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The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum
dots is an open challenge for quantum information processing. Here, we demonstrate both resonant (real)
and nonresonant (virtual) photon-mediated coherent interactions between double quantum-dot charge
qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the resonant
collective enhancement of the coupling of two qubits and the resonator. With both qubits in resonance with
each other but detuned from the resonator, we observe exchange coupling between the qubits mediated by
virtual photons. In both instances, pronounced bright and dark states governed by the symmetry of the
qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-
equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the
combined resonator-qubit system, which indicates that this approach is viable for creating photon-mediated
two-qubit gates in quantum-dot-based systems.
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Semiconductor nanostructure-based systems are one of
the promising contenders for quantum information process-
ing, since they offer flexibility in tuning, long coherence
times, and well-established fabrication techniques [1,2].
However, scaling to larger numbers of qubits remains a
challenge, since many coupling mechanisms for realizing
two-qubit gates are short range, i.e., limited to nearest
neighbors. For scaling to larger systems and eventually to a
full-scale quantum computer, a combination of short- and
longer-range interactions seems promising [3].
So far, short-range (approximately 100 nm) qubit-qubit

interaction has been realized via capacitive or exchange
coupling between charge [4–6] and spin qubits [7–10],
which is expanded by making use of interactions mediated
by additional qubits (approximately 400 nm) [11] or
electronic cavities (approximately 1.7 μm) [12]. In addi-
tion, distant coupling by transferring electrons using sur-
face acoustic waves [13] or by modulating charge gates
[14,15] are being investigated. However, it is predicted

that the range of interaction between semiconductor qubits
can be increased significantly using microwave photons
[3,16,17]. A key ingredient, the strong coupling of indi-
vidual charges [18,19] or spins [20,21] to individual
microwave photons, has recently been realized in semi-
conductor implementations of circuit quantum electrody-
namics (QED) [22].
Here, we present experiments in which the coherent

photon-mediated coupling between two spatially separated
semiconductor qubits is realized in both the resonant and the
dispersive regime using high-impedance SQUID array res-
onators. The high Josephson inductance and low capacitance
to ground of the SQUID array increases the resonator
impedance and, thus, the strength of the vacuum fluctuations
of the electric field. The use of a high-impedance resonator
enhances the coupling strength of the individual qubits to the
resonator [19] and consequently the qubit-qubit coupling,
which allows us to overcome the limitations of prior experi-
ments [20,23,24]. This key step holds the strong promise that
two-qubit gates based on photon-mediated interactions,
which are a cornerstone in quantum information processing
with superconducting circuits [25], are implementable with
semiconductor qubits based on a variety of material systems.
In this work, we investigate two semiconductor double-

quantum-dot (DQD) charge qubits strongly coupled via one
of its plunger gates to a single high-impedance resonator
[Figs. 1(a) and 1(b)] composed of 35 SQUIDS with an
estimated impedance of approximately 1 kΩ [19]. At the end
of the flux tunable resonator, the DQDs are defined using
depletion gate technology on a mesa of a GaAs=AlGaAs
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heterostructure. They are separated by a distance of 42 μm,
much larger than in conventionalmulti-quantum-dot devices.
In this architecture, the separation between the quantum dots
could straightforwardly be extended to several hundred
micrometers at the cost of increasing the stray capacitance
and reducing the coupling strength. In superconducting
circuits, qubits are routinely coupled over millimeter to
centimeter distances [26]. Even larger distances have
recently been achieved by exchanging shaped photons
through meter-long transmission lines [27–29]. Thus, we
also expect the separation between semiconductor qubits to
be extendable to these scales. For our experiment, the chosen
distance is a trade-off in realizing a much larger separation
than was achieved with exchange or capacitive coupling and
still realizing the strong coupling limit.
Both DQD charge qubits are coupled to the antinode of

the electric field at the open end of the resonator [Figs. 1(c)–
1(e)]. The resonator is designed for readout and additionally
acts as a coupler between the spatially separated DQDs. The
design and fabrication are similar to the one described in
Refs. [19,30] and are discussed in detail in Appendix A.
We characterize the properties of the device by meas-

uring the amplitude jS11j and phase φ of a microwave tone
reflected off the resonator at the drive line indicated in

green in Fig. 1. The same line is also used to apply
microwave spectroscopy tones to the individual qubits (see
Appendix B for a complete description of the measure-
ment setup).
With the qubit transition frequencies far detuned from

the resonator [19] operated at ωr=2π ¼ 5.171 GHz, we
spectroscopically determine the resonator internal loss
rate κint=2π ¼ 17 MHz and its external coupling rate
κext=2π ¼ 6 MHz, governed by the coupling to the drive
line. This result puts the resonator into the weakly under-
coupled regime (κint > κext), keeping the total resonator
linewidth small. The internal losses are dominated by the
residual coupling to the gate leads [31], which is not
mitigated by in-line filters in our device and by the
piezoelectricity of the GaAs substrate. We configure
the two DQDs (k ¼ 1, 2) as two-level systems described
in good approximation by the Hamiltonian Hk ¼
−δkσz=2þ tkσx with Pauli matrices σx;y;z. The transition

frequency of each quantum-dot qubitωDQD−k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2k þ δ2k

q
is a hyperbolic function of detuning δk between the
charge states of the individual dots and tunnel rate 2tk
between them.
We tune 2t1 ∼ ωr such that DQD1 is in resonance

with the high-impedance resonator at δ1 ¼ 0. We first
measure the reflection spectrum jS11j of the resonator
tuning δ1 of the left DQD, labeled DQD1 in Fig. 1(a), from
negative to positive values with the second DQD far
detuned, δ2 ≫ ωr. We observe a well-resolved vacuum
Rabi mode splitting [19] with a coupling rate of
g1=2π ¼ 53 MHz. The photon state of the resonator and
the charge state of the DQD hybridize in a resonant two-
body (anti)symmetric state, j�ir2 ¼ ðje; 0i � jg; 1iÞ= ffiffiffi

2
p

[32] as illustrated in Fig. 2(f) with the charge qubit ground
jgi and excited state jei and the cavity photon number states
j0i and j1i. We independently determined the linewidth
Γ2;1=2π ¼ 4.8� 0.6 MHz of DQD1 at this frequency using
qubit spectroscopy in the dispersive regime, making use
of the tunable resonator [19]. Equivalent measurements are
performed forDQD2, adjusting its bias configuration to reach
a coupling strength g2=2π ¼ 56 MHz, similar to DQD1, and
finding Γ2;2=2π ¼ 5.6� 0.5 MHz; see Appendix D. These
results shows that eachDQD is individually strongly coupled
to the resonator: gk > ðκint þ κextÞ=2þ Γ2;k.
We model the coupled system using a master-equation

simulation with the Tavis-Cummings Hamiltonian

H ¼ ωra†aþ
X
k

Hk þ
X
k

gkσzða† þ aÞ; ð1Þ

with ℏ ¼ 1, bosonic annihilation (creation) operators a
(a†), and the coupling rate gk between the resonator and
DQDk (Appendix C). The observed resonance frequencies
and linewidths are in excellent agreement with the simu-
lation (dashed lines in Fig. 2), which allow us to extract the
system parameters with high accuracy (Appendix H).

Drive line

Coil

DQD
2

DQD
1

S1 S2D1

SQUID array

100 µm 30 µm(a) (b) (c)
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FIG. 1. Simplified circuit diagram and micrograph of the
device. (a) Schematic of the device and control line: SQUID
array resonator (red), drive line (green), two DQDs (cyan and
orange), and an external coil (black). The color code is used
throughout this paper. (b) False-color optical micrograph of the
measured device. (c) Detail of (b) showing the resonator and its
drive line coupled to both DQDs. (d) Scanning electron micro-
graph (SEM) of the resonator connected to DQD1 on the left.
DQD2 is defined as a mirrored copy of DQD1, separated from it
by 42 μm. (e) SEM micrograph of the gate structure used for
defining the DQDs in the GaAs=AlGaAs heterostructures. (d)
and (e) are images of identically designed devices not used in the
experiments.
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We now explore the case of all three transitions tuned
into mutual resonance (ωr ¼ ωDQD1 ¼ ωDQD2) by measur-
ing the reflection spectrum jS11j of DQD1 resonantly
coupled to the resonator (2t1 ¼ ωr, δ1 ¼ 0) and tuning

DQD2 into resonance using its charge detuning parameter
δ2. We observe the transition of a single-qubit vacuum Rabi
mode-splitting spectrum at large detunings δ2 to a well-
resolved two-qubit vacuum Rabi mode-splitting spectrum
[Fig. 2(d)] at δ2 ¼ 0, with the collectively enhanced two-
qubit coupling rate gc=2π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
=2π ¼ 77 MHz

[Fig. 2(c)]. This result is a clear signature of the coherent
photon-mediated coupling between two spatially separated
DQDs in the resonant regime.
On resonance, the three systems (r3) form a triplet

of two bright states j�ir3 ¼ ðg2jg; e; 0i þ g1je; g; 0i �
gcjg; g; 1iÞ=

ffiffiffi
2

p
gc and one dark state j0ir3 ¼ ðg1jg; e; 0i −

g2je; g; 0iÞ=gc at frequencies ωj�ir3 ¼ ωr � gc and
ωj0ir3 ¼ ωr; see the schematic in Fig. 2(g) and
Appendix C. This feature occurs because the drive field
acts symmetrically on both qubits, exciting only the
symmetric qubit superposition of the bright states but
not the antisymmetric superposition of the dark state
[26,33]. The data in Fig. 2(d) show excellent quantitative
agreement with the master-equation model; see the dashed
red lines indicating the transition frequencies between the
ground and the joint excited states allowing us to extract all
relevant system parameters [Figs. 2(d) and 2(e)].
Alternatively, coherent coupling between spatially sep-

arated DQDs can be mediated by virtual photons. The DQD
qubit transitions are tuned in resonance but detuned
(Δr ¼ ωr − ωDQD) from the resonator; one DQD excitation
can be transferred to the other DQD by virtually populating
the resonator with a photon. In this case, the effective
coupling strength is reduced, but the coupling mechanism
is insensitive to photon loss from the resonator.
To observe the dispersive coupling, we tune the resonator

to ωr=2π ¼ 5.454 GHz, resulting in a detuning Δr=2π ≈
300 MHz when both qubits are at δk ¼ 0. The virtual
photon-mediated exchange coupling is observed by the
formation of a dark and bright state split in energy
[Fig. 3(a)] when the two DQDs are (approximately) in
resonance ωDQD1 ∼ ωDQD2. This observation also allows us
to identify the resonances as transitions to the dispersively
coupled two-qubit entangled states j�id2 ¼ ðg1jg; ei ∓
g2je; giÞ=gc [26] (Fig. 3). Because of the near-equal
coupling rates g1 ∼ g2, the dark state is fully developed
when the DQDs are resonant, ωDQD1 ¼ ωDQD2 (see
Appendix C). Then, only the bright state is directly
observable in qubit spectroscopy; see the line traces in
Appendix G. To observe the splitting directly, we can
instead bias the DQDs to achieve g1 ≠ g2, which through
the asymmetry in parameters makes the otherwise dark
state observable.
We therefore configure both DQDs at a new charge bias

point at which the coupling rates to the resonator are
g1=2π ¼ 34 MHz and g2=2π ¼ 69 MHz (see Appendix E).
At δ1;2 ∼ 0, the qubit linewidths Γ2;1=2π¼ð4.6�0.6ÞMHz
and Γ2;2=2π ¼ ð6.3� 1.1Þ MHz are determined from

(a) (b)

(d)

(f)

(g)

(e)

(c)

FIG. 2. Individual and two-qubit vacuum Rabi mode splitting.
(a) Measured reflection coefficient jS11j vs drive frequency ωp
and charge detuning δ1 for DQD1 (2t1=2π ¼ 5.166 GHz) tuned
into resonance with the SQUID array resonator (ωr=2π ¼
5.171 GHz). The red dashed lines are extracted from fits to a
master equation model; see the text for details. (b) jS11jðωpÞ at
δ1 ¼ 0 [red arrows in (a)]. (c) jS11jðωpÞ at δ1 ∼ δ2 ∼ 0 [green
arrows in (d)]. (d) jS11j vs drive frequency ωp and charge
detuning δ2 for DQD1 biased at 2t1=2π ¼ 5.166 GHz and
δ1 ≈ 0 and DQD2 at 2t2=2π ¼ 5.156 GHz realizing ωr ¼
ωDQD1 ¼ ωDQD2 at δ1;2 ≈ 0. (e) Master-equation simulation of
jS11jðδ2;ωpÞ fitting to the data in (d), details in Appendix C.
Schematic energy-level diagram of (f) one and (g) two DQDs
interacting with the resonator. Basis states are shown on the left,
coupled states on the right; see the text and Appendix C for state
labeling.
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spectroscopy measurements with the other qubit largely
detuned. For these measurements, the resonator is tuned to
ωr=2π¼4.717GHz (κint=2π¼8MHz, κext=2π ¼ 4 MHz).
Next, we perform qubit spectroscopy with 2t1=2π ∼

2t2=2π ∼ 4.44 GHz, corresponding to a detuning Δr=2π ≈
280 MHz of each DQD from the resonator at δ1;2 ¼ 0,
putting the system in the dispersive regime [22]. A virtual
photon-mediated exchange coupling 2J=2π ¼ 24.8 MHz
is observed spectroscopically when varying the detuning δ2
and keeping the bias parameters of DQD1 fixed [Fig. 3(b)].
The system parameters which are used to display the
noninteracting transition frequencies (green dashed lines)
in Figs. 3(a) and 3(b) are extracted from a master-equation
simulation (red dashed lines).
We note that the spectroscopic lines of DQD1 at large

detuning jδ2=2πj≳ 0.5 GHz are less pronounced, due to its
weaker coupling to the resonator and because DQD2 is
dispersively shifting the resonator, rendering the readout
less sensitive for DQD1.
Finally,we determine the scaling of the exchange coupling

J with detuning Δr from the flux-tuned resonator for the
same fixed qubit parameters at δ1;2 ¼ 0 [Fig. 4(b)]. We use
the configuration in Fig. 3(b), since both symmetric and

antisymmetric resonances are observable for ωDQD1 ¼
ωDQD2 which allow us to extract 2J by fitting to results of
themaster-equation simulation [Fig. 4(a)].At small resonator
detunings, we find the largest coherent qubit-qubit exchange
rates of 2J=2π ¼ 27 MHz [Fig. 4(b)], clearly exceeding the
combined qubit linewidths ðΓ2;1 þ Γ2;2Þ=2π ¼ 11 MHz.
For Δr=2π > 560 MHz ∼ 8g2=2π, the 2J is smaller than
the qubit linewidths.
We note that the transition of the dark state jþid2 remains

at a fixed frequency while the bright state j−id2 shifts as a
function of Δr in agreement with our master-equation
model [Fig. 4(a)]; see Appendix C. When plotting 2J vs
the resonator detuning ΔrðΦÞ, we find approximately the
expected scaling with 1=Δr [Fig. 4(b)]. Also, the overall
coupling strength g1g2=4π2 ¼ 2.1 × 103 MHz2 is consis-
tent with the one calculated (2.4 × 103 MHz2) from the
individually measured qubit-resonator coupling rates g1;2
and the detuning Δr.
We emphasize that the device investigated here features a

frequency-tunable resonator (ωr), charge qubits with a
tunable transition frequency (δ), and sweet-spot (2t) and
dipole coupling strength (g) enabling a comprehensive
study of coherent photon-mediated coupling phenomena,
the concepts of which are transferable to other semi-
conductor material systems. We also point out that
photon-mediated coupling enables two-qubit gates between
charge or spin qubits across micrometer, millimeter, or even
longer distances, which is essential for scaling quantum
information processing with semiconductor qubits [3,16].
For spin qubits, high-impedance resonators which are
magnetic-field compatible (see, e.g., Ref. [34]) would
need to be employed in combination with micromagnets

(a)

(c)

(b)

FIG. 3. Qubit spectroscopy of the virtual photon-mediated qubit-
qubit exchange interaction. (a) Resonator phase shiftΔφ for DQDs
with equal coupling (g1 ∼ g2) at fixed 2t1=2π ¼ 5.156 GHz,
δ1 ¼ 0, and 2t2=2π ¼ 5.148 GHz vs detuning parameter δ2.
Line traces and additional data are in Appendix G. (b) Qubit
spectroscopy for DQDs with different coupling (2g1 ∼ g2) and
ωDQD1=2πðδ1 ¼ 0Þ ¼ 4.436 GHzmeasuring the phase shiftΔφ of
the resonator vs δ2 for2t2=2π ¼ 4.443 GHz. (c) Schematic energy-
level diagram of two DQDs in resonance and a detuned resonator.
Basis states are shown on the left and hybridized states on the right
with labels discussed in the text and in Appendix C.

(a)

P

(b)

FIG. 4. Coherent qubit-qubit exchange splitting 2J vs resonator
detuning ΔrðΦÞ. (a) Resonator phase shift (data points offset for
clarity) measurement performed to extract qubit-qubit interaction
2J on resonance for the indicated detunings ΔrðΦÞ. Solid lines
are fits to master-equation simulations; see Appendixes C and H
for details and parameters. (b) 2J extracted from (b) and similar
data vs Δr. The solid line is a fit to 1=Δr.

D. J. VAN WOERKOM et al. PHYS. REV. X 8, 041018 (2018)

041018-4



(see, e.g., Refs. [20,21]). In superconducting circuits, the
observation of long-range qubit-qubit coupling [26,33] led
to the development of both resonant and dispersive photon-
mediated two-qubit gates [35,36] and enabled the scaling of
circuits to the level of several tens of qubits [25].
The data presented in this paper and corresponding

supplemental material will be available online at ETH
Zurich repository for research data [37].
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APPENDIX A: DEVICE AND FABRICATION

The substrate is a commercially available GaAs wafer
with a 500-nm GaAs layer grown by molecular beam
epitaxy. Subsequently, a 40-nm layer of AlxGa1−xAs is
grown as a spacer to a δ-donor layer of silicon dopants
followed by 45 nm of AlxGa1−xAs and capped by a 5-nm
GaAs layer. 90 nm below the surface, at the interface
of GaAs=AlxGa1−xAs, a two-dimensional electron gas
(2DEG) is formed by bending the conduction band below
the Fermi energy.
In the first photolithography step, a GaAs mesa hosting

the DQDs is formed by wet etching with a piranha solution.
The source and drain up to the DQDs are also formed as
part of the mesa. We emphasize that all 2DEG is removed
below the SQUID array resonator to maintain its quality
factor. The fabrication residue visible in the resonator area,
in Fig. 5, could not be removed. We believe that this residue
does not lead to any reduction in device performance, as the
internal loss rate of the resonator is similar in previous
devices [19,30]. In the subsequent photolithography lift-off
step, the Ohmic contact of the DQD source and drain are
deposited by electron beam evaporation of a Ge=Au=Ni
layer, which are annealed at 470 °C for 5 min to diffuse into
the 2DEG layer.
The electrostatic gates are created in two lithography

steps. First, the coarse gates and pads [yellow (gold)

structures in Figs. 1(b) and 1(c)] are patterned with optical
lithography, and Ti=Au (5=80 nm) is deposited by
electron beam evaporation and then lifted off. At this step,
the markers for the electron beam patterning, the gold
(yellow) crosses, visible in Figs. 1(c) and 5, are also
deposited. The finer structures of the gates are done in a
subsequent step.
The ground plane is defined in the last step of optical

lithography. The drive line is patterned in this step up to a
distance of 200 μm from the resonator; see Fig. 5(a). The
ground plane is made of Ti=Al (3=200 nm) by lift-off and
is deposited by electron beam evaporation. A part of the
ground plane, the light gray areas, is visible in Fig. 5.
The first electron beam lithography step defines the fine

gates in a PMMA mask for lift-off, using 3=25 nm (Ti=Al)
deposited by electron beam evaporation. The resulting fine
gates are shown in Fig. 1(e).
In the final step, a PMMA/MMA bilayer resist is

patterned with electron beam lithography. The Dolan-
bridge technique [38]—the angle evaporation of two Al
layers (35=110 nm) interrupted by an oxidation step—is
used to create the Josephson junctions for the SQUID array
resonator, which is connected to the ground plane and
plunger gate of both DQDs. In addition, the resonator drive
line is deposited in the same step to assure good alignment
between the drive line and the resonator defining the
coupling capacitance and, thus, the coupling rate κext.
The drive line splits the ground plane, which is reconnected
by multiple wire bonds (not shown in Fig. 5).
The device is bonded in a printed circuit board (PCB)

and mounted in a Oxford Triton 200 cryofree dilution
refrigerator at the base plate with a typical temperature of
approximately 20 mK [39].

(a) (b)

FIG. 5. Overview images of the device with only the drive line
(green) and SQUID array resonator (red) false colored. (a) Overview
optical image of the device, showing at the top the launcher of the
drive line and its waveguide (green). At the bottom, the gate lines
(yellow) are visible. The two squares at the bottom left and right are
the Ohmic contacts to the 2DEG. (b) Enlarged view of (a).
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APPENDIX B: MEASUREMENT SETUP

The SQUID array resonator is measured in reflection
by applying a microwave tone at the drive line (green in
Fig. 5). The microwave tone is generated at room temper-
ature and is attenuated (−20 dB) at the 4 K, 100 mK, and
20 mK stages before passing through a circulator, which
routes it to the resonator and routes the reflected signal to
the output line. In the output line, the reflected signal is
amplified using a low-noise factory HEMT (þ39 dB) at
4 K and two amplifiers (þ33 dB each) at room temper-
ature, before it is down-converted to an intermediated
frequency (IF) of 250 MHz. With þ29 dB amplification,
the IF signal is acquired at 1 Gs=s using an Acqiris
U1084A PCIe 8-bit high-speed digitizer.
The dc voltages to the gates are supplied by Yokogawa

7651 dc programmable sources with a 1∶11 voltage divider

also acting as a low-pass filter (1 Hz cutoff). The source and
drain of both DQDs were grounded in the experiment. At
the base temperature, two-stage RC filters with 16 and
160 kHz cutoffs are used at the input of shielded lines
leading to the sample holder. All basic characterizations are
performed either in direct transport measurements or by
using the dispersive shift of the resonator to measure charge
stability diagrams; i.e., no additional charge detection is
required.
A schematic of the complete setup with all important

components is displayed in Fig. 6.

APPENDIX C: MODELING THE SYSTEM

Here, we discuss the theoretical model used for under-
standing and fitting the experimental data. We describe the
system using the Hamiltonian

Htot ¼ Hres þ
X
k

Hk þ
X
k

Hint;k; ðC1Þ

with the resonator Hamiltonian

Hres ¼ ωra†a; ðC2Þ

the Hamiltonian for the kth DQD (k ¼ 1, 2 for the
experiments discussed here)

Hk ¼ −
1

2
δkσz þ tkσx; ðC3Þ

and the coupling between resonator and DQDs,

Hint;k ¼ gkσzða† þ aÞ: ðC4Þ

Here, we use ℏ ¼ 1 for simplicity. a (a†) is the bosonic
annihilation (creation) operator, ωr is the resonator angular
frequency, and σx;y;z are Pauli matrices. The DQDs are
defined through the charge detuning δk and their tunnel
splitting 2tk. The parameter gk is the dipolar coupling
strength between the kth DQD and the resonator.
Transforming Htot into the DQD eigenbasis, we find

H¼ωra†a−
1

2

X
k

ωkσz

þgk
X
k

ðsinθkσxþ cosθkσzÞða†þaÞ

≈ωra†a−
1

2

X
k

ωkσzþgk
X
k

sinθkðσ−a†þσþaÞ; ðC5Þ

where we performed a rotating-wave approximation in the
last step to arrive at the well-known Tavis-Cummings

Hamiltonian. Here, ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2k þ δ2k

q
and tan θk ¼ 2tk=δk,

so that sin θk ¼ 2tk=ωk and cos θk ¼ δk=ωk.

FIG. 6. Simplified schematic of the cryogenic and room-
temperature components and equipment used in the experiments;
further details are provided in the text.
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1. Scattering in input-output theory

To model reflection of an incident signal from the
resonator, we use the scattering Lindblad Hamiltonian
(SLH) cascaded quantum system formalism [40].
Modeling the cavity as a single-port resonator with output
coupling κext and cascading in the coherent probe at signal
frequency ωp [41], we find the total SLH Hamiltonian
HSLH ¼ Htot þHP, where the probe term is

HP ¼ 1

2i
ffiffiffiffiffiffiffi
κext

p ðαa† − α�aÞ; ðC6Þ

with α the input coherent field amplitude and κext the
radiative coupling to the external waveguide modes. The
probe HamiltonianHP is already written in a frame rotating
at the signal frequency ωp. We transformHtot into the same
rotating frame and find

Htot ¼ δωra†a −
1

2

X
k

δωkσ
ðkÞ
z

þ gk
X
k

sin θkðσðkÞ− a† þ σðkÞþ aÞ; ðC7Þ

with the detunings δωr ¼ ωr − ωp and δωk ¼ ωk − ωp.
Including incoherent processes, the time evolution of the
systems density matrix ρ follows the master equation

_ρ ¼ −i½HSLH; ρ� þ Lnrρþ LSLHρ: ðC8Þ

The second term on the right-hand side of the master
equation (C8) describes all nonradiative losses and dephas-
ing processes. For zero-temperature quantum baths coupled
to each quantum dot and the resonator independently, we
write this as

Lnrρ¼
X
k

γ1;kD½σ−�ρþ
1

2

X
k

γφ;kD½σz�ρþ κinD½a�ρ; ðC9Þ

with the DQD relaxation rate γ1;k, their pure dephasing
rates γφ;k, and the internal resonator decay into nonguided
modes κin.
Here, we assume that the main loss channels for the

DQDs is a coupling to electromagnetic modes of the
environment described by the dipole operator

Henv ¼ σz
X
k

βkðbk þ b†kÞ; ðC10Þ

where bk (b
†
k) are bosonic annihilation (creation) operators

for a mode of the electromagnetic environment to DQD-k.
Making a Markov approximation, we can find the DQD
relaxation and dephasing rates [42]

γ1;k ¼ sin2 θkCðωkÞ;
γφ;k ¼ cos2 θkCð0Þ; ðC11Þ

where CðωkÞ is the environmental spectral function
CðωÞ ¼ R

dte−iωthX̂ðtÞX̂ð0Þi, with X̂ ¼ P
kβkðbk þ b†kÞ.

In our calculations, we assume white noise spectra for
the noise acting on the DQDs for simplicity.
Finally, the third term on the right-hand side of Eq. (C8)

describes the scattering of the input drive fields into the
waveguide modes as

LSLHρ ¼ D½L�ρ; ðC12Þ

where

L ¼ ffiffiffiffiffiffiffi
κext

p
aþ α1: ðC13Þ

We calculate the amplitudes β and photon fluxes n of the
scattered fields from

β ¼ TrfLρg; n ¼ TrfL†Lρg; ðC14Þ

where ρ is the solution of the master equation (C8). For
spectroscopy experiments, as modeled here, it is sufficient
to calculate the steady-state scattering, considering _ρ ¼ 0.

2. Two-tone spectroscopy

In principle, the technique described here would allow us
to simulate circuit QED spectroscopy [32] directly, either
by adding another set of input and output modes at different
frequencies or, assuming that the input at or close to the
DQD resonance is not monitored, by adding a coherent
drive term to the Hamiltonian. Since there are now multiple
time-dependent terms in the Hamiltonian, which oscillate at
different frequencies, a single rotating frame is no longer
sufficient to capture the dynamics. Instead, one can move
towards a multi-tone Floquet analysis or alternatively
perform time-dependent simulations of the dynamics to
find the response of the system.
In practice, this analysis has proven not feasible, as the

number of unknown parameters is too large for reliable fits
to the data. We have therefore fitted the qubit spectroscopy
experiments with simulations of standard single-tone spec-
troscopy in the far-detuned regime, adding an additional
scale and offset parameter to match the amplitude of the
experimental results. We stress that the relative height of the
resonances is extracted directly from the master equation;
see, e.g., Figs. 10(d) and 10(h). Since the two-tone experi-
ments are in the linear response regime of the resonator
phase (weak drive and readout power), i.e., the change in
the signal phase is linear in the excitation probability of the
DQDs, this technique can still produce quantitative agree-
ment with the experimental data.
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3. Eigenstates in the coupled system

To clarify the composition of the eigenstates at the points
of maximal coupling, we present here the exact expressions
for the two cases where
(a) both DQDs and the resonator are resonant,

Δr ¼ ωr − ωk ¼ 0, relevant for Fig. 2 of the main
text, and

(b) the two DQDs are resonant with each other and the
resonator is detuned, Δr ≫ gk, relevant for Figs. 3
and 4 of the main text.

In case (a), the Hamiltonian in the one-excitation sub-
space can be written as

HðaÞ ¼

0
B@

0 g1 0

g1 0 g2
0 g2 0

1
CA; ðC15Þ

where we subtracted a constant energy offset, ωk ¼ ωr, and
we are considering the basis fje; g; 0i; jg; g; 1i; jg; e; 0ig.
Diagonalizing this Hamiltonian leads to the eigenstates and
eigenenergies

E0 ¼ 0; E− ¼ −gc; Eþ ¼ þgc

and corresponding eigenstates

j0ir3 ¼
1

gc
ðg1jg; e; 0i − g2je; g; 0iÞ;

j−ir3 ¼
1ffiffiffi
2

p
gc

ðg2jg; e; 0i þ g1je; g; 0i − gcjg; g; 1iÞ;

jþir3 ¼
1ffiffiffi
2

p
gc

ðg2jg; e; 0i þ g1je; g; 0i þ gcjg; g; 1iÞ;

with gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
. Here, the state j0ir3 is a dark state

with respect to the coupling to the resonator, as it is an
antisymmetric state and the coupling between DQDs and
resonator is symmetric, since both DQDs couple to the
same phase of the drive field at one end of the resonator.
Condition (a) is exactly met when ωr ¼ ωDQD1 ¼ ωDQD2,
as illustrated by the data in Figs. 2(b) and 2(c), 7(b), 7(e),
7(g), 7(j), 8(b), and 8(e).
The second case (b) we treat here in two equivalent ways.

First, we write the Hamiltonian

Hðb1Þ ¼

0
B@

0 g1 0

g1 Δr g2
0 g2 0

1
CA; ðC16Þ

where the only difference to HðaÞ is the nonzero energy
of the resonator state compared to the DQD states, with
Δr ¼ ωr − ωk ≠ 0 and ωk ¼ 0. Directly diagonalizing
this Hamiltonian is possible, but the expressions for the

(a) (b) (c)

(d)

(e)

FIG. 7. Resonator spectroscopy with one or two DQDs tuned into resonance with the resonator. The same charge configuration is used
for the data in Fig. 2 of the main text. (a) Tuning δ2 of DQD2 (2t2=2π ¼ 5.168 GHz) into resonance with the SQUID array resonator,
when DQD1 is tuned in Coulomb blockade, δ1=2π ≳ 20 GHz. (b) With ωr ¼ ωDQD2, DQD1 (2t1=2π ¼ 5.183 GHz) is brought in
resonance by changing δ1. (c)–(e) are line traces of (a) and (b) to show the conditions ωr ¼ ωDQD2 (red arrows), ωDQD2 þ g1 ≈ ωDQD1

(green arrows), and ωr ¼ ωDQD2 ¼ ωDQD1 (blue arrows). All fits in (c)–(e) are fits to the master equation with extracted parameters listed
and discussed in Appendix H.
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eigenstates do not lend themselves to quick insights.
Instead, we assume the relevant limit Δr ≫ g1, g2, so that
we can approximate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

r þ 4g2c
p

≈ Δrf1þ ½ð2g2cÞ=ðΔ2
rÞ�g

and find in this limit

E0þ ¼ 0; E0
− ¼ −

g2c
Δr

; E0
1 ¼ Δr þ

g2c
Δr

; ðC17Þ

with the corresponding (unnormalized) eigenstates

(a) (b) (c)

(d)

(e)

(h)(g)(f)

(i)

(j)

FIG. 8. Resonator spectroscopywith one or two qubits tuned into resonancewith the resonator. Similar to the data in Fig. 2 except that the
device is biased at a point with coupling rates g1=2π ¼ 34 MHz and g2=2π ¼ 69 MHz.All data are fittedwithmaster-equation simulations
(Appendixes C and H). (a) Measuring the reflection spectrum jS11j while tuning δ2 of DQD2 (2t2=2π ¼ 4.448 GHz) and DQD1 is in
Coulomb blockade δ1=2π ≳ 20 GHz. The resonator is flux tuned to ωr=2π ¼ 4.462 GHz. (b) Reflection spectrum jS11j, when resonator
DQD2 are in resonance (δ2 ¼ 0), the detuning δ1 of theweaker coupled DQD1 (2t1=2π ¼ 4.452 GHz) is swept. (c) Line trace of reflection
spectrum jS11j in (a) at the red arrows showing two separate resonances. (d) Resonator spectroscopy line trace obtained from (b) when
ωDQD2 þ g2 ≈ ωDQD1 (green arrows). (e) Resonator spectroscopy line trace adopted from (b) at δ1;2 ¼ 0 obtaining ωr ¼ ωDQD1 ¼ ωDQD2

(blue arrows). (f) Reflection spectrum jS11j, while tuning δ1 of DQD1 (2t1=2π ¼ 4.450 GHz), when DQD2 is in Coulomb blockade
δ2=2π ≳ 20 GHz. (g)KeepingDQD1 resonator in resonance, DQD2 (2t2=2π ¼ 4.461 GHz) is tuned vs δ2, resulting in hybridization in the
casewhere all three systems are in resonance,ωr ¼ ωDQD2 ¼ ωDQD1. (h) Line trace of (f) (red arrows) showing the reflection spectrum jS11j
with two resonances. (i) Line trace of (g) (green arrows) taken at ωDQD1 þ g1 ≈ ωDQD2, showing the DQD2 tuned into resonance with the
hybridizedDQD1 resonator state, jþir3. (j) Data taken at the similar configuration as (e), δ1;2 ¼ 0, line trace of the jS11j in (g) (blue arrows).
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jþ0ir3¼
1

gc
ðg1jg;e;0i−g2je;g;0iÞ;

j−0ir3¼
1

gc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2cþΔ2

r

p
× ðg2Δrjg;e;0iþg1Δrje;g;0i−g2cjg;g;1iÞ

≈
1

gc

�
g2jg;e;0iþg1je;g;0i−

g2c
Δr

jg;g;1i
�
;

j10ir3¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2cþΔ2
r

p ðg2jg;e;0iþg1je;g;0iþΔrjg;g;1iÞ

≈
1

Δr
ðg2jg;e;0iþg1je;g;0iþΔrjg;g;1iÞ; ðC18Þ

with gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
. The states j�0ir3 are the qubitlike

states and j10ir3 is the resonatorlike state used in the energy
diagram in Fig. 3(c). The difference in visibility of the
j�id2 states in Fig. 4(a) when changing the resonator
detuning Δr is fully captured in this approximation. The
last term in j−0ir3 contains the excited state of the resonator,
and its coefficient is proportional to 1=Δr so that, if we
increase the resonator detuning, this coefficient and the
visibility in spectroscopy decreases. As is observed in
Fig. 4(a), the visibility of the darker state jþir3 remains
constant, while the brighter state j−ir3 becomes weaker.
In the same spirit, we may take the coupling gk as a

perturbation and, starting from the Hamiltonian Eq. (C16),
find the approximate Hamiltonian for the DQDs in pertur-
bation theory up to second order in gk=Δr as

Hðb2Þ ¼
1

Δr

�
g21 g1g2
g1g2 g22

�
; ðC19Þ

in the basis fje; gi; jg; eig. Note that here the two states are
not in resonance, due to each state’s second-order energy
correction obtained from the resonator dispersive shift,
which assumes that the DQDs are tuned such that, in the
absence of the resonator, they would be resonant with each
other. The eigenvalues and eigenstates of this perturbative
Hamiltonian are

Eþ ¼ 0; jþid2 ¼
1

gc
ðg1jg; ei − g2je; giÞ; ðC20Þ

E− ¼ −
g2c
Δr

; j−id2 ¼
1

gc
ðg2jg; ei þ g1je; giÞ; ðC21Þ

which is identical to Eq. (C18) in the limit Δr ≫ gk.
In Fig. 4(a) of the main text, the coherent qubit-qubit

exchange interaction as a function of the detuning from the
resonatorΔr is investigated. The dark state jþid2 remains at
a fixed transition frequency, as is observed in the experi-
ment indicated by the blue line in Fig. 4(a). In Eq. (C20),

the energy Eþ is constant, and it is the bright state j−id2
which shifts in energy as a function of Δr.
Note that the splitting between eigenstates in the case

treated here is different from the standard case treated most
commonly in the literature, when assuming the DQDs are
resonant and coupled through a second-order transition via
the resonator. In that case, the diagonal terms in Eq. (C19)
would be equal, corresponding to a tuning point where the
dressed frequencies of both DQDs are resonant. In that
case, we find a splitting of 2J ¼ 2g1g2=Δr instead of the
value obtained here ðg21 þ g22Þ=Δr. The two cases are
equivalent only for equal coupling g1 ¼ g2. Indeed, for
the data shown in Fig. 4, we use 2J ¼ 2g1g2=Δr, since we
have access only to the dispersively shifted frequencies of
the DQDs in the measurements.

APPENDIX D: COMPLEMENTARY DATA
TO FIG. 2

In addition to the data in the main text (Fig. 2), we
show here the vacuum Rabi mode splitting of DQD2 with
the resonator; see Figs. 7(a) and 7(c). We find with our
master-equation fitting that ωr ¼ ωDQD2 is realized at
δ2=2π ¼ 0.2 GHz. This bias point is used to extract the
coupling rate from the resonator to DQD2, g2=2π ¼
56 MHz [Fig. 7(c)], and is quoted in the main text. The
collective mode coupling, realized by tuning DQD1

(g1=2π ¼ 53 MHz) into resonance when DQD2 is in
vacuum Rabi mode splitting, to obtain the resonant con-
dition ωr ¼ ωDQD2 ¼ ωDQD1, which is essentially the same
bias point as Fig. 2(c), indicates that the DQD system is
fully tunable via the parameters 2t1;2 and δ1;2, allowing us
to measure data equivalent to that shown in Fig. 2.

APPENDIX E: RESONANT INTERACTION WITH
UNEQUAL COUPLING RATES g1 ≠ g2

In the main text in Fig. 2 and Appendix D, we present
the vacuum Rabi mode splitting and the collective vacuum
Rabi mode-splitting measurements when varying the
charge detuning of DQD1 and DQD2 for the configuration
where both coupling rates are approximately equal,
g1;2=2π ≈ 55 MHz. We use a bias point in Figs. 3(b)
and 4, where g1=2π ¼ 34 MHz and g2=2π ¼ 69 MHz,
to measure the 2J splitting of the virtual photon-mediated
qubit-qubit exchange interaction. The coupling rates used
to fit the data in Figs. 3(b) and 4 are obtained from the
vacuum Rabi mode-splitting measurements shown in
Fig. 8. See Appendix H for a detailed discussion of the
fitting procedure employed.
In Fig. 8, we present the on-resonance interaction for this

configuration similar to Fig. 2. Also here, we observe a dark
state when ωr ¼ ωDQD1 ¼ ωDQD2, by tuning the detuning
parameters δ1;2. In principle, Figs. 8(b) and 8(g) are showing
data of very similar experiments, as oneDQD is in resonance
with the resonator and the opposite DQD is tuned in
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resonance for the data obtained in both panels. For both data
sets, when the qubits are at δ1;2 ¼ 0 [Figs. 8(e) and 8(j)],
ideally the two measurements should be identical, but they
have been realized in two independent procedures and thus
suffer from slightly different resonator responses. The
unequal coupling rate to the resonator makes the response
of the amplitude of the reflection spectrum jS11j quite
different. This difference is visible by the initial small (large)
vacuum Rabi splitting at δ2;ð1Þ=2π ¼ −2 GHz set by the
coupling rate g1;ð2Þ. The collective mode coupling to the

resonator is gc=2π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
=2π ¼ 76 MHz.

In addition, we present line traces in Fig. 8 for the vacuum
Rabi splitting [ωr ¼ ωDQDk, Figs. 8(c) and 8(h)], collective
mode coupling [ωr ¼ ωDQD1 ¼ ωDQD2, Figs. 8(e) and (8j)],
and the case where the jþir2 state is approximately resonant
with theDQDwhich is being tuned [ωDQD2 þ g1 ≈ ωDQD2 in
Fig. 8(d) and ωDQD1 þ g2 ≈ ωDQD1 in Fig. 8(i)]. The latter
case shows clearly the difference in coupling strengths to the
resonator of both DQDs. This difference is fully captured by
our master-equation simulations (solid and dashed lines
in Fig. 8).

APPENDIX F: SPECTROSCOPY OF
DISPERSIVE QUBIT-QUBIT INTERACTION

FOR THE 2g1 ≈ g2 CONFIGURATION

In Figs. 3(a) and 3(b) of the main text, DQD1 and DQD2

are tuned into resonance, fulfilling the condition ωDQD1 ¼
ωDQD2 resulting in the hybridized states j�id2. With DQD2

(DQD1) largely detuned by setting δ1;2=2π ≳ 20 GHz, we
observe the DQD single-charge qubit behavior, since we
can fit it by the expected spectrum, ωDQD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ δ2

p
; see

Fig. 9. This observation demonstrates full gate control of
each DQD qubit and excludes coupling to spurious two-
level fluctuators [43]. In addition, we present the specular
tuning of the DQDs compared to the data shown in
Figs. 3(b) and 9. Here, the DQDs are tuned to 2t1=2π ¼
4.453 GHz and 2t2=2π ¼ 4.472 GHz, δ2 ¼ 0 realizing
resonance (ωDQD1 ¼ ωDQD2) at finite detuning (δ1=2π ¼
�0.4 GHz), showing clear hybridization between the two-
qubit state via virtual photon exchange [Fig. 9(c)]. Here,
qubit spectroscopy shows different qubit contrast for the
two DQDs, which is attributed to the difference in coupling
rate g1;2. At detuning, jδ1=2πj ¼ �0.6 GHz, indicated by
the orange dots in Fig. 9(c), the bare qubit frequencies are
equal, resulting in a dark state. The resonance frequencies
in Fig. 9(c) are fitted to the full Hamiltonian model for the
interacting (gk ≠ 0 red dashed line) and noninteracting case
(gk ¼ 0 green dashed line), showing quantitative agreement
with the data. The fact that the lower red dashed line in
Fig. 9(c) does not converge to the lower green dashed line
for large jδ1j can be attributed to the breakdown of the
dispersive approximation in this regime.
The tunnel rates 2t1;2, obtained for the data in Figs. 9(a)

and 9(b), are not exactly the same as in Figs. 3(b) and 9(c),
since these data is measured in a separate run (about one
month) later in the same bias configuration.

APPENDIX G: COHERENT QUBIT-QUBIT
EXCHANGE INTERACTION IN SPECTROSCOPY

WITH EQUAL COUPLING RATE g1 ≈ g2

In the main text, we use the configuration g1=2π ¼
34 MHz and g2=2π ¼ 69 MHz to demonstrate the coherent
qubit-qubit exchange interaction in qubit spectroscopy.

(a) (b) (c)

FIG. 9. Supplementary data to Fig. 3(b) showing qubit spectroscopy of the individual DQDs with the resonator tuned to
ωr=2π ¼ 4.726 GHz. Dashed lines are fits to extract relevant parameters. (a) Qubit spectroscopy of DQD1 (2t1=2π ¼ 4.392 GHz)
vs detuning δ1 in the dispersive regime. (b) Qubit spectroscopy of DQD2 (2t2=2π ¼ 4.448 GHz) vs detuning δ2 in the dispersive
regime. (c) Qubit spectroscopy measuring the resonator phase shift with DQD2 fixed (2t2=2π ¼ 4.472 GHz, δ2 ¼ 0) and DQD1

(2t1=2π ¼ 4.453 GHz) tuned with δ1.
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At the resonance condition ωDQD1 ¼ ωDQD2, the jþid2 state
is a dark state for two equally coupled DQDs. We verify
this result by using this bias point to demonstrate two-qubit
interaction in Fig. 3(a) resulting in a dark state. Here, we
present additional data and line traces to support our
finding. In Figs. 10(a) and 10(e), we show that both
DQDs display the typical level structure of a charge qubit
with ωDQD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ δ2

p
.

Fixing one DQD at zero detuning δ ¼ 0 and tuning the
other one, we observe virtual photon qubit-qubit exchange
interaction resulting in hybridized states. The higher-
frequency state jþid2 is dark, since it is antisymmetric
and thus cannot be excited by a symmetric probe to both
DQDs with the same phase. Correspondingly, on resonance

only single resonances are observed in the line traces in
Figs. 10(c) and 10(g). By detuning one of the DQDs, the
second resonance can be excited as well again [Figs. 10(d)
and 10(h)]. The effect is fully captured by our master-
equation simulations (lines in Fig. 10). In the main text, we
instead discuss the device tuned to a bias point where
g1 ≠ g2; see Figs. 3(b) and 3(c).

APPENDIX H: DESCRIPTION OF FITTING
PROCEDURE AND EXTRACTED PARAMETERS

In this Appendix, we describe the procedure we use
for fitting the data and extracting the master-equation
parameters.

(a) (b) (c)

(d)

(e) (g)

(h)

FIG. 10. Single- and two-qubit spectroscopy in the dispersive regime. The readout is performed at 5.454 GHz by populating the
resonator with approximately 0.3 photons on average, for all data shown. Red dashed lines are fits to the master-equation simulations,
and solid lines are master-equation simulations; see Appendix H. (a) Qubit spectroscopy of DQD2 (2t2=2π ¼ 5.168 GHz) vs detuning
δ1. DQD1 is detuned to δ1=2π ≳ 20 GHz. (b) Qubit spectroscopy with DQD1 at δ1 ¼ 0 and performing qubit spectroscopy vs δ2.
(c) Line trace at δ1;2 ¼ 0 from (b) (red arrows), obtained at ωDQD1 ¼ ωDQD2. (d) Line trace of (b) when both DQDs slightly detuned,
ωDQD1 ≠ ωDQD2, showing two separate resonances. (e) Qubit spectroscopy of DQD1 (2t1=2π ¼ 5.146 GHz) vs detuning δ1. DQD2 is
detuned to δ2=2π ≳ 20 GHz. (f) At δ2 ¼ 0 qubit spectroscopy vs changing detuning δ1. (g) Line trace at δ1;2 ¼ 0 from (f) (red arrows)
showing one resonance peak. (h) Line trace of (f) for detuned DQDs.
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In general, if not stated otherwise, fits are least-square
fits to the full master-equation input-output model of the
system, Eq. (C8). In order to reduce the number of
independent fit parameters, we adopt an iterative approach,
where we successively extract different fit parameters from
different parts of the spectrum.
We illustrate the procedure using the example of Fig. 2

(Table I). The same procedure is followed for the data shown
in Fig. 7 (Table II). Initially, we use the leftmost line trace in
Fig. 2(a), which is a resonatorlike resonance, to obtain initial
estimates for the resonator decay rates κint and κext as well as
the resonator frequency ωr. These values are then used as
initial parameters to fit the line trace shown in Fig. 2(b), close
to resonance betweenDQD1 and the resonator,ωr ¼ ωDQD1.
The quoted frequencies in the main text are the measured
Lamb-shifted frequencies [32]. From this fit, we extract
the DQD coupling strength g1 and its linewidth γ�2;1 ¼
γ1;1=2þ γ2;1; see Table I. Note that in all the fits we set
the pure dephasing for each DQD to zero, γ2;k ¼ 0, as its
effect on the scattering spectrum is essentially indistinguish-
able from the relaxation rates γ1;k. The essence of the fits is to
capture the linewidth of the resonances, given by γ�2;1. In
principle, taking into account the line traces at finite detuning
(δ ≠ 0) could additionally provide insight into the relaxation
and dephasing rates. As here this insight is not essential to
obtain more accurate fits, we decide to keep γ2;k fixed for
simplicity. The extracted DQD linewidth γ2;k is measured at
finite power and is close to the extrapolated zero power limit
Γ2;1=2π ¼ 4.8� 0.6 MHz, measured independently in the
dispersive regime (see the main text). We generally observe
that the extracted qubit linewidths are power broadened, as
the values are typically 1–3 MHz higher than Γ2;1=2π
compared, for example, with the values in Table I.
We also extract the resonator internal and external

loss rates from independent measurements (not shown)
with both DQDs detuned (δ1;2=2π ≳ 20 GHz) and find

κint=2π ¼ 18.7� 0.5 MHz and κext=2π ¼ 7.4� 0.2 MHz
for ωr=2π ¼ 5.170 GHz, which is comparable to what is
obtained from the data in Fig. 2 and listed in Table I.
Finally, to calibrate the detuning axis, we perform a
simultaneous fit to three different line traces (not shown)
in Fig. 2(a), using the parameters from the previous fit.
Even though the gate settings are exactly the same for

DQD1 in the measurements shown in Figs. 2(b) and 2(d) as
the later one measured 2 days later, a small frequency
shift (30 MHz) of the DQD tunnel rate is extracted from the
fit. We attribute this shift to changes in the environmental
offset charge distribution, influencing the effective applied
gate voltages, which effectively shift the tunnel rate 2t1.
The shift is small but has to be taken into account to
improve the quality of the fits; compare the values in
Table I. Fitting to the data in Fig. 2(d), we start with
a single line trace at large negative detuning (δ2=2π ¼
−2.9 GHz), where the resonator and DQD1 are resonant.
We fit the resonator and DQD1 parameters to this line trace
and use those parameters as fixed (indicated by * in Table I)
when obtaining the parameters for DQD2 from a fit at
δ2 ¼ 0, where all three systems are close to resonant. The
extracted parameters are displayed in Table I.
To obtain the parameter values for the data presented in

Fig. 8, the procedure is modified slightly. We first extract
resonance positions from the experimental data using a
simple fit to Lorentzians and then use a pure Hamiltonian
model, Eq. (C5), to fit all the Hamiltonian parameters to the
spectrum. Then, we apply the master-equation simulation
with these parameters as input to single line traces of the
data to obtain the linewidths. All parameters extracted from
the data presented in Fig. 8 are displayed in Table III.
With this procedure, the agreement between the

theory and experiment is not quite as good as for the full

TABLE I. Extracted values from the data shown in Fig. 2 by
fitting the line traces as described in the text. For Figs. 2(a) and
2(b), the line trace at δ1 ¼ 0 is used. We extract the parameters of
the data presented in Fig. 2(d) at detuning δ2=2π ¼ −2.9 GHz.
The extracted parameters in column Fig. 2(c) are those of DQD2

with the resonator and DQD1 parameters fixed (indicated by *).

Figures 2(a)
and 2(b) Figure 2(d) Figure 2(c)

ωr=2π (MHz) 5170� 1 5172� 1 5172*
κint=2π (MHz) 18� 2 17� 1 17*
κext=2π (MHz) 6.5� 0.1 6.1� 0.1 6.1*
2t1=2π (MHz) 5166� 1 5138� 1 5138*
g1=2π (MHz) 53.4� 0.2 51.1� 0.4 51.1*
γ�2;1=2π (MHz) 5.3� 0.9 6.4� 1.2 6.4*
2t2=2π (MHz) � � � � � � 5156.2� 0.6
g2=2π (MHz) � � � � � � 56.7� 0.2
γ�2;2=2π (MHz) � � � � � � 6.0� 0.6

TABLE II. Extracted values from the data shown in Fig. 7 by
fitting the line traces as described in the text. For Figs. 7(a) and
7(c), the line trace at δ2=2π ¼ 0.2 GHz is used. For extracting the
values indicated as Fig. 7(b), we use the data in this figure at
detuning δ1=2π ¼ −2.9 GHz, leftmost line trace. The extracted
parameters indicated as Fig. 7(e) are used to extract the DQD1

parameters with the resonator and DQD2 parameters fixed
(indicated by *).

Figures 7(a)
and 7(c) Figure 7(b) Figure 7(e)

ωr=2π (MHz) 5170.9� 0.8 5167.8� 0.9 5167.8*
κint=2π (MHz) 12� 2 10� 2 10*
κext=2π (MHz) 5.7� 0.1 5.7� 0.1 5.7*
2t2=2π (MHz) 5167.9� 0.8 5157.3� 0.8 5157.3*
g2=2π (MHz) 55.9� 0.3 55.8� 0.3 55.8*
γ�2;2=2π (MHz) 11� 2 12� 2 12*
2t1=2π (MHz) � � � � � � 5183.1� 0.7
g1=2π (MHz) � � � � � � 53.4� 0.3
γ�2;1=2π (MHz) � � � � � � 5.7� 0.6
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master-equation simulations used for Figs. 2 and 7, but it
needs far less computational effort. The main difference
between the two methods is that the master-equation

simulation is more sensitive to residual detuning effects
due to nonzero δk parameters than the Hamiltonian fitting,
since it can also take into account the amplitude correctly,
leading to an overall better fit.
Finally, for the data presented in Fig. 3, we extract

frequencies of resonances in the experimental data using a
simple Lorentzian fit. We then use the coupling parameters
g1;2 obtained from spectroscopy of the system configura-
tion, shown in Fig. 8, and fit these data to a Hamiltonian
model, Eq. (C5), where the only free parameters are the
resonator and qubit frequencies as well as the scale of the
detuning axis. Results are shown in Table IV. The same
fitting procedure is used for the extracted parameters
presented in Tables V and VI.
For the fits to the virtual photon-mediated coupling

between the two DQDs in the dispersive regime (Fig. 4), we
again start by extracting resonance frequencies from the
data for both the DQD-like resonances as well as the
detuned resonator. Using the DQD parameters extracted
from the data in Fig. 3 as input, we then fit each of these
data points to a Hamiltonian model to extract the DQD
tunnel rates 2tk (assuming δk ¼ 0) and resonator frequency
ωr. Finally, we fit the 2J data to a linear dependence in
1=Δr, shown in Fig. 4(a). We observe linear dependence
with a slight departure from the data.

TABLE IV. Extracted values from the fits performed on the data
presented in Fig. 3(a) with taking the coupling rates obtained
from the fits in Fig. 2. For Fig. 3(b), the coupling rates are
extracted from the data in Fig. 8. In the caption of Fig. 3, we quote
the Lamb-shifted qubit transitions as they are here in the table
directly extracted from the Hamiltonian fit.

Figure 3(a) Figure 3(b)

ωr=2π (MHz) 5432.9� 0.9 4650� 3
2t1=2π (MHz) 5168.3� 0.4 4461� 1
2t2=2π (MHz) 5164.1� 0.3 4440� 1

TABLE V. Parameters extracted from the fits performed in
Fig. 9 with the coupling rate obtained from fits of the data in
Fig. 2.

Figure 9(a) Figure 9(b) Figure 9(c)

ωr=2π (MHz) 4713� 2 4697� 1 4670� 2
2t1=2π (MHz) 4392.2� 0.3 � � � 4493.1� 0.3
2t2=2π (MHz) � � � 4468.7� 0.4 4456.3� 0.3

TABLE VI. Extracted values from the Hamiltonian [Figs. 10(a), 10(b), 10(e), and 10(f)] and master-equation fits [Figs. 10(c), 10(d),
10(g), and 10(h)]. Parameters that remain fixed are indicated by *.

Figure 10(a) Figure 10(b)
Figures 10(c)
and 10(d) Figure 10(e) Figure 10(f)

Figures 10(g)
and 10(h)

ωr=2π (MHz) 5443.7� 0.7 5432.9� 0.9 5432.9* 5443� 2 5432� 1 5432*
2t1=2π (MHz) 5145.8� 0.2 5168.3� 0.4 5168.6� 0.4 5168.8� 0.7 5162.2� 0.3 5160.0� 0.4
γ2;1=2π (MHz) � � � � � � 12.0� 0.5 � � � � � � 13.7� 0.6
2t2=2π (MHz) � � � 5162.8� 0.7 5164.1� 0.3 � � � 5159.7� 0.5 5156.0� 0.5
γ2;2=2π (MHz) � � � � � � 8.8� 0.5 � � � � � � 9.6� 0.7

TABLE III. Extracted values from the data shown in Fig. 8 by fitting the line traces as described in the text. For the parameters
indicated by Figs. 8(a) and 8(b), a Hamiltonian fit to the resonance positions is performed. For the parameter indicated with
Figs. 8(c)–8(e), a master-equation fit is performed by fixing the parameters obtained from the previous fit (indicated by *). For the
parameters indicated by Figs. 8(f) and 8(g), a Hamiltonian fit to the resonance positions is performed. For the parameter indicated with
Figs. 8(i)–8(k), a master-equation fit is performed by fixing the parameters obtained from the previous fit (indicated by *).

Figure 8(a) Figure 8(b) Figures 8(c)–8(e) Figure 8(f) Figure 8(g) Figure 8(h)–8(j)
ωr=2π (MHz) 4461.8� 0.5 4476� 3 4476* 4447.8� 0.1 4463� 1 4463*
κint=2π (MHz) � � � � � � 8.4� 0.2 � � � � � � 9.1� 0.2
κext=2π (MHz) � � � � � � 2.64� 0.03 � � � � � � 2.64� 0.03
2t2=2π (MHz) 4447.7� 0.5 4451� 2 4451* � � � 4463� 2 4463*
g2=2π (MHz) 69.8� 0.4 69.0� 0.5 69.0* � � � 69.3� 0.5 69.3*
γ�2;2=2π (MHz) � � � � � � 5.5� 0.3 � � � � � � 4.0� 0.6
2t1=2π (MHz) � � � 4452� 1 4452* 4450.1� 0.2 4461� 1 4461*
g1=2π (MHz) � � � 33.2� 0.6 33.2* 33.67� 0.08 34.7� 0.4 34.7*
γ�2;1=2π (MHz) � � � � � � 5.3� 0.2 � � � � � � 6.9� 0.3
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