
d3v

Tsδfs
Fs

�∂δfs
∂t

�
c
≤ 0: ð7:21Þ

This coincides with Eq. (B19) derived in Ref. [118]
Appendix B 3 or Eq. (11) in Ref. [25] for the case of
no external forcing. Here we emphasize how Eq. (7.21)
arises from the more general Vlasov-Maxwell-Landau
model, but it can also be derived directly within the
gyrokinetic description for the first-order fluctua-

tions δfð1Þs in Eq. (7.5) [see Eqs. (73) and (74) in
Ref. [24] ].
Unfortunately, there is no obvious analogue of this free

energy for the full VLM model in general. The analogous
quantity would seem to be

W ¼
X
s

TsHðfsjFsÞ þ
Z

d3x
V

jEj2 þ jBj2
8π

; ð7:22Þ

where Fs is a global Maxwellian distribution with density
n0s and temperature Ts, and the relative entropy is

HðfsjFsÞ ¼
Z

d3x
V

Z
d3v½fs logðfs=FsÞ − fs þ Fs� ≥ 0:

ð7:23Þ

Indeed, for a single-species plasma and for time-
independent equilibrium parameters n0, T, the quantity
W=T is well known to be both non-negative, convex, and
dissipated [46]. A simple calculation gives

H½fsjFs� ¼ −
�
S½fs�−

Ns

N0s
S½Fs�

�
=V

þ 1

Ts

Z
d3x
V

�
Es −

3

2
nsTs

�
−
Z

d3x
V

ðns − n0sÞ:

ð7:24Þ

If the parameters n0s, Ts of the reference Maxwellian
distribution are chosen so thatZ

d3x
Z

d3vδfs ¼
Z

d3x
Z

d3v
1

2
jvj2δfs ¼ 0; ð7:25Þ

for fs ¼ Fs þ δfs, then the last two terms in Eq. (7.24)
vanish, Ns ¼ N0s and H½fsjFs� ¼ ðS½Fs� − S½fs�Þ=V ≥ 0.
The densities n0s are time independent, but the temperatures
Ts specified by Eq. (7.25) generally vary in time. By means
of Eq. (7.24), one can write
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W ¼
X
s

TsðS½Fs� − S½fs�Þ=V

þ
Z

d3x
V

�X
s

Es þ
jEj2 þ jBj2

8π
−
X
s

3

2
nsTs

�
:

ð7:26Þ

Using the conservation of total energy and dS½Fs�=dt ¼
3
2
ðN0s=TsÞdTs=dt, it then follows that

dW
dt

¼
X
s

dTs

dt
ðS½Fs� − S½fs�Þ=V −

X
s

Ts
d
dt

S½fs�=V:

ð7:27Þ

The first term on the right is positive if, as seems plausible,
dTs=dt > 0. The second term on the left also cannot be
shown to be negative because the symmetrization argument
using s ↔ s0 and p ↔ p0 with the Landau collision
integral giving Eq. (2.27) also takes Ts ↔ Ts0 . Only for
Ts ¼ T and dT=dt ¼ 0 does one obtain dW=dt ¼
−T

R
d3x σ=V ≤ 0 exactly. The gyrokinetic result (6.21)

holds to leading order because in that case similarly Ts −
Ts0 ¼ Oðϵ2Þ for s ≠ s0 and dTs=dt ¼ Oðϵ3ΩsÞ (see
Ref. [118], footnote 8, p. 595).

3. Scaling exponent predictions

Gyrokinetics is expected to provide an asymptotic
description as ϵ → 0 of a class of exact solutions of the
VML equations, including solutions that describe turbulent
cascades of energy and entropy. A theory of these cascades
may therefore be developed either within the reduced
gyrokinetic description or within the more comprehensive
VML model. Although energy and entropy are separate
quantities with their own distinct balances for VML
solutions, these quantities are intertwined into the single
invariant W in Refs. [24,25] on astrophysical gyrokinetic
turbulence. The cascades ofW discussed in those works are
partially associated to energy cascade in the full VML
description and partially to entropy cascade. However, the
flux of W at the smallest collisionless scales, which
matches onto the anomalous entropy production by colli-
sions (see Secs. 7.9.3 and 7.12 in Ref. [24], Sec. V in
Ref. [25], and Sec. II. 5 in Ref. [118]) must be entirely due
to entropy cascade in the VML description, since no energy
dissipation anomalies are possible in the Do → ∞ limit.
Anomalous entropy production, both in the gyrokinetic

and in the full VML description, requires short-distance
divergences of solutions in phase space, which must be
regularized to allow for a dynamical description in the
collisionless limit. One may study this limit Do → ∞ either
before or after the limit ϵ → 0. Taking the limit ϵ → 0 first,
then Do → ∞ can be achieved with a suitable distributional
or weak formulation of the gyrokinetic model equations,
which we do not attempt to develop here [119].

Alternatively, one takes the limit Do → ∞ of regularized
VML solutions first and then takes ϵ → 0 as a subsidiary
limit. This second order of limits is required if the colli-
sional phase-space cutoff scales lc, uc (see Secs. 7.9.3 and
7.12 in Ref. [24], Sec. V in Ref. [25], Sec. II. 5 in
Ref. [118], and Appendix C) are too small for the
gyrokinetic approximation to be valid at those scales. In
this order of limits, the coarse-graining regularization of
VML solutions employed in the present work applies, and
all of our rigorous estimates of entropy flux carry over to
gyrokinetics. Note that l in our estimates should be
understood to represent l⊥ when the scale anisotropy lk ≫
l⊥ implied by Eq. (7.4) holds in the limit ϵ → 0. All fields
are then smoother along the B0 direction, and for fixed
displacement length r, the increments are smaller for rkB0

than for r⊥B0. Thus, the averages over an isotropic kernel
G ¼ GðrÞ are dominated by the increments with displace-
ments r⊥B0 [120]. Similar statements apply to u, as δw
increments are likewise dominated by the most singular
direction in velocity space.
Based on these remarks, we may directly compare our

exact inequalities (5.45) on the scaling exponents
σFp ≔ minfσEp; σBpg, σfsp , and ρfsp of orders p ≥ 3 required
for entropy cascade with the scaling predictions for
gyrokinetic turbulence in Refs. [24,25]. Those papers
derive predictions for spectral exponents, or orders
p ¼ 2, but their results may be assumed to apply to all
orders p if intermittency effects can be ignored. Since the
scaling exponents in question are nonincreasing in p, this
“mean field” approximation necessarily overestimates the
true exponent values for p ≥ 3. Gyrokinetic theory assumes
that background fields are smoother than fluctuations so
that σBp ¼ σδBp , σfsp ¼ σδfsp , and ρfs¼p ρδfsp . The first-order
gyrokinetic result (7.5) for δfs also implies that
σδfsp ≔ minfσφp; σhsp g. Another general prediction of gyro-
kinetics is the physical relation u=vth;s ∼ l=ρs that connects
scaling in position and velocity space. This relation is a
consequence of the nonlinear perpendicular phase-mixing
mechanism for entropy cascade in gyrokinetics in which
velocity-space structure arises from position-space struc-
ture due to the dependence of ring gyroradii on
perpendicular velocity (Fig. 10 in Ref. [24] and Fig. 1
in Ref. [25]). An immediate consequence is that velocity-
space and position-space exponents are equal, or ρfsp ¼ σfsp ,
in gyrokinetic turbulence.
Specific predictions for scaling exponents in possible

entropy cascade ranges of gyrokinetic turbulence have been
developed phenomenologically in Refs. [24,25] for the
particular case of a Maxwellian two-species (electron-ion)
plasma. Reference [24] considered three different situa-
tions, which we briefly summarize here.
(a) Joint kinetic Alfvén wave and ion entropy cascade

(ρe ≪ l ≪ ρi).—Section VII. 9 of Ref. [24] consid-
ered an entropy cascade passively driven by a kinetic
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Alfvén wave (KAW) cascade assuming ρi=Li ≲ 1,
me=mi ≪ 1. Their predictions expressed in terms of
scaling of increments are

“δlE” ∼ l−1=3; δlB ∼ l2=3; ð7:28Þ
δlfi ∼ l1=6; δufi ∼ u1=6 ð7:29Þ

so that

σFp ¼ −
1

3
; σfp ¼ 1

6
; ρfp ¼ 1

6
: ð7:30Þ

Quotation marks “” appear around the electric field
term in Eq. (7.28) because increments no longer
suffice to define scaling exponents in the same manner
as in Eq. (5.35) when the exponents become negative.
Instead, one must use some sort of smooth low-pass
or band-pass filter, e.g., wavelet coefficients as in
Refs. [90,121,122].

(b) Pure ion entropy cascade (ρe ≪ l ≪ ρi).—
Section VII. 10 of Ref. [24] under the same limit
conditions ρi=Li ≲ 1, me=mi ≪ 1 but assuming now
no KAW cascade and assuming also he ¼ 0 predicted

δlE ∼ l1=6; δlBðor δ3lBÞ ∼ l13=6; ð7:31Þ

δlfi ∼ l1=6; δufi ∼ u1=6 ð7:32Þ

so that

σFp ¼ 1

6
; σfp ¼ 1

6
; ρfp ¼ 1

6
: ð7:33Þ

In this case, magnetic fluctuations are very small over
the range considered so that the entropy cascade is
self-driven by the electrostatic fields arising from
fluctuations in the ion distribution. Note that the high
smoothness of the magnetic field (scaling exponent
> 2) implies that its first-order increments scale as
δBl ∼ l. Thus, the scaling exponent as defined in
Eq. (5.35) is σBp ¼ 1. To obtain instead σBp ¼ 13=6,
one must replace the first-order increments in
Eq. (5.35) with third-order increments so that the
OðlÞ, Oðl2Þ terms in the Taylor expansion are
canceled (see Refs. [90,121] for a general discussion).

(c) Electron entropy cascade (l ≪ ρe).—Section VII. 12
of Ref. [24], assuming ρe < ρi ≲ Li, considered a pure
electron entropy cascade with contributions of ion
distribution hi neglected (e.g., because the gyroaver-
aging makes its contributions subdominant in powers
of me=mi)

δlE ∼ l1=6; δlBðor δ3lBÞ ∼ l13=6; ð7:34Þ

δlfe ∼ l1=6; δufe ∼ u1=6 ð7:35Þ

so that

σFp ¼ 1

6
; σfp ¼ 1

6
; ρfp ¼ 1

6
: ð7:36Þ

The scaling exponents are identical to those for the
pure ion entropy cascade, and, indeed, the physics is
very similar with electrostatic fields created by fluc-
tuations in the electron distribution driving the cascade
of electron entropy.

Comparing these various predictions with our inequal-
ities (5.45), the first observation is that our exact constraints
required for an entropy cascade to exist are well satisfied by
the predictions of Ref. [24] for all three cases. Second, the
inequalities are not satisfied as near equalities but instead
with the predicted exponents yielding a value considerably
below the upper bound in Eq. (5.45). A somewhat similar
situation occurs also in incompressible fluid turbulence,
where the corresponding inequality σup < 1=3 is satisfied
with values of σup much smaller than 1=3 for p ≥ 3. For
incompressible turbulence, this smallness is a consequence
of space-time intermittency (see, e.g., Ref. [96]), but, as
there, a mean field approximation which neglects the
effects of intermittency should be approximately valid
for exponents of order p ≃ 3. We believe that the large
gap is due instead to the strong depletion of nonlinearity in
gyrokinetics arising from substantial cancellations in the
ring averages (7.8) and which is not taken into account in
our upper bounds (5.36)–(5.39) on entropy flux. In order to
compensate for the reduced nonlinearity, more singular
scaling behavior than what follows from Eq. (5.45) is thus
required in gyrokinetic turbulence in order to sustain the
cascade of entropy.

B. Empirical studies

Here we briefly review the available evidence for kinetic
entropy cascades from empirical studies and also discuss
some promising situations in space plasmas where they are
likely to exist.
Numerical simulations of gyrokinetic turbulence

have provided, so far, the best direct evidence for non-
linear entropy cascades in turbulent plasmas [123].
References [125,126] have considered decaying electro-
static turbulence in a spatially 2D setting with no variations
parallel to B0 in order to eliminate damping by the Landau
resonance. The spatial domain size was 2πρ × 2πρ, with ρ
the gyroradius. A smooth, unstable initial condition was
chosen for δf perturbed by small-amplitude white noise
together with the corresponding electrostatic potential φ.
This initial configuration was evolved under the gyroki-
netic dynamics for three cases with decreasing collision-
ality (Do ¼ 48, 118, 440) and correspondingly increased
numerical resolution. The collisional entropy production
was found to be weakly dependent only on Do and
spectrally local, nonlinear fluxes of entropy were observed
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to small scales in position space and velocity space. The
scaling behavior found in this study was quite close to that
predicted in cases (b),(c) above, with Fourier spectra
Ehðk⊥Þ, EE⊥ðk⊥Þ ∼ k−4=3⊥ and identical scaling in the
Hankel-transform velocity spectrum of h. A similar study
[127] also considered electrostatic gyrokinetic turbulence
but now in 3D and ion temperature gradient driven. A
statistical steady state was reached with artificial hyper-
diffusion added in position and velocity space. Despite the
fact that such a dissipation acted effectively at all scales,
this study observed scale-local, nonlinear entropy cascade
and obtained spectra similar to those in Refs. [125,126].
In a different direction, Ref. [128] performed a 3D, fully

electromagnetic, gyrokinetic simulation of an ion-electron
plasma designed to reproduce the joint turbulent KAW and
ion entropy cascade of Ref. [24] [case (a) above]. The size
of the spatial domain was L⊥ ¼ 2πρi and Lk ≫ L⊥ with a
1283 spatial grid able to resolve the electron gyroradius
ρe ≐ ρi=42.8. The simulation was driven by an “antenna
current” set up to mimic energy input from a critically
balanced cascade of Alfvén waves, and collisions were
incorporated by a fully conservative, linearized collision
operator. The field spectra observed were close to
EE⊥ðk⊥Þ ∼ k−1=3⊥ and EB⊥ðk⊥Þ, EBk ðk⊥Þ ∼ k−2.8⊥ , with the

latter somewhat steeper than the k−7=3⊥ spectrum predicted
in Ref. [24]. This steepening was plausibly explained by
the finiteness of the mass ratio me=mi and the damping of
KAW modes by Landau resonance with electrons, which
peaks in the simulation at k⊥ρe ∼ 1 but is increasing
roughly as a power law over the entire k⊥ range. The
important point here is that the collisionless input into hi
by the Landau resonance with ions peaked at k⊥ρi ∼ 1
but the collisional ion heating peaked at higher wave
number k⊥ρi ∼ 20. This wave-number shift is consistent
with the presence of an ion entropy cascade (see also
Refs. [129,130]).
Entropy cascade should occur not only within numerical

simulations but quite ubiquitously at small scales in turbu-
lent plasmas of very weak collisionality with the solar wind
and the terrestrial magnetosheath as likely examples. We
know of no direct evidence of nonvanishing entropy flux in
such environments, although high-resolution measurements
of ion distribution functions in the magnetosheath do reveal
complex velocity-space structure [131]. Furthermore, in situ
observations of magnetic field spectra broadly agree with
gyrosimulations exhibiting entropy cascade. As recently
reviewed [132], solar-wind spectra arewell fit as power laws
EB⊥ðk⊥Þ ∼ k−x⊥ for 1=ρi ≲ k⊥ ≲ 1=ρe and EB⊥ðk⊥Þ ∼ k−y⊥
for 1=ρe ≲ k⊥ with a distribution of exponents x ∈ ½2.5; 3.1�
peaked at x ¼ 2.8 and y ∈ ½3.5;−5.5� peaked at y ¼ 4. In the
terrestrial magnetosheath, Ref. [133] reports similar scaling
but with x ∈ ½2.4; 3.5� peaked at x ¼ 2.9 and y ∈ ½4; 7.5�
peaked at y ¼ 5.2. Clearly, the magnetic spectra observed in
the range 1=ρi ≲ k⊥ ≲ 1=ρe for both the solar wind and

heliosheath agree reasonably well with the simulation of the
joint KAW and ion entropy cascade in Ref. [128].
Reference [134] reported in the solar wind an electric
spectrum EE⊥ðk⊥Þ ∼ k−0.3⊥ fitted over the decade
k⊥ρi ∈ ½0.43; 4.3�, roughly consistent with the prediction
EE⊥ðk⊥Þ ∼ k−1=3⊥ of Ref. [24] for the KAW or ion entropy
cascade (see as well Ref. [135]). At subelectron scales
1=ρe ≲ k⊥, the magnetic spectra reported for both the solar
wind and magnetosheath in these references appear also to
be roughly in agreement with the prediction EB⊥ðk⊥Þ ∼
k−16=3⊥ of Ref. [24] for the electron entropy cascade.
Agreement is clearly best for the magnetosheath, where,
as pointed out in Refs. [132,133], the signal-to-noise ratio of
measurements is higher than for the solar wind and where,
therefore, the spectral slopes are more reliable.
Although reasonably identified as entropy cascades,

these turbulent space plasmas are likely not accurately
described by gyrokinetics all the way down to collisional
scales. The gyrokinetic approximation is estimated to break
down in the solar wind at a length scale between ρi and ρe
[118], but the collisional cutoffs for both ion and electron
entropy cascades should lie at much smaller scales. The
cutoff scale for the ion entropy cascade is lc ∼ ρiDo

−3=5
i

within gyrokinetic theory [24], where the ion-scale Dorland
number is given by Doi ¼ 1=νiiτρi for the ion-ion Coulomb
collision rate νii and the eddy turnover rate τρi at the ion
gyroradius. In the solar wind at 1 A.U., νii ∼ 3 × 10−7 Hz
and ρi ∼ 100 km. From τρi ∼ ε−1=3ρ2=3i and using ε ∼
104 m2=sec3 from third-moment measurements [39], one
can estimate τρi ∼ 10 sec. Thus, Doi ∼ 105 and the colli-
sional-cutoff scale for ion entropy cascade calculated
within gyrokinetics is lc ∼ 10−3ρi or smaller. Similar
estimates apply to the cutoff lc ∼ ρeDo

−3=5
e for the electron

entropy cascade with electron-scale Dorland number
Doe ¼ 1=νeiτρe . Note that the electron-ion collision rate
νei is larger than νii by a factor of ðmi=meÞ1=2 but the
electron-scale turnover rate τρe is smaller than τρi by a
comparable factor. If these various estimates are accurate,
entropy cascades in the solar wind and terrestrial magneto-
sheath must extend down to scales well below those where
gyrokinetics is valid.
The description of such kinetic cascades is one of the

principal motivations for the theory developed in the
present work. Measured magnetic and electric spectra in
the solar wind [132,135] and in the magnetosheath
[136,137] indicate that the turbulence at subelectron scales
in those environments is probably “electrostatic,” with
electric fluctuations much larger than magnetic fluctua-
tions. Therefore, the dominant contribution to the entropy
flux is presumably the electric field contribution (5.26)
from the wave-particle interaction. Future work will exploit
this formalism to elucidate further the physics of this phase-
space cascade.

CASCADES AND DISSIPATIVE ANOMALIES IN NEARLY … PHYS. REV. X 8, 041020 (2018)

041020-31



C. Turbulent magnetic reconnection

The results on the coarse-grained momentum balance in
Sec. VI B of this paper also make connection with prior
work on turbulent magnetic reconnection and provide it
with a deeper theoretical foundation. As is well known,
the momentum balance equations for an electron-ion
plasma yield a generalized Ohm’s law for the electric field
[138–140]. For a turbulent plasma, the coarse-grained
momentum balance equations (6.7) or (6.9) for the two
species s ¼ i, e can be combined using the formula j ¼
eðniui − neueÞ for the electric current and assuming
quasineutrality (ne ¼ ni ¼ n) to give

Ẽþ 1

c
gui ×B

¼ 1

n̄e
R̄þ mi

mi þme

j ×B
n̄ec

−
1

n̄e
∇ ·

�
miP̄e −meP̄i

mi þme

�
þ memi

n̄e2ðmi þmeÞ
½∂tȷ̄þ ∇ · ðjui þ uij − jj=neÞ�:

ð7:37Þ

Here we retain the collisional drag forces �R̄ on the
electrons and ions, respectively. Unresolved turbulent
eddies can be considered to contribute two new terms to
this coarse-grained Ohm’s law. One is the velocity-fluc-
tuation-induced electric field defined by

ε̃ui ¼
1

c
τ̃ðui×; BÞ ≔

1

c
½ gui ×B − ũi × B̃�: ð7:38Þ

This effect was already considered in the theory of
turbulent reconnection for an incompressible fluid by
Matthaeus and Lamkin ([141], Sec. X. D) and in the
density-weighted Favre formulation by Ref. [15],
Sec. VI. For a compressible flow, however, there is another
turbulence effect. Because it is Ē, B̄ that appear in the
coarse-grained Maxwell equations (4.6) and not Ẽ, B̃, one
should write

Ẽþ 1

c
ũi × B̃ ¼ Ēþ 1

c
ũi × B̄þ ε̃n ð7:39Þ

with density-fluctuation-induced electric field

ε̃n ≔
1

n̄
½τ̄ðn;EÞ þ ũi × τ̄ðn;BÞ=c�: ð7:40Þ

Here we use the general relation b̃ ¼ b̄þ τ̄ðn; bÞ=n̄
between unweighted and Favre-weighted spatial coarse
graining, analogous to Eq. (3.15). This second electric field
contribution from turbulent density fluctuations was
pointed out in Ref. [15], Eq. (6.11). The sum of these
two electric fields ε̃i ¼ ε̃ui þ ε̃n coincides with the “turbu-
lent electromotive force” defined in Eq. (6.33) for s ¼ i.

Magnetic reconnection at length scale l in a turbulent
plasma is thus governed by the generalized Ohm’s law

Ēþ 1

c
ũi × B̄ ¼ −ε̃i þ

1

n̄e
R̄þ 1

n̄ec
j × B −

1

n̄e
∇ · P̄e

þ me

n̄e2
½∂t ȷ̄þ ∇ · ðjui þ uij − jj=neÞ�;

ð7:41Þ
assuming for simplicity a small mass ratio me=mi ≪ 1,
which recovers Eqs. (6.2) and (6.10) of Ref. [15]. In
Ref. [15], Eq. (6.2), the collisional drag force was repre-
sented by an Ohmic field R=en ¼ ηj with Spitzer resis-
tivity η, and it was argued from this representation that the
drag term is negligible in a weakly collisional plasma such
as the solar wind. Strictly speaking, such an argument is
only valid for coarse-graining length l ≫ λmfp;e, the mean
free path of the electrons, since it is only at such scales that
the drag force is correctly represented by Ohmic resistivity
[28]. On the other hand, the estimate (6.4) in the present
work shows more generally that the collisional drag term
vanishes as Do → 0 at any fixed length scale l in the
coarse-grained momentum balance equations (6.7) or (6.9).
It was further shown in Ref. [15] that all of the micro-

scopic nonideal electric fields terms on the right-hand side
of the generalized Ohm’s law (7.37) are negligible in the
inertial range of the solar wind. Assuming the scaling of
increments that are observed at length scales ρi ≪ l ≪ Li
in the solar wind and that are expected generally for
magnetohydrodynamics (MHD)-like turbulence, the analy-
sis showed that the nonideal terms are all suppressed by
powers of δi=l or ðδi=lÞ2 at length scale l with δi the ion
skin depth. The nonideal terms are thus like (infrared)
irrelevant variables in the technical RG sense. Here we note
that the plasma dynamics in the inertial range of the solar
wind for ρi ≪ l ≪ Li has been previously argued to be
governed by “kinetic reduced MHD (RMHD)” in Ref. [24]
Sec. V and Ref. [33] by means of gyrokinetic theory. In
particular, the dominant component of incompressible,
shear Alfvén waves in that range was argued to be
described by RMHD and the magnetic field to be governed
by the ideal induction equation. Our analysis here and in
Ref. [15] agrees with the latter conclusion. However,
Refs. [24,33] both go on to argue that as a consequence,
the magnetic field at inertial-range scales is frozen into the
ion flow, e.g., “At k⊥ρi ≪ 1, ions (as well as the electrons)
are magnetized and the magnetic field is frozen into the ion
flow” [24]. This statement is incorrect. Insofar as the ideal
induction equation holds in the inertial range of the solar
wind, it does not imply magnetic flux freezing at those
scales, and insofar as the ideal induction equation implies
magnetic flux freezing, it is not valid in the inertial range of
the solar wind.
As pointed out in Ref. [15], an “ideal Ohm’s law” holds

in the inertial range of the solar wind only in the sense that
the equality
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Ẽþ 1

c
gui ×B ¼ 0 ð7:42Þ

is well satisfied for length scales l ≫ ρi. The validity of the
ideal Ohm’s law in this weak or coarse-grained sense,
however, does not imply that the magnetic field at those
scales is frozen into the velocity ũi. This fact becomes
obvious if one rewrites the ideal Ohm’s law (7.42)
equivalently as

Ēþ 1

c
ũi × B̄ ¼ −ε̃i; ð7:43Þ

which makes apparent that the turbulent electromotive
force ε̃i breaks flux freezing at those scales. Keeping the
contribution ȷ̄i · ε̃i to energy cascade in Eq. (6.32) while
discarding ε̃i spuriously from theOhm’s law equation (7.43)
in order to infer “flux freezing” at scales l ≫ ρi is a
fundamental inconsistency. As recognized in the work of
Lazarian and Vishniac [142], reconnection must occur for
eddies at all scales l in a turbulent plasma. In fact, due to
the turbulent contributions, magnetic flux conservation
may be anomalous and violated in the limit first
maxfρi; δig=Li → 0, then l=Li → 0 [104,143]. Magnetic
flux structures with dimensions much larger than ρi or δi
which are embedded in a turbulent inertial range may
therefore undergo reconnection at rates which are inde-
pendent of microscopic physics and determined solely by
the inertial-range turbulence. A concrete example of this
type has been studied numerically in Ref. [36] using a
database of incompressible MHD turbulence, where it was
shown the electric field ε̃ui induced by turbulent velocity
fluctuations accounts for the reconnection at inertial-range
scales. An empirical study in Ref. [15] using spacecraft
data suggests that in the solar wind, the compressible
contribution ε̃n plays a relatively small role and that
inertial-range reconnection there is also due primarily to
the “ideal” electric field ε̃ui induced by velocity fluctuations
of unresolved eddies.
Similar remarks hold for reconnection of magnetic

structures at subion scales, which is generally treated by
rewriting the generalized Ohm’s law to refer to the electron
fluid. Turbulent reconnection at subion scales l < ρi may
likewise be treated by rewriting the coarse-grained Ohm’s
law (7.37) in terms of the electron bulk velocity yielding

Ẽþ 1

c
gue × B

¼ 1

n̄e
R̄ −

me

mi þme

j ×B
n̄ec

−
1

n̄e
∇ ·

�
miP̄e −meP̄i

mi þme

�
þ memi

n̄e2ðmi þmeÞ
½∂tȷ̄þ ∇ · ðjue þ uejþ jj=neÞ�:

ð7:44Þ

For weak collisionality and me=mi ≪ 1,

Ēþ 1

c
ũe × B̄

¼ −ε̃e −
1

n̄e
∇ · P̄e

þ me

n̄e2
½∂tȷ̄þ ∇ · ðjue þ uejþ jj=neÞ� ð7:45Þ

with ε̃e given by Eq. (6.33) for s ¼ e. The estimates in
Ref. [15] show that the contributions from the electron
pressure tensor and electron inertia are suppressed by
powers of δe=l [144]. Therefore, when l ≫ δe, then the
Ohm’s law referred to the electron fluid is ideal, but
magnetic fields are nevertheless not frozen into the velocity
ũe because of the turbulent contribution ε̃e ¼ ε̃ue þ ε̃n.
When l ∼ ρi ∼ δi (assuming βi ∼ 1), then the nonideal
electric fields are suppressed by a factor of only approx-
imately 1=43 relative to the turbulent contributions and
need not be entirely negligible. When l ∼ δe ∼ ρe, then the
nonideal contributions will begin to dominate. Price et al.
[145,146] have suggested based upon 3D particle-in-cell
simulations that the τ̄ðn;EÞ=n̄ contribution in ε̃n plays an
important (but not dominant) role in dayside magnetopause
reconnection observed byMMSwith turbulence self-driven
by the reconnection itself. Magnetic reconnection of ion-
and electron-scale structures is also observed in the
terrestrial magnetosheath [147,148]. There is strong pre-
existing turbulence in this environment which should
contribute significantly to reconnection of magnetic struc-
tures at length scales l ∼ ρi ∼ δi.

VIII. CONCLUSIONS AND OUTLOOK

This paper systematically explores the hypothesis [22,23]
that entropy production in a weakly coupled, multispecies
plasma may remain nonzero in the limit of vanishing
collisionality. This hypothesis implies that there will be
thermalization of the plasma or a tendency of velocity
distribution functions to evolve toward Maxwellian, even
as the dimensionless collision rate tends to zero. This
tendency is consistent with particle distribution functions
for driven systems remaining very far from Maxwellian and
with large mean entropy production in long-time steady
states. The earlier conjecture of Refs. [24,25] that such a
nonvanishing dissipationmay occur by a turbulent cascade of
entropy through phase space based on gyrokinetic theory is
shown here to be the necessary consequence of an entropy-
production anomaly. In close analogy with Onsager’s ideal
turbulence theory for incompressible fluids, we show that the
dynamics of the plasma at fixed length and velocity scales in
the collisionless limit is governed by aweakor coarse-grained
solution of the Vlasov-Maxwell equations. Although smooth
solutions of the Vlasov-Maxwell system conserve entropy,
the solutions suggested by our analysis violate that conser-
vation law by a nonlinear cascade of entropy. We obtain an
explicit formula for the entropy flux through phase space,
which we use to predict specific correlations (down-gradient
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transport) and specific types of singularities or scaling
exponents required to sustain a nonvanishing entropy cas-
cade. Our results are consistentwith gyrokinetics, but they are
more general because they do not require any of the specific
conditions assumed for validity of gyrokinetic theory (evo-
lution rates small compared with gyrofrequencies, scale
anisotropy, etc.). Our sole assumption is weak collisionality.
Our conclusions are thus widely applicable, holding, e.g., at
all scales in the solar wind smaller than the Coulomb mean-
free-path length and larger than the Debye screening length.
The collisionless entropy cascade discussed in this work
should occur and be observable at subion and subelectron
scales in the solar wind and the terrestrial magnetosheath.
We also consider in this paper the balances of the standard

collisional invariants: mass, momentum, and energy.
Although conserved overall, these quantities can be con-
verted from one form to another by Coulomb collisions of
the particles (e.g., momentum may be transferred from one
particle species to another). We show that such collisional
transfers cannot be anomalous, but instead they must vanish
in the collisionless limit. Anomalies may appear in sub-
sidiary limits, however, such as gyroradii small compared
with turbulence injection scales (ρs=Ls ≪ 1). For example,
the electron momentum equation reduces in that limit to an
ideal Ohm’s law but only in a weak or coarse-grained sense
that does not imply the frozen-in property of magnetic flux
and that predicts instead reconnection of “magnetic eddies”
at all inertial-range scales. Likewise, energy transfers
through length scales and velocity space may be anomalous
in such a small gyroradius limit, including a novel phase-
space redistribution effect. The energy balance equations
thatwe derive in thiswork, resolved simultaneously in phase
space and in scale, generalize and unify previous results in
the literature [7,51,106,107]. They provide a basis for the
study of both turbulent energy cascade and nonlinear
Landau damping in a turbulent setting.
Because energy is not dissipated by collisions in the

Vlasov-Maxwell-Landau theory, it is useful to address
briefly the question of the ultimate sink of energy cascaded
to small length scales. The answer to this question is clearly
situation dependent. In some cases, there may be no sink at
all, with energy simply accumulating in kinetic velocity
fluctuations after cascading to small length scales. This
seems to be the case in the solar wind, where turbulent
cascade appears to provide the energy required to offset the
“cooling” due to adiabatic expansion [149]. Of course, this
energy input does not necessarily correspond to a temper-
ature increase of a Maxwellian velocity distribution, but it
may correspond instead to non-Maxwellian tails and supra-
thermal particle production. In other cases, e.g., the solar
corona, the particle kinetic energy cascaded to small scales
may be carried off by electromagnetic radiation. This process
is not described within Maxwell-Vlasov-Landau theory,
which assumes elastic Coulomb collisions that conserve
the total kinetic energy of charged particles. Radiative

processes such as bremsstrahlung involve inelastic particle
collisions with emission of photons, and their treatment
requires separate consideration of plasma emissivity [150].
Likewise, thermal radiationwhich carries off both energyand
entropy requires a kinetic model of the photon gas that is
coupled with the kinetic equations for the charged particles
[151,152]. A theory of plasma turbulence based upon the
Vlasov-Maxwell-Landau equations alone cannot directly
answer the question of the ultimate fate of cascaded energy,
but it should provide the inputs (e.g., particle distribution
functions at small scales) necessary to address that question.
The present paper is intended to provide an exact,

systematic framework for describing plasma turbulence at
collisionless scales and should serve as a useful starting point
for further investigations, not only theoretical but also
numerical and experimental. Our analysis provides the
foundation for numerical modeling of kinetic plasma turbu-
lence by a “large-eddy simulation” methodology in phase
space [153,154]. For experimentalists, our results provide a
concrete model of “resolution effects.” Our results show that
finite-resolution measurements in a turbulent plasma can
lead to substantial renormalizations of bare quantities that
must be taken into account in interpreting observational data.
These are all important directions to pursue in future work.
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APPENDIX A: DERIVATION OF EQ. (6.38)
IN THE MAIN TEXT

We define a phase-space density of fluctuation energy at
scales l, u as in Eq. (6.37) of the main text by

z̄sðx̄; v̄; tÞ ≔
1

2
msjv̄ − ũsj2f̄sðx̄; v̄; tÞ ðA1Þ

so that ϵ̄�s ¼
R
d3v̄z̄s. A phase-space balance equation for

this quantity can be obtained by decomposing it as

1

2
msjv̄− ũsj2f̄s

¼
�
1

2
msjv̄j2f̄s

�
−ðmsv̄f̄sÞ · ũsþ

�
1

2
msjũsj2

�
f̄s; ðA2Þ

and then a lengthy but straightforward calculation using
Eqs. (6.24) and (6.6), the equations
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D̃t;sðmsũsÞ þ ð1=n̄sÞ∇x̄ · P̄�
s ¼ qsẼs�; ðA3Þ

D̃t;s

�
1

2
msjũsj2

�
þ ðũs=n̄sÞ · ∇x̄ · P̄�

s ¼ qsũs · Ẽs� ðA4Þ

following from Eqs. (6.2) and (6.9) with D̃t;s ≔ ∂t þ ũs · ∇x̄, and finally Eq. (4.12) gives in the nearly collisionless limit

∂tz̄s þ ∇x̄ · ½v̂sz̄s þ P̄�
s · ðũs − v̄Þf̄s=n̄s� þ ∇p̄ · ðqsÊ�sz̄sÞ ¼ P̄�

s∶∇x̄½ðũs − v̄Þf̄s=n̄s� − ðus − v̂sÞ · ∇x̄

�
1

2
msjv̄ − ũsj2

�
· f̄s

þ qsðv̄ − ũsÞ · ðÊ�s − Ẽ�sÞf̄s: ðA5Þ

Noting that ð1=2Þ∇x̄jv̄ − ũsj2 ¼ −∇x̄ũs · ðv̄ − ũsÞ, we may then rewrite the second term on the right by adding and
subtracting a term proportional to v̄ v̄ f̄s;l, giving

ðus − v̂sÞ · ∇x̄

�
1

2
jv̄ − ũsj2

�
· f̄s ¼ ðv̂sv̄f̄s − v̄ v̄ f̄s;lÞ∶∇x̄ũs þ ðv̄ v̄ f̄s;l − ũsv̄f̄s − v̂sũsf̄s þ ũsũsf̄sÞ∶∇x̄ũs: ðA6Þ

Here the first contribution has a vanishing v̄ integral and thus represents a redistribution of fluctuational energy in velocity
space, whereas the v̄ integral of the second term (and of the sum of the terms) is easily checked to give P̄�

s∶∇x̄ũs.
Substituting Eq. (A6) into Eq. (A5), we finally obtain the desired balance equation for z̄s:

∂tz̄s þ ∇x̄ · ½v̂sz̄s þ P̄�
s · ðũs − v̄Þf̄s=n̄s� þ ∇p̄ · ðqsÊ�sz̄sÞ

¼ ρ̄sτ̃ðus;usÞ∶∇x̄½ðũs − v̄Þf̄s=n̄s� −msðv̂sv̄f̄s − v̄ v̄ f̄s;lÞ∶∇x̄ũs

× ðturbulent redistribution of energyÞ þ P̄s∶∇x̄½ðũs − v̄Þf̄s=n̄s�ðenergy redistribution by resolved pressureÞ
−ms½v̄ v̄ f̄s;l − ũsv̄f̄s − v̂sũsf̄s þ ũsũsf̄s − τ̃ðus;usÞf̄s�∶∇x̄ũsðwork by mean velocity gradientÞ
−msτ̃ðus;usÞ∶∇x̄ũsf̄sðenergy input from turbulent cascadeÞ
þ qsðv̄ − ũsÞ · ðÊ�s − Ẽ�sÞf̄sðenergy input and redistribution by EM fieldÞ: ðA7Þ

APPENDIX B: BOUNDS ON PHASE-SPACE
INTEGRALS

1. The integral in estimate (4.4)

In the upper bound (4.4) on the coarse-grained collision
integral, there appears the following integral over two-
particle phase space:

I ¼
Z

d3r
Z

d3v
Z

d3v0GlðrÞjð∇HÞuðv − v̄Þj2 fsfs0

jv − v0j :

ðB1Þ

We show that this integral remains finite as Γ → 0 under
reasonable assumptions. First, we assume that

nsðx; tÞ ≔
Z

d3vfsðx; v; tÞ < ∞ ðB2Þ

for all s uniformly in Γ so that no infinite spatial densities
appear in the collisionless limit. Second, we assume that the
distributions fs are locally square integrable for all species
so that

Z
B
d3vf2sðx; v; tÞ < ∞ ðB3Þ

for all bounded open sets of velocities B and for all s
uniformly in Γ. Note that the square integrability of the
distribution functions is generally assumed in theories of
gyrokinetic turbulence so that second-order structure func-
tions and spectra are well defined [24,25]. Square integra-
bility is also a natural assumption guaranteeing that the
wave-particle termE�fs in the Vlasov-Maxwell equation is
pointwise well defined [71].
Divide the integral I into two contributions as I ¼ I> þ

I< corresponding to the conditions jv − v0j ≥ 1 and
jv − v0j ≤ 1, respectively. Then

I>≔
Z

d3r
Z

d3v
Z

jv−v0j≥1

d3v0GlðrÞjð∇HÞuðv− v̄Þj2 fsfs0

jv−v0j

≤
Z

d3r
Z

d3v
Z

d3v0GlðrÞjð∇HÞuðv− v̄Þj2fsfs0

≤max jð∇HÞuj2 ·nsns0 ðx̄; tÞ; ðB4Þ
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and it is bounded uniformly in Γ. On the other hand,
applying Cauchy-Schwarz inequality to I< gives

I<≔
Z

d3r
Z

d3v
Z

jv−v0j≤1

d3v0GlðrÞjð∇HÞuðv−v̄Þj2
fsfs0

jv−v0j

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3r

Z
d3v

Z
jv−v0j≤1

d3v0
GlðrÞjð∇HÞuðv−v̄Þj2

jv−v0j2
vuut
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3r

Z
d3v

Z
jv−v0j≤1

d3v0GlðrÞjð∇HÞuðv−v̄Þj2f2sf2s0
vuut :

ðB5Þ

The integral inside the first square root is finite in 3D and
defines a constant depending only upon l, u. The integral
inside the second square root has the upper boundZ

d3r
Z

d3v
Z

jv−v0j≤1

d3v0GlðrÞjð∇HÞuðv − v̄Þj2f2sf2s0

≤ max jð∇HÞuj2
Z

d3rGlðrÞ

×

�Z
Buðv̄Þ

d3vf2s

��Z
Buþ1ðv̄Þ

d3v0f2s0
�

ðB6Þ

since the support of jð∇HÞuðv − v̄Þj2 is contained inside the
ball Buðv̄Þ of radius u around v̄ in velocity space with our
assumptions on H. We thus conclude that I< is also
bounded uniformly in Γ.

2. The integral in estimate (6.4)

In the upper bound (6.4) on the drag force Rss0 , there
appears the following integral:

J ¼
Z

d3v
Z

d3v0
fsfs0

jv − v0j : ðB7Þ

We show that this integral remains finite as Γ → 0 under
reasonable assumptions, which include Eq. (B2) and a
strengthening of Eq. (B3), according to whichZ

d3vfsðx; v; tÞ
Z
B1ðvÞ

d3v0f2s0 ðx; v0; tÞ < ∞: ðB8Þ

The proof again proceeds by dividing the integral J into
two contributions J<, J> corresponding to the conditions
jv − v0j ≥ 1 and jv − v0j ≤ 1. Clearly,

J> ≔
Z

d3v
Z

jv−v0j≥1

d3v0
fsfs0

jv − v0j ≤ nsðx; tÞns0 ðx; tÞ: ðB9Þ

On the other hand,

J< ≔
Z

d3v
Z

jv−v0j≤1

d3v0
fsfs0

jv − v0j

¼
Z

d3vfs

Z
B1ðvÞ

d3v0
fs0

jv − v0j

≤
ffiffiffiffiffiffi
4π

p Z
d3vfs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B1ðvÞ

d3v0f2s0

s
ðB10Þ

by applying the Cauchy-Schwarz inequality to the inner
integral and by using

R
B1ðvÞd

3v0=jv−v0j2¼4π in 3D. Now
apply the Cauchy-Schwarz inequality to the outer integral,
giving

J<≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

Z
d3vfs×

Z
d3vfs

Z
B1ðvÞ

d3v0f2s0

s
<∞ ðB11Þ

together with Eqs. (B2) and (B8).

3. The integral in estimate (6.17)

In the upper bound (6.17) on the conversion term Rss0

there appears the following integral:

K ¼ 1

4

Z
d3v

Z
d3v0

jv þ v0j2
jv − v0j fsfs0 : ðB12Þ

We show that this integral remains finite as Do → ∞ under
the conditions (B2) and (B8) and with also the further
reasonable conditions

Ksðx;tÞ≔Esðx;tÞ=ms¼
1

2

Z
d3vjvj2fsðx;v;tÞ<∞ ðB13Þ

andZ
d3vjvj2fsðx; v; tÞ

Z
B1ðvÞ

d3v0f2s0 ðx; v0; tÞ < ∞: ðB14Þ

As with the preceding integrals, we divide the integral K
into two contributions K<, K> corresponding to the
conditions jv − v0j ≥ 1 and jv − v0j ≤ 1 and bound these
two integrals separately.
Using jv þ v0j2 ≤ 2ðjvj2 þ jv0j2Þ, we get

K> ≔
1

4

Z
d3v

Z
jv−v0j≥1

d3v0
jv þ v0j2
jv − v0j fsfs0

≤
1

2

Z
d3v

Z
d3v0ðjvj2 þ jv0j2Þfsfs0

¼ Ksns0 þ Ks0ns < ∞: ðB15Þ

On the other hand, for jv − v0j ≤ 1,

jv þ v0j2 ¼ j2v þ ðv0 − vÞj2 ≤ ð2jvj þ 1Þ2 ≤ 2ð4jvj2 þ 1Þ
ðB16Þ
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so that

K< ≔
1

4

Z
d3v

Z
jv−v0j≤1

d3v0
jv þ v0j2
jv − v0j fsfs0

¼ 1

4

Z
d3vfs

Z
B1ðvÞ

d3v0
jv þ v0j2
jv − v0j fs0

≤
1

2

Z
d3vð1þ 4jvj2Þfs

Z
B1ðvÞ

d3v0
fs0

jv − v0j : ðB17Þ

In the same manner as for J< in Eqs. (B10) and (B11), we
apply the Cauchy-Schwarz inequality to the inner integral
and then apply the Cauchy-Schwarz inequality to the outer
integral, giving

K< ≤
ffiffiffi
π

p Z
d3vð1þ 4jvj2Þfs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
B1ðvÞ

d3v0f2s0

s

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

Z
d3vð1þ 4jvj2Þfs

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3vð1þ 4jvj2Þfs

Z
B1ðvÞ

d3v0f2s0

s
< ∞ ðB18Þ

using Eqs. (B2), (B8), (B13), and (B14).

APPENDIX C: ESTIMATING THE
COLLISIONAL-CUTOFF OR

DISSIPATION SCALES

The estimate (4.5) on the coarse-grained collision
integral derived in the main text provides a means to
estimate the “cutoff scales” lc, uc in phase space where
particle collisions begin to compete with the turbulent
renormalization effects due to ideal Vlasov-Maxwell
dynamics. Here we follow this approach to make more
explicit determinations of such collisional-cutoff or dis-
sipation scales. First, however, we review the derivation of
similar viscous cutoffs in incompressible fluid turbulence,
which suggests the approach to be followed also within
kinetic turbulence. As we see, an improvement of the
estimate (4.5) is required and also an additional phenom-
enological assumption analogous to Kolmogorov’s “refined
similarity hypothesis” in incompressible fluid turbulence.

1. Viscous-cutoff scale in incompressible
fluid turbulence

In incompressible fluid turbulence, the role of the
coarse-grained collision integral is played by the viscous
diffusion term ν△ū in the coarse-grained Navier-Stokes
equation [see Ref. [27] Eqs. (III.1) and (III.2) or Ref. [91]
Chap. II(D)]. The Cauchy-Schwarz estimate analogous to
Eq. (4.4) for the collision integral is Eq. (III. 3) in Ref. [16]
or, in detail,

jν△ūðx̄; tÞj ≤ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νvol½suppðGlÞ�

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3rjð∇GÞlðrÞj2εðx̄þ r; tÞ

s
; ðC1Þ

where vol½suppðGlÞ� is the volume of the compact support
of the scaled kernel Gl. This volume is Cl3 for some l-
independent constant C, so that we may rewrite Eq. (C1)
instead as

jν△ūðx̄; tÞj ≤ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νC0

Z
d3rΦlðrÞεðx̄þ r; tÞ

s
; ðC2Þ

with Φ≔ j∇Gj2=R j∇Gj2 another C∞ compactly supported,
unit-normalized test function ΦlðrÞ ¼ ð1=l3ÞΦðr=lÞ, and
C0 ¼ C

R j∇Gj2 is a new l-independent constant. The
integral inside the square root in Eq. (C2) thus represents
viscous dissipation (smoothly) averaged over a volume of
order approximately l3 and therefore can be estimated by
an appeal to the Kolmogorov refined similarity hypothesis
as of order

ε̄lðx̄; tÞ ≔
Z

d3rΦlðrÞεðx̄þ r; tÞ ∼ ½δuðlÞ�3=l ðC3Þ

with δuðlÞ ≔ supjrj<ljδruðx; tÞj. This hypothesis is
unproved but has enjoyed considerable empirical success;
see Ref. [27], Sec. VIII. 6. 2. We therefore obtain

jν△ūðx̄; tÞj ≤ C00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν½δuðlÞ�3

l3

s
ðC4Þ

with C00 a constant of order unity. The bound (C4) is, in
general, a large overestimate of ν△ū. A better estimate is
provided by

jν△ūðx̄; tÞj ∼ ν
δuðlÞ
l2

; ðC5Þ

which is established as a rigorous upper bound in Ref. [16]
footnote 16 or Ref. [91] Chap. II(D) but which should also
be a good order-of-magnitude estimate.
Interestingly, however, the estimates (C4) and (C5)

coincide when local Reynolds number Rel≔lδuðlÞ=ν≃1,
which is also the standard criterion used to identify the
local viscous-cutoff scale lν in incompressible fluid turbu-
lence (see, e.g., Ref. [27], Sec. VIII. 5. 5). This criterion
can be rationalized by estimating the “Reynolds-stress” term
∇ · τ̄lðu;uÞ that arises in the coarse-grained Navier-Stokes
equation as a turbulent renormalization effect of unresolved
eddies [see Eq. (III. 6) in Ref. [16] ]. A rigorous bound can be
derived of the form

j∇ · τ̄ðu;uÞj ≤ C
½δuðlÞ�2

l
ðC6Þ
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using cumulant methods [e.g., see Ref. [15] Appendix B or
the detailed derivation in Ref. [91] Chap. II(D)]. The exact
upper bound (C6) should also be a good order-of-magnitude
estimate of j∇ · τ̄ðu;uÞj, unless there is a substantial
depletion of nonlinearity. Equating j∇ · τ̄ðu;uÞj ∼ jν△ūj
to determine l ∼ lν and using Eq. (C6) for j∇ · τ̄ðu;uÞj
and either Eq. (C4) or Eq. (C5) for jν△ūj, one finds that the
conditionRel ≔ lδuðlÞ=ν ≃ 1 indeed provides the criterion
for appearance of viscous effects locally in the coarse-grained
equations.
If there is a substantial depletion of nonlinearity, one may

instead proceed by defining an eddy turnover rate ωeddy
l and

a coarse-grained dissipation rate ωdiss
l at each length scale l

by the equations

ωeddy
l δuðlÞ ≔ j∇ · τ̄ðu;uÞj; ωdiss

l ½δuðlÞ�2 ≔ ε̄l: ðC7Þ

Depletion of nonlinearity means that ωeddy
l ,

ωdiss
l ≪ δuðlÞ=l. Balancing j∇ · τ̄ðu;uÞj with the sharp

estimate (C5) of jν△ūj then yields

ωeddy
l ≃ ν=l2; ðC8Þ

i.e., the turnover rate approximately equals the viscous
diffusion rate, as the criterion to determine l ∼ lν. On the
other hand, balancing j∇ · τ̄ðu;uÞj with the looser estimate
(C2) of jν△ūj gives

ðωeddy
l Þ2
ωdiss
l

≃ ν=l2: ðC9Þ

As long as ωeddy
l ∼ ωdiss

l , the two criteria (C8) and (C9) will
select the same l ∼ lν. Empirical evidence suggests that
there is not a strong depletion of nonlinearity in incom-
pressible fluid turbulence so that ωeddy

l ∼ ωdiss
l ∼ δuðlÞ=l

and the conditions (C8) and (C9) then coincide with the
naive criterion Rel ≔ lδuðlÞ=ν ≃ 1.

2. Improved estimation of coarse-grained
collision integral

In kinetic theory, on the other hand, there are well-known
effects that may lead to depletion of nonlinearity, such as
rapid wave oscillations, fast gyromotion of particles,
dynamical alignment of vectors, etc. It would be desirable
to have a sharp estimate of the coarse-grained collision
integral analogous to Eq. (C5) in order to obtain a criterion
like Eq. (C8) involving only the ideal small-eddy-turnover
time and consistent with depletion of nonlinearity.
Unfortunately, the Landau collision integral has much
greater complexity than the viscous diffusion term in
hydrodynamic turbulence so that it is not at all obvious
how to derive an estimate of the coarse-grained collision
integral similar to Eq. (C5). An exact analogue of the
hydrodynamic estimate (C4) can be derived, however, by a
modest improvement of the estimate (4.5) in the main text,
and this result can be employed to derive a criterion
analogous to Eq. (C9) for collisional-cutoff scales lc, uc
in kinetic turbulence.
To obtain the desired improvement of Eq. (4.5), we make

a slightly different factorization of the integrand in
Eq. (4.3), now moving the ð∇HÞu into the second factor:

C̄ss0 ðx̄; v̄; tÞ ¼ −
Γss0

msu

Z
d3r

Z
jv−v̄j<Cu

d3v
Z

d3v0G1=2
l ðrÞ

�
fsfs0

jv − v0j
�

1=2

·
G1=2

l ðrÞð∇HÞuðv − v̄ÞΠv−v0

ðfsfs0 jv − v0jÞ1=2 ð∇p − ∇p0 Þðfsfs0 Þ: ðC10Þ

We assume here that Hu has compact support contained inside a ball of radius Cu so that the v integration can be restricted
to that ball centered around v̄. We then apply the Cauchy-Schwarz inequality to obtain

jC̄ss0 ðx̄; v̄; tÞj ≤
ffiffiffiffiffiffiffi
Γss0

p
msu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3r

Z
jv−v̄j<Cu

d3v
Z

d3v0GlðrÞ
fsfs0

jv − v0j

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
R
d3r

R
d3v

R
d3v0GlðrÞjð∇HÞuðv − v̄Þj2ςss0 ðx̄þ r; v; v0; tÞ;

q
ðC11Þ

where ςss0 ðx; v; v0; tÞ is the entropy-production rate in the two-particle phase space due to collisions of particle species s, s0,
which is given by the corresponding term in the sum over s, s0 in Eq. (2.37) in the main text that defines ςðx; v; v0; tÞ. Since
the estimates (B4)–(B6) in fact depend only upon the compact support property of Hu, they essentially show for the first
square-root factor that

Z
d3r

Z
jv−v̄j<Cu

d3v
Z

d3v0GlðrÞ
fsfs0

jv − v0j ≤ C0 f̄sðx̄; v̄; tÞn̄s0 ðx̄; tÞ
vth;ss0

u3 ðC12Þ
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with vth;ss0 ≔ maxfvth;s; vth;s0 g and with C0 a constant
depending upon ðx̄; v̄; tÞ and fs, f0s but not upon l, u.
We leave details to the reader and note here only that
f̄sðx̄; v̄; tÞ and n̄s0 ðx̄; tÞ represent in fact local rms values in
the averages over r, v, v0, which for simplicity, we replace
with the usual coarse-grained values, assuming that they are
of similar orders of magnitude. For the second square-root
factor in Eq. (C11), we write

jð∇HÞuðv − v̄Þj2 ¼ 1

u3
Ψuðv − v̄Þ ×

Z
j∇Hj2 ðC13Þ

with Ψ ¼ j∇Hj2= R j∇Hj2 another C∞ compactly sup-
ported, unit-normalized test function. Putting all of these
estimates together, we obtain our final improvement of
Eq. (4.5) for some l, u-independent constant C00,

C̄ss0 ðx̄; v̄; tÞ ≤ C00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νss0 ς̄s;l;uðx̄; v̄; tÞf̄sðx̄; v̄; tÞ

q
×
vth;ss0

u
;

ðC14Þ

where νss0 ≔ Γss0 n̄s0=m2
sv3th;ss0 is essentially the Spitzer-

Harm Coulomb collision rate of particle species s with
particle species s0, and we define

ς̄s;l;uðx̄; v̄; tÞ ≔
X
s0

Z
d3rGlðrÞ

Z
d3wΨuðwÞ

Z
d3v0

× ςss0 ðx̄þ r; v̄ þ w; v0; tÞ ðC15Þ

representing total collisional entropy production of species
s per phase-space volume coarse grained at scales l, u and
evaluated at point ðx̄; v̄; tÞ.
The latter quantity may be used to define a (coarse-

grained) dissipation rate ωdiss
s;l;uðx̄; v̄; tÞ for particle species s

by setting

ωdiss
s;l;uðx̄; v̄; tÞ

½δfsðl; uÞ�2
f̄s

≔ ς̄s;l;uðx̄; v̄; tÞ; ðC16Þ

where

ðC17Þ

is a measure of the kinetic entropy of species s residing at
scales l, u in phase space with δfsðl; uÞðx̄; v̄; tÞ ¼
supjrj<l;jwj<ujδr;wfsðx̄; v̄; tÞj. For the estimate on the right
side of Eq. (C17), see Ref. [20], footnote 132. In these
terms, the bound (C14) may be rewritten as

C̄ss0 ðx̄; v̄; tÞ ≤ C00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νss0ω

diss
s;l;u

q vth;ss0

u
δfsðl; uÞ: ðC18Þ

Another way to represent the estimate (C14) follows from a
natural kinetic analogue of the Kolmogorov refined

similarity hypothesis (RHS), according to which the
coarse-grained entropy-production rate ς̄s;l;uðx̄; v̄; tÞ should
scale in the same manner as the phase-space entropy flux
ς�flux;sl;u ðx̄; v̄; tÞ given by Eq. (5.24) in the main text, so that

ς̄s;l;uðx̄; v̄; tÞ ∼max

�
uðδufsÞðδlfsÞ

lfs
;

qsðδlEÞðδlfsÞðδufsÞ
msufs

;

v̄qsðδlBÞðδufsÞðδlfsÞ
cmsufs

	
: ðC19Þ

The three terms on the right side of Eq. (C19) arise from the
estimates (5.25)–(5.27) of entropy-flux contributions in the
main text, and we assume, naturally, that the largest
contribution to flux dominates the scaling [neglecting the
fourth flux term from Eq. (5.28) as always smaller].
Assuming this kinetic RHS implies a corresponding esti-
mate of the entropy cascade rate, as an upper bound:

ωdiss
s;l;uðx̄; v̄; tÞ ¼ O

�
max

�
u
l
;
qsðδlEÞ
msu

;
v̄qsðδlBÞ
cmsu

	�
:

ðC20Þ
The true entropy flux rate (and, assuming the kinetic RHS,
the coarse-grained dissipation rate) can be much smaller
than this upper limit if there is substantial depletion of
nonlinearity. We therefore prefer to employ the general
bound (C18) without making use of the more specific
estimate in Eq. (C20).

3. Estimation of turbulence-generated terms
in coarse-grained equations

As we emphasize in the main text, the Vlasov-Maxwell
equations in the coarse-grained sense [Eq. (4.12)] differ
from the naiveVlasov-Maxwell equations because turbulent
renormalization effects from unresolved eddies produce
correction terms to the naive equations at each set of scales
l,u in phase space. The coarse-grained collision integral can
be neglected at those scales l, u where it is much smaller
than (the largest of) these turbulence-induced correction
terms, and this negligibility is the defining characteristic of
the collisionless range of scales. One can easily see from
Eqs. (4.15)–(4.18) in the main text that the small-eddy
contributions to the time-evolution of f̄s have the form

ð∂tf̄sÞeddy ¼ ∇x̄ · ðŵsf̄sÞ þ qs∇p̄ ·

�
τ̄ðE; fsÞ

þ 1

c
v̄ × τ̄ðB; fsÞ þ

1

c
dðw ×BÞsf̄s

�
: ðC21Þ

Simple expressions can be readily obtained for each of the
four contributions, which permit their magnitudes to be
estimated as follows:
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∇x̄ · ðŵsf̄sÞ ¼ −
1

l

Z
d3rð∇GÞlðrÞ · hwðδrδwfsÞiu

¼ O

�
uðδuδlfsÞ

l

�
; ðC22Þ

qs∇p̄ · τ̄ðE; fsÞ ¼
qs
ms

τ̄lðE;∇v̄f̄s;uÞ ¼ O

�
qsδlEðδuδlfsÞ

msu

�
;

ðC23Þ

qs∇p̄ ·

�
1

c
v̄× τ̄ðB;fsÞ

�
¼ qs
msc

ϵijkv̄iτ̄lðBj;∂ v̄k f̄s;uÞ

¼O

�
v̄
c
·
qsδlBðδuδlfsÞ

msu

�
; ðC24Þ

and

qs∇p̄ ·

�
1

c
dðw × BÞsf̄s

�
¼ −

qs
msu

Z
d3wð∇HÞuðwÞ

·
w
c
× hBδwfsil

¼ O
�

qs
msc

B̄δufs

�
ðC25Þ

with the rightmost terms providing rigorous upper bounds.
Note, as usual, that the fourth term is negligible compared
with the others (in fact, vanishing exactly whenH is radially
symmetric) and can be dropped. In these bounds, we
introduce the following notation for the maximum double
increment (both in r and in w):

δlδufs ≔ sup
jrj<l;jwj<u

jδrδwfsj ∼minfδlfs; δufsg: ðC26Þ

The estimate in Eq. (C26) for the double increment is also
seen to be an exact upper bound using the identities
δrδwfsðx; vÞ ¼ δrfsðx; v þ wÞ − δrfsðx; vÞ and likewise
δrδwfs ¼ δwfsðxþ r; vÞ − δwfsðx; vÞ, where the first iden-
tity is used if fs is smoother in x and the second identity if fs
is smoother in v.
An eddy turnover rate ωeddy

s;l;uðx̄; v̄; tÞ in phase space is
naturally defined by the equality

ωeddy
s;l;uðx̄; v̄; tÞδfsðl; uÞ ≔ ð∂tf̄sÞeddyðx̄; v̄; tÞ: ðC27Þ

One can readily see from the estimates (C22)–(C25) that an
upper bound follows

ωeddy
s;l;uðx̄; v̄; tÞ ¼ O

�
max

�
u
l
;
qsðδlEÞ
msu

;
v̄qsðδlBÞ
cmsu

	�
ðC28Þ

of the same form as Eq. (C20) forωdiss
s;l;uðx̄; v̄; tÞ. When there

is large depletion of nonlinearity, however, one can expect
that ωeddy

s;l;uðx̄; v̄; tÞ is much smaller in magnitude than the

bound (C28). Therefore, we do not use the latter bound
in our determination of collisional-cutoff scales. Even
when there is strong nonlinearity depletion, however, it
is plausible to expect that ωeddy

s;l;uðx̄; v̄; tÞ ∼ ωdiss
s;l;uðx̄; v̄; tÞ,

with similar magnitudes and identical scaling in l, u.
Despite the physical plausibility of these expectations, it is
far from clear how to prove their validity.

4. Criterion for collisional-cutoff scales

The collisionless range of scales for particle species s is
characterized by the condition that jð∂tf̄sÞeddyj ≫ jC̄sj
and, likewise, cutoff scales lc, uc where collisions with
particles of species s0 become important for species s are
specified by

jð∂tf̄sÞeddyðx̄; v̄; tÞj ≃ jC̄ss0 ðx̄; v̄; tÞj: ðC29Þ

Note that Eq. (C29) is a pointwise condition in phase space,
and thus the cutoff scales lcðx̄; v̄; tÞ, ucðx̄; v̄; tÞ are local
quantities with fluctuating values reflecting phase-
space intermittency of the entropy cascade. Employing
the upper bound (C18) as an estimate of jC̄ss0 ðx̄; v̄; tÞj and
recalling the definition (C27) of ωeddy

s;l;uðx̄; v̄; tÞ in terms of
ð∂tf̄sÞeddyðx̄; v̄; tÞ, the condition (C29) can be approxi-
mately rewritten as

ðωeddy
s;l;uÞ2
ωdiss
s;l;u

≃ νss0

�
vth;ss0

u

�
2

: ðC30Þ

Because Eq. (C18) is only an upper bound on the coarse-
grained collision integral, the true values of lcðx̄; v̄; tÞ,
ucðx̄; v̄; tÞ defined by Eq. (C29) could be smaller than those
specified by Eq. (C30). On the other hand, under the
reasonable scaling hypothesis ωeddy

s;l;uðx̄; v̄;tÞ∼ωdiss
s;l;uðx̄; v̄;tÞ,

the condition (C30) reduces to

ωeddy
s;l;u ≃ νss0

�
vth;ss0

u

�
2

; ðC31Þ

and thus essentially coincides with the heuristic criterion
employed by Schekochihin et al. [24] Eq. (251) and
[25] Sec. II.
Clearly the condition jð∂tf̄sÞeddyj ≫ jC̄sj is satisfied for

any fixed l, u in the formal limit νss0 → 0 (or Doss0 → ∞).
To determine how large Doss0 must be in order to neglect
collisions at specific values of l, u requires concrete scaling
laws for ωeddy

s;l;u, ω
diss
s;l;u in terms of l, u, which depend upon

the circumstances (specific plasma parameters) and also,
presumably, will fluctuate from point to point in phase
space. One important general point is already clear, how-
ever, from the fact that Eqs. (C29) or (C30) provide a single
condition to determine two free parameters l, u. There is
obviously an undetermined degree of freedom, which may
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be taken to be the slope β in the logð1=lÞ − logð1=uÞ plane
along which logð1=lÞ; logð1=uÞ → ∞. In other words, one
can impose as an a priori relation with any choice of β > 0,

l ∼ δsðu=vth;s;s0 Þβ; ðC32Þ

where, e.g., δs is the skin depth for particle species s so that
l, u vanish together. Substituting the relation (C32) into

Eqs. (C29) or (C30) then uniquely determines lðβÞ
c , uðβÞc for

that choice of β > 0. One should expect there to be a
nontrivial β dependence, since different choices of that free
parameter will weight differently the linear advection
contribution and the wave-particle interaction contribution
to the rates ωeddy

s;l;u, ω
diss
s;l;u.

APPENDIX D: THE 4=5th LAW FOR ENTROPY
CASCADE IN KINETIC TURBULENCE

In the main text, we derive an explicit expression
Eq. (5.24) for the entropy flux rate in phase space, or

ς�flux;sl;u ¼ −ŵs · ∇x̄f̄s −
qs
ms

τ̄lðE; f̄s;uÞ ·
∇v̄f̄s
f̄s

þ qs
msc

τ̄lðB; f̄s;uÞ ·
ðv̄ × ∇v̄Þf̄s

f̄s

−
qs
msc

dðw ×BÞs · ∇v̄f̄s: ðD1Þ

As we remark there, the four quantities that appear in this
entropy flux can all be expressed in terms of phase-space
increments of the VML solutions fs, s ¼ 1;…; S, and E,
B, and these formulas provide the kinetic theory analogues
of 4=5th laws for entropy cascade. The concrete connection
with turbulent 4=5th laws is not needed to derive the scaling
exponent constraints Eq. (5.45) in the main text, but we
discuss such relations here for their general interest.
We explain in the main text how to write the entropy flux

in terms of increments by means of the general relation
Eq. (3.7) for the correlation terms τ̄lðE; f̄s;uÞ, τ̄lðB; f̄s;uÞ,
the identities Eqs. (4.14) and (4.18) for ŵs, dðw ×BÞs, and
Eqs. (3.8) and (3.9) for the gradients ∇x̄f̄s, ∇v̄f̄s. We now
write down the explicit expressions in terms of increments,
adopting notations that are purposely chosen to make the
connection with traditional 4=5th laws more obvious.
Taking z ¼ ðr;wÞ to denote a displacement in six-dimen-
sional phase space, we use the notation

haziz ≔
Z

d6zGlðrÞHuðwÞaz ðD2Þ

to indicate the average over z with respect to the kernels
GlðrÞHuðwÞ. Here, az is any quantity depending upon z,
possibly through r or w alone. One can then easily check
using the aforementioned equations in the main text that

ŵs · ∇x̄f̄s ¼


∇r00 ·

�
w
ðδwfsÞðδr00fsÞ

f̄s

��
z;z00

; ðD3Þ

τ̄ðE; f̄s;uÞ ·
∇v̄f̄s
f̄s

¼


∇w00 ·

�ðδrEÞðδrfsÞðδw00fsÞ
f̄s

��
z;z00

−


∇w00 ·

�ðδrEÞðδr0fsÞðδw00fsÞ
f̄s

��
z;z0;z00

ðD4Þ

− τ̄lðB; f̄s;uÞ ·
ðv̄ × ∇v̄Þf̄s

f̄s

¼


∇w00 ·

�
v̄ ×

ðδrBÞðδrfsÞðδw00fsÞ
f̄s

��
z;z00

−


∇w00 ·

�
v̄ ×

ðδrBÞðδr0fsÞðδw00fsÞ
f̄s

��
z;z0;z00

; ðD5Þ

dðw ×BÞs · ∇v̄f̄s

¼


∇w00 ·

�
w ×Bðx̄þ rÞ ðδwfsÞðδw00fsÞ

f̄s

��
z;z00

ðD6Þ

with multiple averages over z ¼ ðr;wÞ, z0 ¼ ðr0;w0Þ, etc.,
indicated by corresponding multiple subscripts. These
formulas may be compared with standard expressions
for (anisotropic) 4=5th laws both in incompressible fluid
turbulence, such as Ref. [27] Eq. (6.8), and in gyrokinetic
turbulence, such as Ref. [82] Eq. (4.52) or Ref. [83]
Eq. (6.9). The resemblance is quite clear for the two
middle contributions (D4) and (D5) from nonlinear
wave-particle interactions, which are cubic in terms of
solutions fields. The other two, Eq. (D3) from linear
advection and the last term (D6) have a similar form but
are only quadratic in solution fields. In the main text, we in
fact sketch the derivation of two different versions of the
“kinetic 4=5th law” based upon the above formulas:
Eq. (5.10), which is an “ensemble version” (or globally
spatially averaged version) analogous to that of
Kolmogorov, and Eq. (5.14), which is a “deterministic,
local version” like that of Duchon and Robert [78]. We
further elaborate on both of these here.
The derivation of the ensemble version Eq. (5.10) mostly

follows standard arguments for the fluid case, except for the
one important difference that there is no “statistical
homogeneity” in velocity space for kinetic turbulence.
On the other hand, the total integrals over velocity space
can be presumed to exist so that one can instead integrate
over v̄ rather than average. Integrating the phase-space
entropy balance Eq. (5.19) over velocity then gives a
physical-space entropy balance

∂ts½f̄s� þ ∇ · J�res;sS ¼ σ�flux;sl;u ðD7Þ
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with σ�flux;sl;u the term corresponding to species s in the sum
of Eq. (5.22). Whereas the four terms in Eq. (D1) all
represent the entropy-production rate per unit phase-space
volume and per unit time, the corresponding terms in
σ�flux;sl;u give entropy-production rates per unit physical-
space volume and per unit time. We may now average over
space or, assuming statistical homogeneity, average over an
ensemble of solutions and obtain Eq. (4.13) by the argu-
ments in the main text. The resulting 4=5th law for kinetic
entropy cascade written out in full detail is

hσ⋆i ¼


∇r00 ·

�
w
ðδwfsÞðδr00fsÞ

f̄s

��
l;u

þ qs
ms



∇w00 ·

�ðδrEÞðδrfsÞðδw00fsÞ
f̄s

��
l;u

−
qs
ms



∇w00 ·

�ðδrEÞðδr0fsÞðδw00fsÞ
f̄s

��
l;u

þ qs
msc



∇w00 ·

�
v̄ ×

ðδrBÞðδrfsÞðδw00fsÞ
f̄s

��
l;u

−
qs
msc



∇w00 ·

�
v̄ ×

ðδrBÞðδr0fsÞðδw00fsÞ
f̄s

��
l;u

þ qs
msc



∇w00 ·

�
w ×Bðx̄þ rÞ ðδwfsÞðδw00fsÞ

f̄s

��
l;u

ðD8Þ
valid in the collisionless range L ≫ l ≫ lc, U ≫ u ≫ uc,
where h·il;u means that all increments z, z0, etc., which
appear inside the brackets are independently averaged with
respect to GlHu, v̄ is integrated over all of velocity space,
and x̄ is averaged over all of physical space.
The local deterministic form of this 4=5th law in

Eq. (5.14) can be likewise derived following the arguments
of Ref. [78], which are briefly sketched in the main text. The
result has exactly the same form as Eq. (D8) except that, on
both sides of the equation, averages of x̄ over all of space are
replaced with averages of ðx̄; tÞ over φðx̄; tÞ for a smooth,
compactly supported, normalized function φ. The condition
on u for validity of this local relation is unchanged, but the
condition on l becomes LφðtÞ ≫ l ≫ lc, where LφðtÞ is
the spatial dimension of the support ofφð·; tÞ, whichmust be
held fixed as first Do → ∞ and then l; u → 0. Although this
relation is “space-time local in the sense of distributions,” the
spatial average here is over many increment lengths l
(which, in turn, must be much larger than lc). In particular,
the result does not help to justify a refined similarity
hypothesis of the type (C19), which involves on the left-
hand side an average of ς over a region of extent l in space
and u in velocity.
A discontented readermightwonderwhy the kinetic 4=5th

law that we present does not make use of the simple point-
splitting argument employed in standard derivations for
incompressible fluids [27] or for gyrokinetics [82,83]. The

difficulty is that there is no obvious point splitting of the
phase-space entropy density for which one can
show as Do → ∞ that (i) all terms in the point-split relation
remain finite even as ∇x gradients and ∇v gradients diverge,
and (ii) the contribution of the Landau collision integral can
furthermore be neglected. Standard verifications of (i) use
essentially the fact that kinetic energy per volume ð1=2Þjuj2
for incompressible fluids, and free energy per phase volume
g2=2F0 for gyrokinetics [see Ref. [82], Eq. (4.16)] are
quadratic in the solution fields. Careful derivations of the
analogue of (ii) for incompressible fluids [e.g., Ref. [27]
Eq. (6.47) or Ref. [91] Chap. II. B, p. 5] use the simple form
ν△u of viscous diffusion. None of these standard arguments
obviously carries over to the entropy density and the Vlasov-
Maxwell-Landau kinetic equations, whereas our coarse-
graining regularization (3.1) in the main text trivially guar-
antees (i) and it has been shown in this paper also to yield (ii).
It is worth remarking that the standard point-splitting argu-
ment does guarantee (i) for the quadratic quantity ð1=2Þf2s,
which is an ideal invariant for smooth Vlasov-Maxwell
solutions. On the other hand, this quadratic quantity satisfies
no H theorem for the VML equations, and it is also not
obvious how to justify (ii) for a point splitting of this quantity.
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