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We propose a new class of bosonic dark matter (DM) detectors based on resonant absorption onto a gas
of small polyatomic molecules. Bosonic DM acts on the molecules as a narrow-band perturbation, like an
intense but weakly coupled laser. The excited molecules emit the absorbed energy into fluorescence
photons that are picked up by sensitive photodetectors with low dark count rates. This setup is sensitive to
any DM candidate that couples to electrons, photons, and nuclei, and may improve on current searches by
several orders of magnitude in coupling for DMmasses between 0.2 eVand 20 eV. This type of detector has
excellent intrinsic energy resolution, along with several control variables—pressure, temperature, external
electromagnetic fields, and molecular species or isotopes—that allow for powerful background rejection
methods as well as precision studies of a potential DM signal. The proposed experiment does not require
usage of novel exotic materials or futuristic technologies, relying instead on the well-established field of
molecular spectroscopy and on recent advances in single-photon detection. Cooperative radiation effects,
which arise due to the large spatial coherence of the nonrelativistic DM field in certain detector geometries,
can tightly focus the DM-induced radiative emission in a direction that depends on the DM’s velocity,
possibly permitting a detailed reconstruction of the full 3D velocity distribution in our Galactic
neighborhood, as well as further background rejection.
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I. INTRODUCTION

Dark matter (DM), a form of nonrelativistic matter that
amounts to 25% of the energy budget of the Universe but
does not appear to emit light, is by now the conservative
option to explain a wealth of astrophysical and cosmo-
logical data that cannot otherwise be accommodated for
with the known interactions and particles in the Standard
Model (SM). The motion of stars in galaxies, the velocity
dispersion of galaxies in clusters, gravitational lensing by
galaxy clusters, temperature anisotropies in the cosmic
microwave background, baryon acoustic oscillation mea-
surements, and early-universe structure formation all point
to a new form of matter that is largely inert, save for
its gravitational interactions. Many questions remain

unanswered: What are the properties—mass, spin,
parity—of the dark matter particle(s)? What are its non-
gravitational interactions, if any? How is it produced?
While there are many possible answers to the first two

questions, the number of dark matter candidates dwindles
once you focus on the ones with a realistic production
mechanism. One such great DM candidate is the so-called
weakly interacting massive particle (WIMP), a type of
particle that may be produced with the correct relic abun-
dance in the early Universe through the thermal freeze-out
mechanism, provided it has a mass and interaction strength
close to the electroweak scale. Searches for WIMPs are still
in full swing, but previous iterations of both direct and
indirect detection experiments have come up empty, ruling
out the simplest implementations of this paradigm.
Ultralight, weakly interacting bosons constitute another

large category of DM candidates with a natural production
mechanism. Light spin-0 particles generically appear as
relics of inflation through field misalignment, while mas-
sive spin-1 particles acquire an abundance set by quantum
fluctuations during the last inflationary e-fold, among other
possible production channels. As long as they are suffi-
ciently weakly coupled such that they never reach thermal
equilibrium throughout the cosmological evolution, bosons
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as light as 10−21 eV can be cold DM, i.e., behave as an
inert, pressureless, nonrelativistic fluid.
These bosons can arise in many theories beyond the

Standard Model. The most famous example is the axion of
quantum chromodynamics (QCD), a light remnant in a class
of theories that can explain the smallness of the neutron’s
electric dipole moment (EDM). Topological complexity in
string compactifications naturally gives rise to a plenitude of
bosonic states, such as axions and spin-1 fields, also some-
times known as “dark” or “hidden” photons. These states
may easily have extremelyweak couplings to the SM, aswell
as very small masses. Scalar fields associated with the shape
and size of extra dimensions, as well as those that determine
fundamental constants in our vacuum, often called moduli,
can also couple very weakly and be extremely light. All of
these states are associatedwith the same ingredients that give
rise to the string landscape.
When bosons lighter than 15 eV make up a significant

fraction of the local DM energy density, their number
density is so large that there are many of them per de
Broglie wavelength volume. When that happens, their
superposition can be described as a classical field oscillat-
ing at a frequency set by the mass and a coherence time
determined by the inverse energy spread, roughly 106

periods of oscillation. This field also exhibits macroscopic
spatial coherence on a length scale of order its de Broglie
wavelength, 103 times larger than its Compton wavelength.
The amplitude of the field oscillation is proportional toffiffiffiffiffiffiffiffiffi
ρDM

p
, where ρDM is the local DM density.

In thiswork,we take advantage of this behavior to propose
a novel class of DM detectors. We describe how DM can act
as a laser that resonantly excites transitions in molecules
when its mass closely matches the transition energy, thus
utilizing the DM’s temporal coherence. Resonant absorption
of DM can excite molecules to a higher-energy state that is
otherwise not thermally occupied. This excited internal
molecular state decays via emission of a photon, which
eventually impinges onto a sensitive photodetector. Our
techniques are applicable to DM masses between 0.2 eV
and 20 eV and can probe a variety of DM candidates,
including axions, dark photons, and moduli. Two experi-
mental configurations are shown in Fig. 4. Molecular gas is
placed in a container capable of supporting moderately high
pressures. In the “bulk” configuration, a fraction of the
container walls are instrumented with large-area photo-
detectors, and the rest of the container boundary is lined
with an optically reflective coating to retain the isotropic
fluorescence. The second “stack” container exploits the
spatial coherence of DM to focus the emitted photons onto
a much smaller photodetector.
As we will show, the proposed setups have great intrinsic

energy resolution and other advantages that allow for
efficient background rejection and signal discrimination.
In Sec. II, we review the dynamics of a two-level system
under the influence of a nonrelativistic wave and the types
of molecular states and transitions that can be excited by

bosonic DM. Section III contains a more detailed descrip-
tion of our experimental setup and strategy, as well as a
discussion of backgrounds and signal discrimination tech-
niques. We provide estimates for the sensitivity of our setup
to scalar, pseudoscalar, and vector DM candidates in
Sec. IV. Finally, we compare our methods to other
proposals from the literature in Sec. V. The Appendix
shows that the calculations performed in the semiclassical
approximation throughout this work give—on average—
the correct results.

II. THEORETICAL OVERVIEW

In this section, we give an overview of the relevant
resonant absorption theory (Sec. II A), cooperative radiation
effects (Sec. II B), the energy eigenstates of diatomic
molecules (Sec. II C), and the types of the transitions between
them given certain operator structures of the dark matter
interactions (Sec. II D). Some of this material is not new;
we provide it merely to set up notation and give a self-
contained review.We use natural units withℏ ¼ c ¼ kB ¼ 1
throughout.

A. Resonant excitation of a two-level system

Consider first a single molecule with two internal energy
eigenstates j0i and j1i of an unperturbed Hamiltonian H0

under which they have a relative energy splitting ω0, with
j0i the lower-energy state. We may parametrize the most
general state of this system as

jΨi ¼ sin

�
θ

2

�
j0i þ cos

�
θ

2

�
e−iφj1i; ð1Þ

a two-parameter space in a superposition angle θ and a
relative phase φ, which jointly define the surface of the unit
(Bloch) sphere. The unperturbed time-evolution equations
of this system are simply _θ ¼ 0 and _φ ¼ ω0, determining
the interaction-picture states j00i ¼ j0i and j10i ¼ e−iω0tj1i.
We furthermore assume that the excited state has a radiative
decay rate of γ0 due to spontaneous emission of photons,
which will drive θ to π.
We are interested in the dynamics of this system

influenced by a weakly perturbing DM wave, in particular,
resonant absorption, can be perturbed by a harmonic
interaction Hamiltonian δHðtÞ with a small but nonzero
matrix element

h1jδHðtÞj0i ¼ Ωe−iα1 cosðωtþ α2Þ; ð2Þ
with α1 an extracted phase such that the Rabi frequency Ω
is real, and α2 an arbitrary phase. In Sec. II D, we develop
the necessary tools to calculate the dark matter’s Rabi
frequencyΩ given a nonrelativistic interaction Hamiltonian
with nucleons, electrons, and photons, for the molecular
states classified in Sec. II C. Here, we first derive the
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absorption rate given a certain Ω, allowing an estimate of
the minimum detectable δΩ later in Sec. III.
Our treatment is valid for any two molecular levels, but

the reader may keep in mind the analogous systems in
nuclear magnetic resonance (NMR) or electron spin res-
onance (ESR), of a spin-1=2 particle with gyromagnetic
ratio γ in a static magnetic field B0ẑ, as well as an
oscillating one δB cosðωtþ α2Þ. There exists an exact
mapping of the spin projection states j0i ≅ j↓i and j1i ≅
j↑i (with the interaction picture being the rotating frame),
the Larmor precession frequency ω0 ¼ γB0 and the Rabi
frequency Ω ¼ γjδB × ẑj, and the position on the Bloch
sphere denoting the direction of the spin expectation value.
Often, the classical interpretation of precessing spins gives
a useful intuition about the dynamics of the system.
Suppose the system starts in the ground state j0i at t ¼ 0,

at which point the DM wave is turned on. In the interaction
picture, where δHðtÞ contains a term proportional to
j1ih0j ¼ eiω0tj10ih00j, the state vector jψðtÞi evolves as
(for short times t > 0)

jΨðtÞ0i ¼ e−i
R

t

0
δH0ðt0Þdt0 j00i

≃ j00i − ie−iðα1þα2Þ Ω
2

eiðω0−ωÞt − 1

iðω0 − ωÞ j10i: ð3Þ

In the second line, we use perturbation theory that is first
order in δHðtÞ and discard rapidly oscillating terms of
frequency ω0 þ ω, which give small corrections upon
integration. For times t ≪ 1=maxfjω0 − ωj; γ0g, notice
that the system rotates into a partly excited state with θðtÞ ¼
π −Ωt and that the phase of the DMwave is imprinted onto
the molecule as φðtÞ ¼ π=2þ α1 þ α2 þ ωt.
Heuristically, the state vector keeps precessing into amore

excited state at angular velocity _θ ¼ −Ω until t ∼ 1=jω0 − ωj
when theDMwave and themolecule dephase relative to each
other, or until t ∼ γ−10 , the 1=e lifetime of the excited state,
whichever is shorter; thus, the maximum excitation proba-
bility is jh1jΨ0ðtÞij2 ∼Ω2=maxfjω0 − ωj; γ0g. At late times,
we therefore expect an equilibrium to be reached between
DM absorption and photon emission, each at a rate of
γ0jh1jΨ0ðtÞij2. This intuitive result is also borne out by the
fully quantized treatment in Ref. [1], where the absorption

rate Γð1Þ
absðωÞ for a single two-level system at late times

t ≫ γ−10 was found to asymptote to

Γð1Þ
absðωÞ ¼ γ0

Ω2=γ20
1þ 4ðω0 − ωÞ2=γ20

þOðΩ4; e−γ0t=2Þ; ð4Þ

for an excitation field in a coherent state. In theAppendix, we
show that over integration times of interest, Eq. (4) gives the
correct result even when the field mode is not in a coherent
state, as well as when the average occupation number in the
mode becomes so low that the semiclassical approximation
breaks down.

One would naively think that extending this result to
N ¼ np0V molecules, of number density n in a volume V,
and probability p0 of occupying the state j0i, would be

trivial, with a total absorption rate of NΓð1Þ
absðωÞ. However,

this is not correct because it ignores cooperative effects due
to the fact that the molecules interact with common
excitation and radiation fields. First, the nonrelativistic
DM wave is expected to be phase coherent over lengths of
order 1=mv0, with v0 ∼ 10−3 a measure of the DM’s local
velocity dispersion; thus, roughly the same phase φ is
imprinted on the molecules within a sphere of this radius.
Second, the radiation from nearby phase-matched mole-
cules generally interferes—constructively for separations
close to an integer number of photon wavelengths 2π=ω
and destructively for separations equal to a half-integer
number of wavelengths.
In the next subsection, Sec. II B, we explore these

cooperative effects in more detail. In general, we find that
the total radiative width of N molecules is not simply Nγ0
but Nr̄γ0, with r̄ an “average cooperation number” that can
easily be much larger than unity. This leads to the
surprising result that the radiative width per molecule is

γrad ¼ r̄γ0 ð5Þ

and depends on the molecular density, on the DM’s phase
coherence structure, and on the container size and geom-
etry. For example, for a rectangular container of thickness
Rz > 1=m and where the other two dimensions are very
large compared to the DM’s de Broglie wavelength, we find
in Sec. II B that, for noninteracting molecules,

r̄≃1þ8πnp0

m4Rz
≈1þ5.1×106

mRz

�
1 eV
m

�
3
�
np0

n0

�
; ð6Þ

with n0 the number density at standard conditions for
temperature T ¼ 273 K and pressure P ¼ 1 bar. We define
p0 as the thermal occupation probability of the state j0i.
Indeed, we find r̄ ≫ 1 for all but the largest and most dilute
containers (before taking into account decoherence). For a
vertical stack of slabs, the average cooperation number can
be even larger by an amount S̄, which, in an optimal
arrangement, is equal to the number of slabs in the stack
within a coherence length.
An electric dipole transition has a spontaneous emission

rate γ0 ¼ jμ1;0j2ω3
0=3π, where μ1;0 is the electric dipole

matrix element between j0i and j1i. In a stack of thin slabs,
this then implies a radiative width at large r̄ of

γrad≃
8np0S̄jμ1;0j2

3mRz

≈5.5×1010 Hz
p0S̄
mRz

�
n
n0

�� jμ1;0j
0.1ea0

�
2

: ð7Þ
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For a single slab, S̄ ¼ 1 by definition; for a large stack of
slabs, it can be as large as S̄ ∼ 1=v0 (see Sec. II B for
details).
Finally, we are led to a total steady-state absorption and

emission rate of

ΓðNÞ
abs ðω;ω0Þ ≃ Nγrad

Ω2=γ2rad
1þ 4ðω0 − ωÞ2=γ2rad

: ð8Þ

We note that on resonance, when jω − ω0j ≪ γrad, the
absorption rate is density independent, while the width of
the resonance scales linearly with number density because
γrad ∝ r̄ ∝ n. Off resonance, when jω − ω0j ≫ γrad, the rate
of DM absorption and subsequent photon emission scales
as ∝ n2, where it can be regarded as a coherent conversion
of DM into photons.
Besides radiative broadening, there are several other

sources of resonance broadening, all of which we have
ignored up until now. In an initial DM search, the only other
broadening mechanism of importance is collisional broad-
ening, as it is the only other one enhanced at high number
densities. We treat both the DM signal’s frequency width
and Doppler broadening in Sec. III D and nonradiative
quenching in Sec. III B. Inhomogeneous broadening is
always negligible. The effects of molecular collisions can
be complex but are often well modeled by the “impact
approximation,” whereby molecules are unperturbed
between collisions but any state gets dephased to a new
random phase between 0 and 2π when it collides elastically
with other molecules [2]. (Inelastic collisions, where
internal energy is exchanged between the molecules,
typically occur less frequently.) Under these assumptions,
effects from collisions lead to a Lorentzian line shape
gcol0 ðω0

0;ω0Þ ¼ ½2=ðπγcolÞ�f1=½1þ ðω0
0 − ω0Þ2=γ2col�g, with

the mean collision rate per molecule

γcol ¼ nσcol

ffiffiffiffiffiffiffiffiffiffi
3T
Mmol

s

≈1.1×1010 Hz

�
n
n0

��
σcol
102 Å

� ffiffiffiffiffiffiffiffiffiffiffiffi
T

273K

r ffiffiffiffiffiffiffiffiffiffiffi
40mp

Mmol

s
ð9Þ

in terms of the number density n, an average collision cross
section σcol, the temperature T, and the total molecular
mass Mmol (taken to be 40 proton masses mp in the
numerical estimate) [3,4]. The size of the elastic collision
cross section as defined above is typically somewhat larger
than the geometric size of the molecule. In the NMR/ESR
analogy, γ−1col is the equivalent of the transverse spin
relaxation time T2, the timescale over which a pair of
spins dephase due to magnetic dipole interactions.
We can fold the effects of collisions into the total

absorption rate formula, via the convolution Γabsðω;ω0Þ ¼R∞
0 dω0

0g
col
0 ðω0

0;ω0ÞΓðNÞ
abs ðω;ω0

0Þ, which yields

Γabsðω;ω0Þ ≃ Nγ
Ω2=γ2

1þ 4ðω0 − ωÞ2=γ2 ; ð10Þ

with γ ≡ γrad þ 2γcol. We should also note that the dephas-
ing caused by the collisions also modifies the radiative
width to γrad ≃ γ0 þ ηcohðr̄ − 1Þγ0, with ηcoh given by
Eq. (30). Even so, it is still roughly true that γ ∝ n, so
the absorption rate is density independent on resonance and
scales as n2 off resonance.
A molecular sample in the gas phase will be at finite

temperature, so typically a number of states will have
appreciable occupation probability p0. The initial thermal
state usually has non-negligible support over several rota-
tional states (sometimes also excited vibrational states) of the
molecule, each occupied with the Boltzmann probability

p0;j ¼
e−Ej=TP
ke

−Ek=T
; ð11Þ

with j, k labeling all possible molecular states, each with
energy Ej. One can view the total molecular population as
several independent subpopulations j with total numbers
Nj ¼ p0;jnV. Furthermore, each subpopulation will be
sensitive to dark matter excitations at a set of transition
energies fω0;jg (not just oneω0 as assumed above) far above
the temperature T. This set of transition energies will be
different for each subpopulation. The dense discretuum of
states makes gas-phase molecules an effective multimode
resonant system.

B. Cooperative radiation

The increased per-molecule radiativewidth of Eq. (5) is a
phenomenon known as cooperative radiation, closely
related to the phenomenon of superradiance first described
at length in Ref. [5]. Cooperative effects are particularly
dramatic for the emission following absorption of bosonic
dark matter rather than photons due to the DM’s non-
relativistic nature, which gives a DM wave a larger phase
coherence length (by a factor of 1=v0) than an electro-
magnetic wave of the same energy.
This type of cooperative emission can be understood in

classical wave mechanics, as it is simply due to the principle
of superposition. Going back to the analogy between the
two-level quantum molecular system and a precessing spin
in a magnetic field, if the spins in a NMR/ESR sample are
precessing in phase, they produce an effective magnetic
dipole momentN times larger than that of a single spin. The
radiated power then scales as N2, leading to a radiation
reaction force per spin that is linearly proportional to N, in
direct analogy to the Abraham-Lorentz force on an oscillat-
ing charge. This damping force leads to a characteristic
damping rate—and thus emission rate—proportional to the
density of spins, just as in Eqs. (5) and (6).
In the rest of this section, we perform a semiclassical

computation of the cooperation number r̄, a dimensionless
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number that parametrizes to what extent the radiation of
different molecules interferes. For independent emitters, r̄
is defined to be unity. However, constructive (or destruc-
tive) interference means that r̄ ¼ 1þOðnÞ, in general. We
find below that r̄ depends on the phase coherence structure
of the excitation source, as well as on the container
geometry. In addition, for certain container geometries,
the coherent emission can be highly directional.
Suppose we have a container of volume V filled with N

molecules at discrete positions x0 ∈ V at large and uniform
density n ¼ N=V. The molecules are coherently excited by
dark matter, which causes each of them to radiate a field at a
spacetime point ðt;xÞ of the form

Aðt;x;x0Þ ¼ q
4πjx − x0j cos ½ωðt − jx − x0jÞ þ αðv;x0Þ�:

ð12Þ

In reality, the molecules will, of course, emit photons; as a
proxy, we use massless scalar radiation to illustrate the
essential physics. (We comment on the negligible impact of
this simplification at the end of this subsection.) Also for
simplicity, we ignore the kinetic-energy contributions to the
frequency of the wave and thus take ω ¼ m. In Eq. (12), q
is an effective “charge” set by the coupling of the molecule
to DM as well as to the radiation field. The phase αðv;x0Þ of
the DM wave is random: For a single velocity component v
of the whole DM ensemble, it can be written as

αðv;x0Þ ¼ αv −mv · x0: ð13Þ

However, the DM wave is an incoherent superposition of
many waves of different v and randomly distributed initial
phase αv. We expect the DM to be approximately virialized
in our Galaxy, with the kinetic energy having a Maxwell-
Boltzmann probability distribution, which translates into a
velocity probability density

fðvÞ ¼
�

1

πv20

�
3=2

exp

�
−
ðv − vlabÞ2

v20

�
; ð14Þ

where v0 ≈ 235 km=s is a measure of the DM velocity
dispersion [6–8]. We have boosted to the laboratory frame,
which moves through the Galactic rest frame at velocity
vlab. This relative velocity vlab ¼ v⨀ þ v⨁ is a vector sum
of the Sun’s velocity v⨀ ≈ 220 km=s in the DM’s rest
frame, plus the Earth’s orbital velocity v⨁ ≈ 30 km=s
around the Sun [9,10]. More accurately, this distribution
should have a velocity cutoff at the Galactic escape velocity
vesc ≈ 550 km=s [11], but we ignore this complication as it
will not significantly affect the results below.
The expected field at ðt;xÞ from a single molecule at x0 is

trivially zero,

hAðt;x;x0Þiv;α≡
Z

d3vfðvÞ
Z

2π

0

dαv
2π

×cos ½mðt− jx−x0jÞþαðv;x0Þ�¼0; ð15Þ

because the phase average of cos½αþ…� returns zero. Note
that averaging over the initial DM phases αv automatically
takes care of time averaging. Thus, the same must also be
true for the total field from all molecules in the volume V:

hAtotðt;xÞiv;α ≡
X
x0∈V

hAðt;x;x0Þiv;α ¼ 0: ð16Þ

The total emitted energy densitym2hA2
toti does not vanish,

as the square of the total field has the expectation value

hAtotðt;xÞ2iv;α ¼
��X

x0
Aðt;x;x0Þ

��X
y0
Aðt;x; y0Þ

��
v;α

¼
X
x0

hAðt;x;x0Þ2iv;α

þ
X
x0

X
y0≠x0

hAðt;x;x0ÞAðt;x; y0Þiv;α

≃
Z
V
d3x0nðx0Þ q2

2ð4πÞ2L2

þ
Z Z

V
d3x0d3y0nðx0Þnðy0Þ q2

2ð4πÞ2L2

×
Z

d3vfðvÞ cos ½mðx̂ − vÞ · ðx0 − y0Þ�

≡ q2

2ð4πÞ2L2
nVrðx̂Þ: ð17Þ

In the second line, we separate independent radiation
terms and “cooperative” radiation terms, the latter of which
capture interference effects. To get to the third line, we
replace sums with integrals as

P
x0 →

R
V d

3x0nðx0Þ, use
Eq. (12), and average over time/phase. We also take the far-
field limit, with jx − x0j ≃ L − x̂ · x0 (which gets simplified
further to just L in the denominator factors) for all x0 ∈ V
and where x̂ is a unit vector along the line-of-sight
direction. In the last line, we write the answer as the square
of the total field from a single molecule q2=½2ð4πÞ2L2�,
times the number of molecules nV, times a “directional
cooperation number”:

rðx̂Þ ¼ 1þ n
V

Z Z
V
d3x0d3y0gðx̂;x0 − y0Þ: ð18Þ

The correlation function gðx̂;x0 − y0Þ itself is defined as

gðx̂;x0 − y0Þ≡
Z

d3vfðvÞ cos ½mðx̂− vÞ · ðx0 − y0Þ�: ð19Þ

For the Boltzmann distribution of Eq. (14), we can evaluate
this exactly:
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gBðx̂;x0 − y0Þ ¼ exp

�
−
m2v20
4

ðx0 − y0Þ2
�

× cos ½mðx̂ − vlabÞ · ðx0 − y0Þ�: ð20Þ

One can attribute the rapidly oscillating cosine factor
mostly to the photon path length difference between
jx − x0j and jx − y0j, with a longer-range modulation
proportional to vlab from the coherent phase imprinted
on the molecules by DM. The much more smoothly varying
Gaussian exponential factor quantifies the phase correlation
between the states of two molecules with a separation of
jx0 − y0j and a coherence length of 2=mv0, equal to 0.5 mm
for m ¼ 1 eV. A similar correlation function was found to
describe signals of bosonic dark matter in pairs of detectors
located at different points in spacetime [12].
A directional cooperation number rðx̂Þ greater than unity

means that the radiation constructively interferes in the
direction x̂. Take, for example, the simplest and also most
spectacular case, inwhich allNmolecules are locatedwithin
a DM’s Compton wavelength of each other, jx0 − y0j ≪
1=m, ∀x0, y0 ∈ V. In that case, the correlation function
gBðx̂;x0 − y0Þ is unity for all directions and all separations,
so rðx̂Þ ¼ N, with perfect constructive interference.
Another instructive example is that of a rectangular

prism with sides of lengths Rx, Ry, and Rz aligned with the
x, y, and z axes, respectively. For fðvÞ as in Eq. (14), we
can calculate rðθ;φÞ, the cooperation number for radiation
at an angle θ relative to the z axis, and at an angle φ in the
xy plane, as

rðθ;φÞ¼1þ n
m3

I½R̃x;βx;v0�I½R̃y;βy;v0�I½R̃z;βz;v0�
R̃xR̃yR̃z

: ð21Þ

Above, we have defined the dimensionless lengths
R̃i ≡mRi, and the quantities βx ≡ sin θ cosφ − vlab;x,
βy ≡ sin θ sinφ − vlab;y, and βz ≡ cos θ − vlab;z. We also
define the integral function

I½R̃; β; v0�≡
ZZ

R̃

0

dx0dy0e−ðv
2
0
=4Þðx0−y0Þ2þiβðx0−y0Þ

≃

8>>><
>>>:

R̃2 jβj ≪ v0 & R̃ ≪ v−10
2
ffiffi
π

p
R̃

v0
jβj ≪ v0 & R̃ ≫ v−10

2 − 2e−
v2
0
4
R̃2

cos R̃ jβ − 1j ≪ 1:

ð22Þ
The limiting cases quoted in the second line are correct up
to Oðv0Þ fractional error or better. Around jβj ¼ 0 and for
large R̃, the integral function falls off very steeply
as I ∝ expð−β2=v20Þ.
For a prism smaller than a 1=m on all sides, we recover

the previous result of direction-independent coherent
emission with rðθ;φÞ ¼ 1þ nRxRyRz, up to Oð1=NÞ
fractional corrections. More surprising effects occur when

some of the dimensions become large. For a “slab” with,
e.g., Rx, Ry ≫ 1=mv0, we find, to a good approximation,

rðθ;φÞ ¼ 1þ n
m3

8π

v20

1 − e−ðv20=4ÞR̃2
z cos R̃z

R̃z
exp

�
−
β2x þ β2y

v20

�
ð23Þ

for θ ≪ 1. The full angular dependence of the radiation
from a single slab is depicted in Fig. 1. We find that the
coherent piece of the emission is highly focused, with 84%
of the coherent radiation contained in a cone of angular
radius v0 ≈ 0.78 × 10−4 rad and 99.5% within twice that
opening angle. For random angles θ, φ ∼ 1 and Rz ≳ 1=m,
one would typically find a much smaller cooperation
number rðθ;φÞ ∼ 1þ n=ðm6RxRyRzÞ. The coherent radia-
tion cone is very nearly perpendicular to the slab, with the
center of the cone ðθc;φcÞ slightly offset from θ ¼ 0 by an
amount determined by the lab velocity through theDMhalo:

θc ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2lab;x þ v2laby

q
; ð24Þ

φc ¼ arccot
vlab;x
vlab;y

: ð25Þ

The dependence of the emission cone’s size and center on
the DM’s velocity dispersion v0 and average velocity vlab is
illustrated in Fig. 1. In this way, a measurement of the
angular distribution of the coherent radiation constitutes a
measurement of the DM velocity distribution, including
precise directional information.

FIG. 1. Angular dependence of the logarithmic intensity
emitted by a molecular gas at large cooperation number r̄ ≫ 1

in a slab-shaped container with dimensions R̃x ¼ R̃y ¼ 103 and
R̃z ¼ 1, whose orientation is depicted by the blue prism. The
intensity is exponentially peaked in the directions close to the
normal vector of each of the faces, and it is largest, by far, along
the z direction, perpendicular to the two largest faces of the
container. For illustrative purposes, we pick v0 ¼ 10−2 and
vlab ¼ 0, while we also exaggerate the thickness of the slab.
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For a thin slab, the coherent radiation can dominate the
isotropic, incoherent fluorescence. The appropriate mea-
sure is the average cooperation number

r̄ ¼ 1

4π

Z
π

0

dθ
Z

2π

0

dφrðθ;φÞ: ð26Þ

When r̄ ≫ 1, most of the outgoing radiation will be
coherent. More precisely, the fraction of the radiation that
is coherent is 1 − r̄−1. For the thin slab, we find

r̄ ¼ 1þ 4πn
m3

1 − e−ðv20=4ÞR̃2
z cos R̃z

R̃z
: ð27Þ

For the small v0 under consideration, the second fraction
has a maximum value of 0.72 at R̃z ≈ 2.3, with subleading
local maxima of f0.21; 0.13; 0.091;…;∼2=R̃zg at
R̃z ≈ f9.2; 15.6; 21.9;…; g. Numerically, we then find that
the coherent emission can easily dominate for a gas (in the
absence of decoherence due to, e.g., collisions) in a slablike
container at standard atmospheric conditions and assuming
(locally) optimal thickness Rz, as we have previously
shown in Eq. (6).
The fact that the cooperation number in Eq. (27) is

inversely proportional to the thickness at large Rz indicates
that cooperative radiation is a surface effect rather than a
bulk effect. We expect the scaling of r̄ inversely propor-
tional to the (smallest) linear size R of the container to hold

for any simply connected, convex container volume for
R ≫ 1=mv0. Furthermore, we expect this scaling and the
overall value of r̄ to be quite insensitive to the particular
shape of the velocity distribution fðvÞ.
For disjoint container volumes, it is clear that construc-

tive interference of the radiation from any pair of molecules
in separate containers can be ignored if the containers are
separated by more than a coherence length 1=mv0. When
the containers are closer together, it is more appropriate to
replace the sums

P
x0∈V with integrals

R
V d

3x0nðx0Þ and a
piecewise uniform density nðx0Þ, such that

rðx̂Þ ¼ 1þ
RR

V d
3x0d3y0nðx0Þnðy0Þgðx̂;x0 − y0ÞR

V d
3x0nðx0Þ : ð28Þ

Disjoint container volumes may thus be arranged such that
they interfere with each other in a controlled way. An
important example is that of a stack of Ns identical thin
slabs (from the previous example) placed at regular
intervals along the z axis, their centers a distance L apart.
When the spatial periodicity along the z axis is an integer
number of wavelengths L ¼ k2π=m, k ¼ 1; 2;…, then the
radiation from each slab constructively interferes with that
of another, at least in the z direction and for slabs within a
coherence length. The full calculation of the directional
cooperation number for such an arrangement is quite
tedious, but it can be done numerically with Eq. (28).
Roughly speaking, the outcome is that the cooperation
number of the stack is enhanced relative to rðθ;φÞ for the
single slab calculated in Eq. (27) by an amount Sðθ;φÞ:

rstackðθ;φÞ
rðθ;φÞ ≡ Sðθ;φÞ ∼

	
Ns NSL ≪ 1=mv0
1=kv0 NSL ≫ 1=mv0:

ð29Þ

At best, the average cooperation number can be enhanced
by about a factor of S̄ ∼ 1=v0 for a judiciously chosen slab
separation L ¼ 2π=m.
The above analysis has so far ignored decoherence, as it

has implicitly assumed that each identical molecular system
has retained its internal-state phase imprinted on it by the
DM wave. Elastic collisions between the molecules will
scramble the molecular phases, destroying any constructive
interference in the radiation and driving r → 1 if it occurs at
too large a rate. We estimate the coherent part of the
radiative rate to be suppressed by the coherence efficiency

ηcoh ≃
ðr̄ − 1Þγ0
r̄γ0 þ 2γcol

; ð30Þ

in the presence of collisional broadening of width γcol as in
Eq. (9). This efficiency factor quantifies the fraction of the
radiation emitted coherently [i.e., by the second term in
Eq. (17)], with angular dependence proportional to
rðx̂Þ − 1. The rest will be emitted isotropically. To focus

FIG. 2. Density plot of the logarithmic intensity as measured by
a horizontal screen placed far above a thin slab in the xy plane,
zoomed in on the directions close to the normal vector defined by
θ ¼ 0, which pierces the screen at the location of the dot shown.
The angular radius of the main emission region is the expected
DM velocity dispersion measure v0 ≈ 0.78 × 10−4 rad. The
vector shows the angular offset of the cone’s center to the
normal; its magnitude and direction are given by the projection
vlab⊥ of the average DM velocity vlab onto the xy plane in the lab
frame.
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the majority of the total radiative emission, one needs
ηcoh > 1=2 or ðr̄ − 1Þγ0 > γ0 þ 2γcol.
We have shown that even for the case where any

individual molecule emits a spherical scalar wave, the
phase coherence of the nonrelativistic DM wave can
conspire with certain detector geometries to yield the
highly nonisotropic radiation pattern of Fig. 1. In all cases
of interest, a single molecule will actually emit a vector
fieldA in the usual dipole emission pattern, with a direction
determined by DM properties. However, polarization of A
and the orientation of the dipole antenna pattern will have at
least as large a correlation length as the phase αðv;x0Þ. The
actual emission pattern at any time will thus be the
convolution of a dipole pattern with the antenna pattern
of Fig. 1, leading to no change at all when averaged over
long integration times.

C. Energy eigenstates of diatomic molecules

In this section, we provide a short but self-contained
review of the types of molecular states, focusing, in particu-
lar, on the simplest system—the diatomic molecule—
for pedagogical reasons. The classification below is a
prerequisite to illustrate the different types of transitions
that can be induced by dark matter; readers familiar with this
material can skip ahead to Sec. II D. Our abridged treatment
below is almost entirely based on Ref. [13].
The full Hamiltonian of a neutral, diatomic molecule in

the absence of external fields is

H0 ¼
X2
N¼1

−∇2
N

2MN
þ

XZ1þZ2

n¼1

−∇2
en

2me
þ αZ1Z2

jR1 − R2j

þ
XZ1þZ2

n<m

α

jren − rem j
−

XZ1þZ2

n¼1

X2
N¼1

αZN

jren −RN j
: ð31Þ

Here, M1 and M2 are the two nuclear masses and the
electron mass, α the fine-structure constant, Z1 and Z2

the nuclear charges, and −i∇N (RN) and −i∇en (ren) the
momentum (position) operators for the Nth nucleus
and nth electron. We neglect spin-orbit coupling and
relativistic corrections for the rest of this discussion; the
results in this subsection and Sec. II D are only valid insofar
as ZN ≪ 1=α.
Because of the large mass splitting of the nuclear masses

and the electron mass—me=MN ranges from 10−3 to 10−5

for light and heavy nuclei—the Hamiltonian H0 is sepa-
rable into “fast” electronic motion and “slow” nuclear
motion (the Born-Oppenheimer approximation). Its inter-
nal energy (i.e., discounting translational motion) eigen-
states jΨki with energy Ek can be written as

H0jΨki ¼ EkjΨki
≃ ½Eel

k þ Evib
k þ Erot

k �jχelk ijψvib
k ijYrot

k i; ð32Þ

with thewave function jΨki factorized into one for electronic
motion jχelk i, one for nuclear vibrational motion jψvib

k i, and
one for nuclear rotational motion jYrot

k i. The separability is
manifested in the fact that transitions in the rotational and
vibrational states leave the electronic state unaltered to a
good approximation and that the vibrational motion and
rotational motion are largely factorized from each other.
Different electronic states generally have different effective
vibrational and rotational Hamiltonians, however.
Integrating out the electronic motion gives rise to a

Hamiltonian of the form

Hcm;rot;vib ¼ −∇2
Rcm

2Mmol
þ −∇2

R

2M
þ UðRÞ; ð33Þ

where we write the nuclear kinetic energies in terms of the
center-of-mass momentum operator −i∇Rcm

conjugate to
Rcm ≡ ðM1R1 þM2R2Þ=ðM1 þM2Þ, and the relative
momentum operator −i∇R conjugate to the internuclear
separation vector R≡ R2 − R1. We also define the total
molecular mass Mmol ≡M1 þM2 and the reduced nuclear
mass M≡M1M2=ðM1 þM2Þ. The relative kinetic energy
can be written out as

−∇2
R

2M
¼ −1

2M

�
1

R2
∂RðR2∂RÞ −

J2

R2

�
; ð34Þ

where J2 is the molecule’s angular momentum operator

J2 ¼ −
�

1

sin θ
∂θðsin θ∂θÞ þ

1

sin2θ
∂2
ϕ

�
: ð35Þ

Parametrically, electronic energy splittings are of order
ΔEel ∼ α2me, and so is the binding energy Uð∞Þ −UðReÞ.
The equilibrium radius Re is of order the Bohr radius
a0 ¼ 1=ðαmeÞ. Vibrational energy splittings turn out to be
of order ΔEvib ∼ α2meðme=MÞ1=2, while rotational energy
splittings are yet lower at order ΔErot ∼ α2meðme=MÞ, as
we will see below. This hierarchy of scales is important, as
it endows the molecules with a large set of absorption lines
that is finely spaced and uniformly distributed in terms of
transition energy, as we explore further in Sec. II D.

1. Rotational states

In anticipation of the hierarchy of vibrational and rota-
tional energies, we can take R ≃ Re constant and study just
the rotational spectrum (“rigid-rotor” approximation). At
fixed R, the Hamiltonian simplifies to

Hrot ¼ BeJ2; ð36Þ
where the energy scale Be ¼ 1=ð2MR2

eÞ is half the inverse
moment of inertia of the molecule. The energy eigenstates
of this operator are just the spherical harmonics jJMi≡
jYJMðθ;ϕÞi, with J ¼ 0; 1; 2;… and M ¼ −J;−J þ 1;…;
þ J, which have the (2J þ 1)-fold degenerate energies

ARVANITAKI, DIMOPOULOS, and VAN TILBURG PHYS. REV. X 8, 041001 (2018)

041001-8



Erot
J ¼ BeJðJ þ 1Þ. [These results hold true if the electronic

level has zero spin S and zero orbital angular momentum Λ
projected along the z axis (see Sec. II C 3 for definitions). For
Λ ¼ 0 but S ≠ 0, each J level gets split into (up to) 2Sþ 1
sublevels, “Hund’s case (b).” For Λ ≠ 0, “Hund’s case (a),”
the J levels get split into two of opposite reflection symmetry
σv, and J has a lower bound of jΩj≡ jΛþ Σj, whereΣ is the
component of the electron spin projected onto the molecu-
lar axis.]
For example, the ground state J ¼ 0 and the first excited

state J ¼ 1 are split by 2Be ≃ 1=ðMR2
eÞ ∼ α2meðme=MÞ,

after approximating Re ∼ a0 ¼ 1=ðαmeÞ. The rotational
constant Be typically varies by Oð1Þ for different electronic
states, as they stabilize the nuclei at different equilibrium
separations. The variation of Be among different vibrational
states is much weaker and can be modeled by a correction
factor αe:

Erot
v;J ¼ BeJðJ þ 1Þ − αe

�
vþ 1

2

�
JðJ þ 1Þ; ð37Þ

with v the vibrational quantum number (see below). The
minus sign indicates that higher vibrational states typically
have lower expectation values h1=R2i. From naive dimen-
sional analysis,αe=Be ∼ ðme=MÞ1=2. Other corrections to the
rigid-rotor approximation include centrifugal distortion, usu-
ally denoted by another correction term of the form
DeJ2ðJ þ 1Þ2, which is even smaller (De=Be ∼me=M)
and will be ignored hereafter.

2. Vibrational states

Allowing for a dynamical internuclear separation R, we
can integrate in the vibrational spectrum. Taking the
energy eigenstate wave functions to be hRθϕjψvibYroti ¼
ψ̃vðRÞYJMðθ;ϕÞ=R, we find that the radial wave function
ψ̃vðRÞ obeys the Schrödinger equation�

−
1

2M
d2

dR2
þUðRÞ þ JðJ þ 1Þ

2MR2

�
ψ̃vðRÞ ¼ Evib

v : ð38Þ

At leading order, we can ignore the R dependence of the
third term, the centrifugal potential, since it is typically a
small correction to UðRÞ. In that case, the vibrational
energy eigenvalues and eigenfunctions become J indepen-
dent. For a bound diatomic, the potential UðRÞ has a
minimum at some R ¼ Re, near which it can be approxi-
mated by a harmonic oscillator potential:

UðRÞ ≃Mω2
e

2
ðR − ReÞ2; ð39Þ

which has eigenstates jvi with energies

Evib
v ¼ ωe

�
vþ 1

2

�
ð40Þ

for v ¼ 0; 1; 2;…. By naive dimensional analysis (NDA),
UðRÞ must vary by an amount Oðα2meÞ over distances

Oða0Þ, so the effective spring constant ke ≡Mω2
e must be

Oðα4m3
eÞ. It follows that vibrational energy splittings

are ωe ∼ α2meðme=MÞ1=2.
Anharmonicities in the vibrational potential can be

modeled by the Morse potential:

Mω2
e

2
ðR − ReÞ2 → De½1 − e−aðR−ReÞ�2; ð41Þ

which has closed-form eigenfunctions with the exact
eigenvalues

Evib
v ¼ ωe

�
vþ 1

2

�
− ωexe

�
vþ 1

2

�
2

; ð42Þ

where ω2
e ≡ 2a2De=M and ωexe ≡ ω2

e=4De. The approxi-
mation above is typically valid for Evib ≪ ω2

e=ωexe. In
other words, one recovers a pure harmonic oscillator for
dissociation energy De → ∞ while keeping the spring
constant fixed at ke ¼ 2a2De.

3. Electronic states

The electronic structure and wave functions are more
complicated than those of vibration-rotation modes.
Nevertheless, the electronic levels can be classified accord-
ing to their symmetry structure.
Because of the mass hierarchy between the electron and

the nuclei, we can take the internuclear separation R ¼ Rẑ
as parametrically fixed to point along the z axis. (Note that
we are thus temporarily adopting molecule-fixed coordi-
nates that are corotating with the molecule rather than the
space-fixed coordinates of the previous section.) One can
find the electronic wave function and energy parametrically
as a function of R, with the minimum of energy being Te at
the equilibrium radius Re of the level under consideration.
Knowing this parametric potential energy function UðRÞ
also allows one to compute the vibration-rotation quantities
like, e.g., ωe and Be, which, in general, depend on the
electronic level. In the Born-Oppenheimer approximation
with factorizable motion of the electrons and the nuclei, we
can consistently expand the energy eigenvalues in those of
the electronic Hamiltonian with rovibrational fine structure
for each electronic level (the total level labeled by k):

Eel
k ¼Te;kþωe;k

�
vkþ

1

2

�
−ωe;kxe;kðvkþ1=2Þ2

þBe;kJkðJkþ1Þ−αe;k

�
vkþ

1

2

�
JkðJkþ1Þ: ð43Þ

Conventionally, the Te;k are measured relative to the
minimum of the lowest electronic state, which is taken
to have Te;k ¼ 0.
A diatomic molecule exhibits cylindrical symmetry, so

the projection of the electronic angular momentum Lz
around the molecular axis is a good quantum number when
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the spin-orbit coupling is small. Hence, we can classify
electronic energy eigenstates according to their (molecule-
fixed) ϕ dependence:

Lzjχeli ¼ Lze�iΛϕjχ0eli ¼ �Λe�iΛϕjχ0eli ¼ �Λjχeli:

States with Λ ¼ 0; 1; 2; 3;… are conventionally denoted by
the letters Σ;Π;Δ;Φ;…. Reflections around any plane
through the molecular axis are also symmetries of the
system, so eigenstates with Λ ¼ 0 can be labeled by
whether their wave functions are even (þ) or odd (−)
under such reflections, which are denoted by the operator
σv. In the absence of spin-orbit coupling, total spin S and
spin projection Sz onto the molecular axis are also good
symmetries, with quantum numbers S and Σ that can be
half-integers. Finally, homonuclear diatomics (those with
identical atoms) give rise to potentials for the electrons that
are symmetric about the molecule-fixed inversion i, which
takes ðx; y; zÞ → ð−x;−y;−zÞ. Hence, the electronic states
can be categorized into those that are even (g) and odd (u)
under i. For example, a homonuclear diatomic state with
S ¼ Λ ¼ 0 that is even under σv and i would be denoted by
1Σþ

g , whereas a heteronuclear diatomic state with spin S and
orbital angular momentum Λ ¼ 1 would be denoted by
2Sþ1Π. Finally, we note that the electronic wave function
must return to a sum of separated-atom wave functions in
the limit R ≫ Re, so there exists a one-to-one correspon-
dence between molecular orbitals and combinations of
atomic orbitals. For the purposes of this discussion, we
ignore complications due to spin-orbit coupling and nuclear
spin symmetries; more details can be found in Ref. [13].
In Fig. 3, we depict a typical set of potential energy

curves UðRÞ for five different electronic states in a
hypothetical diatomic molecule. Insofar as the relative
nuclear motion factorizes from the electronic motion,
one can then compute the vibrational wave functions
ψvðRÞ in the potential well defined by UðRÞ for each
electronic state separately. In the Born-Oppenheimer
approximation, vibrational states can be excited within
one electronic level. However, transitions between different
electronic levels are generally accompanied by a change in
vibrational quantum number, as the initial vibrational state
can be projected onto any one out of a number of vibra-
tional eigenstates of the final vibronic potential. The
probability that, in an electronic transition from
jχeli i → jχelf i, the vibrational state jv0ii in the initial elec-
tronic level changes to the vibrational state jv00fi of the final
electronic level is determined by the so-called Franck-
Condon (FC) factor:

jhv00fjv0iij2 ¼





Z

∞

0

dRψ�
v00f
ðRÞψv0i

ðRÞ




2: ð44Þ

This factor largely controls the relative absorption rates
(and radiative emission probabilities) among the vibrational

states. In the case of Fig. 3, for example, if the electronic
state is excited from χeli ¼ 1Σþ

g to the first excited state
χelf ¼ 1Σþ

u , the vibrational quantum number v0i ¼ 0 is much
more likely to change to v00f ¼ 4 than to v00f ¼ 0 because of
the larger vibrational wave-function overlap (which can be
read off visually from the wave functions in Fig. 3).
Tabulations of these FC factors have been computed and
calibrated against the measurement for a vast number of
molecules; we reference them where used in the text. In
general, there are no selection rules controlling changes in
vibrational quantum number in electronic molecular tran-
sitions, greatly enhancing the number of potential absorp-
tion lines and thus accounting for the much richer
spectroscopy of diatomic and polyatomic gases than that
of monoatomics. This increased complexity does not come
at the cost of calculability nor spectral resolution for
sufficiently small molecules. In Table I, we list the defining
spectral characteristics of several of the electronic energy
levels used throughout the text.

D. Types of dark-matter-induced transitions

In this section, we classify the types of transitions
according to the operator structure of δH and derive
how they act on nuclear and electronic wave functions.
For each type, we derive the corresponding selection rules

FIG. 3. Electronic potential energy UðRÞ curves for a (hypo-
thetical) homonuclear diatomic molecule as a function of
internuclear separation R for five different electronic states,
labeled by their quantum numbers, X-1Σþ

g , A-1Σþ
u , a-1Σþ

g ,
b-3Σþ

u , and B-1Πu, respectively. Ticks in the potential well of
each curve indicate vibrational energy levels, e.g., labeled from
v ¼ 0;…; 6 in the fourth excited electronic state B-1Πu. Exem-
plary vibrational wave functions ψvðRÞ are plotted in gray (with
arbitrary vertical units) for a few vibrational states, including the
lowest three of the ground electronic state. Rotational energy
splittings are not shown. The ground state X-1Σþ

g can be excited to
the first excited state a-1Σþ

g by a monopole operator, and to A-1Σþ
u

and B-1Πu by a dipole operator. A spin-dipole operator can also
cause transitions to the spin-triplet state b-3Σþ

u , in addition to
those caused by a regular dipole operator.
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for rotational, vibrational, and electronic transitions, and
give estimates of the expected transition matrix elements in
small diatomic molecules.

1. Monopole transitions

The simplest operator structure occurs when the per-
turbing Hamiltonian δH is spherically symmetric in all
respects, in the sense that it acts trivially on the angular
momentum eigenstates of the entire molecule, the electronic
configuration, and all spin degrees of freedom. In that case,
δH must be diagonal in these angular eigenstate bases, so
any such “monopole” transition obeys the selection rules

ΔJ ¼ ΔM ¼ ΔΛ ¼ ΔS ¼ ΔΣ ¼ ΔΩ ¼ 0: ð45Þ
We expect these rules to be obeyed insofar as spin-orbit
coupling can be neglected, except for the conservation of
total angular momentum (ΔJ ¼ 0), which is exact.
It follows immediately that pure rotational transitions

cannot be induced by a monopole operator. Vibrational
transitions can occur, for example, by the operators

δH0
I ∝R−Re; δH0

II ∝ ðR−ReÞ2; δH0
III ∝∇2

R: ð46Þ

These act trivially on the angular wave function but can
excite an initial ground vibrational state jvi ¼ 0i to a first- or
second-excited vibrational state jvfi via the matrix elements

hvf ¼ 1jðR − ReÞjvi ¼ 0i ¼ −i
ð2MωeÞ1=2

; ð47Þ

hvf ¼ 2jðR − ReÞ2jvi ¼ 0i ¼ 1

Mωe
; ð48Þ

hvf ¼ 2j d2

dR2
jvi ¼ 0i ¼ Mωe: ð49Þ

In the limit of a pure harmonic oscillator (ωexe → 0), these
are the only nonzero, off-diagonal matrix elements con-
necting jvi ¼ 0i to excited levels. In the presence of
anharmonicities (ωexe ≠ 0), these selection rules areweakly
broken, and, e.g., ðR − ReÞ can also excite the ground
vibrational state to vf ≥ 2, with the matrix elements

jhvf ¼ 2jðR − ReÞjvi ¼ 0ij ≃
ð1
8
Þ1=2ðωexe

ωe
Þ1=2

ð2MωeÞ1=2
; ð50Þ

jhvf ¼ 3jðR − ReÞjvi ¼ 0ij ≃
ð 1
24
Þ1=2ðωexe

ωe
Þ

ð2MωeÞ1=2
; ð51Þ

TABLE I. Spectroscopic properties of select diatomic molecules in the ground electronic state χel ¼ X, as well as in a few exemplary
excited electronic states χel ¼ A; a; B; b;… taken from Ref. [14]. Energetic quantities such as the electronic excitation energy Te,
vibrational energy splitting ωe and anharmonic correction ωexe, rotational constant Be, and vibration-rotation correction constant αe are
expressed in the conventional inverse photon-equivalent-wavelength units of cm−1; conversion to units of energy is achieved via the
substitution 1 cm−1 ↔ 1.239 67 × 10−4 eV. We also quote the equilibrium radius Re and boiling-point temperature Tb (for ground
states) at standard atmospheric pressure P ¼ 1 bar.

Molecule χel Te (cm−1) ωe (cm−1) ωexe (cm−1) Be (cm−1) αe (cm−1) Re (Å) Tb (K)
1H1H c-3Πu 95 938 2466.8 63.51 31.07 1.42 1.037 20.28

EF-1Σþ
g 100 082.3 2588.9 130.5 32.68 1.818 1.011

C-1Π 100 089.8 2443.77 69.524 31.362 1.664 1.0327
B-1Σþ

u 91 700 1358.09 20.888 20.015 1.184 1.2928
X-1Σþ

g 0 4401.21 121.33 60.853 3.062 0.741 44

1H2H C-1Π 100 092.9 2119.6 53.31 23.522 1.096 1.0329
B-1Σþ

u 91 698.3 1177.16 15.59 15.071 0.820 1.2904
X-1Σþ

g 0 3813.1 91.65 45.655 1.986 0.741 42

2H2H X-1Σþ
g 0 3115.50 61.82 30.443 1.0786 0.741 52

16O16O X-3Σ−
g 0 1580.19 11.98 1.445 63 0.0159 1.207 52 90.19

12C16O A-1Π 65 075.7 1518.2 19.40 1.6115 0.0232 1.2353 81.65
a’-3Σþ 55 825.4 1228.60 10.468 1.3446 0.0189 1.3523
a-3Π 48 686.70 1743.4 14.3 1.691 24 0.019 04 1.205 74
X-1Σþ 0 2169.81358 13.288 31 1.931 28 0.0175 1.128 32

12C18O X-1Σþ 0 2117.5 12.66 1.839 0.0163 1.128
14N14N A-3Σþ

u 50 203.6 1460.64 13.87 1.4546 0.0180 1.2866 77.355
X-1Σþ

g 0 2358.57 14.324 1.998 24 0.017 318 1.097 68

1H35Cl X-1Σþ 0 2990.946 51.8 10.593 41 0.307 18 1.274 55 188.10
127I127I B-3Π0þu 15 769.01 125.69 0.764 0.029 03 0.000 158 3.024 457.4

X-1Σþ
g 0 214.50 0.614 0.037 37 0.000 113 2.666
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jhvf ¼ 4jðR − ReÞjvi ¼ 0ij ≃
ð 3
128

Þ1=2ðωexe
ωe

Þ3=2
ð2MωeÞ1=2

; ð52Þ

up to Oðωexe=ωeÞ1=2-suppressed fractional corrections. In
gross sensitivity estimates using the matrix elements of
Eqs. (47)–(52), we often use the parametric estimates

Mωe ∼
α4m3

e

ωe
;

ωe

ωexe
∼
α2me

4ωe
; ð53Þ

which are typically correct up to a factor of 2, and “solve” for
M and ωexe in favor of the vibrational frequency ωe.
Monopole vibrational transitions are not accompanied by

a change in molecular rotation and thus do not come with
much rotational substructure in the possible transition
energies (no dependence on Be):

jvi ¼ 0; Ji;Mii → jvf; Ji;Mii∶
ω0 ¼ ωevf − ωexeðv2f þ vfÞ − αevfJiðJi þ 1Þ: ð54Þ

The only dependence on the rotational quantum number
enters via the vibration-rotation coupling αe, which in the
Born-Oppenheimer approximation is suppressed by a
factor of Oðme=MÞ3=2 relative to the vibrational split-
ting ωe.
Monopole operators that can cause electronic transitions

include

δH0
IV ∝

X
n

∇2
e;n;

δH0
V ∝ −

X
n;N

Zk
1

jre;n −RN j
þ
X
n;m

1

jre;n − re;mj
: ð55Þ

Both the inversion i and the reflection σv operations
commute with these operators, so electronic transitions
follow the selection rules

g ↔ g; u ↔ u; g ↮ u ðhomonuclearÞ; ð56Þ
þ↔þ; −↔−; þ ↮ − ðfor Σ↔ΣÞ; ð57Þ

in addition to the ones mentioned previously in Eq. (45).
Typical sizes for transition matrix elements in nonrelativ-
istic molecules can be estimated via NDA as



hχelf j −X

n;N

ZN
1

jre;n −RN j
þ
X
n;m

1

jre;n − re;mj
jχeli i






¼ 1

2αme





hχelf 


X
n

∇2
e;m




χeli i




 ∼ ω0

α
; ð58Þ

with Re the equilibrium radius of the initial electronic state
jχeli i, usually an Oð1Þ number times the Bohr radius
a0 ¼ 1=αme. The off-diagonal matrix elements of δH0

IV

and δH0
V can be related as in Eq. (58) because they are both

component terms of H0 in Eq. (31), which itself acts
diagonally on energy eigenstates by construction.
Monopole transitions from the ground electronic state to
an excited electronic state can occur at many different
energies due to rovibrational substructure:

ω0 ¼ Te;f þ
�
ωe;f

�
vf þ

1

2

�
− ωe;i

�
vi þ

1

2

��

−
�
ωe;fxe;f

�
vf þ

1

2

�
2

− ωe;ixe;i

�
vi þ

1

2

�
2
�

þ ½Be;f − Be;i�JiðJi þ 1Þ

−
�
αe;f

�
vf þ

1

2

�
− αe;i

�
vi þ

1

2

��
JiðJi þ 1Þ:

We can see that even though ΔJ ¼ 0, there is a significant
amount of rotational substructure because the rotational
constants Be of two different electronic states generally
differ by an Oð1Þ fractional amount. As explained around
Eq. (44), there are no selection rules associated with
changes in vibrational quantum number for electronic
transitions, introducing a large amount of vibrational
substructure, which also holds true for electronic transitions
induced by other types of operators, to which we turn next.

2. Dipole transitions

Transitions caused by operators of the form

δH1
I ∝ k̂ ·R; δH1

II ∝ k̂ ·
X
j

re;j ð59Þ

are perhaps the most familiar since they include the ordinary
electric dipole transitions from photon absorption. Here, the
unit vector k̂ denotes a unit vector in a space-fixed (as
opposed to molecule-fixed) direction, like the direction of a
vector field or the DMvelocity, that acts trivially on thewave
function. The effective direction k̂ will, in general, vary in
time and space but only over scales of order the coherence
time and length of the DM field, which are both much larger
than the relevant temporal and spatial scales of the molecule
for the energies under consideration.
The operator proportional to R ¼ RR̂ can induce pure

rotational transitions through diagonal action of hRi ¼ Re

on the vibrational state but nontrivial action of R̂ on the
rotational state, such that hJfMfjk̂ · R̂jJiMii ≠ 0. These
well-known matrix elements have selection rules ΔJ ¼ �1

as well as ΔM ¼ �1 for k̂ · ẑ ¼ 0 and ΔM ¼ 0 for k̂ ¼ ẑ.
The rotational transitions that increase the internal energy
are those with ΔJ ¼ þ1, and they have transition energy

jJi;Mii → jJi þ 1;Mfi∶ ω0 ¼ 2

�
Be −

1

2
αe

�
ðJi þ 1Þ:

ð60Þ
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These pure rotational transitions are too low in energy for
the experimental setup under consideration in this work
because Be (for any molecule) is lower than the thermal
energy T even at liquid-nitrogen temperatures. However,
they form an important part of the substructure for vibra-
tional transitions.
The operator R ¼ RR̂ can also act nontrivially on the

vibrational state, e.g., hvf; Jf;Mfjk̂ ·Rjvi; Ji;Mii ¼
hvfjðR − ReÞjviihJfMfjk̂ · R̂jJiMii. The transition ampli-
tudes are products of the vibrational matrix element in
Eq. (47) and the pure rotational matrix elements. Over
long timescales, the unit vector k̂ will change direction, so
we directionally average the rotational matrix elements
according to

jhJfjk̂ · R̂jJiij2avg ≡
X
Mf;Mi

X
j¼x;y;z

jhJfMfjR̂jjJiMiij2
3ð2Ji þ 1Þ ; ð61Þ

with R̂x, R̂y, R̂z unit vectors in the x, y, z directions,
respectively. These average square matrix elements can be
computed to be ðJiþ1Þ=½3ð2Jiþ1Þ� forΔJ¼þ1 transitions
and Ji=½3ð2Ji þ 1Þ� forΔJ ¼ −1 transitions; at large Ji, they
tend to 1=6. Vibrational transitions induced byH1

I thus obey
the selection rules Δv ¼ �1, ΔJ ¼ �1, and ΔM ¼ 0;�1.
Changes in theM quantum number are from the components
of R̂ in the x and y directions; the z component of R̂ leavesM
unchanged. The allowed vibrational transitions and energies
from the ground vibrational state are

jvi ¼ 0; Ji;Mii →
8<
:

jvf ¼ 1; Jf ¼ Ji þ 1;Mfi ω0 ¼ ωe − 2ωexe þ 2
�
Be − 1

2
αe
�
ðJi þ 1Þ

jvf ¼ 1; Jf ¼ Ji − 1;Mfi ω0 ¼ ωe − 2ωexe − 2
�
Be − 1

2
αe
�
Ji:

ð62Þ

Higher Δv are only weakly allowed [cf. Eqs. (50)–(52)]
and occur at energies that are roughly integer multiples of
the first energy gap. To leading order in the Born-
Oppenheimer approximation, the operator H1

I does not
excite electronic transitions.
The operator δH1

II ∝
P

n ren primarily causes transitions
between electronic states. The components of ren that point
along the molecular axis are unaffected by Lz rotations;
they are even under σv reflections and odd under the
inversion i. Components of ren transverse to the molecular
axis transform as Λ ¼ 1 states under Lz rotations, and they
are odd under σv reflections and the inversion i. We thus
find the selection rules

ΔΛ ¼ 0;�1; ð63Þ
þ ↔ þ; − ↔ −; − ↮ þ ðfor Σ ↔ ΣÞ; ð64Þ
g ↔ u; g ↮ g; u ↮ u ðhomonuclearÞ; ð65Þ
ΔS ¼ ΔΣ ¼ 0: ð66Þ
The last line follows from the trivial action on the spin
coordinates, so both the spin multiplicity S and the

projection of the spin onto the molecular axis Σ are
unchanged in the absence of spin-orbit coupling. For
transitions that are allowed by these selection rules, we
can estimate the matrix elements with NDA to be para-
metrically of order



hχelf 


X

n

ren




χeli i




 ∼ Re: ð67Þ

Alternatively, for δH1
II, the above matrix elements can also

be measured via absorption or emission intensities in
electric-dipole transitions.
As for any electronic transition, there are generally no

selection rules for changes in vibrational quantum number.
The total rotational quantum number J has the selection rule
ΔJ ¼ �1 for ΔΛ ¼ 0 transitions, whereas both ΔJ ¼ �1
and ΔJ ¼ 0 are allowed for ΔΛ ¼ �1 transitions (for most
initial Ji). We refer the reader to Ref. [13] for more details
about rotational fine structure in electronic transitions. The
bottom line is that the extra rotational fine structuremakes the
discretuum of transition energies for electronic dipole
transitions even more rich than that of electronic monopole
transitions, with lines occurring at energies

ω0 ¼ Te;f þ
�
ωe;f

�
vf þ

1

2

�
− ωe;i

�
vi þ

1

2

��
−
�
ωe;fxe;f

�
vf þ

1

2

�
2

− ωe;ixe;i

�
vi þ

1

2

�
2
�

þ
�
Be;f − αe;f

�
vf þ

1

2

��
JfðJf þ 1Þ −

�
Be;i − αe;i

�
vi þ

1

2

��
JiðJi þ 1Þ; ð68Þ

for transitions from the ground electronic state to one particular excited electronic state with excitation energy Te;f.

3. Spin-dipole transitions

Dark matter may also interact via less-familiar operators which exhibit a simultaneous coupling to both the spin and the
momentum of nucleons or electrons:
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δH1S
I ∝ σN · ∇R; δH1S

II ∝
X
n

σe;n · ∇e;n: ð69Þ

Despite the completely different operator structure and
besides their action on the spin coordinates, they are, in
many ways, similar to the dipole operators of Eq. (59), with
analogous selection rules on the orbital wave function in
the absence of spin-orbit coupling. For simplicity of
discussion, we take σN to be the nuclear spin operator
on only one of the nuclear spins (e.g., if the other
one were spinless). For two spins, one would need
to consider a larger-spin Hilbert space and use an inter-
action Hamiltonian of the form α1σ1 · ∇1 þ α2σ2 · ∇2 ¼
ð−α1σ1 þ α2σ2Þ · ∇R þOð∇Rcm

Þ with coefficients α1, α2.
The first operator can cause pure rotational transitions, as

well as vibrational transitions with rotational substructure.
In spherical coordinates, we have

∇R ¼ R̂∂R þ θ̂
1

R
∂θ þ ϕ̂

1

R sin θ
∂ϕ: ð70Þ

Let us now see how this operator acts on a given rovibra-
tional eigenstate. We have

hRθϕj∇RjψvibYroti¼ hθϕjR̂jJMihRj
�

d
dR

−
1

R

�
jvi

þhθϕjθ̂∂θjJMihRj 1
R
jvi

þhθϕjϕ̂ 1

sinθ
∂ϕjJMihRj 1

R
jvi; ð71Þ

where hRjψvib
v i ¼ ψ̃vðRÞ=R, with ψ̃vðRÞ QHO eigenstate

wave functions, and hθϕjYrot
JMi ¼ YJMðθ;ϕÞ are the spheri-

cal harmonics.
When the radial part of σN · ∇R acts diagonally on the

vibrational state, we have that hvj1=Rjvi ¼ 1=Re and
hvjd=dRjvi ¼ 0. In this case, the angular and nuclear-spin
action can still cause pure rotational transitions along with
nuclear spin transitions:

hΣNf
JfMfjσN · ∇RjΣNi

JiMii

¼ þ 1

Re
hΣNf

jσN;xjΣNi
ihJfMfj

×

�
−sin θ cosϕþ cos θ cosϕ∂θ −

sinϕ
sin θ

∂ϕ

�
jJiMii

þ 1

Re
hΣNf

jσN;yjΣNi
ihJfMfj

×

�
−sin θ sinϕþ cos θ sinϕ∂θ þ

cosϕ
sin θ

∂ϕ

�
jJiMii

þ 1

Re
hΣNf

jσN;zjΣNi
ihJfMfjðcos θ − sin θ∂θÞjJiMii:

ð72Þ
Above we have assumed that the nucleus has a total

spin SN equal to an integer or half-integer, where the

component along the z axis has the possible values
ΣN ¼ −SN;−SN þ 1;…;þSN . The selection rules for
these transitions are

ΔJ ¼ �1;

	ΔM ¼ �1 ΔΣN ¼ ∓1

ΔM ¼ 0 ΔΣN ¼ 0:
ð73Þ

Wedistinguishbetween the spin-flip (fromσN;x and σN;y) and
spin-preserving (from σN;z) transitions, as the former can
receive linear Zeeman energy shifts in an external magnetic
field. They otherwise have the same rotational energy
splittings and selection rules as in Eq. (60). In a thermal
state, the nuclear spins are in an unpolarizedmixed state. The
transition rate from an energy level with J ¼ Ji to one with
J ¼ Jf is thus proportional to jhJfjσ̂ · ∇RjJiij2avg, which can
be found by averaging the square of the matrix element
hJfMfjσ̂ · ∇RjJiMii over the spin directions σ̂, averaging
over Mi and summing over the possible values of Mf. One
finds that jhJfjσ̂ · ∇RjJiij2avg is equal to ðJi − 1Þ2ðJi þ 1Þ=
½3ð2Ji − 1Þ� for ΔJ ¼ þ1 transitions, and JiðJi þ 2Þ2=
½3ð2Ji − 1Þ� for ΔJ ¼ −1. They tend to J2i =6 at large Ji.
The operator ∇R can also induce vibrational transitions

through its off-diagonal action. As can be seen fromEq. (71),
it acts on vibrational states jvi through the operator terms
d=dR and 1=R. The former has a matrix element connecting
the ground state to the first excited state:

hvf ¼ þ1j d
dR

jvi ¼ 0i ¼ −i
�
Mωe

2

�
1=2

; ð74Þ

with all other off-diagonal matrix elements from the ground
state being suppressed by the anharmonicity of the vibra-
tional potential. The second operator term, 1=R, has smaller
vibrational matrix elements, as can be seen from expanding

1

R
¼ 1

Re
þ R − Re

R2
e

þ… ð75Þ

and using Eq. (47) to find that the dominant 1=R matrix
element is smaller than that of Eq. (74) by a factor of
1=MωeR2

e ∼Oðme=MÞ1=2. Therefore, the dominant vibra-
tional transitions obey the same Δv ¼ �1 selection rules as
inEq. (62). The accompanying rotationalmatrix elements are
the same as well [cf. Eq. (61)], as long as one remembers that
changes in the orbital angular momentum projected onto any
particular axis are correlated with simultaneous changes in
the nuclear spin projected onto the same axis as in Eq. (73).
The operator σe · ∇e mostly excites electronic transi-

tions, similar to δH1
II of the previous section. The operator

∇e has the same transformation properties under Lz, i, and
σv as re, so δH1S

II obeys the same selection rules as δH1
II on

changes in the orbital part of the electronic motion, which
are already listed in Eqs. (63)–(65). However, the nontrivial
spin structure of δH1S

II means that it can induce both
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spin-preserving (ΔS ¼ ΔΣ ¼ 0) transitions—the only ones
δH1

II can excite—and spin-flip transitions (ΔΣ ¼ �1 and
ΔS ¼ 0;�1):

ΔΛ ¼ 0 & ΔΣ ¼ ΔS ¼ 0; ð76Þ

ΔΛ ¼ �1 & ΔΣ ¼∓1; ð77Þ

þ ↔ þ; − ↔ −; − ↮ þ ðfor Σ ↔ ΣÞ; ð78Þ

g ↔ u; g ↮ g; u ↮ u ðhomonuclearÞ: ð79Þ

Such spin-flip transitions are highly suppressed in small
molecules for the usual dipole transitions, for which a
ground state of, e.g., 1Σ can normally only be excited to
higher spin-singlet states of symmetry 1Σ and 1Π, whereas
these spin-dipole transitions can excite the same ground
state to the spin singlets 1Σ or the spin triplets 3Π. For
transitions that respect the selection rules of Eqs. (76)–(79),
we expect electronic matrix elements of size



hχelf





X
n

∇en

me





χeli i




 ¼ ω0





hχelf




X

n

ren





χeli i




 ∼ ω0Re; ð80Þ

withω0 ¼ jEf − Eij the transition energy. The first equality
follows by virtue of the identity ∇en ¼ −me½H0; ren � for the
nonrelativistic H0 from Eq. (31). The matrix elements for
the spin-dipole transitions can thus be inferred from those
of the regular dipole transitions.

III. EXPERIMENTAL SETUP

We describe the general detector requirements and
molecular container configurations in Sec. III A, along
with a detailed discussion of signal detection in Sec. III B,
background levels in Sec. III C, and signal discrimination
techniques in Sec. III D.

A. Configurations and search strategies

We envision two configuration types to detect bosonic
DM in the mass range between 0.2 eV and 20 eV: One is a
“bulk” detector volume, the other a layered set of slabs in a
“stack” arrangement. We depict both configurations in
Fig. 4 and summarize their specifications in Table II, which
will be explained below. We consider a prototype “phase I”
and an optimistic, ultimate “phase II” of both the bulk and
stack configurations. We denote the four versions as BI,
BII, SI, and SII.
The molecules are kept in the gaseous phase, so they can

be regarded as approximately independent subsystems with
a discretuum of energy levels, each with a resonant
response to near-monochromatic excitations; intermolecu-
lar interactions in the liquid and solid phases tend to
produce a nonresonant continuum in all but a few special
cases. Dark matter waves of the right frequency—i.e., DM

FIG. 4. Experimental setup: Bulk (top diagram) and stack
(bottom diagram) configurations. Molecular gas (depicted by
light blue volumes) is pumped into containers capable of
supporting pressures up to 10 bar. In the bulk configuration,
DM absorption events yield isotropic, single fluorescence
photons, whose paths are indicated by thick red lines. Reflec-
tive coatings (shown as silver colored sheets) lining the
container boundary retain the signal photons until they impinge
onto a large-area photodetector, displayed as yellow tiles at the
top. The stack configuration features a pattern of alternating
molecular density in the form of multiple slabs. This container
geometry and the spatial coherence of DM can produce
cooperatively emitted photons nearly perpendicular to the slabs,
making it possible to focus them onto a tiny photodetector by a
lens. The photon direction is sensitive to the DM velocity vector
projected onto the plane defined by the slabs. For illustrative
purposes, we do not show shielding, cooling, or electromag-
netic field and pressure control systems in either setup. We also
left out the reflective coatings on the front and top faces of the
bulk setup.
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particles of the right mass—can excite molecules from their
ground state(s) in thermal equilibrium to nonoccupied,
higher-energy states, which in turn can fluoresce or
cooperatively emit single photons. This radiation is to be
read out by sensitive photodetectors, and it serves as the
signal in our setup.
Two primary considerations are key in a DM detector

design based on resonant absorption onto molecules in the
gas phase: radiative efficiency and frequency coverage. We
first explain the relevant physics for both of these require-
ments and then show how the bulk and stack detector
designs address each of them.
Radiative efficiency.—Ideally, every DM absorption

quantum leads to a detectable fluorescence photon, as
opposed to heat or fluorescence photons that are difficult
to detect (more on that in Sec. III B). The dominant
channel for conversion of internal energy of small polya-
tomic molecules to heat is via two-body collisions wherein
the excitation quanta in the electronic or vibrational state
are converted to rotational and/or translational kinetic
energy, a process called radiative quenching. (Other non-
radiative pathways through which the absorbed energy can
dissipate include vibronic decays in large polyatomic
molecules, and molecular dissociation in weakly bound
ones.) By analogy to the collisional broadening rate in
Eq. (9), we can thus parametrize the collisional quenching
rate as

γquench ¼ nσquenchvmol; ð81Þ

with a quenching cross section σquench independent of
density. For many excited electronic states, the inelastic,
quenching cross section is typically an order of magnitude

smaller than the elastic cross section σcol [15]. Precise data
on quenching cross sections for excited electronic states is
scarce, so we take σelquench ∼ 10 Å2 as a benchmark value.
Vibrational quanta are less easily quenched in diatomic
molecules, an effect theoretically understood in the con-
text of Landau-Teller theory [15,16], with a quenching
cross section that depends strongly on relative molecular
velocities and thus temperature. Reference [17] found that
a wide array of polyatomic systems obey the following
empirical relation for the quenching rate γvibquench of vibra-
tional quanta, to a precision of 50%:

log10

�
γvibquench

Hz
1bar
P

�
≈ 8.00 − 1.3 × 102μ̃1=2ω̃4=3

e

× ðT̃−1=3 − 1.5 × 10−2μ̃1=4Þ; ð82Þ

with the definitions of the dimensionless quantities
μ̃≡ μ=mp, ω̃e ≡ ωe=eV, and T̃ ¼ T=K. Above, μ is the
reduced mass of the colliding pair of molecules, so μ ¼
Mmol=2 for a single molecular species of mass Mmol. At
low temperature, the vibrational quenching rate becomes
exponentially slow, although Eq. (82) is an underestimate
in this regime, as long-range attractive forces between
molecules come into play. For example, the vibration-
translation relaxation rate in a pure carbon monoxide gas
was measured to be about 1.4 Hz=bar at room temper-
ature [18]. The more sophisticated theoretical model
of Ref. [19], which agrees well with experimental results
on, e.g., CO-He relaxation at cryogenic temperatures
[20,21], predicts that the vibrational quenching rate in
CO-CO collisions saturates to a constant 0.20 Hz=bar
below 135 K.

TABLE II. Experimental configurations and their specifications for phase I prototypes, and ultimate phase II implementations. The six
lines in each cell correspond to (1) thermodynamic variables, (2) photodetection parameters, (3) accessible electronic transition types,
(4) accessible vibrational transition types, (5) frequency coverage strategy, and (6) Rabi frequency sensitivity at SNR ¼ 1 over
frequencies where blackbody radiation can be ignored, assuming that collisional broadening dominates the absorption width. The
frequency coverage strategy of the bulk configuration can be used by the stack setup, and vice versa, albeit typically at lower sensitivity
in a DM search over a broad energy range. The four versions are abbreviated as BI, BII, SI, and SII. Photodetection acronyms include
dark count rate (DCR), photomultiplier tube (PMT), microwave kinetic inductance detector (MKID), and transition edge sensor (TES).

Bulk Stack

Phase I V ¼ ð0.3 mÞ3, P ∼ 0.1 bar, T ¼ 300 K A ¼ πð0.3 mÞ2, D ¼ 1 mm, P ∼ 10 bar, T ∼ 100 K
PMT, DCR ¼ 1 Hz, Adet ¼ ð0.3 mÞ2, ηγ ¼ 0.3 MKID/TES, DCR ≲ 10−5 Hz, Adet ¼ ð0.3 mmÞ2, ηγ ¼ 0.5
Any electronic → intermediate E1-allowed electronic
� � � E1-allowed vibrational
Stark/Zeeman tuning, tshot ¼ 102 s Collisional broadening, tshot ¼ 106 s
δΩ ≈ 2.9 × 10−7 rad s−1 δΩ ≈ 9.4 × 10−9 rad s−1

Phase II V ¼ ð2 mÞ3, P ∼ 0.1 bar, T ∼ 100 K A ¼ πð2 mÞ2, D ¼ 100 mm, P ∼ 10 bar, T ∼ 100 K
MKID, DCR≲ 10−3 Hz, Adet ¼ ð0.1 mÞ2, ηγ ¼ 0.5 MKID/TES, DCR ≲ 10−7 Hz, Adet ¼ ð2 mmÞ2, ηγ ¼ 1
Any electronic → intermediate E1-allowed electronic
Any vibrational with optically thin fluorescence E1-allowed vibrational
Stark/Zeeman tuning, tshot ¼ 103 s Collisional broadening, tshot ¼ 107 s
δΩ ≈ 9.9 × 10−10 rad s−1 δΩ ≈ 1.8 × 10−11 rad s−1
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Wedefine the overall radiative efficiency ηrad as the ratio of
the radiative rate Γrad to the DM absorption rate Γabs from
Eq. (8),

Γrad ¼ ηradΓabs: ð83Þ

In general, ηrad is a complicated function of theDMenergyω,
as there are many possible target states that can be excited by
dark matter, each having its own radiative properties. Given
thatΓabsðωÞ is highly peaked forω near any one out of a set of
transition energies fω0g, we can take the overall radiative
efficiency at ω to be that of the pair of states j0i and j1i with
transition energy ω0 closest to ω. The radiative efficiency
around any such target state j1i can be written as

ηrad ≃
γ0 þ

P
iγi

γ0 þ ηcohðr̄ − 1Þγ0 þ
P

iγi þ γquench
þ ηcoh; ð84Þ

where γ0 is the radiative width for the process j1i → j0i in
vacuum, and γi is the radiative width of j1i → jii, with jii ≠
j0i any intermediate state with energy below that of j1i.
The fraction of absorption quanta that are coherently

radiated is given by the second term inEq. (84) and is equal to

ηcoh ≃
ðr̄ − 1Þγ0

ðr̄γ0 þ
P

iγi þ 2γcolÞ
; ð85Þ

which is thegeneralizationofEq. (30) in the presenceof other
radiative channels. For large cooperation numbers r̄ − 1 ≫ 1
such that other radiative decays can be ignored, the condition
for most of the absorbed quanta to be coherently radiated is
thus still ðr̄ − 1Þγ0 ≫ γcol. Likewise, the fraction of fluores-
cence radiation to the intermediate state jii is

fi ¼
γi

γ0 þ ηcohðr̄ − 1Þγ0 þ
P

iγi þ γquench
: ð86Þ

The sum over all of the intermediate-state branching ratios,P
i fi, can become close to unity when the intermediate

radiative decays dominate over quenching at low number
density andwhen the radiative decay rate γ0 back to the initial
state is small because of selection rules, low r̄, and/or
combinatoric factors.
Frequency coverage.—Any one molecule can be

regarded as a multimode resonator capable of absorbing
DM particles with energies ω near any one of the set of
transition energies fω0g. It is important that most of the
“frequency gaps” among the adjacent ω0 can be efficiently
covered, either via scanning the fω0g by tuning some
external variable like an external electromagnetic field or
by broadening each individual line by increasing the
molecular number density.
The splittings among the possible transition energies

are typically of order the rotational energy constants
of the ground vibrational state. A diatomic molecule has
rotational energies Erot ¼ BeJðJ þ 1Þ, J ¼ 0; 1; 2;… in its

ground state, where the magnitude of the rotational con-
stant Be is determined by the inverse moment of inertia, i.e.,
the reduced mass M of the diatomic times its mean square
separation hR2i ≃ R2

e:

Be ¼
1

2MhR2i ≈ 2.1 × 10−4 eV

�
10mP

M

��
Å
Re

�2

: ð87Þ

For example, for dipole vibrational transitions, we expect a
rotational fine structure with a splitting of 2Be, as derived in
Eq. (62) and depicted in the lower panel of Fig. 5. Most
other types of transitions have similar fine-structure

FIG. 5. Figures of Stark frequency scanning that show how
electric fields of order Be=μe can shift rotational transition energy
splittings in a 1Σ molecule by an Oð1Þ amount, providing
continuous coverage. Top panel: Rotational energy levels Erot

with quantum numbers ðJ;MÞ as a function of electric field E ¼
jEj for a diatomic molecule with rotational energy constant Be
and permanent electric dipole moment μe. Bottom panel: Rota-
tional energy splittings ωrot

0 for transitions with selection rules
ΔJ ¼ �1 and ΔM ¼ 0, �1 (which includes E1-allowed tran-
sitions), as a function of electric field E. Color coding and the
dashed pattern indicate the initial state and are consistent with the
top panel. Only levels with J ≤ 3 are shown; Stark shifts become
less dramatic with increasing J.
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splittings at the same order or lower. Polyatomic molecules
composed out of more than two atoms typically have
multiple rotational constants (one around each axis, unless
it is a linear molecule) that are smaller and thus exhibit an
even richer fine structure and lower degeneracy. For
example, SF6 has rotational constants of 1.1 × 10−5 eV
around all three axes.
The splittings in rotational transition energies can be

scanned by tuning the magnitude of an external electric
field via the second-order Stark effect, if the molecule
exhibits a permanent electric dipole moment μe (in
molecule-fixed coordinates, not laboratory-fixed coordi-
nates of course). In an electric field E, the energy
eigenvalues ErotðJ;MÞ of the combined rotational and
Stark Hamiltonian are

Erot

Be
≃ JðJ þ 1Þ þ 1

2
λ2

JðJ þ 1Þ − 3M2

JðJ þ 1Þð2J − 1Þð2J þ 3Þ ; ð88Þ

valid up to Oðλ=2Þ4 for λ≡ μejEj=Be, a dependence
plotted in the upper panel of Fig. 5. Note that the
2J þ 1-fold degeneracy among levels with the same J
but different M is now lifted into a twofold degeneracy
among levels with the same ðJ; jMjÞ. In the lower panel, we
plot how the rotational transition energy splittings ωrot

0 ¼
ErotðJf;MfÞ − ErotðJi;MiÞ depend on the ratio μeE=Be for
dipole vibrational transitions. An Oð1Þ fraction of the
rotational splittings can be “scanned” if the expansion
coefficient

μeE
Be

≈ 0.63

�
μe
D

��
E

3 × 106 V=m

��
10−4 eV

Be

�
ð89Þ

becomes Oð1Þ. In the above numerical estimate, we took
the electric field to be the breakdown electric field value
(for large separations) of air at standard atmospheric
conditions, and a dipole moment of 1 D ≈ 0.39ea0.
Transitions involving an electronic spin flip can further-
more receive linear Zeeman corrections to their transition
energy in an external magnetic field B, by an amount

ΔωZeeman
0 ¼ geμBB ≈ 5.8 × 10−4 eV

�
ge
2

��
B
5 T

�
ð90Þ

with ge the effective g-factor and μB the Bohr magneton.
For nuclear spin flips, the Zeeman shift is of less relevance
due to the smallness of the nuclear gyromagnetic ratio. We
thus conclude that it is possible to scan the gaps in the
rotational fine structure of the absorption spectrum for
molecules with small rotational splittings, which include
heavy (large M) and weakly bound (large hR2i) diatomics
or moderately large polyatomics (large moments of inertia,
usually around several axes).
Another important way to achieve contiguous frequency

coverage is to broaden all of the transition lines fω0g at

high number densities n. The full width in ω at a half-
maximum absorption rate in Eq. (8) is

γ¼ γradþ2γcol≈1.1×10−5 eV

�
1þ γrad

2γcol

��
n
n0

�
; ð91Þ

where we took T ¼ 273 K and a molecular mass ofMmol ¼
40mP in the collisional width 2γcol defined in Eq. (9).
Collisional broadening alone can already bridge the gap
between typical rotational splittings [cf. Eq. (87)] at
moderate pressures of 10 bar. The radiative width γrad ¼
γ0 þ ηcohðr̄ − 1Þγ0 þ

P
iγi can increase the total width

even more, especially if r̄≳ n=m3 and γ0 is an E1-allowed
decay rate [cf. Eq. (93)].
Bulk configuration.—The bulk detector configuration

comprises a large convex volume [V ¼ ð0.3 mÞ3 in phase I,
V ¼ ð2 mÞ3 in phase II], filled with a single molecular
species at any time.A large-area photodetector array (PMTin
phase I, MKID array in phase II) detects the signal photons.
The rest of the container area is coatedwith a highly reflective
layer, which is necessary to retain the fluorescence photons
since they are emitted isotropically. Cooperative effects may
be ignored for a bulk container, i.e., ηcohðr̄ − 1Þ ≪ 1, as we
showed inSec. II B. Photons from the j1i → j0i fluorescence
channel are in danger of being reabsorbed elsewhere in the
detector volume and are thus more easily quenched after
multiple reabsorptions and reemissions (we discuss optical
thickness issues in more detail in Sec. III B). Optical thick-
ness is a problem whenever the matrix element of the j0i ↔
j1i is E1 allowed, and γ0 is thus relatively large; on the
other hand, if j0i ↔ j1i is E1 forbidden, then γ0 can usually
only dominate over the quenching rate from Eq. (81) at very
low number densities, potentially suppressing the absorp-
tion rate.
A bulk detector configuration will therefore largely rely

on radiative decays j1i → jii, where jii is any intermediate
state with negligible occupation probability in thermal
equilibrium. These decays will produce fluorescence pho-
tons for which the medium is optically transparent. Hence,
the detectable photon fluorescence rate ΓB

rad for a bulk
configuration is

ΓB
radðω; fω0gÞ ¼

Xthin
i

fiΓabsðω; fω0gÞ; ð92Þ

where it is understood that fi from Eq. (86) is to be
evaluated for the target level j1i with ω0 closest to ω, and
that the sum is to be performed only for intermediate levels
jii that produce fluorescence photons for which the
molecular medium is optically thin.
Frequency coverage for a DM search over a broad range

of masses in a bulk detector can be achieved by performing
several narrow searches, each with a different molecule.
Covering gaps in the rotational fine structure of the
absorption spectrum can be done in the two ways
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mentioned above: scanning at low density or broadening the
lines at high number density. Within the scanning strategy,
the optimal regime is to work at a low number density where
γquench ≲P

thin
i γi, such that the fluorescence fraction is large,P

thin
i fi ≈ 1. The resulting narrow linewidth γ means that

many (on the order of γ=Be) shots, each at a different set of
fω0g, are needed for contiguous frequency coverage. Each
shot can thus last a small fraction of the total integration time
tint for the molecule: tshot ∼ ðγ=BeÞtint. At high number
densities where γ ¼ 2γcol ≃ Be, only one shot is needed
but at the cost of a lower fluorescence ratio

P
thin
i fi ≃P

thin
i γi=γquench ∝ 1=n. At finite background rate levels,

the scanning method typically provides better optimum
sensitivity. In the limit of zero background, they yield
roughly equivalent sensitivity, though the broadening
method has the advantage that it can beused for all transitions
in all molecules (including those without permanent
electromagnetic moments) and is experimentally more
straightforward.
Stack configuration.—To take full advantage of the

cooperative radiation effects analyzed in Sec. II B, the
detector volume should be composed of a planar stack of
slablike containers made out of highly transparent material
such as glass or silicon, as shown in the bottom diagram of
Fig. 4. The signal photons are emitted nearly perpendicu-
larly to the planes and could thus be focused onto a much
smaller photosensitive area by a lens or reflecting mirror (or
an array thereof). Any deviation of the emission direction
from the normal vector is of order the DM velocity divided
by the speed of light, so a high-resolution photodetector
such as a MKID could “image” the DM velocity distribu-
tion as in Fig. 2 as a function of time.
Alternatively, an “artificial stack,” without physical

barriers between the slabs, may be effectively created by
a standing electromagnetic wave pattern in a bulk container.
At the antinodes of the standing waves, the ground-state
population could be depleted via resonant pumping to an
intermediate level, while the molecules would be much less
affected near the nodes of the standing waves. Even if no
such suitable intermediate level is available, the standing-
wave pattern could create a spatially dependent quadratic
Stark shift, moving the molecules off resonance at the
antinodes and on resonance at the nodes (or vice versa) at
sufficiently small linewidths. This artificial stack approach
likely introduces additional complications; an evaluation of
its feasibility is beyond the scope of this work.
The aim of the stack design is to operate in a regime

where the equality

ðr̄ − 1Þγ0 ∼ γcol ð93Þ

is roughly satisfied. This accomplishes three goals simul-
taneously: radiation focusing, high radiative efficiency
(ηcoh ≈ 1), and potential contiguous frequency coverage.
The coherent, focused emission rate is

ΓS
radðω; fω0gÞ ¼ ηcohΓabsðω; fω0gÞ: ð94Þ

The total width of the DM absorption lines will be as in
Eq. (91) with the radiative width dominating if Eq. (93) is
satisfied. Molecules with an E1-allowed transition with
transition dipole moment μ1;0 ¼ h1jμej0i in a stacked-slab
configuration have a cooperative radiative width as in
Eq. (7), so we find that the ratio controlling the validity
of Eq. (93) is

ðr̄ − 1Þγ0
γcol

¼ 8jμ1;0j2p0S̄
3mRzσcolvmol

≈ 6.3
p0S̄
mRz

; ð95Þ

for σcol ¼ 102 Å2, T ¼ 273 K, and Mmol ¼ 40mp.
The radiation focusing effect analyzed in Sec. II B has

several important advantages. It allows for a smaller
photosensitive area, permitting the use of highly sensitive,
cryogenic photodetecors such as a TES or MKID without a
prohibitively high cost. In addition, it isolates the signal
from the mostly isotropic environmental backgrounds (see
Sec. III C). The direction of the coherent photons depends
on the DM velocity and dispersion as shown in Sec. II B,
yielding a spectacular intrinsic sensitivity to the direction of
dark matter. Low-dark-count, 10-kilopixel MKIDs as large
as ð10 mmÞ2 have already been built and would have an
intrinsic DM velocity resolution of ≲10−5 (roughly given
by the pixel size divided by the transverse size of the slab)
in the two dimensions parallel to the stack, i.e., at the
subpercent level fractionally given the expected DM
velocity at 10−3 the speed of light. Full 3D velocity
information could be gleaned over long integration times
because of the Earth’s rotation and orbit, and/or with two
experimental setups.
Sensitivity estimates.—We quantify the sensitivity of

each detector version in terms of the smallest Rabi
frequency δΩ it can detect at unity signal-to-noise ratio
(SNR) after a shot time tshot. A photodetector with an
intrinsic dark count rate DCR within its bandwidth Δω
around an energy ω has a SNR ¼ 1 sensitivity to detected
photon counts at a rate of

δΓdetðω;ΔωÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηdetΓbckg þ DCRþ t−1shot

tshot

s
; ð96Þ

where Γbckg is the true photon background rate impinging
on the photodetector with detection efficiency ηdet and in
the same bandwidth Δω. If we define ηγ as the probability
that a radiated photon is detected by the photodetector, then
the signal detection rate is

Γdet ¼ ηγΓrad ¼ ηγηradΓabs: ð97Þ
The minimum detectable Rabi frequency δΩ is the Ω for
which Γdet ¼ δΓdet. When the absorption rate at a given
energy ω is dominated by a single resonance with transition
energy ω0 closest to ω, we can write
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δΩ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δΓdetγ½1þ 4ðω − ω0Þ2=γ2�

ηγηradnVp0

s
: ð98Þ

In Table II, we have compiled the typical on-resonance
sensitivity in terms of δΩ for p0 ¼ 0.1, γ ¼ 2γcol,
σcol ¼ 102 Å2, and Mmol ¼ 40mP for each configuration
and phase, assuming Γbckg ≪ DCRþ t−1shot. Comparison
with the signal Rabi frequencies Ω in Table III allows
one to estimate the signal-to-noise ratio for many DM
candidates at a few benchmark frequencies. We see in
Sec. IV that the phase I prototypes already explore new
parameter space of some DM candidates and that phase II
experiments will be capable of probing previously unex-
plored parameter space in all of the DM models and
couplings listed in Table III.
Case study.—We summarize many of the considerations

in this section so far with a simple case study, namely, the
first excited vibrational level in carbon monoxide. Figure 6
shows the inverse timescales (rates) of radiative and colli-
sional dynamics as a function of temperature and pressure.
In solid green, we plot the collisional broadening rate γcoll,
which is linearly proportional to pressure and which can

become Oð30%Þ of the rotational splitting constant Be
(indicated by the black dot-dashed line). This indicates that
at sufficiently high pressures, each line can be broadened to
cover an order-unity fraction of the frequency gap with
the next rotationally split line(s). With dashed red lines,
we plot the coherently enhanced emission rate (without
decoherence) in a stack setup with S̄=mRz ∼ 10. This rate is
lower than the collisional decoherence rate 2γcoll, so the
actual rate of coherent photon emission perpendicular to the
stack is lowered by the efficiency factor ηcoh (solid red line).
For a bulk configuration with carbon monoxide, one

wants the radiative rate γ0 without a coherence factor
(plotted in blue in Fig. 6) to be larger than the vibrational
quenching rate (orange), which increases with pressure and
is a steeply increasing function of temperature. With a
dotted purple line, we depict an estimate of the rate ΓRD to
which radioactive decays can be held in the large BII setup
with low-contaminant materials (before any active veto).
Because ΓRD ≪ γ0, the absorption target fully relaxes
between background events, so it is possible to have an
experiment with a high effective duty cycle.
Figure 7 shows (in green) the absorption rate Γabs

of a kinetically mixed hidden photon DM particle with

TABLE III. Dark matter candidates classified by their spin, parity, and interaction Hamiltonian δH, along with the types and strengths
of transitions they can induce. Transition types considered include those of the electronic, vibrational, and rotational kind; bold face is
used whenever the transition type can be E1 allowed and thus used in the stack configuration. The fifth column contains the diatomic-
molecule selection rules on molecular-axis angular momentum projection Λ and inversion i for electronic transitions, and vibrational
quantum number v and total angular momentum J for vibrational and rotational transitions. Unless otherwise noted, the total nuclear
spin SN and electronic spin Se do not change in the absence of spin-orbit coupling. Rabi frequencies Ω are quoted at ω0 ¼ 5 meV,
0.4 eV, 0.8 eV, 8 eV for rotational, Δv ¼ 1, Δv ¼ 2 vibrational, and electronic transitions, respectively, using experimentally allowed
benchmark values of the coupling at m ¼ ω0. Numerical estimates use FC factors of 10−2, ΔJ ¼ 1 rotational matrix elements of 1=

ffiffiffi
3

p
,

Re ¼ a0, δe ¼ δe;1 ¼ δe;2 ¼ 1, ΔqB−L ¼ 1, and matrix element estimates from Eqs. (47)–(49), (53), (58), (67), (74), and (80).

DM type Interaction Hamiltonian δH Transition type and selection rules Ω ðrad s−1Þ
Spin-0 Parity-even ðdme

þ deÞϕ̃keReR Vibrational Δv ¼ 1, ΔJ ¼ 0 5.5 × 10−9ðdme
=106Þ

ð3dme
þ 4deÞϕ̃ðke=2ÞðR − ReÞ2 Vibrational Δv ¼ 2, ΔJ ¼ 0 7.1 × 10−10ðdme

=106Þ
ðdg þQm̂q

dm̂q
Þϕ̃½∇2

N=ð2MÞ� Vibrational Δv ¼ 2, ΔJ ¼ 0 2.4 × 10−11ðdm̂q
=106ÞðQm̂q

=0.1Þ
ðΔQidiÞMð∇ϕ̃ · rÞ Vibrational Δv ¼ 1, ΔJ ¼ �1 3.0×10−10ðdi=106Þ½ðΔQiÞ=10−2�

Rotational ΔJ ¼ 1 4.1×10−13ðdi=102Þ½ðΔQiÞ=10−2�
ðdme

þ deÞϕ̃½∇2
e=ð2meÞ� Electronic ΔΛ ¼ 0, Δi ¼ 0 9.5 × 10−10ðdme

=106Þ
dme

me∇ϕ̃ · re Electronic jΔΛj ≤ 1, Δi ¼ 1 7.5 × 10−11ðdme
=106Þ

Parity-odd GaNN∂taσN · ½ð−i∇NÞ=M� Vibrational Δv¼ 1, ΔJ¼�1, jΔSN j≤ 1 1.7×10−10½ðGaNNÞ=ð10−8=GeVÞ�
Rotational ΔJ ¼ 1, jΔSN j ¼ 1 2.5×10−11½ðGaNNÞ=ð10−8=GeVÞ�

ðdθ=faÞaσN ·E Vibrational Δv¼ 1, ΔJ¼�1, jΔSN j≤ 1 4.0 × 10−12½ð108 GeVÞ=fa�
Rotational ΔJ ¼ 1, jΔSN j ≤ 1 5.8 × 10−13½ð108 GeVÞ=fa�

Gaee∂taσe · ½ð−i∇eÞ=me� Electronic jΔΛj≤ 1, Δi¼ 1, jΔSej ≤ 1 4.0×10−10½Gaee=ð10−10=GeVÞ�
Spin-1 Kinetic mixing ϵμe ·E0 Electronic jΔΛj ≤ 1, Δi ¼ 1 1.5 × 10−6ðϵ=10−14Þ

Vibrational Δv ¼ 1, ΔJ ¼ �1 1.3 × 10−5ðϵ=10−12Þ
Rotational ΔJ ¼ 1 1.5 × 10−2ðϵ=10−10Þ

B − L charge μB−L ·EB−L Electronic jΔΛj ≤ 1, Δi ¼ 1 5.0 × 10−6ðg=10−14Þ
Vibrational Δv ¼ 1, ΔJ ¼ �1 4.3 × 10−7ðg=10−14Þ
Rotational ΔJ ¼ 1 5.0 × 10−10ðg=10−18Þ
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ϵ ¼ 10−12 (see Sec. IVA for more details) for the 12C16O
isotope in the SI setup. Concordant with Fig. 6, the
collisionally broadened width of each absorption line is
not much smaller than the rotational splitting 2Be between
the lines. The resulting coherent radiation rate of Eq. (94) is
plotted in red, about 2–3 orders of magnitude below,
because CO has a rather small transition electric dipole
moment; thus, ηcoh ≪ 1 even with the assumed stack
parameters of S̄=mRz. Molecules with stronger absorption
strengths—such as HCl, CO2, and CH4—can achieve ηcoh
much closer to 1.

B. Photodetection

In Sec. II A, we calculated the absorption rate of the DM
particles of energy ω given a Rabi frequency Ω or,
equivalently, the rate at which molecular states with
transition energy ω0 close to ω are excited. The signal

detection consists of reading out the photons spontaneously
or coherently emitted from these excited levels, at a rate
Γrad ¼ ηradΓabs. However, the photon detection rate is
typically lower than the radiation rate Γrad [cf. (97)] by
the overall detection efficiency factor

ηγ ¼ ηreflηtransηthickηdet: ð99Þ
We describe our estimates for ηγ below and show that it can
be Oð1Þ in our setup. We finish this subsection with a brief
summary of potential photodetectors and their specifica-
tions, including dark count rates.
Four main loss mechanisms are responsible for ηγ ≤ 1,

each with their own efficiency factor ηi as schematically
indicated in Eq. (99). They are due to, respectively,
absorption onto the reflective walls of the container with
probability 1 − ηrefl, finite transmission probability ηtrans of
glass elements in the optical path, reabsorption and
subsequent fluorescence quenching (if the gas is optically
thick) with probability 1 − ηthick, and the intrinsic quantum
detection efficiency ηdet of the single-photon counter. In
what follows, we discuss how each of the ηi can be of
order unity.

FIG. 6. Dynamic rates of the two-level subsystem
jv ¼ 0; J ¼ 1i ↔ jv ¼ 1; J ¼ 0i in carbon monoxide (CO), as
a function of pressure P. We plot the collisional broadening rate
γcol (green line), the coherent emission rate in the absence or
presence of decoherence—ðr̄ − 1Þγ0 as the dashed red lines and
ηcohðr̄ − 1Þγ0 as solid red—for two temperatures T ¼ 100 K
(thick line) and T ¼ 77 K (thin line). Also shown are the
incoherent radiative rate γ0 (blue line), a benchmark natural
radioactive decay rate ΓRD (dashed purple line) before an active
veto, and the nonradiative quenching rate γvibquench (orange line).
The collisional width γcol comes within a factor of 3 (30) from the
rotational energy Be (dashed black line) at the boiling point
pressure of 5.5 bar (0.6 bar) at T ¼ 100 K (T ¼ 77 K). This
shows that collisional broadening is an effective mechanism for
frequency scanning. Notice that because the collisional rate
dominates every other dynamical timescale, it reduces the
coherent emission rate so that only 1 out of every Oð1000Þ
DM particles absorbed will produce a photon.

FIG. 7. Rate of absorption Γabs (solid green line) and rate of
focused, coherent emission ΓS

rad (solid red line) as a function of
DM energy ω ≃m, in the phase I version of the stack configu-
ration, filled with carbon monoxide (the 12C16O isotopologue) at a
pressure of 5 bar, temperature of 100 K, and “stack enhancement
parameter” S̄=mRz ∼ 10 [cf. Eq. (7)]. The case study shown
assumes a kinetically mixed photon with ϵ ¼ 10−12, zoomed in
on the energy range around CO’s first vibrational absorption line
jv ¼ 0i → jv ¼ 1i at ωe ¼ 0.27 eV, with rotational fine struc-
ture of splitting 2Be clearly visible. This plot shows that the
thermally occupied rotational levels of the ground state allow us
to expand the frequency coverage of vibrational and electronic
transitions. The dashed green line shows the absorption rate for
12C18O, displaying the isotope shift on the rovibrational structure.
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Reflection efficiency.—Fluorescence photons may be
absorbed by the (not perfectly) reflective walls of the
gas container in the bulk configuration. We envision that
the container walls are coated with a material with high
reflectance R, which depends on the wavelength, polari-
zation, and incidence angle of the incoming photon.
Appropriately averaging over polarizations and incident
angles for an effective wavelength-dependent reflectance
R̄ðωÞ, a photon can be reflected an expected 1=½1 − R̄ðωÞ�
times before being absorbed onto the coating. The loss
fraction of signal photons will be small, ηrefl ≈ 1, as long as
Adet=½V2=3½1 − R̄ðωÞ�≳ 1 for a detector volume V with an
aspect ratio near unity and an area Adet instrumented with
photodetectors. For photon energies ω≲ 1.9 eV or wave-
lengths λγ ≳ 650 nm, silver has 1 − R̄ðωÞ≲ 10−2. For
higher-energy lights, aluminum is better, with 1 − R̄ðωÞ ≲
10−1 for all λ > 100 nm. Dielectric coatings can achieve
even much lower absorbance values 1 − R̄ ≪ 10−2 in
narrow energy ranges over all wavelengths of interest
(100 nm–10 μm). High-reflectance coatings can thus allow
for a small photodetector-instrumented area Adet, of linear
size 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R̄ðωÞ

p
smaller than the bulk detector size,

while keeping ηrefl ∼ 1.
Transmission efficiency.—A stack detector configuration

does not require reflective coatings since the radiation is
focused; in fact, it will typically need antireflective (AR)
coatings on the interfaces between the gas (with index of
refraction close to 1) and the material separating the
different slabs, such as glass or silicon, that will have a
substantially higher index of refraction. Graded-index
coatings can achieve 0.1% reflection over a broad range
of wavelengths, while even better performance may be
expected over narrow wavelength ranges with thin-film
interference coatings. Bulk absorption by the slab container
material must also be considered. Synthetic quartz glasses
can easily achieve absorption depths in excess of 1 cm in
the wavelength range 180 nm–2.5 μm, while silicon exhib-
its this property for wavelengths above 1.1 μm, covering
our energy range of interest.
Optical thickness.—Signal photons can get reabsorbed

and subsequently quenched if the gas sample is optically
thick. For a low-density gas of two-level molecules with an
electric-dipole transition moment μ1;0 ¼ jh1jμej0ij, the
light intensity falls off exponentially as ∝ e−αl, with l
the optical path length and αðωÞ the attenuation coefficient
for light with an angular frequency ω near the molecular
transition energy ω0:

αðωÞ ¼ 2ω0np0μ
2
1;0

γcol

1

1þ ðω−ω0Þ2
γ2col

;

≈
ω¼ω0

1

0.09 mm

�
ω0

eV

��
μ1;0

10−2ea0

�
2
�

p0

1=10

�
: ð100Þ

Here, we employ the collisionally broadened line shape,
though Doppler broadening can also be important at
sufficiently low densities. The inverse αðωÞ−1 is the mean
absorption depth, which can be quite short for
jω − ω0j < γcol, as the second line of Eq. (100) shows.
For this reason, a bulk detector will rely on fluorescent
decays to intermediate levels which are not thermally
occupied. It follows from Eq. (100) that the associated
photons from those decays will travel macroscopic
distances because levels that could resonantly absorb
them have exponentially small occupation probabilities
pi ∝ e−Ei=T , while off-resonant absorption is highly sup-
pressed by the Lorentzian line-shape factor, so ηthick ≈ 1.
Even for thin stack detectors, the on-resonance absorp-

tion depth αðω0Þ−1 can be smaller than the proposed
integrated thickness, D ¼ 1 mm for phase I and D ¼
100 mm for phase II. However, in the regime of
Eq. (93) where cooperative effects for DM absorption
are in action, the radiated photons themselves will also
interact cooperatively with the molecular medium. Dicke’s
seminal work on superradiance showed that due to a phase-
matching effect, a photon plane wave can experience
coherent scattering in the direction of the incoming wave
[5]. This coherent forward scattering in extended volumes
was further developed in Refs. [22,23], showing that for
large-Fresnel-number samples (such as a slab), photons are
reemitted in narrow “lobes” primarily in the forward
direction. Recent theoretical [24] and experimental [25]
work shows that this effect is also obeyed for a single
photon absorbed by a sufficiently strong dipole transition.
Single-photon superradiance in extended volumes is a
complicated subject of intense recent study [26,27], and
it is beyond the scope of this work. Further work is needed
to show how far a photon will travel in this regime and to
what extent the directional information is preserved after
multiple coherent scattering events. This will be crucial for
a phase II version of the stack configuration.
Photodetector performance.—The sensitivity of our

proposed setups is ultimately limited by photodetector
parameters. The key specifications not only include the
quantum detection efficiency ηdet but also the DCR, photo-
sensitive area (Adet), energy range (ωmin–ωmax), energy
resolution (Δω), timing jitter (Δt), and operating temper-
ature. Reviews on these aspects of single-photon counting
detectors can be found in Refs. [28,29].
The bulk configuration requires a large photosensitive

area to keep ηrefl ≈ 1. In a prototype phase I, we propose
utilizing off-the-shelf photomultiplier tubes (PMT) with
photosensitive area Adet ¼ ð30 cmÞ2. These PMT allow for
(near-)room-temperature operation at visible and near-
infrared wavelengths with detection efficiency ηdet ≈
40% and DCR ≈ 1 Hz (when they are cooled a few degrees
below freezing) [30–33]. Timing jitter Δt is subnano-
second, aiding in timing-based rejection of environmental
backgrounds, while the intrinsic energy resolution is
quite poor.
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For the phase II bulk setup, we assume state-of-the-art
photodetector arrays based on MKID [34]. These cryogenic
photodetectors can be operated as single-photon counters
between ultraviolet wavelengths of 100 nm, all the way to
midinfrared wavelengths greater than 5 μm, while retaining
energy resolution of order Δω ∼ 0.1 eV as well as good
timing resolution Δt ∼ 10−6 s, with further improvements
on the horizon [35]. These devices have essentially no
intrinsic dark counts at energies ω a few times above their
energy resolution; any nonsignal counts must be due to true
environmental photons. Their quantum efficiency is already
good even for midinfrared photons (ηdet > 0.2) and excel-
lent for wavelengths above 500 nm (ηdet > 0.5).
Crucially for our purposes, this cryogenic photodetector

technology is the first to have been multiplexed into arrays
of 2 × 104 “pixels” [36,37], already yielding photosensitive
areas as large as Adet ∼ ð1 cmÞ2; larger arrays are already
under development [38]. (Most cryogenic single-photon
counters rely on the increase in temperature in a super-
conducting volume from the impinging photon’s energy, so
any one such volume must necessarily be microscopic.)
Anticipating that MKID technology matures even further,
we assume a photosensitive area of Adet ∼ ð10 cmÞ2 for the
future BII setup volume of V ¼ ð2 mÞ3, where it would
occupy a 10−3 fraction of the container area and thus
require tuned dielectric coatings with 1 − R̄ ∼ 10−3.
In the stack configuration, the photons can be focused onto

a small area of order 10−6 the transverse area of themolecular
container. As such, there is no need for particularly large
arrays even in the larger phase II version, which would
require a minimal photosensitive area Adet ∼Oðmm2Þ.
MKIDs would perform even better, as the smaller phase
space of the signal photons allows them to make use of

microlenses to steer the photons on their inductive elements
[35]. Over such relatively small areas, TES [39] and other
cryogenic detectors [28,29,40] may also be employed, with
similar and potentially better specifications.

C. Environmental backgrounds

Assuming that DCR can be controlled down to the desired
levels specified above, we expect three primary sources of
background in our energy range: blackbody radiation (BBR),
natural and cosmogenic radioactivity, and cosmic rays.
Blackbody radiation.—The molecules in the detector

volume have to be kept in the gaseous phase in order to
retain their resonant absorption characteristics. For all but a
few diatomic molecules suitable for our setup, this corre-
sponds to temperatures larger than 100 K. The accompany-
ing BBR at a temperature T in thermal equilibrium results
in an irreducible background photon rate onto the photo-
sensitive area Adet of

ΓBBR ≃ Δω
ω2

π2
e−ω=TAdet; ð101Þ

in a band Δω around any frequency ω. Fake counts from
BBR will dominate over dark counts in the photodetector
whenever ηdetΓBBR ≳ DCR [cf. Eq. (96)]. Given the expo-
nential tail in Eq. (101), this turnover point occurs at an
energy ω that is not very sensitive to the other experimental
specifications. We foresee blackbody radiation to be the
dominant background for ω < 1.5 eV in any setup at 300 K
(BI), and for ω < 0.5 eV in a 100-K detector (BII, SI, SII).
These turnover points are clearly visible as the “kinks” in
our sensitivity estimates in, e.g., Fig. 8.

FIG. 8. Reach for the kinetic mixing parameter ϵ of a hidden photon with mass mγ0 . The SNR ¼ 1 sensitivity estimates for the bulk
configurations (BI and BII) are shown as thick blue bands, and those of the stack configurations (SI and SII) as thin red bands.
Sensitivity curves are also shown for a single molecular species with the following assumptions: I2 (blue) in BI, HCl (blue) in BII, CO
(red) in SI, and H2 (red) in SII. Solar emission constraints and DM-induced ionization limits in Xenon10 are shown as gray regions.
Above the black line in the top right, hidden photon DM runs afoul of constraints on Neff .
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Natural and cosmogenic radioactivity.—Background
photons in the energy range of interest can also originate
from radioactive decays in the surrounding material or even
the molecular gas itself. Care must be taken to passively
mitigate and, in the phase II versions of our setups, to
actively veto this background. Gamma rays will be the
main culprit due to their large penetration length, which is
about 1 and 3 orders of magnitude larger than that of beta
and alpha particles, respectively, at 1 MeV. Gamma rays in
the surrounding material can dislodge surface electrons via
the photoelectric effect or directly ionize the molecules in
the bulk (among other channels), which can cause molecu-
lar excitations in the frequency band of interest, or even
directly trigger the photodetector.
A later-stage detector proposal should include a detailed

detector simulation of these effects; here, we provide
parametric estimates showing the feasibility of passive
and active mechanisms to keep the rate of radioactive
decays ΓRD below the inverse shot time or the DCR,
whichever is larger. When ΓRD ≲ DCRþ t−1shot, radioactive
backgrounds are subdominant. The attenuation coefficient
for gammas at 1 MeV is αγ ≈ 6 × 10−2 cm2 g−1, giving an
attenuation length of about 6 cm in quartz and 1.5 cm in
lead, for example. The main sources of naturally occurring
radioactivity are 238U, 232Th, and 40K, each giving roughly
similar contributions, so we only estimate contributions
from the first. The natural mass-fraction abundance of 238U
is fm ≈ 10−6 g=g, while its half-life is t1=2 ≈ 4.5 × 109 y.
Supposing that the container is a cubic volume with
boundary area AδV ¼ 6ð2 mÞ2 surrounded by a material
of quartz’s density, we find a typical radioactive decay rate
of Oð104 HzÞ in a boundary layer with thickness of order
the penetration length. The same estimate for a high-purity
lead shield with a specific density ρPb ≈ 11g=cm3 and a
fm ∼ 10−12 mass fraction of 238U, similar to those used by
other experiments [41], gives a rate of

Γ
238U
RD ∼

fmAδV

αγmð238UÞ
ln 2
t1=2

∼Oð10−2 HzÞ: ð102Þ

Besides naturally occurring radioactive isotopes with
lifetimes on the order of billions of years, there will
generally also be trace concentrations of cosmogenically
activated radioactive isotopes in the molecular medium or
the container materials. Even though these contaminants
occur in much smaller mass fractions, their decay rates are
larger, so they may compete with radioactivity from 238U,
232Th, and 40K. A particularly dangerous isotope is 14C,
produced by cosmic-ray collisions high in the atmosphere
and consequently present at a fractional number density of
10−12 relative to that of 12C in all organic material not
buried for longer than its half-life of t1=2 ≈ 5730 y. For
example, if the molecular medium contains carbon atoms
(e.g., CO), then one can expect a cosmogenic radioactivity
contribution of

Γ
14C
RD ¼ nð14CÞV ln 2

t1=2
≈ 102 Hz

�
nð14CÞ
10−12nst

�
: ð103Þ

Carbon-containing molecules derived from fossil fuels can
have greatly depleted 14C content. Certain petroleum
reservoirs have been shown to contain 10−18 fractional
concentration of the radioactive isotope [42], making this
background completely subdominant even at large pres-
sures. We foresee that similar provisions can be taken for
other cosmogenically activated radioactive isotopes.
Even a background radioactive rate of ΓRD ∼ 10−2 Hz,

potentially achievable with a high-purity shield and keep-
ing radioactive contaminants at a minimum, poses a huge
challenge to a typical DM absorption detector in the ω ∼
eV range. Other detector proposals [43–49] employ bulk
target volumes based on nonresonant absorption onto
liquids or solids, and aim to be signal-count limited at
kg-year exposures, requiring powerful active veto methods
for large volumes. Our bulk and stack configurations each
have characteristic properties that provide additional pas-
sive mitigation mechanisms not available to the aforemen-
tioned nonresonant absorption targets.
The bulk configuration in the scanning mode has three

distinct advantages regarding passive radioactive back-
ground mitigation. First, by dividing the full integration
time over an Oð1Þ bandwidth into many different shots
with independent, narrow-band DM response functions,
the radioactive background becomes negligible when
ΓRD ≲ t−1shot—a much looser criterion than ΓRD ≲ t−1int .
Second, one can look for DM signals Γdet smaller than

ΓRD even when ΓRD > t−1shot [as we have implicitly assumed
in Eq. (96)] because there is a natural way to modulate the
DM signal rate while keeping the background rate constant.
For example, when in neighboring shots one has average
total background counts of Γbckgtshot ≳ 1, one is sensitive to
signal rates as low as Γdet∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γbckg=tshot

p
(assuming ηdet ¼ 1

for simplicity). Such averaging effects and differential
response tests are not typically available in most bulk
detectors since they do not have a natural way to “turn off”
the signal while keeping the background rate constant.
Third, a bulk detector in scanning mode can be operated

at such low density that a typical fast electron only has a
small probability Pe

ex of exciting a molecular state in the
frequency band of interest since that process does not
receive a resonant enhancement factor:

Pe
ex≃nσeexL∼10−3

�
n

10−2nst

��
σeex

10−4αa20

��
L
2m

�
; ð104Þ

which is approximately valid for nσeexL≲ 1, with L the
typical linear size of the detector volume. Above, σeex
should be the (velocity-averaged) cross section for a typical
electron to excite molecular states that give rise to fluo-
rescence photons within a detector’s bandwidth around the
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frequency of interest, for which we have chosen a plausible
value for an E1-allowed transition in the numerical estimate
[[50],§ 148]. Forbidden transitions have even lower σeex that
scale like α3a20 or even higher powers of the fine-structure
constant. When NePe

ex ≪ 1, where Ne is the typical
number of electrons produced in a radioactive decay, the
radioactive background in the band of interest is further
suppressed by this factor.
The stack configuration has the remarkable property that

84% of the signal is emitted in a cone of opening angle
2v0 ≈ 5.4 arcmin and solid angle ΔΩ ¼ πv20, a 1.5 × 10−7

fraction of the full solid angle ΔΩ ¼ 4π. Radioactive
backgrounds from the molecular volume can thus likely
be ignored entirely, reducing the problem of radioactive
contamination only to the photodetector material and
mount, a dramatically smaller volume V ∼Oðmm3Þ.
Furthermore, an active veto system consisting of scin-

tillating material and PMTs surrounding the detector
volume may be employed. Radioactive decays give rise
to many high-energy particles. When they trigger the
scintillating material, any “signal” in the photodetector
in a short time span around the trigger time in the
photodetector can be vetoed. We note that a typical radio-
active decay chain releases dozens of primary gammas and
betas, as well as a bunch of secondaries, so the trigger
efficiency on any one photon or electron need not be high.
As long as the photodetector has a sufficiently short jitter
time Δt and the molecular medium a sufficiently fast
relaxation rate to thermal equilibrium (through radiative
and nonradiative channels), the resulting dead time can be
made negligible. Roughly, one requires

ΓRD ≪ min

	
ðΔtÞ−1; γ0 þ

X
i

γi þ γquench



ð105Þ

to leave the duty cycle of the experiment essentially
unaffected. The timing jitter requirements are easily sat-
isfied by many orders of magnitude. Figure 6 shows that the
detector relaxation is sufficiently fast even for low-lying
vibrational levels, if they have dipole-allowed radiative
decays. Only for vibrational states that have exclusively
E1-forbidden radiative decay channels does Eq. (105)
become hard to satisfy. Given the wealth of passive
mechanisms that offer to keep the radioactive background
under control, the setups under consideration do not require
extremely efficient active veto systems, especially in
comparison to other proposed experiments in this energy
range. The phase I prototypes can likely forego a large-
scale active veto system altogether.
Cosmic rays.—Cosmic muons can also make up a

considerable fraction of the background. At sea level,
the vertical muon flux density is about 70 m−2 s−1 sr−1

[51,52]. The cosmic muon flux is much lower underground,
falling to an integrated vertical flux density of 10−3 m−2 s−1

about 1 km deep in standard rock (2.65 km water

equivalent), and 10−5 m−2 s−1 at 2 km depth [53–56].
Underground operation in a mine of moderate depth
automatically ensures that the cosmic muon background
is subdominant to that of radioactivity. Phase I prototypes
can likely get away with surface-level operation when
outfitted with a modest muon veto system that has a
rejection power of 102, one that can possibly work in
conjunction with a radioactivity veto.

D. Signal discrimination strategies

From the discussion so far, a signal discrimination
strategy emerges. Radioactive and cosmic background
events can be identified by the fact that they result in
multiple photon counts and ionized electrons. All environ-
mental and detector backgrounds will be distributed over a
broad energy range. In contrast, the near-monochromatic
DM signal can only excite transitions at one particular
transition energy and cause emission of a single photon at
one frequency (or, at most, a handful of frequencies, if there
are decay channels to several intermediate states). Below,
we outline that more detailed follow-up studies can
unequivocally verify the DM origin of any potential signal
and furthermore determine properties such as mass, spin,
interaction type, and 3D velocity with pinpoint precision.
The spectacular discrimination power of this type of
detector relies on three different “handles”: energy
response, selection rules, and spatial coherence.
Energy response.—The highly resonant response of the

detector at low number densities can be used to confine the
DM signal to better than 10−6 fractional frequency pre-
cision and even to perform precision studies of its line
shape. A cryogenic photodetector with energy resolution of
Δω≲ 0.1 eV can resolve both electronic splittings and
vibrational fine structure in most molecules. Temperature
modulation will change the relative populations of rota-
tional levels and thus the absorption rates in the rotational
fine structure. By varying the pressure, one can determine
how far off resonance the signal is. Scanning with external
electromagnetic fields and use of different molecular
species—and isotopes of the same species—can be
employed to further hone in on the true energy of the
signal, i.e., the DM mass.
What is the ultimate energy resolution? Collisional

broadening rates can be made arbitrarily small by lowering
the pressure, while the fractional radiative linewidth is
ðγ0 þ

P
iγiÞ=ω0 ≪ α3 ≈ 4 × 10−7 and typically several

orders of magnitude smaller even for dipole-allowed
decays. For photon absorption, the Doppler width due to
molecular motion often determines the minimal fractional
linewidth of the signal at low number densities.
Doppler broadening of the absorption line for a non-

relativistic particle is less pronounced than for a (neces-
sarily relativistic) photon. Using momentum and energy
conservation for an inelastic collision with initial (final)
molecular velocity v1 (v2) during which a dark matter
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particle with mass m, energy ω, and velocity v is absorbed
onto an internal molecular state with transition energy ω0,
we find

Mmolv1 þmv ¼ Mmolv2;

Mmolv21
2

þ ω ¼ ω0 þ
Mmolv22

2

⇒ ω0 ¼ ω −mv1 · v −
1

2

m2

Mmol
v2: ð106Þ

The third term on the rhs is quantitatively subdominant and
does not depend on the molecule’s initial velocity.
Approximating the dark matter mass with its total energy
ω and expanding in small velocities, we then finally arrive
at the condition for absorption:

ω ¼ ω0ð1þ v1 · vÞ: ð107Þ

Because the molecules in the gas move at different
velocities, they can absorb dark matter particles of differing
energies ω. Defining the molecular speed in the dark
matter’s velocity direction as v1;k ≡ v1 · v=jvj, we can
express the probability of finding a molecule between
v1;k and v1;k þ dv1;k as proportional to the Boltzmann-
weighted expf−Mmolv21;k=2Tgdv1;k. Translating this to a

normalized molecular transition energy distribution via
Eq. (107), we find

gDop0 ðω0;ω0
0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2πΔ2

p exp

�
−
ðω0 − ω0

0Þ2
2ΔðvÞ2

�
; ð108Þ

ΔðvÞ≡ ω0v

ffiffiffiffiffiffiffiffiffiffi
T

Mmol

s
; ð109Þ

with a fractional width of ΔðvÞ=ω0 ≈ 4 × 10−9ðv=10−3Þ for
H2 gas at room temperature, and even lower for heavier
molecules and/or colder temperatures. This width ΔðvÞ is a
factor of v ∼ 10−3 smaller than the equivalent Doppler
width for photon absorption. If Doppler broadening domi-
nates over both radiative and collisional broadening, when
ΔðvÞ ≫ γ, then the result of Eq. (10) should be convoluted
with the line shape of Eq. (108) to give

ΓDop
abs ðω;ω0Þ ≃ NΩ2Δ−1

ffiffiffi
π

8

r
exp

�
−
ðω − ω0Þ2
2ΔðvÞ2

�
; ð110Þ

at least for jω − ω0j=Δ not too large. The off-resonance
tails are more accurately described by the Voigt profile, a
convolution of both the Lorentzian and Gaussian line
shapes.
The narrow fractional width allows for extremely narrow

spectroscopic studies of the signal line shape at low
pressures (when collisional broadening can be ignored)

and would be a great signal discriminant should anomalous
photon emission be seen in the experiment. A single
velocity component of the dark matter field ensemble
has an energy ω ¼ mð1þ v2=2Þ in terms of its square
velocity in the lab frame. The DM’s 3D velocity distribu-
tion fðvÞ can be expected to closely resemble the virialized
distribution of Eq. (14), yielding a fractional underlying
signal frequency width of order v20=2 ≈ 3 × 10−7. Because
ΔðvÞ=ω0v20 ≪ 1, the molecular resonance can resolve the
kinetic energy distribution of DM. In this “resolved”
regime, the absorption rate as a function of DM mass m is

ΓDM
abs ðm;ω0Þ≃

Z
d3vfðvÞΓDop

abs (mð1þv2=2Þ;ω0)

≃
NΩ2

23=2πv30

Z
d3v

expf−ðv−vlabÞ2
v2
0

− ½mð1þv2=2Þ−ω0�2
2ΔðvÞ2 g

ΔðvÞ :

ð111Þ

By tuning ω0 and at large enough statistics, one could
determine the DM mass m, the velocity dispersion v0, and
the magnitude of the relative velocity jvlabj (using diurnal or
annual modulation). One could possibly even discern finer
details of the velocity distribution fðvÞ, such as the Galactic
escape velocity [not taken into account by the virialized
distribution in the second line of Eq. (111)]. Note that the
integrand in the second line of Eq. (111) is technically only
valid for velocities whereΔðvÞ ≫ γ; one should use the full
Voigt absorption line shape for the low velocities v where
this is no longer a good approximation.
Selection rules.—If a near-monochromatic signal were to

be detected at some frequency ω near a transition frequency
ω0, then one can determine the properties (such as the
quantum numbers) of the initial and final states. This is
possible because small polyatomic systems are simple
enough to have been well characterized both experimentally
and theoretically, as is evident from Secs. II C and II D.
Any nonthermal SM background must come from

interactions with external photons or charged particles,
which to leading order interact with a Hamiltonian propor-
tional to the electric dipole moment μe, giving Ω ∝ jμ1;0j.
This fact leads to the well-known dipole selection rules for
the leading-strength transitions.
DM absorption does not necessarily obey these rules. A

scalar DM particle may leave the angular state of the
molecule unaffected via a “monopole” transition (ΔJ ¼ 0),
while a pseudoscalar DM particle may cause “spin-dipole”
transitions from a spin-singlet ground state to a spin-triplet
excited state (ΔS ≠ 0), both at leading order. These
processes are normally highly forbidden in small polya-
tomic systems. Even when the DM particle primarily
causes ordinary dipole transitions, one could test if, rather
than coupling to the dipole moment of electric charge, it
instead couples to the dipole moment of, e.g., baryon
number, lepton number, or any linear combination thereof.
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Although we do not discuss it in this work, dark matter
candidates with spin ≥2 would dominantly cause higher
multipole transitions.
The modularity of the proposed detector allows for

targeted studies with different types of molecules, each
having a transition energy ω0 near a potential candidate
signal at ω. Should a DM signal be seen in a broad
frequency search, these targeted studies can, in principle,
determine the form of the interaction Hamiltonian δH.
Spatial coherence.—The nonrelativistic velocity distri-

bution fðvÞ leads to a characteristic spatial (and temporal)
coherence of the perturbing wave that is imprinted onto the
molecular emission via the correlation function in Eq. (19),
in turn leading to the dramatic focusing effect for a slablike
container discussed in Sec. II B. This emission pattern
cannot be mimicked by any standard SM background. A
robust prediction for such a detector shape is that the center
of the emission cones, with offset from the normal direction
proportional to vlab [see Eqs. (24) and (25)], would precess
on a diurnal and annual basis due to the Earth’s spin and
orbit around the Sun, respectively, with known phases,
directions, and amplitudes. In addition, these measure-
ments of vlab would have to agree with the magnitude jvlabj
derived from Eq. (111); likewise, v0 as determined by the
opening angle of the emission cone must agree with the
fractional frequency linewidth in Eq. (111). These obser-
vations can also be compared against astrophysical infer-
ences of the DM’s velocity distribution. Finally, a precision
line study might reveal additional information not other-
wise attainable, such as the existence of DM streams and
the relative rotation of the DM halo and the Galactic disk.

IV. DARK MATTER SENSITIVITY

In this section, we present sensitivity projections of the
proposed setups to the parameter space of specific DM
models, after briefly reviewing the chief interactions of
each DM candidate. We have classified the models in terms
of spin and parity of the DM boson, starting with spin-1
vectors in Sec. IVA, and then continuing with parity-even,
spin-0 scalars in Sec. IV B and parity-odd, spin-0 pseudo-
scalars in Sec. IV C. We leave a treatment of DM particles
with spin 2 and higher to future work. We summarize the
dark matter candidates and couplings, as well as the
corresponding transitions they can mediate, in Table III.

A. Vectors

We start with two vector dark matter candidates, namely,
a hidden photon kinetically mixed with the usual electro-
magnetic field and a new photon that couples to baryon-
minus-lepton number B − L, both having a Stückelberg
mass mγ0 . We focus on these two cases because of
pedagogy (simple comparisons can be made to the inter-
actions of the normal photon) and because they embody
simple extensions of the Standard Model that are

theoretically consistent up to very high energy scales.
Other types of vectors are certainly possible, but most of
the models include other states, such as Higgs-like scalars
or anomalons, whose interactions are often independently
constrained; we ignore those theories for the sake of
brevity.
Weakly coupled, massive vectors can be produced in the

early Universe. A natural and calculable relic abundance
can arise from vector fluctuations during the inflationary
era (if the Stückelberg mass is “on” then), with a present-
day relic energy density of

ργ0 ≈ ρDM

�
mγ0

1 eV

�
1=2

�
HI

5 × 1012 GeV

�
2

; ð112Þ

where HI is the Hubble scale during the last few e-folds of
inflation [57]. We see that the vector can make up all of the
DM in the mass range of interest if the Hubble scale is
between 1012 GeV and 1013 GeV. The field misalignment
mechanism, on the other hand, is not effective unless large
interactions with curvature invariants are present [58].
Kinetically mixed photon.—If a light vector particle is a

low-energy remnant of a sector that is coupled to the SM at
high energies, the associated vector field A0

μ can and will
generically have effective operators coupling it to the SM
even if none of the SM fields is charged under the new U(1)
gauge symmetry [59,60]. The lowest-dimensional such
operator, one that can be expected to capture the dominant
effective interactions with the SM at low energies, is the
kinetic mixing term FμνF0μν wherein the “hidden” field
strength F0

μν ≡ ∂μA0
ν − ∂νA0

μ couples to the equivalent
quantity Fμν of the SM electromagnetic field Aμ. The
strength of this mixing is conventionally quantified by a
dimensionless parameter ϵ in the Lagrangian:

Lgauge ¼ −
1

4
FμνFμν −

1

4
F0
μνF0μν þ 1

2
ϵFμνF0μν

þ 1

2
m2

γ0A
0
μA0μ − eAμJ

μ
EM; ð113Þ

with mγ0 the hidden photon’s Stückelberg mass, and JμEM ¼P
ψqψ ψ̄γ

μψ the electromagnetic vector current. The above
Lagrangian, written in the “gauge basis,” can be made to
have diagonal kinetic and mass terms with a field redefi-
nition, transforming it into the so-called physical basis:

Lphysical¼−
1

4
FμνFμν−

1

4
F0
μνF0μνþ1

2
m2

γ0A
0
μA0μ

−eðAμþ ϵA0
μÞJμEM; ð114Þ

now rewritten in terms of redefined fields Aμ and A0
μ.

Diagonalizing the terms that govern the propagation in
vacuum comes at the cost of introducing an interaction of
the massive photon state with the EM vector current,
suppressed by ϵ relative to that of the massless photon.
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In the physical basis, electromagnetic charges interact with
a specific linear combination of fields Aeff

μ ¼ Aμ þ ϵA0
μ, so

matrix elements for interactions of A0
μ with the molecule

can be found simply by rescaling those of the photon Aμ by
a factor of ϵ. [This is strictly only true for electric dipole
(E1) transitions. For magnetic dipole (M1), electric quadru-
pole (E2), and even higher-order transitions, whose matrix
elements all involve factors of k · x, the matrix elements of
a nonrelativistic A0

μ are further suppressed by factors of
velocity v ¼ jkj=mγ0 relative to those of the necessarily
relativistic photon Aμ].
The propagation of the two vector fields is qualitatively

different, however. In vacuum, the A0
μ ¼ ðϕ0;A0Þ mass

eigenstate obeys the massive wave equation ð∂2
t − ∇2þ

m2
γ0 ÞA0

μ ¼ 0, which means the field can support nonrelativ-
istic solutions as well as longitudinal modes, which have a
vector potential aligned with the propagation velocity v
(i.e.,A0 · v ≠ 0). The dark matter state is expected to be well
described by a nonrelativistic, classical solution of this wave
equation; a single momentum component of the whole DM
ensemble has a vector potential of the form

A0ðt;xÞ¼A0
0n̂cos ½mγ0 ð1þv2=2Þt−mγ0v ·xþαv�: ð115Þ

The full state of the field should be regarded as a mixed state
composed of many of these different velocity components
drawn fromaprobability distributionfðvÞ, eachwith random
phases αv and possibly also random directions n̂.We assume
the velocity distribution to be close to that of Eq. (14) and the
direction n̂ of the vector potential to have a coherence time at
least as long as 1=mv20 but shorter than the timescale of the
experiment. For reasons outlined in the Appendix, all of our
main results remain valid even when the classical approxi-
mation breaks down, at hidden photon massesmγ0 ≳ 15 eV.
In this regime, the local darkmatter field occupation numbers
become so low that, e.g., hjA0j2i ≫ hjA0ji2.
In Lorenz gauge (∂μA0μ ¼ 0), the hidden electric scalar

potential ϕ0 can be determined from the relation
∂tϕ

0 ¼ −∇ ·A0, from which it follows that it is suppressed
relative to the hidden vector potential, as typically
ϕ0 ∼ vjA0j. The stress-energy tensor contribution Tμν ¼
F0μ
λ F

0λν þ ð1=4ÞgμνF0
λσF

0λσ þ ð1=2Þm2
γ0A

0μA0ν from the
massive photon state can be evaluated from the solution
of Eq. (115) and contributes as an effective fluid with
nearly zero average pressure and energy density:

ργ0 ≡ T00 ≃
1

2
m2

γ0 jA0
0j2: ð116Þ

Expressed as fields rather than potentials, we see that the
hidden magnetic field B0 ¼ ∇ ×A0 is velocity suppressed
relative to the hidden electric field E0 ¼ −∇ϕ0 − ∂tA0,
which oscillates with an amplitude of

jE0
0j≃mγ0 jA0

0j≃
ffiffiffiffiffiffiffiffi
2ργ0

p
≈3.3×103 V=m

�
ργ0

ρDM

�
1=2

ð117Þ

along the direction of the A0 potential, up to velocity-
suppressed corrections. Because of the enormous size of
this hidden electric field, which in some ways is equivalent
to shining a kilowatt-class “hidden” laser with beam waist
of order the detector size of 30 cm (and approaching
megawatt power levels for a 3-meter detector size), it is
possible to have appreciable event rates in absorptive media
even for tiny values of the mixing parameter ϵ, as we
showed already in Fig. 6.
A particle ψ with mass mψ and electromagnetic charge

qψ coupled to the two photons as in Eq. (114) has
nonrelativistic dynamics dictated by the Hamiltonian

Hψ ¼ 1

2mψ
ð−i∇ψ − eqψAeffÞ2 þ eqψϕeff

≃
�
−

1

2mψ
∇2
ψ þ V

�
þ
�
i
qψϵe

mψ
A0 · ∇ψ

�
þ…; ð118Þ

where we have ignored spin-orbit coupling and have
assumed in the second line that the particle moves in an
electrostatic potential well V ¼ eqψϕ of other nearby
particles, as well as in a massive hidden photon wave of
the form in Eq. (115), with the ellipsis representing terms of
Oðϵ2Þ and OðvÞ. An ambient A0 wave will also interact
with any surrounding conductive elements, including the
reflective coating of the vapor cell. The resulting screening
currents will set the interacting linear combination of vector
potentials, Aeff ¼ Aþ ϵA0, to near zero within a hidden
photon’s Compton wavelength m−1

γ0 away from the con-
tainer wall [61]. However, A and A0 propagate at different
speeds, so for a sufficiently large container volume
V ≫ m−3

γ0 , they will oscillate in and out of phase in most
of the bulk interior such that we have jAeff j ≃ A0

0 to a very
good approximation.
In a molecule, we can thus separate the full Hamiltonian

into the Hamiltonian H0 from Eq. (31) and the interaction
Hamiltonian δH ¼ P

ψðiqψeϵ=mψÞA0 · ∇ψ , with the sum
running over all particles in the molecule. Using
the identity ∇ψ ¼ −mψ ½H0; rψ �, we can rewrite the off-
diagonal matrix elements—the only ones that matter for
transitions—of δH between an initial state jii and a final
state jfi asD
f



X

ψ

i
qψϵe

mψ
A0 · ∇ψ




ii ≃ −hf



X

ψ

qψϵeE0 · rψ



iE: ð119Þ

In the second equality, we have made the approximation
iω0A0 ≃ E0, which holds insofar as the hidden photon is on
resonance with the transition, i.e., mγ0 ≃ ω0. We also
assumed that to leading order we can take AðxÞ and
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EðxÞ to be spatially constant, i.e., independent of x, over
the spatial extent of the molecule. This approximation is
especially precise for a nonrelativistic wave.
To leading order, we can thus think of transitions being

caused by the familiar operator

δH ¼ −ϵμe · E0 ¼ −
X
ψ

qψϵeE0 · rψ ð120Þ

of an electric dipole μe in an effective electric field
Eeff ¼ ϵE0. It can induce transitions in many systems,
including vibrational and electronic transitions in diatomic
molecules. For vibrational transitions, we can integrate out
the electronic motion and regard a neutral diatomic
molecule as a spring with charges �δeðRÞ attached to
the ends, where we take the charges δe to depend on the
internuclear separation R. [The dependence on R is easy to
see: e.g., as R → ∞, it must be that δeðRÞ → 0 if the
molecule dissociates into neutral atoms.] This function
δeðRÞ can be calculated from first principles or indirectly
measured in absorption spectra. In this simplistic view of
the molecule, the transition operator in Eq. (120) reduces to

δH ¼ −ϵeE0 ·RδeðRÞ ¼ −ϵeE0 · R̂fReδeðReÞ
þ ðR − ReÞ½δeðReÞ þ Reδ

0
eðReÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡δe;1

þ…g: ð121Þ

The first term within curly brackets acts trivially on the
vibrational state (it only induces rotational transitions), but
the second term can induce Δv ¼ �1 transitions as dis-
cussed in Sec. II D 2, as long as the factor in square brackets
δe;1 is nonzero. In general, δe;1 is roughly of order the
electric dipole moment of the molecule divided by Re for
heteronuclear diatomics and zero by symmetry for homo-
nuclear diatomics. The third term and higher-order terms in
the Taylor expansion contribute mostly to higher-harmonic
transition matrix elements and can usually be ignored to
leading order, which we do for this discussion. Finally, we
find the angle-averaged squared Rabi frequency from
hidden-photon dark matter to be

Ω2 ¼ jhvf ¼ 1; JfjδHjvi ¼ 0; Jiij2avg
¼ ϵ2e2δ2e;1jhvf ¼ 1jR − Rejvi ¼ 0ihJfjE0

0 · R̂jJiij2avg
¼ ϵ2e2δ2e;1

ρDM
Mωe

jhJfjÊ0
0 · R̂j; Jiij2avg ð122Þ

for vibrational transitions from the ground vibrational state
jvi ¼ 0i to the first excited state jvf ¼ 1i To get to the
second line, we use Eq. (117) with ργ0 ¼ ρDM and Eq. (47),
with M the reduced mass of the diatomic and ωe the
vibrational splitting; the angle-averaged rotational matrix
elements are given below Eq. (61). For Δv ¼ 2 transitions,

the squared Rabi frequency is reduced relative to that for
Δv ¼ 1 by a factor ωexe=8ωe [cf. Eq. (50)].
For electronic transitions, we can repeat the same

exercise to find

Ω2≃ jhχelf ;v0f;JfjδHjχeli ;v00i ;Jiij2avg
¼2ϵ2jhχelf j

X
n

ere;njχeli ihv0fjv00i ihJfjÊ0
0 ·R̂j;Jiij2avg

≡2ϵ2e2δ2e;2R
2
eρDMjhv0fjv00i ij2jhJfjÊ0

0 ·R̂j;Jiij2avg; ð123Þ

where jhv0fjv00i ij2 is the Franck-Condon factor from Eq. (44)
and where we have parametrized the electronic transition
moment jhχelf j

P
nere;njχeli j≡ δe;2eRe in terms of the dimen-

sionless number δe;2.
In Fig. 8, we plot the estimated ϵ sensitivity for the bulk I

and II configurations in thick blue bands, and for the stack I
and II configurations in thin red bands. For these estimates,
we employ the Rabi frequency reach of Eq. (98) using the
configuration parameters of Table II in conjunction with the
matrix elements of Eqs. (122) and (123). We also assume
δe;1 ∼ 1 and the parametric estimates of Eq. (53) for
vibrational transitions, and a electronic transition moment
with δe;2Re ∼ a0 and a typical FC factor of jhv0fjv00i ij2 ∼
10−2 for electronic transitions. Squared rotational matrix
elements are conservatively taken to be 1=6.
The BI prototype, the least aggressive design, is seen to

already be capable of probing new parameter space for
electronic transitions above 1.2 eV. The BII configuration
would be a drastic step up in reach for the same electronic
transitions and would also extend the reach to lower masses
via Δv ¼ 2 transitions. Transitions with Δv ¼ 1 would
yield larger absorption rates but would produce trapped and
subsequently quenched fluorescence photons due to the
high optical thickness of such a bulk detector, as we discuss
around Eq. (100).
The stack configurations are also optimally operated

with molecules exhibiting strongly allowed electronic
transitions at high energies, and Δv ¼ 2 vibrational tran-
sitions between 0.6 eV and 1.2 eV. They can avoid the
quenching issue for Δv ¼ 1 transitions because of their
optically thin planar design and thus have access to larger
matrix elements at energies below 0.6 eV. They also pick up
less BBR due to their smaller photosensitive area, with the
result that even the SI prototype will likely outperform the
much larger BII detector at low masses.
In Fig. 8, we also show a few exemplary sensitivity curves

for the proposed experiments. In blue, we show the reach
around 2 eV–3 eV from the famous visible-light absorption
band B in 127I2, which is so wide and dense in frequency
space that it nearly covers an octave contiguously at standard
atmospheric conditions (without the need for scanning),
making it an attractive molecular candidate for a proof-of-
principle prototype experiment. The blue I2 curve assumes a
vapor pressure of 0.25 bar, which occurs in equilibrium
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around room temperature, and an integration time of 105 s,
and otherwise bulk phase I parameters. Molecular informa-
tion on iodinewas taken fromRefs. [62–67]. Also in blue, at
around 0.8 eV, we plot the estimated sensitivity for Δv ¼ 2

absorption in 1H35Cl at P ¼ 0.25 bar after a single shot of
103 s in the bulk phase II experiment. We also depict the
reach with 12C16O in a stack phase I experiment at
P ¼ 5 bar, displaying both its infrared Δv ¼ 1 vibrational
transition (see also Fig. 7) and its first allowed electronic
transition X → A in the ultraviolet. Molecular data on this
electronic transition can be found in Refs. [68–73]. Finally,
we depict in red the sensitivity to absorption of hidden
photons heavier than 11 eVonto the first three E1-allowed
electronic transitions X → A, B; B’ in 1H2 [74] in the phase
II version of the stack configuration.
The gray exclusion regions in Fig. 8 depict 95% C.L.

constraints on ϵ from null observations by Xenon10 [75] of
hidden photons from the Galactic DM halo [76]
(“Xenon10”) and of hidden photons emitted by the Sun
[77] (“solar emission”). Although beyond the scope of this
work, it would be interesting to work out the detection
prospects of this solar emission component in our proposed
setups, even though the resonant detector response is likely
not optimal for a thermal emission spectrum. Finally, the
black line labeled “Neff” indicates an upper bound on ϵ
derived from the effects that evaporation of hidden photon
DM into the photon bath would otherwise have on the
effective number of abundant neutrino species in the early
Universe [58].
B − L photon.—Another possible set of interactions of a

new vector particle are couplings to baryon number B and
lepton number L. Here, we focus on the anomaly-free linear
combination of B − L charges of SM matter charged under
a new massive U(1), under which the proton p, neutron n,
electron e, and neutrino ν have respective charges:

qB−L;p ¼ qB−L;n ¼ −qB−L;e ¼ −qB−L;ν ¼ 1: ð124Þ
The small number parametrizing the strength of the DM
vector interaction is the gauge coupling g. For simplicity of
presentation, we assume that the new vector does not
kinetically mix with the SM photon, and we write its
Lagrangian as

L ¼ −
1

4
F0
μνF0μν þ 1

2
m2

γ0A
0
μA0μ − gA0

μJ
μ
B−L; ð125Þ

where the B − L vector current is defined as JμB−L ≡P
ψqB−L;ψ ψ̄γ

μψ . Analogously to the analysis done for
the (kinetically mixed) photon in Eqs. (118)–(120), we
find that the relevant transition operator

δH ¼ −μB−L · E0 ð126Þ
is that of a B − L dipole moment μB−L ≡ g

P
ψqB−L;ψrψ

coupled to the electric component of the B − L field
strength E0.

We can write the B − L current JμB−L as the sum of the
electromagnetic current JμEM of Eq. (113) and the neutron
vector current, as per the charge assignments of Eq. (124).
Since nuclear motion can be taken to be “frozen” for
electronic transitions to leading order in the Born-
Oppenheimer approximation, a B − L vector causes the
same transition phenomenology as a kinetically mixed
hidden photon, provided we make the replacement

ϵe ↔ g: ð127Þ
The separability of the B − L current means that we can
decompose the dipole moment as μB−L ¼ ðg=eÞμe þ gμn,
with μn the neutron number dipole moment. Hence, vibra-
tional transitions in a diatomic molecule are caused by the
effective operator

δH ¼ −g
�
μe
e
þ μn

�
·E0

¼ gE0 ·R
�
δeðRÞ þ

ðA2 − Z2ÞM1 − ðA1 − Z1ÞM2

M1 þM2

�
:

ð128Þ
In the first line, we use the same δeðRÞ as in Eq. (121) and
take Zi, Ai, and Ri to be the atomic number, mass number,
and position vector for the ith nucleus, such that the second
two terms represent the interaction with the neutron number
current. In the second line, we isolate the component of
these terms that depends on the internuclear separation
R≡R2 −R1 and neglect terms acting on the molecular
center-of-mass position. So again, we find that, to leading
order, vibrational absorption rates of a B − L vector are
exactly analogous to those of a kinetically mixed vector,
provided we make the replacement

ϵeδe;1 ↔ g

�
δe;1 þ

ðA2 − Z2ÞM1 − ðA1 − Z1ÞM2

M1 þM2

�
: ð129Þ

This means that one can expect any E1 transition to be
sensitive to absorption of a B − L vector, barring accidental
cancellations. In addition, even electric-dipole-forbidden
transitions, with δe;1 ¼ 0, may give appreciable absorption
rates. For example, the molecule 1H2H has no electric
dipole transition moment (by symmetry), but it has
½ðA2 − Z2ÞM1 − ðA1 − Z1ÞM2�=ðM1 þM2Þ ≈ 2=3.
In Fig. 9, we plot the reach estimates for our four

proposed configurations. They are exactly analogous to
those of a kinetically mixed photon with the replacements
of Eqs. (127) and (129), except now a bulk detector can
potentially also look for E1-forbidden Δv ¼ 1 transitions
with low quenching rates. The exclusion regions from the
hidden photon apply in exactly the same way, modulo the
rescaling of Eq. (127). In addition, a B − L vector mediates
a finite-range “Coulomb” force between electrically neutral
bodies: The electrons and proton charges cancel each other
out, leaving a like-charge repulsive force between neutron
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pairs. Null results from short-distance gravity tests [78]
place significant constraints at low masses, indicated by the
gray exclusion region labeled “fifth forces” in Fig. 9. The
decay rate to the three SM neutrinos is Γνν ≃ ð3=8πÞg2mγ0

(assuming all are much lighter than the new massive
vector); we plot a dotted line on which this decay rate
equals the present-day Hubble rate H0.

B. Scalars

In this section, we first summarize the basics of scalar
dark matter, which is analogous to that of vector dark
matter in Sec. IVA and nearly identical to that of pseu-
doscalar dark matter in Sec. IV C. Afterwards, we dem-
onstrate how the proposed experiment can be sensitive to
scalar couplings to electrons, photons, quarks, and gluons.
If a light scalar (or pseudoscalar) field exists in the

spectrum of the theory, then cold ensembles of scalar
particles are naturally produced in the early Universe via
the field misalignment mechanism [79–81]. As in the
massive vector case, an abundance of nonrelativistic,
weakly coupled scalars form an effectively pressureless
fluid and are thus excellent dark matter candidates (see
Ref. [82] for a review of the relevant cosmology). With a
Lagrangian of the form

L ¼ 1

2
∂μϕ∂μϕ −

1

2
m2

ϕϕ
2 þ δL; ð130Þ

and sufficiently weak couplings of ϕ in δL, scalar dark
matter is expected to be a mixed-state superposition of
plane waves of the form

ϕðt;xÞ ¼ ϕ0 cos ½mϕð1þ v2=2Þt −mϕv · xþ αv� ð131Þ

drawn from a velocity distribution fðvÞ like that of Eq. (14)
with random phases αv. The amplitude ϕ0 can be thought of
as the typical magnitude of the field oscillation; more

precisely, we take it to be ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hϕðt;xÞ2iv;αi

q
. The field

configuration then carries an energy density of approx-
imately ρ ¼ m2

ϕϕ
2
0=2. If it makes up all of the local DM

energy density, the field amplitude is expected to be

ϕ̃0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
ϕ0 ≈ 6 × 10−31

�
1 eV
mϕ

�
; ð132Þ

where we have normalized the amplitude in Planck units
(GN is Newton’s gravitational constant). We use the same
notation for the dimensionless field ϕ̃≡ ffiffiffiffiffiffiffiffiffiffiffiffi

4πGN
p

ϕ.
A light, parity-even scalar may couple to parity-even

matter operators (in which case the scalar is often called a
modulus or dilatonlike field) of the form

δL ¼ ϕ̃

�
−dme

meψ̄eψe þ
de
4
FμνFμν

−
X

q¼u;d;s

ðdmq
þ γqdgÞmqψ̄qψq −

dgβ3
2g3

GA
μνGAμν

�
:

ð133Þ
Above,me is the electron mass, ψe is the electron field, Fμν

is the electromagnetic field strength, γq is the anomalous
dimension of the quark field ψq (up ψu, down ψd, and
strange ψ s) with mass mq, β3 and g3 are the QCD beta
function and gauge coupling, and GA

μν is the QCD field
strength. The dimensionless couplings dme

, de, dmi
, dg

parametrize the strength of the leading linear couplings of ϕ
to electrons, photons, quarks, and gluons, respectively, here
written in an effective Lagrangian at a scale just above the
QCD confinement scale Λ3. In most cases, one can ignore
the effects of other higher-dimensional operators of SM
fields and couplings quadratic and higher order in ϕ. (One
exception is when the linear couplings are absent or highly
suppressed, e.g., via a parity symmetry under ϕ → −ϕ. In
this case, all of our results apply with a straightforward
replacement of ϕ ↔ ϕ2, ω ≃ 2mϕ, and an appropriate field
rescaling, while constraints from other experiments typi-
cally change qualitatively.)
We havewritten the couplings of the scalar field as a low-

energy effective theory at the GeV scale, only having
included the most relevant operators while remaining
agnostic about the theoretical origins of the scalar in the
ultraviolet. The simplest UV completion of the couplings in
Eq. (133) is that of the linear Higgs portal [83]

δL ¼ bϕH†H; ð134Þ
with b a dimension-1 coupling and H the SM Higgs field.
At energies far below the Higgs mass, ϕ inherits part of the
couplings of the Higgs to other SM fields due to the small

(      )

(      )

S
F

FIG. 9. Reach for the gauge coupling g of a B − L vector with
mass mγ0 . Gross sensitivity projections and exclusion regions are
as in Fig. 8, with the addition of an exclusion region coming from
searches for short-range fifth forces. We also indicate with the
dashed green line the B − L gauge coupling that would yield a
Coulomb force between nucleons with a strength equal to that of
gravity, and with the dotted black line the gauge coupling below
which the B − L vector is cosmologically stable against decays
into three massless neutrino species.
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mixing term that Eq. (134) induces. Fermion couplings,
including to electrons and quarks, are of order

dme
¼ dmq

¼ bffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
m2

h

≈ 2.2 × 105
�

b
eV

�
; ð135Þ

with mh ≈ 125 GeV the Higgs boson mass, while cou-
plings to gauge bosons, de and dg, are suppressed [83]. We
indicate on the plots in Figs. 10 and 11 the induced
couplings for the Higgs portal model for b < mϕ. [Note
that the relative couplings to light SM fields in the Higgs
portal model are correlated; in particular, their ratios are
fixed, e.g., as in Eq. (135).] Larger couplings naively would
destabilize the scalar potential, barring any other mecha-
nism or fine-tuning.
Light scalar fields with parity-even couplings can also

arise in theories with an extended gravitational sector, such
as the dilaton in string theory [84,85] or a radion in a theory
with extra spatial dimensions [86–88]. In addition, theories
with spontaneously broken supersymmetry and/or flavor
symmetries usually abound in light moduli fields [89]. All
of the above examples have extra structure beyond that
indicated in Eq. (133). If new fields associated with this
new dynamics come in at a scale Λ, then ϕ generically
receives a mass-squared correction of order

Δm2
ϕ ∼

GNΛ4

4π

�
d2me

y2e
ð4πÞ2 þ

X
q

d2mq
y2q

ð4πÞ2 þ d2e þ d2g

�
; ð136Þ

where ye and yq are the electron and quark Yukawa
couplings to the Higgs field, and we have assumed
Λ ≫ mh. Without accidental cancellations, one would

expect m2
ϕ ≳ Δm2

ϕ, an inequality we plot for each of the
couplings individually in Figs. 10 and 11 for Λ ¼ 10 TeV,
an energy scale not yet directly explored in collider physics.
We stress that parameter space above this “natural” region
is by no means excluded or unattainable. The scalar may be
regarded as a composite particle (not unlike the pion in
QCD) at a much lower scale in some theories; see Ref. [90]
for a notable radion construction along these lines.
Alternatively, there may be anthropic pressures for tuning
the mass of the DM particle.
In a CP-violating background such as a QCD vacuum

with nonzero θ angle, the QCD axion a will also pick up
parity-even couplings to mesons and nucleons [91], which
can be expressed in terms of an equivalent quark coupling
bounded to the interval:

10−16ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
fa

≲ dm̂q
≲ 3 × 10−11ffiffiffiffiffiffiffiffiffiffiffiffi

4πGN
p

fa
; ð137Þ

with fa the QCD axion decay constant. The upper bound
comes from null results in searches for a neutron electric
dipole moment, constraining jθj≲ 10−10, while the lower
“bound” is the minimum natural size predicted in the
Standard Model. At higher loop order, one would also
expect the other parity-even couplings, but here we focus
on the quark coupling only.
The effective Lagrangian in Eq. (133) is written in

such a way [92] that low-energy masses and couplings
have the simple functional dependence on the background
value of ϕ:

me½ϕðt;xÞ� ¼ me(1þ dme
ϕ̃ðt;xÞ); ð138Þ

(      )

(      )

F

N

FIG. 10. Reach for the scalar dark matter coupling dme
to electrons as a function of scalar massmϕ. Sensitivity projections for the bulk

(BI, BII) and stack (SI, SII) configurations are shown with assumptions as listed in Table IV. Gray exclusion regions depict constraints
from stellar cooling processes in red giants (RG) and from short-range fifth-force searches. Parameter space below the upper green band
is technically natural (i.e., not fine-tuned) for a 10-TeV cutoff, while the H portal model [see Eqs. (134) and (135)] populates the region
below the lower green band.
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α½ϕðt;xÞ� ¼ α(1þ deϕ̃ðt;xÞ); ð139Þ
mq½ϕðt;xÞ� ¼ mq(1þ dmq

ϕ̃ðt;xÞ); ð140Þ
Λ3½ϕðt;xÞ� ¼ Λ3(1þ dgϕ̃ðt;xÞ): ð141Þ

We often focus on the symmetric combination of the light
quark masses, which has a dependence

m̂q½ϕðt;xÞ� ¼ m̂q(1þ dm̂q
ϕ̃ðt;xÞ); ð142Þ

with m̂q ≡ ðmu þmdÞ=2 and dm̂q
≡ ðdmu

mu þ dmd
mdÞ=

ðmu þmdÞ. A neutral atom with nucleon number A and

atomic number Z has a mass M that scales nearly linearly
with Λ3 but also functionally depends on the pion mass
(and thus the sum of quark masses mu þmd) and the fine-
structure constant due to binding energy effects, as well as
the electron mass:

M½ϕðt;xÞ� ≃Mf1þ ϕ̃ðt;xÞ½ðdg þ ðdm̂q
− dgÞQm̂q

þ ðde − dgÞQe þ dme
Qme

�g; ð143Þ

where we left out subdominant terms coming from, e.g., the
strange quark mass dependence of the nuclear mass or its
dependence on the light-quark mass difference md −mu.
The “dilaton charges” Qm̂q

,Qe, andQme
have been worked

out in Ref. [92], and roughly obey the following empirical
formulas across the periodic table:

Qm̂q
≈þ9.3×10−2−3.6×10−2

1

A1=3

−2.0×10−2
ðA−2ZÞ2

A2
−1.4×10−4

ZðZ−1Þ
A4=3 ; ð144Þ

Qe ≈ −1.4 × 10−4 þ 8.2 × 10−4
Z
A

þ 7.7 × 10−4
ZðZ − 1Þ
A4=3 ; ð145Þ

Qme
≈þ5.5 × 10−4

Z
A
: ð146Þ

Spatial and temporal field oscillations in ϕ such as those in
Eq. (131) give rise to fractional variations in, e.g., the
electron mass with amplitude given by the coupling
constant dme

times the field amplitude in Eq. (132).
The vibrational Hamiltonian of a diatomic molecule

(having integrated out electronic motion) in the presence of
a modulus field is

H ¼ −∇2
R

2M½ϕðt;xÞ� þ
ke½ϕðt;xÞ�

2
ðR − Re½ϕðt;xÞ�Þ2

¼ H0 þ δH0
I þ δH0

II þ δH0
III þ…; ð147Þ

δH0
I ¼ ϕ̃ðt;xÞðdme

þ deÞkeReðR − ReÞ; ð148Þ

δH0
II ¼ ϕ̃ðt;xÞð3dme

þ 4deÞ
ke
2
ðR − ReÞ2; ð149Þ

δH0
III ¼ ϕ̃ðt;xÞðdg þQm̂q;effdm̂q

Þ ∇
2
R

2M
: ð150Þ

We define byQm̂q;eff ≡ ðQm̂q;1M2 þQm̂q;2M1Þ=ðM1 þM2Þ
the effective dilaton quark charge of the reduced mass
M≡M1M2=ðM1 þM2Þ of the diatomic molecule. In the
second line, we have only kept ϕ̃ terms with off-diagonal
matrix elements, and we see that all monopole operators

FIG. 11. Reach for scalar dark matter couplings to photons (de),
light quarks (dm̂q

), and gluons (dg) as a function of scalar mass.
Labels are as in Fig. 10, except the cooling bound on de comes
from cooling processes in the Sun rather than red giants, and we
also show constraints from telescope searches for scalar decays
into two photons in the same plot. In addition, we indicate the
experimentally allowed region for the scalar coupling dm̂q

of the
QCD axion.
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listed inEq. (46) aregenerated.The first interaction from δH0
I

is the quantum-mechanical operator corresponding to the
classical effect of fractional oscillations in the equilibrium
size of atoms, upon which the modulus dark matter searches
of Refs. [93,94] are based. The other two terms are
reminiscent of classical parametric resonance, in that they
primarily cause Δv ¼ 2 transitions when the driving field
oscillates at twice the harmonic oscillator frequency.
To leading order, we can ignore the spatial dependence in

ϕðt;xÞ in the matrix elements of the operators in Eq. (147).
However, we have neglected a tidal force on the diatomic
molecule that comes from the field-induced spatial varia-
tion of the nuclear masses:

MN ½RN � ≃MN(1þ djQj;NRN · ∇ϕ̃ðt;xÞ): ð151Þ
Here, N ¼ 1, 2 runs over the nuclear labels, and j runs over
the dilaton charges, the two most important of which are
listed in Eqs. (144) and (145). This spatial variation leads to
a dipole Hamiltonian that acts on the internal state of the
molecules:

δH1
I ¼

X2
N¼1

MN ½RN � ≃ djΔQjMR · ∇ϕ̃ðt;xÞ þ…; ð152Þ

with ΔQj ≡Qj;2 −Qj;1 the difference in atomic dilaton
charges. The ellipsis indicates terms acting on the center-
of-mass degrees of freedom. Heteronuclear diatomics with
significantly different dilaton charges may thus experience
dipole vibrational transitions as well. Amusingly, the
interaction in Eq. (152) is the spectroscopic analog of
the differential force that macroscopic bodies experience in
a dark matter background of very light moduli [95,96].
Finally, modulus couplings to electrons and photons can

cause monopole electronic transitions of the type antici-
pated in Eq. (55). In the presence of a modulus field, and
with the nuclear motion frozen, the electronic part of the
Hamiltonian in Eq. (31) becomes

H ¼
XZ1þZ2

n¼1

−∇2
en

2me½ϕðt;xÞ�
þ α½ϕðt;xÞ�

×

� XZ1þZ2

n<m

1

jren − rem j
−

XZ1þZ2

n¼1

X2
N¼1

ZN

jrei − rN j
�
: ð153Þ

Extracting the ϕ-dependent parts, and using the identity of
Eq. (58), we find a transition operator

δH0
IV ¼ ϕ̃ðt;xÞðdme

þ deÞ
XZ1þZ2

n¼1

−∇2
en

2me
; ð154Þ

whose transition matrix elements have to be estimated or
calculated from first principles. As a first approximation,
we use the NDA estimate of Eq. (58).
The spatial variation in the electron massme½ϕðt;xÞ� can

also lead to dipole transitions via the operator

δH1
II ≃ dme

me∇ϕ̃ðt;xÞ ·
XZ1þZ2

n¼1

re;n ð155Þ

whose transition matrix elements are suppressed by a factor
of vlab=α relative to those of the operator in Eq. (154),
however. It is clear from the form of Eq. (155) that we may
view this interaction as that of an effective electric dipole
operator with ½eE�eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4πGN

p
dme

me∇ϕðt;xÞ. At sub-
leading order in the Born-Oppenheimer approximation,
modulus-induced spatial variation in the nuclear mass can
also cause electronic transitions and thus extend the
sensitivity to dg and dm̂q

to higher masses but with greatly
reduced transition amplitudes.
In Fig. 10, we show the reach of the proposed setups to

the scalar electron coupling dme
as a function of the scalar

mass mϕ, while the three panels of Fig. 11 show the same
for the scalar couplings to photons, gluons, and light
quarks, respectively. At any point in those parameter
spaces, there are several operators contributing to absorp-
tion, although one is typically dominant. In general, the
bulk and stack setups achieve the highest signal rates for
different operators even at the same point in parameter
space because the stack setup is insensitive to E1-forbidden
transitions, so it can never probe, e.g., monopole operators.
We have summarized in Table IV which operators of
Eqs. (148)–(150), (152), (154), and (155) drive the esti-
mated optimal sensitivity reach in Figs. 10 and 11, and our
assumptions for the matrix element sizes. We break down
the parameter space into three regions: ω≲ 0.6 eV (where
both Δv ¼ 1 and Δv ¼ 2 transitions can occur), 0.6 eV≲
ω≲ 1.2 eV (only Δv ¼ 2 transitions), and ω≳ 1.2 eV
(only electronic transitions).
Short-distance tests of the inverse-square law for the

gravitational force between neutral macroscopic bodies
strongly constrain the low-mass end of the parameter space
of interest [78]. Given typical dilaton charges of neutral
bodies as listed in Eqs. (144) and (145) for the quark and

TABLE IV. Operators from Eqs. (148)–(150), (152), (154), and
(155) driving the optimum sensitivity projections in Figs. 10 and
11 for the bulk (B) and stack (S) configurations. To estimate
vibrational matrix elements, we make use of Eqs. (47)–(50) and
the parametric estimates of Eq. (53). For δH1

I , we assume
differential dilaton charges of ΔQm̂q

∼ 1=30, ΔQe ∼ 1=300,
and ΔQme

∼ 1=4000. For electronic matrix elements, we utilize
Eq. (58) for δH0

IV and Eq. (67) for δH1
II. We also assume

vlab ∼ 10−3, and ϕ makes up all of DM such that Eq. (132) holds.

ω< 0.6 eV 0.6 eV<ω< 1.2 eV 1.2 eV<ω

dme
, de Bulk δH0

I δH0
II δH0

IV
Stack δH1

I δH1
I δH1

II
a

dm̂q
, dg Bulk δH1

I δH0
III � � �

Stack δH1
I δH1

I � � �
adme

only.
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electromagnetic couplings, and assuming Qme
≈me=2mp

for the typical electron-mass dilaton charge, we recast these
“fifth-force” tests as constraints on the individual couplings
dj. Regions excluded at 95% C.L. are shown in gray in
Figs. 10 and 11. The absence of anomalous cooling
rates in red giant stars sets 95%-C.L. upper bounds of
jdme

j<4.8×106, jdm̂q
j < 4.1 × 107, and jdgj < 4.1 × 106

[97], while solar cooling constrains jdej < 1.3 × 108 [98],
also shown in gray. The coupling to photons opens up the
kinematically allowed decay channel of ϕ into two photons,
occurring at a rate Γγγ ¼ ð1=16Þd2eGNm3

ϕ, which is slow on
cosmological timescales (Γγγ ≪ H0) everywhere in the
parameter space shown. The same decay channel can,
however, lead to a near-monochromatic emission signature
in optical telescopes [99–101], constraints on which are
shown as a gray exclusion region in the top panel of Fig. 11.

C. Pseudoscalars

Light bosonic dark matter can also consist of a pseu-
doscalar field, which we denote by a. Pseudoscalars differ
from the scalars in the previous section only by their
transformation under CP, simultaneous charge conjugation
and parity (or, equivalently, time-reversal T by CPT
conservation), which we take to be approximately con-
served at low energies. Under a CP transformation, we
assume a → −a, while ϕ → þϕ. Equations (129) and
(130) hold just as well for a pseudoscalar with the obvious
relabeling ϕ ↔ a, while many of the early-Universe
production mechanisms for spin-0 fields carry over too,
in particular, the misalignment mechanism. However, its
odd transformation under CP symmetry means that a must
couple to CP-odd operators; we parametrize the interaction
terms at energies below the QCD confinement scale as

L ¼ −
X

f¼p;n;e

Gaff

2
∂μaψ̄fγ

μγ5ψf þ
Gaγγ

4
aFμνF̃μν; ð156Þ

with F̃μν ≡ ð1=2ÞϵμνρσFρσ. All of the above interactions
obey a shift symmetry in a; i.e., they are invariant under
a → aþ c for any constant c. The shift symmetry implies
that the interactions of Eq. (156) do not renormalize the
mass, so there is no analogous naturalness preference for
the mass ma of a as there was for that of ϕ [cf. Eq. (136)].
The most famous light pseudoscalar particle is the QCD

axion [102,103], whose presence in the theory would
explain the observed smallness of the neutron’s electric
dipole moment dn by a symmetry [104], thus highly
motivating its existence in nature (in addition to being a
possible DM candidate). The QCD axion, by construction,
must couple to the Lagrangian operator

L ⊃
a
fa

α3
8π

GμνG̃
μν; ð157Þ

where α3 ¼ g23=4π, fa is the axion decay constant, and
G̃μν ≡ 1

2
ϵμνρσGρσ is the dual to the gluon field strength Gμν.

Nonperturbative effects involving this term break the shift
symmetry and induce a scalar potential for a, including a
mass-squared term with mass

ma ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

mπfπ
fa

≈ 0.57 eV

�
107 GeV

fa

�
; ð158Þ

with mπ and fπ the pion’s mass and decay constant,
respectively. The minimum of this potential occurs at a
place where the coefficient of GG̃ is (very nearly) zero
[105], i.e., at an axion field value where the QCD theta
angle is zero and the strong CP problem is solved.
However, if the axion energy density ρ makes up part or
all of the DM energy density, it will locally oscillate in its
potential with a typical amplitude relative to fa of

a0
fa

¼
ffiffiffiffiffiffiffi
2ρa

p
mafa

≈ 3.6 × 10−19
ffiffiffiffiffiffiffiffiffi
ρa
ρDM

r
; ð159Þ

the exact analogue of Eq. (132). In other words, the neutron
EDM is no longer zero (or constant) but takes on the field-
dependent value [106]

dn½aðt;xÞ� ¼ dθσn
aðt;xÞ
fa

; ð160Þ

with a coefficient dθ ≈ 2.4 × 10−16ecm carrying a 40%
fractional uncertainty [107].
The QCD axion operator of Eq. (157) also gives

irreducible, low-energy contributions to the pseudoscalar
operators of Eq. (156). In particular, one has Gaγγ ≈
−1.92ð4Þα=2πfa primarily from mixing with the pion,
as well as Gapp ≈ 0.47ð3Þ=fa, Gann ≈ 0.02ð3Þ=fa, and a
two-loop suppressed Gaee [108] for the purely hadronic
QCD axion in the KSVZ benchmark model [109,110].
The couplings in Eq. (156) are UV dependent: e.g., in the
DFSZ benchmark model [111,112], one expects Gaγγ ≈
0.74ð4Þα=2πfa and Gaff ∼Oð1Þ=fa (depending on a con-
tinuous angle) for all SM fermions [108].
Axions also generically emerge out of string theory with

exponentially suppressed masses [113,114], and other light
axionlike particles naturally arise as pseudo-Nambu-
Goldstone bosons of global symmetries broken at a high
scale fa, with low-energy masses and couplings typically
scaling inversely proportional to fa.
The first set of derivative interactions of a with the

proton p, the neutron n, and the electron e in Eq. (156) lead
to the nonrelativistic interaction Hamiltonian (for single
particles)

δH ¼ þGaffσf ·
�
ð∇aÞ þ ð∂taÞ

−i∇f

mf

�
; ð161Þ
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with f ¼ p, n, e. The first term in square brackets has a
trivial action on the molecular wave function and can only
generate spin flips; it is the basis for cosmic axion search
proposals at much lower masses [106,115–117], as well as
searches for axion-mediated monopole-dipole and dipole-
dipole forces [118–121]. The second term in square
brackets can excite (spin-)dipole transitions in molecules
at much higher energies and is the one we focus on here. By
NDA in nonrelativistic molecules, it can be seen that the
pseudoscalar coupling to photons, the second term in
Eq. (156), causes transitions that are subleading in strength
as compared to the nuclear and electronic coupling in
typical models, so we will not discuss it here.
The coupling to protons and neutrons generates a coupling

to nuclei of the form δH ¼ GaNNð∂taÞσN · ½ð−i∇NÞ=MN �,
wherewe assume for brevity thatGaNN ¼ Gapp ∼Gann is the
same for every nucleus with spin. In general, the coefficient
will depend on the nuclear speciesN asGaNN ¼ cN;pGapp þ
cN;nGann, with cN;p and cN;n coefficients of Oð1Þ, but we
ignore this complication. In a diatomic molecule with a
spinless nucleus N ¼ 2, and in an unpolarized spin state for
the N ¼ 1 nucleus, we find the following square Rabi
frequency for Δv ¼ 1 vibrational transitions:

Ω2 ¼




hvf ¼ 1; JfjGaNNð∂taÞσ1 ·

−i∇1

M1

jvi ¼ 0; Jii




2
avg

≃
G2

aNN

M2
1

ρDMMωejhJfjσ1 · R̂j; Jiij2avg: ð162Þ

To get to the second line, we use the vibrational amplitude of
Eqs. (71) and (74), and assume that the pseudoscalar is all of
the DM. The averaged rotational amplitudes are given below
Eq. (61).Generalizations to amplitudeswithmultiple nuclear
spins, polarized spin states, or nonharmonic Δv ¼ 2 tran-
sitions are straightforward.
The irreducible neutron EDM operator of the QCD axion

also gives rise to the operator

δH¼−
X2
N¼1

dN ·EðRNÞ¼
dθ
e

a
fa

X2
N¼1

σN
ZN

· ½∇N;H0�; ð163Þ

with EðRNÞ the internal electric field of the molecule
evaluated at the nuclear position RN . The second equality
follows from EðRNÞ ¼ −∇NVðRNÞ=ðeZNÞ, with V the
potential energy terms of H0 in Eq. (31) and using
canonical commutation relations. Famously, this operator
has vanishing diagonal matrix elements due to Schiff’s
theorem [122], but its off-diagonal matrix elements do not
vanish. Assuming that the nuclear EDM is similar to that of
the neutron, dN ∼ dn, and again starting with a diatomic
with a single, unpolarized spin σ1, we find a square Rabi
frequency:

Ω2 ¼




hvf ¼ 1; Jf




 dθ
e

a
fa

σ1
Z1

· ½∇1; H0�



vi ¼ 0; Jii





2
avg

≃
d2θ

Z2
1e

2f2a
ρDMMωejhJfjσ1 · R̂j; Jiij2avg: ð164Þ

We see that the nuclear pseudoscalar operator from
Eq. (161) generates exactly the same transitions as the
EDM operator of Eq. (163). The latter’s Rabi frequency is
always smaller though, by a fraction dθM1=Z1e ≃
2dθmp=e ≈ 2.2 × 10−2 for GaNNfa ¼ 1. Since its only
effect is to give a subleading contribution to transitions
already caused by the Gapp and Gann couplings—which are
always generated as well—we do not make separate
sensitivity projections for the EDM operator.
If the spin-dipole transition acts trivially on the nuclear

spin state, then the transition can be E1 allowed; if the
transition is associated with a combined spin flip in one or
more nuclei, then it is always strongly forbidden. The stack
configuration is thus sensitive only to the spin-preserving
transitions; it also requires an order-unity spin polarization
(hσN;zi ∼ 1) in the initial state; otherwise, the coherent
emission from the spin-up population (σN;z ¼ þ1) would
destructively interfere with that of the spin-down one
(σN;z ¼ −1). The bulk setup is sensitive to absorption on
both the spin-preserving and spin-flip transitions and does
not require spin polarization.
Electronic transitions may be excited via the pseudo-

scalar coupling to electrons in a similar way:

h1jδHj0i ¼ iGaeeð∂taÞω0

�
1





 XZ1þZ2

n¼1

σe;n · re;n




0
�
; ð165Þ

Ω2¼G2
aee2ρDMδ

2
e;2ω0R2

ejhv0fjv00i ihJfjσ̂e ·R̂j;Jiij2avg: ð166Þ

We have used the matrix element identity of Eq. (80) and
defined its strength with δe;2 as in Eq. (123). We have
notationally suppressed spin degrees of freedom. In a
magnetic field, ΔΣ ¼ �1 spin-flip transition lines will
receive Zeeman splittings relative to the spin-preserving
onesΔΣ ¼ 0, of size given in Eq. (90). This Zeeman tuning
can be used in the bulk configuration to achieve efficient
and uniform frequency coverage, as all lines receive a
uniform shift by the same absolute amount. In the absence
of significant spin-orbit coupling, ΔΣ ≠ 0 emission rates
are suppressed, so this scanning method is less suitable for
use in the stack setup with small molecules, though it may
be useful for molecules composed of high-Z atoms. Spin
polarization of the molecules is necessary to achieve a high
radiative efficiency only in the stack configuration.
In Fig. 12, we plot gross sensitivity projections to the

nuclear coupling GaNN with the four proposed setups for
the Δv ¼ 1 vibrational transitions calculated in Eq. (162),
as well as for the first higher-harmonic Δv ¼ 2 absorption.
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Figure 13 contains similar curves for the electronic tran-
sitions of Eq. (166) induced by Gaee. We also plot the
typical mass-coupling relation—f−1a =2 < GaNN < f−1a ,
with ma and fa related as in Eq. (158)—for the QCD
axion. Barring accidental fine-tuning in two separate
couplings—Gapp and Gann—any QCD axion model must
lie in or above the green band in Fig. 12. Figure 13 depicts,
by green bands, the relation between the electron coupling
Gaee and the axion mass ma for the DFSZ and KSVZ
benchmark models of the QCD axion. The KSVZ band is
roughly the smallest electron coupling an untuned model
can exhibit.
In these sensitivity plots, we make the minimal but

optimistic assumption that the axion or axionlike particle
makes up all of the dark matter energy density. If the QCD

axion makes up all of the DM, most cosmological histories
would predict or strongly favor axionmasses below 1meVif
the cosmological abundance arises due to the misalignment
mechanism [123], and below 4meV (with large uncertainties
on this bound) if the axions can be produced from decays of
topological defects [123–128]. In a standard thermal history,
the QCD axion abundance scales asΩa ∝ m1.19

a in the dilute
instanton gas approximation. Therefore, the standard pro-
duction mechanisms would predict a fractional axion DM
abundance of ρa=ρDM ∼Oð10−3Þ if the QCD axion were to
exist with a mass ma ∼ 1 eV. One could conceivably
construct models wherein these large-mass axions constitute
all of the DM, but we will not attempt to do so here. We note
that even if the QCD axion only makes up such a small
subcomponent of theDM, theSII setupwould still be capable
of detecting this component between 0.4 eVand 1.2 eV, as the
coupling sensitivity only scales as the square root of the
energy density δGaNN ∝ ffiffiffiffiffi

ρa
p

.
The dominant astrophysical bounds on the pseudoscalar

couplings to nucleons and electrons come from supernova
and white dwarf cooling, respectively. The observed
duration of the neutrino burst originating from SN1987a
indirectly constrains other efficient cooling mechanisms
like the emission of light pseudoscalars. A simple energy
loss argument was long thought to set a rough bound of
GaNN ≲ 2.5 × 10−9 GeV−1 [129]. A more detailed analy-
sis, correcting the omission of several physical effects in the
early literature and folding in progenitor uncertainties, finds
a much weaker robust exclusion bound of GaNN ≲ 1.0 ×
10−8 GeV−1 [130], which is the one plotted in Fig. 12.
Observations of drifts in light-pulsation periods in white
dwarfs provide an indirect measure of their cooling rate; the
most stringent constraint, shown in Fig. 13, is Gaee <
2.5 × 10−10 GeV−1 at 95% C.L. [129,131,132].

( )

( )

FIG. 12. Reach for the pseudoscalar coupling GaNN to nucleons as a function of pseudoscalar mass ma, for the configurations BII
(thick blue band), SI, and SII (thin red bands). The green band indicates the typical mass-coupling relation between ma and GaNN ∼
1=fa for the QCD axion. The gray exclusion region is a “robust” bound set by a combination of the neutrino burst duration of SN1987a
and null observations of axion scattering events in water Čerenkov detectors after the same supernova.

( )

( )

FIG. 13. Reach for the pseudoscalar coupling Gaee to electrons
as a function of pseudoscalar mass ma for the BI and BII
configurations (thick blue bands) and the SI and II configurations
(thin red bands). The green bands indicate the predicted coupling
in two benchmark QCD axion models, namely, DFSZ (top) and
KSVZ (bottom). The gray exclusion region is excluded by
indirect determinations of white dwarf cooling rates.
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V. DISCUSSION

We have presented a DM detection scheme based on
resonant absorption in molecules. Our proposed setup is
sensitive to a wide variety of bosonic DM candidates with
masses between 0.2 eV and 20 eV, including axions, dark
photons, and moduli, and can achieve several orders of
magnitude improvement in coupling on current limits over
the energy range under consideration. The detector concept
may be regarded as a hybrid between low-energy macro-
scopic oscillators—circuits, cavities, mechanical resona-
tors, electron and nuclear spin resonance systems—and
high-energy absorption onto high-density targets. On the
one hand, molecules can be viewed as some of the smallest
and highest-frequency electromechanical resonators that
exist in nature. Each molecule is tiny and extremely weakly
coupled to DM, but a gas of them contains an enormous
number of essentially identical copies, boosting the signal
rate. On the other hand, our setup is, in some ways, similar
to proposals aiming to look for DM absorption onto bulk
targets [43–49]. The crucial difference is that instead of
looking for DM-induced excitations in a continuum—such
as the free-particle continuum, a conduction band, or a
phonon spectrum—here we advocate looking for DM
absorption into a resolved discretuum of states with a long
lifetime T1 and phase-coherence time T2.
A resonant approach comes with numerous advantages,

and one major challenge: frequency coverage. Resonant
absorption onto a transition line at ω ≃ ω0 only yields
appreciable event rates in a narrow bandwidth of order
Δω ∼ 1=T2 around any one nominal transition frequency.
Fortunately, small polyatomic molecules are multimode
resonators due to their wealth of electronic levels, each with
their own vibrational and rotational fine structure. In a
narrow band around each of the lines in this “forest,” the
absorption cross section is resonantly enhanced by a factor
of ω0T2. This enhancement in the absorbing power allows
for excellent DM sensitivity at a discrete set of energies
with exposures as small as 10−5 kg year.
Most of the advantages of our proposal boil down to one

key feature of molecular spectroscopy: control. Small
polyatomics exhibit a resolved discretuum of states with
spectra, dynamics, selection rules, optical properties, and
response to external variables that are well understood both
experimentally and theoretically. As such, a gas of mole-
cules has many “knobs and handles” to control the
susceptibility to any DM absorption signal, unlike most
bulk absorption targets. Even if a candidate signal is first
seen in a different detector, our proposed setup is ideally
suited to perform precision follow-up studies, so in this
sense, it is complementary to other detectors.
Our detector setup allows for excellent background

rejection and signal discrimination. Environmental back-
grounds can be naturally suppressed due to the low density
of the target material, and on otherwise forbidden tran-
sitions. The differential energy response of the molecular

sample allows for detectable signal rates lower than back-
ground rates upon averaging. In addition, background
events already become negligible if they occur once per
“shot,” rather than once over the lifetime of the experiment.
Active veto systems may also be employed, as the overall
detector has a fast response and relaxation time. Finally, the
spatial coherence of the DM particles leads to a dramatic
focusing effect of the signal photons in the stack detector,
offering a factor of greater than one million in directional
isolation from environmental backgrounds.
Should a signal be found, the combination of great

intrinsic energy resolution and energy response control
with external variables—pressure, temperature, electro-
magnetic fields, molecular species, and isotopes—means
that the DM mass can be pinpointed with extreme accuracy
and precision, easily resolving even its line shape. By using
a variety of molecules with a transition line near this
energy, detailed information can be gleaned about the DM’s
interaction Hamiltonian and selection rules. A dedicated
array of stack detectors could be built to exploit and learn
about the kinematic and directional properties of DM. Any
signal can be unambiguously identified to have a DM
origin. Moreover, a positive signal in this energy range
would open up a field of observational DM astronomy
given the setup’s resolution to both the energy and
momentum vectors of the DM particles.
We see ample research opportunities for the near and far

future. First and foremost, it is imperative that prototypes
similar to the proposed phase I setups get off the ground to
demonstrate the feasibility of the experimental strategies
outlined in this work. Experimental research and develop-
ment should include the following: optimization of MKIDs
to deal with isotropic fluorescence photons in the bulk
configuration or other forms of low-noise calorimetric
photon detection; manufacturing methods for a physical or
artificial set of slabs in the stack configuration; and identi-
fication of optimal detector elements, including shield and
container materials, and reflective and antireflective coat-
ings. On the theoretical front, a significant effort should be
devoted tomapping out whichmolecules aremost promising
to cover the two decades of energy with their discretuum of
transition lines. In addition, optical thickness issues and the
effects of multiple forward scatterings of emission photons
need to be studied in the context of a phase II version of the
stack configuration. There could be other uses of our detector
concept, such as inelastic scattering of DM, or detection of
particles from other cosmic or astrophysical sources. We
have considered absorptionvia a large—but incomplete—set
of DM candidates and couplings; notable omissions include
the pseudoscalar coupling to photons, and spin-2 DM
candidates.
Molecular-gas-based DM searches define an entirely

novel class of detectors without the need for novel or exotic
material. We have shown that resonant absorption onto
molecular transitions is a promising avenue for detection
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of well-motivated DM candidates, and a new application of
molecular spectroscopy and low-noise photodetectors in
fundamental physics. In forthcoming work, we will study
howvariants on the techniques presented here can potentially
extend the reach down to DM masses as low as 10−4 eV.
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APPENDIX: FULLY QUANTIZED
RATE CALCULATION

Throughout the main text, we assume that the interaction
with the dark matter bosons can be treated semiclassically,
parametrizing the bosonic dark matter as a background field
with average ambient energy density hρi. One may question
the (degree of) validity of this approximation, especially
because quantum discreteness effects should become notice-
able at higher dark matter masses. Indeed, the expected
particle occupation number hN̂ i within a volume of linear
size equal to the spatial coherence length 2=mv0 is given by
the number density hρi=m times this volume:

hN̂ i ∼ 8hρi
m4v30

≈
�
15 eV
m

�
4

; ðA1Þ

where we have taken the local DM energy density hρi ≈
0.4 GeV=cm3 and velocity dispersion v0 ≈ 235 km=s. We
thus find that hN̂ i is close to unity for the upper end of the
parameter space under consideration in this work. The

semiclassical approximation can be expected to be reason-
ably accurate at low masses, while for m≳ 15 eV, the
number density becomes so low that a more appropriate
representation of theDM interaction is that of individual DM
particles impinging on molecules with a small absorption
cross section. Below, we sketch out a fully quantized treat-
ment that encompasses both regimes. The main result is that
all semiclassical results presented in this paper are valid—

even when hN̂ i≲ 1—for the integration times under
consideration.
We can write the interaction Hamiltonian as a molecular

system with a bosonic field mode of energy ω and
annihilation (creation) operator a (a†) as

δH0ðtÞ ¼ Ω̃e−iωteiω0tb†aþ H:c: ðA2Þ
The molecule is approximated by a two-level system
consisting of states j0i; j1i with energy splitting ω0 and
interaction-picture annihilation (creation) operators
be−iω0t (b†eþiω0t) as before. In Eq. (A2), we have (for
now) ignored spatial dependence of the local interaction
and absorbed all phases and other numerical constants into
Ω̃. Generalizations to interactions with multiple bosonic
field modes is straightforward.
We are interested in calculating the molecular transition

rate of the process j0i → j1i given an initial dark matter
state jDMi of the bosonic field mode under consideration.
To this end, we compute the partial rate amplitudes
h1; nj R t

0 δH
0ðt0Þdt0j0;DMi for a combined transition of

j0i → j1i in the molecule and jDMi → jni in the DM
field mode, as an absorption event will, in general, also
affect the state of the dark matter field. We take jni to be
members of an orthonormal basis (e.g., Fock states). The
expected absorption probability Pabs per molecule is found
by summing over the squares of all partial amplitudes with
different DM final states jni, which to first order in
perturbation theory then gives, at short times,

Pabs ¼
X
n





h1; nje−iR t

0
δH0ðt0Þdt0 j0;DMi





2
≃ jΩ̃j2






Z

t

0

dt0e−iðω0−ωÞt0 h1jb†j0i




2X

n

jhnjajDMij2

¼ jΩ̃j2





Z

t

0

dt0e−iðω0−ωÞt0




2hDMja†ajDMi: ðA3Þ

To get to the third line, we have used the fact that the off-
diagonal matrix element of b† is unity and that

P
njnihnj is

the unit operator by construction. Matching to the semi-
classical result of Eq. (2) can be done with the identification

Ω2 ¼ jΩ̃j2hDMja†ajDMi≡ jΩ̃j2Trfρ̂DMN̂ g: ðA4Þ

In the second equality, we define the number operator N̂ ≡
a†a and write the expectation value as an operator trace
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weighted by the DM density matrix ρ̂DM (not to be
confused with the DM energy density ρ) to allow for the
possibility of mixed states.
The identification of the expectation value jΩ̃j2hN̂ i with

a semiclassical perturbation of strength Ω2 does not quite
capture all of the physics, for the operator N̂ has quantum
fluctuations of its own. To see this, one could compute the
moments of N̂ and see that its variance hN̂ 2i − hN̂ i2
becomes large compared to its squared expectation value
hN̂ i2 at low mode occupation numbers. However, these
fluctuations—due to the “particle discreteness” of the DM
state—average down to negligible levels over the long
integration times and macroscopic detector volumes under
consideration in this work.
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