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Topological singularities are ubiquitous in many areas of physics. Polarization singularities are locations
at which an aspect of the polarization ellipse of light becomes undetermined or degenerate. At C points, the
orientation of the ellipse becomes degenerate and light’s electric field vector describes a perfect circle in
time. In 2D slices of 3D random fields, the distribution in space of the C points is reminiscent of that of
interacting particles. With near-field experiments, we show that when light becomes truly 2D, this has
severe consequences for the distribution of C points in space. The most notable change is that the
probability of finding two C points with the same topological index at a vanishing distance is enhanced in a
2D field. This case is an unusual finding for any system that exhibits topological singularities, as same-
index repulsion is typically observed. All of our experimental findings are supported with theory, and
excellent agreement is found between theory and experiment.
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I. INTRODUCTION

Light-based technology has transformed today’s society
and will continue to do so, with applications that range
from energy harvesting to telecommunications and quan-
tum informatics [1–3]. Increasing control over light’s
polarization is one key capability inspiring new develop-
ments. For instance, optical fields near nanostructures can
be engineered to exhibit locations of circular polarization
[4–6], allowing applications such as spin-dependent direc-
tional coupling [7], also with local solid-state spin into
optical information conversion [8]. Interestingly, points of
circular polarization are singularities of the light field, also
known as C points [9,10], widely studied in structured light
beams [11–13] and representative of the transverse spin
momentum of light [14–17].
More in general, C points are topological defects of

the vector field which describes light’s polarization.
Knowledge and study of topological defects goes way
beyond optics. Currently, dislocations of the local mag-
netization known as Skyrmions are being intensively
investigated [18–20]. In nematic systems, topological
defects have continuously attracted interest because of
their fascinating behavior [21,22]. In addition, these kinds
of defects can even govern the physics of biological
systems [23], and their spatial arrangement is representative

of intrinsic properties of the system in which they are
found [24].
Interestingly, the large ensemble of C points which

naturally arises in random light fields also exhibits an
emblematic and rigorous spatial distribution [25–28],
which resembles that of particles in a simple liquid and
only scales with the wavelength of the interfering waves
[26]. However, a random wave field can be realized in
several ways [29–36]. So far, the work has concentrated
on the investigation of polarization singularities in two-
dimensional (2D) slices through random three-dimensional
(3D) fields in the paraxial limit. The question now arises
as to how limiting the propagation of light to a truly 2D
situation, e.g., by confining it on a flat optical chip,
would be to the spatial distribution of its polarization
singularities. In such a case, transverse propagation would
set a one-to-one relation between the wave propagation
direction and the direction of the electric field. Moreover,
this would create correlations between right-handed
and left-handed polarization that are absent in the three-
dimensional fields.
By means of near-field experiments, we investigate the

spatial distribution of C points in a planar random light field
and reveal crucial differences with respect to existing
paraxial theory [26]. We demonstrate that confining light
propagation in two dimensions leads to a large increase in
the probability of finding, at close proximity, C points with
the same topological charge, i.e., their index. This is an
exotic behavior for topological singularities, which usually
exhibit same-charge repulsion. We relate our experimental
findings to light’s handedness and excellently describe
them with a new theoretical model developed for the
two-dimensional case.
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II. EXPERIMENT AND METHODS

A. Near-field optical measurements

In our experiments, we map the near field of light
waves propagating in the planar chaotic cavity sketched in
Fig. 1(a). This is a photonic crystal cavity realized in a silicon-
on-insulator platform (220-nm silicon slab) and designed to
provide random wave propagation [37]. With a monochro-
matic laser at the telecom frequencies (λ0 ≃ 1550 nm), we
excite a transverse electric (TE) slab mode, which results in a
random superposition ofmonochromatic TEwaves inside the
cavity [38,39]. With a custom-built near-field scanning
optical microscope (NSOM), we probe the light field approx-
imately 20 nm above the surface of the cavity. The meas-
urement of the amplitude and phase of both the in-plane
components (Ex, Ey) allows the full characterization of its
polarization state at every point in the measured plane. For
simplicity, we only consider the TE light propagating in the

sample, which has its electric field entirely in the plane of
propagation. We do not investigate TM light, as our cavity
was not designed to confine it [37].
A comprehensive description of light’s polarization is

provided by its Stokes parameters [40]. These parameters
are often used to characterize the polarization state of light
in the far field, ranging from a simple laser beam to
the polarized emission of exotic structures [41], but they
can be used for a local analysis of the near field as well.
Figures 1(c)–1(f) present the near-field maps of the Stokes
parameters for the optical random field inside the chaotic
cavity. As a result of vector light waves randomly interfer-
ing, these patterns are quite difficult to interpret. However,
we can spot a few specific features in the morphology of
each map. Note that S1 exhibits patterns of spatial modu-
lation approximately half a wavelength wide and several
wavelengths long. Depending on their color (sign), these
stripy patterns are either oriented along the x or the y axis.

(a) (b)

(d)(c) (e) (f)

FIG. 1. Overview of the near-field measurements of light’s polarization in a chaotic cavity. (a) Schematic of the experimental
realization of random light waves in the planar photonic crystal cavity (black). Inside the cavity, light exhibits a spatially dependent
polarization. This is illustrated by a few different polarization ellipses (purple ellipses) observed at different points in the cavity
(indicated by the green shadows). (b) Parametrization of the polarization ellipse, describing the local polarization state of light. (c)–(f)
Near-field maps of the Stokes parameters of the optical random field in a square region of 17 μm × 17 μm inside the chaotic cavity. Note
that S0 ¼ E2

x þ E2
y is the total intensity of the vector field. This is displayed with a false-color map ranging from 0 to Imax, where Imax is

the maximum measured intensity. Here, Si (i ¼ 1, 2, 3) describes the polarization state of light, with respect to linear (horizontal-
vertical), linear (�45 deg), and circular (right-left) polarizations, respectively. These Stokes parameters are also represented with false-
color maps, which this time range from −Imax to Imax.
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The same observation is valid for S2, but here the
modulations are oriented at �45 deg with respect to the
horizontal axis. No clear preferential direction stands out
from the map of S3. In fact, S1 is representative of light
linearly polarized along x (S1 > 0) or y (S1 < 0), and since
light propagates as a transverse vector wave, the observed
stripy patterns are reminiscent of x-polarized waves mainly
propagating along y and vice versa [38]. A totally analo-
gous argument holds for S2, while S3 does not exhibit any
pattern that bears a resemblance to any specific in-plane
direction since it is the parameter representative of circular
polarization.

B. Light’s polarization and C points

A more concise, yet comprehensive summary on the
complex polarization pattern illustrated in Fig. 1 can be
obtained from the analysis of its singularities [28]. In
general, light’s polarization is elliptical and thus para-
metrized with the orientation ψ of the polarization ellipse,
the ellipticity angle χ, and the handedness h [Fig. 1(b)].
However, there are special cases in which the polarization
ellipse degenerates into a circle or a line, and some of these
parameters are not well defined anymore. In two dimen-
sions, such singularities of the vector field are, respectively,
points of circular polarization (C points) and lines of
linearly polarized light (L lines) [42].
Figure 2 is a map of the orientation of the polarization

ellipse for a small subsection of the measurement presented
in Fig. 1. The position of C points is highlighted by circles
and triangles, whose color represents their topological
index I. This is defined as the half-integer number of

times that the axis of the polarization ellipse rotates around
the singularity, clockwise (positive index) or anticlockwise
(negative index), i.e.,

I ¼ 1

2π

Z
C
dψ ; ð1Þ

where C is a closed path enclosing one singularity. In Fig. 2,
we only observe topological indices of �1=2.
Strictly related to their topological index is the so-called

line classification of C points, which differentiates them
into three types: lemons, stars, and monstars [43,44]. The
line classification can be understood by looking at the
orientation of the polarization ellipse around the singu-
larity, highlighted by the black directors in Fig. 2 and in
the zoomed-in images of Fig. 3. For lemon-type singu-
larities (lemons), there is only one direction along which
the orientation of the polarization ellipse is directed
towards the singularity, whereas the possible directions
are always three for star-type singularities (stars and
monstars). To determine the line classification of all the
C points in our data set in a deterministic way, we apply
the method illustrated by Dennis for computing the
number of directors pointing towards each singularity
[43]. In our figures, we indicate stars and monstars with
triangles, and lemons with circles.
Already, a quick glance at Fig. 2 illustrates the clear

relation between the topological index (marker color) and
line classification (marker shape) of C points. In fact,
negative-index singularities are always stars, whereas both
lemons and monstars are characterized by a positive index,
as expected, in general, for C points [43]. Table I lists
the fraction of C points for each kind observed in our
experimental data set. Note that 50% of the total number of
C points are stars, and they all carry a negative topological
index. Approximately 45% of the singularities are lemons,
and only 5% monstars, both types exhibiting a positive
index. In the same table, we directly compare our exper-
imental outcome with the results from previous paraxial
theory [26] and experiments [27]. All of these examined
statistics are perfectly consistent with each other. In
summary, the abundance of C points with a particular line

FIG. 2. False-color map for the orientation of the major axis of
the polarization ellipse. The black directors indicate the orienta-
tion of such an axis, too. The plot is representative of a subsection
of the measured optical random field. Circles and triangles are C
points. The white and gray symbols denote positive and negative
topological indices, respectively. The shape of the symbols,
triangles or circles, denotes a star-type or lemon-type classifica-
tion, respectively.

FIG. 3. An overview of the three kinds of C points based on
their line classification [43]. The lines are the orientation of the
polarization ellipse at each pixel around the C point (circle or
triangle), as determined from experimental data.
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classification is the same for C points in truly two-
dimensional light and two-dimensional slices through a
three-dimensional field.

III. SPATIAL DISTRIBUTION OF C POINTS

A. Pair and charge correlation function

Having established that there is no difference between
the abundances of the various types of singularities
observed in 2D slices of 3D light fields and truly 2D
fields, the question now arises as to whether their distri-
bution in space is also the same. The natural way of
investigating the spatial distribution of pointlike singular-
ities is by determining their pair correlation function gðrÞ.
Given a C point, this function describes how the density of
the surrounding C points varies as a function of distance.
This method is widely used to describe the physics of
discrete systems [45–50], it can be directly related to the
structure factor [51], and it represents a spatial analogous of
the degree of second-order coherence gð2ÞðτÞ, commonly
used to determine photon bunching and antibunching [52].
Figure 4 presents the pair correlation function for C

points in two-dimensional random light, as obtained from

our experimental data. With the position of each singularity
known, we can compute their pairwise distances jri − rjj,
and eventually the pair correlation function

gðrÞ ¼ 1

Nρ

�X
i≠j

δðr − jri − rjjÞ
�
; ð2Þ

whereN is the total number of singularities, ρ is the average
density of surrounding singularities, and δ is the Dirac
function. We compute the average and uncertainty of such a
correlation function by combining the outcome of 20 near-
field measurements of the optical random field under
investigation. In each of these maps, we precisely pinpoint
the location and topological index of approximately 6500 C
points, with a spatial accuracy that is limited by the pixel
size of the experiment (≈20 nm).
Note that gðrÞ is not flat, indicating that C points in

random light exhibit spatial correlation. At first glance, this
gðrÞ seems similar to the one of phase singularities in scalar
random waves [38,53] and therefore also reminiscent of
that of particles in a simple liquid. In fact, gðrÞ displays
a damped oscillatory behavior around unity as a function
of r, with a maximum, representative of a surplus of
singularities, at approximately half a wavelength of dis-
tance. Surprisingly, the pair correlation of C points in 2D
actually increases as r approaches 0. While the zero
dimensionality of optical singularities would, in principle,
allow for a finite probability of having two at the same
location, an increase of gðrÞ towards zero has never been
observed, neither for phase singularities in scalar or vector
random waves [38,53] nor for C points in a 2D slice of a 3D
random field (Ref. [26] and gray lines in Fig. 4).
To understand the unexpected behavior at small dis-

tances and to obtain an overview of the spatial distribution
of the C points, it is useful to also consider the charge
correlation function gIðrÞ: a more general expression of the
pair correlation function in which each singularity is
weighted with its topological index [26,53]. The orange
data points in Fig. 4 display our experimental results for
gIðrÞ. The most striking observation here is that the charge
correlation function is positive near r ¼ 0. This means that
when singularities are found at a close distance from each
other, they most often carry the same topological index.
Then, at r ≈ λ=4, the charge correlation function flips sign,
indicating the beginning of a displacement range where two
singularities are more likely to have opposite sign. The zero
crossing roughly coincides with the distance at which gðrÞ
exhibits the unexpected increase towards small r. This
increase can therefore be attributed to the surplus of same-
sign singularities in such a displacement range.
The reason why C points in 2D tend to rearrange to form

closely spaced pairs with the same topological index is, at
this stage, still unclear. The origin of the clustering should
be sought in correlations among different field components
set by the modal properties of the field. However, the

TABLE I. Fraction of C points with different line classification.
The results of our 2D experiment are compared with previous
experiments [27] and theory [26].

Singularity
type

2D field
experiment

2D slice of a 3D field
Experiment [27] Theory [26]

Star 0.4997� 0.0002 0.506� 0.003 0.500
Lemon 0.4493� 0.0013 0.443� 0.002 0.447
Monstar 0.0503� 0.0013 0.050� 0.003 0.053

FIG. 4. Pair and charge correlation function (g, gI) for C points
in random vector waves. The circles are the experimental results,
blue and yellow solid lines show our model for 2D vector fields,
and gray lines are the paraxial model [26].
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topological index is not the only intrinsic property carried
by C points. We could gain more insight by analyzing their
behavior with respect to light’s handedness.

B. C points and light’s handedness

The correlation functions displayed in Fig. 4 provide an
extensive description of the distribution of C points but still
not the full picture. This is because the information carried
by C points is not limited to their topological index. In fact,
light’s polarization is purely circular at every C point;
however, it can be left- or right-handed, independent of the
topological index. In Fig. 5, we show a spatial map of the
degree of circular polarization s3 ¼ S3=S0, together with
the position, topological index, and handedness of the C
points therein. We notice how C points fall in domains of a
given handedness. Of course, s3 equals exactlyþ1 or −1 at
every C point, with a sign that determines the handedness
of the C point itself. Each domain is delimited by L lines
(white lines), where polarization is purely linear (s3 ¼ 0),
and light’s handedness is undetermined. L lines have to
separate C points of opposite handedness. Contrarily,
several co-handed singularities can occur within the same
domain. Furthermore, from Fig. 5, one immediately real-
izes how the handedness and topological index of a C point
are not directly related, as every combination of these
quantities is possible.
The handedness of C points provides an additional

degree of freedom, to be accounted for in their spatial
distribution. It is illuminating to include this degree of
freedom in the computation of a new set of pair correlation
functions. In general, gðrÞ can be expressed as the average
of all possible partial correlation functions for C points with

the same or opposite handedness and the same or opposite
topological index:

gðrÞ ¼ 1

16

X
i;j

X
α;β

gα;βi;j ðrÞ; ð3Þ

with i, j ∈ ½þ;−� for the topological index and α, β ∈ ½l; r�
for the handedness. Following the notation of Dennis [26],
Eq. (3) can be simplified with the definitions

gCsame ≡ gα;αi;i and gCopp ≡ gα;αi;−i; ð4Þ

both corresponding to co-handed singularities, for the cases
of the same and opposite topological indices, respectively.
Analogously, for antihanded C points, we have

gAsame ≡ gα;ᾱi;i and gAopp ≡ gα;ᾱi;−i: ð5Þ

Thus, we can express Eq. (3) as a function of these four
correlation functions:

gðrÞ ¼ 1

4
½gCsame þ gCopp þ gAsame þ gAopp�: ð6Þ

Figure 6 presents our experimental results for the four
pair correlation functions of the decomposition in Eq. (6),
taking both the topological index and handedness of the
C points into account. In the distribution functions
depicted in Fig. 6(a), we only consider co-handed C
points, either with the same (green) or opposite (purple)
topological indices. In this case, the experimentally
determined functions describe the standard characteristic
properties exhibited by phase singularities in random
waves. In fact, gCsameðr → 0Þ ¼ 0 for singularities with the
same topological index, and there is a monotone decrease
towards a finite value at r → 0 in gCopp. The experimental
results displayed in Fig. 6(a) perfectly match the pre-
diction of the model for polarization singularities in a 2D
slice of a 3D field in the paraxial regime [26], which is
equivalent to the model for phase singularities in scalar
random waves [53].
In fact, we can interpret C points as phase singularities in

either the left- or right-handed circular components of E:

ψ l ¼ Ex þ iEy; ψ r ¼ Ex − iEy: ð7Þ

This is because a phase singularity in ψ l corresponds to a
zero in ψ l, resulting in a point where E only has
contributions from its circular-right component ψ r, i.e., a
right-handed C point, and vice versa. Therefore, the spatial
distribution of co-handed C points is exactly equivalent to
that of phase singularities arising in a single circular field
component ψ l=r, i.e., of phase singularities in a scalar
random wave field [26].
Our experiment confirms that, also in 2D, the distribu-

tion of co-handed C points is the same as that of phase

FIG. 5. False-color map for the degree of circular polarization
s3 ¼ S3=S0, as obtained from our experimental data. The plot
corresponds to the same subsection of the measured optical
random field displayed in Fig. 2. The black directors indicate the
orientation of the polarization ellipse. Circles and triangles are
C points, and their color (purple or green) represents their
handedness (left or right, respectively).
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singularities in a scalar random field. Therefore, the origin
of the unusual behavior of the global distribution of C
points must necessarily lie in antihanded singularities.
Figure 6(b) presents the correlation functions for singular-
ities with opposite handedness. Here, gAsameðrÞ reaches its
maximum values at r ≈ 0. Singularities of opposite handed-
ness and the same topological index are often found at
close distances from each other, confined in an extremely
subwavelength regime. Regarding pairs of C points with
opposite topological index, the distribution gAopp exhibits a
behavior that is qualitatively very similar to that of gCopp.
This result creates two clearly distinct behaviors for the
four combinations of index and handedness. On the one
hand, the impact of the handedness of C points on their
spatial correlations seems to be only minor for singularities
with opposite topological indices, for which we do not
observe big qualitative differences between gCopp and gAopp
(purple data in Fig. 6). On the other hand, considering the
same or opposite handedness is crucial in the same-index
case, since the behaviors of gCsame and gAsame are evidently
different, eventually with an opposite gradient for r → 0
(green data in Fig. 6).
As a matter of fact, the data displayed in Fig. 6(b) offer a

clear illustration of the novel behavior registered for C
points in 2D random light compared to the case of a 2D
slice of a 3D field. In particular, it clarifies that, in the 2D
case, C points of opposite handedness are far from being
independent and so must be for the left- and right-handed
field projections from which they arise.

IV. CORRELATION AMONG
LIGHT’S VECTOR COMPONENTS

The overall spatial correlation of C points in 2D random
light (Fig. 4) and, more specifically, the correlation of
singularities with opposite handedness [Fig. 6(b)] exhibit a

number of features that were not accounted for in a
previous paraxial theory [26]. In that theory, an
assumption was made, consisting of the absence of any
correlation between oppositely handed C points, i.e.,
gAsame ¼ gAopp ¼ 1. This assumption corresponds to a sit-
uation in which ψ l and ψ r are completely uncorrelated.
In fact, in three dimensions, there are no restrictions

that would imply a correlation among the circular
components ψ l and ψ r of a paraxial random field.
The same holds true for a two-dimensional slice of
such a three-dimensional field [27]. In this circumstance,
transversality can be fulfilled out of the plane in which
the field is observed, meaning that the vector compo-
nents of such a field can even be independently
generated. Contrarily, in a truly two-dimensional vector
field, transverse propagation must be fulfilled in the
same plane in which the waves are actually propagating.
Dismissing the third dimension while obeying trans-
versality then results in a correlation among the vector
components of the field, eventually its left- and right-
handed projections.
We now adapt the paraxial model of Dennis [26] in order

to account for the correlations intrinsic to a 2D light field.
The key for explaining our results is that, in our system, the
electric field can be modeled as a superposition of TE
waves only. Note that we would find completely equivalent
results considering the in-plane component of a field
composed only of TM waves [54]. Contrarily, the coex-
istence of two independent TE and TM fields would add
one extra degree of freedom to the system. In the unlikely
scenario in which those two contributions have equal
wavelength and amplitude for a given optical frequency,
the results for the spatial correlation of C points would
revert back to those observed in a 2D slice of a 3D field
[54]. A TE mode in 2D can be expressed starting from a
scalar field Hz:

(a) (b)

FIG. 6. Pair correlation function gðrÞ for C points with the same (a) or opposite (b) handedness, and the same (gsame) or opposite (gopp)
topological index. Data points represent our experimental results, colored solid lines show our model for an isotropic 2D random field,
and solid gray lines are the 3D paraxial model [26]. The solid gray lines in panel (a) overlap exactly with the colored solid lines.
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Ex ¼ kyHz

Ey ¼ −kxHz; ð8Þ

which, by default, satisfies the transverse condition.
For a random wave field, we follow Berry’s hypothesis

and assume Hz to be an isotropic superposition of mono-
chromatic plane waves, each of them with a random phase
δk [53],

Hz ¼
X
jkj¼k0

expðik · rþ iδkÞ; ð9Þ

where δk is a random variable uniformly distributed in
½0; 2π�. The autocorrelation of such a scalar, random, wave
field is well known [53]: It is a Bessel function of order zero,

CzzðrÞ ¼
Z

dr0H�
zðr0ÞHzðr0 þ rÞ ¼ J0ðk0rÞ: ð10Þ

The autocorrelations of Ex and Ey are also known [38],
the main difference with CzzðrÞ being an anisotropic term
dependent on the orientation φ of r:

CxxðrÞ ¼
1

2
½J0ðk0rÞ þ cosð2φÞJ2ðk0rÞ�;

CyyðrÞ ¼
1

2
½J0ðk0rÞ − cosð2φÞJ2ðk0rÞ�: ð11Þ

Also highly relevant to our study is the cross term amongEx
and Ey, which exhibits the following correlation:

CxyðrÞ ¼
Z

dr0E�
xðr0ÞEyðr0 þ rÞ

¼ 1

2
sinð2φÞJ2ðk0rÞ: ð12Þ

This equation can be easily proven by carrying out the
integral in Fourier space and substituting the relations
ExðkÞ ∝ sinðθkÞδðjkj − k0Þ andEyðkÞ ∝ − cosðθkÞδðjkj −
k0Þ [38]. It is interesting to note that Ex and Ey only exhibit
correlation when displaced since CxyðrÞ lacks the term
proportional to J0, and J2ð0Þ ¼ 0.
With these correlation functions known, and given the

expression of ψ l and ψ r [Eq. (7)], we have all the
ingredients to compute the correlations among the circular
components of a TE random vector field. The autocorre-
lation of the left-handed component is

CllðrÞ ¼
Z

dr0ψ�
l ðr0Þψ lðr0 þ rÞ

¼ CxxðrÞ þ C�
yyðrÞ ¼ J0ðk0rÞ; ð13Þ

and similarly for CrrðrÞ. The result of Eq. (13) is also
identical to what we obtained in Eq. (10) for Hz, proving

that each separate circular component behaves as a random
scalar field. Similarly to Eq. (13), we can finally determine
the correlation among left and right circular components:

ClrðrÞ ¼ ½cosð2φÞ − i sinð2φÞ�J2ðk0rÞ ð14Þ

and

CrlðrÞ ¼ ½cosð2φÞ þ i sinð2φÞ�J2ðk0rÞ: ð15Þ

As elegantly explained by Berry and Dennis [53], the
autocorrelation function of a complex field contains all the
information needed to retrieve the pair and charge corre-
lation function of its phase singularities. In the case of C
points, i.e., phase singularities in the right- or left-handed
field component, the cross terms (Crl and Clr) are also
necessary. Following the same procedure of Berry and
Dennis, we first calculate the point density of singularities
in a scalar complex field, e.g., ψ l ≡ ψ 0

l þ iψ 00
l , which is

defined as

ρ½ul� ¼ δðψ 0
lÞδðψ 00

l Þ
���� ∂ψ

0
l

∂x
∂ψ 00

l

∂y −
∂ψ 0

l

∂y
∂ψ 00

l

∂x
����; ð16Þ

where δ indicates the one-dimensional Dirac delta function
and where, for compactness, we have introduced the real
vector ul ¼ ½ψ 0

l;ψ
00
l ; ∂xψ

0
l; ∂yψ

0
l; ∂xψ

00
l ; ∂yψ

00
l �T. An analo-

gous density can be defined for ψ r.
The pair correlation function between C points at two

different space points rA and rB and with opposite handed-
ness can now be written in a straightforward way as

gAðrB − rAÞ ¼
hρ½ulðrAÞ�ρ½urðrBÞ�i
hρ½ulðrAÞ�ihρ½urðrBÞ�i

: ð17Þ

In this equation, the notation hf½ulðrAÞ;urðrBÞ�i indicates the
statistical average of a generic f, the functional of the field
components and of their derivatives at different points in space.
Introducing the combined vector u ¼ ½ulðrAÞ;urðrBÞ�T, the
average can be explicitly written in the form

hf½u�i ¼ 1

ð2πÞD=2
ffiffiffiffiffiffiffiffiffiffiffi
detM

p
Z

dDu f½u�exp
�
−
1

2
uTM−1u

�
;

ð18Þ

where D is the dimension of the vector u andM is the matrix
of the correlations between the various components of u, i.e.,
Mij ¼ huiuji. These elements correspond to the correlations
between the different components of the left- and right-handed
fields that we have summarized above, as well as their spatial
derivatives. Similar expressions for different combinations of
the fields ψ l and ψ r and for specific choices of the index of the
singularities can be obtained from Eq. (17) with intuitive
modifications.
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In some particular cases [26,38,53], it is possible to
derive a closed analytical expression for averages of the
form in Eq. (17) by reducing the integrand to a quadratic
form and integrating with standard mathematical tech-
niques [55]. However, the specific form of the correlation
matrix in our model does not lend itself easily to applying
the formalism of Ref. [55]. This is because of the additional
correlations between the real and imaginary parts of the
field components, corresponding to the imaginary terms in
Clr and Crl [Eqs. (14) and (15)]. Nevertheless, the average
in Eq. (17) is particularly suited to numerical integration
with Monte Carlo techniques [56]. We therefore calculate
the pair correlation functions of C points and polarization
vortices in two steps. First, we analytically perform the
integral over the terms containing the Dirac delta functions
in the integrand of Eq. (17). Subsequently, we numerically
carry out the integration over the remaining variables, using
the multidimensional Monte Carlo method [56]. We also
validate our theoretical results by numerically simulating
the superposition of random plane waves with TE polari-
zation. The simulation results were all found in perfect
agreement with the theoretical ones and are therefore not
shown here.
We plot the theoretical expectations for the pair and

charge correlation functions in direct comparison with the
experimental data. In Fig. 4, we show the pair and charge
correlation function for C points in 2D random vector
waves and, in Fig. 6, the pair correlation functions for C
points with the same or opposite handedness, respectively.
For each of these curves, we find excellent agreement with
the experiment. In particular, the pair correlation functions
displayed in Fig. 6(b) for C points with opposite handed-
ness represent the major novelty introduced by the model
for 2D light. Among these functions, gAsame exhibits a
behavior that is extremely unusual for pair correlations
of this kind. Although this behavior is perfectly consistent
with the experimental observation, it might conceal further
interesting properties of random light confined in 2D.

V. CONCLUSIONS

In this work, we investigated the spatial correlation of C
points in 2D random light. We compared it to existing
theory and experiments for 2D slices through a 3D random
field in the paraxial regime. We demonstrated that confin-
ing the optical field to propagate in two dimensions induces
severe changes in the spatial distribution of its C points.
The shortage of degrees of freedom caused by the removal
of one dimension results in a correlation among the vector
components of the 2D light field. In the circular basis, this
results in a correlation among the oppositely handed
optical-spin components of light. One of the key conse-
quences was the observation that the chance of finding C
points with the same topological index actually increases
as their mutual distance goes to zero. This is an unusual
finding for dislocations of any kind. We quantify the

correlation between left- and right-handed spin for the
case of a TE field and incorporate it in a newly developed
theoretical model. Our results are general for in-plane
fields, including those of a TM mode as well. The outcome
of the 2D model is found to be in perfect agreement with
our experimental results. Given the unusual properties of
the ensemble of C points in 2D random vector waves, our
findings may trigger a reevaluation of concepts that are
considered pillars of singular optics and topological
defects, i.e., the sign principle [57] and topological screen-
ing [58]. Moreover, we anticipate that our results will
trigger investigations of the evolution of C points as a
function of external parameters, in order to explore phe-
nomena such as same-index attraction and the formation of
bound states among pairs of C points, which would be
compatible with our observed correlation functions.
Finally, the behavior of C points at short distances might
lead to more unexplored features such as polarization
vortices and higher-order singularities.
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