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We develop an effective extended Hubbard model to describe the low-energy electronic properties of the
twisted bilayer graphene. By using the Bloch states in the effective continuum model and with the aid of the
maximally localized algorithm, we construct the Wannier orbitals and obtain an effective tight-binding
model on the emergent honeycomb lattice. We find that the Wannier state takes a peculiar three-peak form
in which the amplitude maxima are located at the triangle corners surrounding the center. We estimate the
direct Coulomb interaction and the exchange interaction between the Wannier states. At the filling of two
electrons per supercell, in particular, we find an unexpected coincidence in the direct Coulomb energy
between a charge-ordered state and a homogeneous state, which could possibly lead to an unconventional
many-body state.
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I. INTRODUCTION

The recent discovery of the superconductivity and
strongly correlated insulating state in the twisted bilayer
graphene (TBG) [1,2] has attracted enormous attention and
triggered a surge of theoretical works on this subject [3–16].
TBG is a bilayer system in which two graphene layers are
rotationally stacked on each other [17–22], where the
electronic band structure sensitively depends on the twist
angle θ. In a small θ, in particular, a slight difference in the
lattice orientation gives rise to a long-period moiré inter-
ference pattern, causing a substantial modification of the
Dirac dispersion [23–34]. Theoretically, it was predicted
that the Fermi velocity vanishes at certain θ’s called the
magic angles, aroundwhich nearly flat bandswith extremely
narrow bandwidth emerge at low energy [28,33]. The
superconductivity is actually observed around amagic angle
of 1.05°,where the insulating phase and the superconducting
phase occur around the filling of two electrons per supercell.
It is a challenging problem to theoretically describe the

many-body physics in TBG. At θ ¼ 1.05°, the spatial
period of the moiré pattern is more than 10 nm, and the
number of carbon atoms in a unit cell exceeds 10 000. The

electronic property of such a huge and complex system can
be calculated efficiently by the effective continuum model,
which captures the long-wavelength physics associated
with the moiré period [23,28,29,31,34–36]. However, the
effective continuum energy spectrum still contains a
number of energy bands in the low-energy region, and
we need one more step to simplify the model so as to
exclusively describe the nearly flat bands at lowest energy.
Actually, the nearly flat bands are separated by the

energy gaps from other bands [1,37,38], making it possible
to construct an effective lattice model with well-localized
Wannier orbitals purely consisting of the flat band states.
Such an effective model was actually predicted by the
symmetry analysis [4], which concludes that the Wannier
orbitals should be centered at nonequivalent AB and BA
spots in the moiré pattern, to form an emergent honeycomb
lattice. Arguments and calculations suggesting a honey-
comb lattice description have also been put forward in an
independent work [5]. To obtain a concrete model with
specific parameters, we need to construct the actual
Wannier orbitals from the realistic model of TBG.
In this paper, we develop an extended Hubbard model of

TBG at the magic angle (θ ¼ 1.05°), based on the effective
continuum model. By taking an appropriate linear combi-
nation of the Bloch states in the nearly flat bands, we build
the Wannier orbitals centered at the AB and BA spots and
obtain the effective tight-binding model on the emergent
honeycomb lattice. Here, we adopt the maximally localized
algorithm [39] tominimize the spread of thewave functions.
From the obtained Wannier orbitals, we estimate the direct
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Coulomb energy and the exchange energy between elec-
trons residing at different orbitals. The obtained Wannier
state is centered at the AB or BA spot, while we find that its
maximum amplitude is not at the center but at three AA
spots surrounding the center, as also noticed in Ref. [5].
Importantly, the pair ofWannier orbitals that we constructed
explicitly has ðpx; pyÞ on-site symmetry and hence forms a
doublet under threefold rotation around their centers,
consistent with the symmetry analysis [4].
Because of this peculiar three-peak form, the electron-

electron interaction between the neighboring sites is as
important as the on-site interaction term. At the filling of
two electrons per supercell, in particular, we find an
unexpected coincidence in the direct Coulomb energy
between two different many-body states: a homogeneous
state where an electron enters every sublattice of the
effective honeycomb lattice and a charge-ordered state
where two electrons reside at every two sublattices
[Figs. 7(a) and 7(b)]. We expect that such competing nature
would possibly give rise to a nontrivial many-body
ground state.
This paper is organized as follows: In Sec. II, we explain

the atomic structure of TBG, and in Sec. III, we introduce
the effective continuum model and argue the structure
of the nearly flat bands at the magic angle θ ¼ 1.05°. In
Sec. IV, we construct the Wannier orbitals using the
maximally localizing method, and we obtain the tight-
binding model in Sec. V. We consider the electron-electron
interaction between the Wannier states in Sec. VI. A brief
conclusion is presented in Sec. VII.

II. ATOMIC STRUCTURE

We define the atomic structure of TBG by starting from
AA-stacked bilayer graphene (i.e., perfectly overlapping
honeycomb lattices) and rotating layers 1 and 2 around a
pair of registered B sites by −θ=2 and þθ=2, respectively.
We define a1 ¼ að1; 0Þ and a2 ¼ að1=2; ffiffiffi

3
p

=2Þ as the
lattice vectors of the initial AA-stacked bilayer before the
rotation, where a ≈ 0.246 nm is the lattice constant of
graphene. The corresponding reciprocal lattice vectors are
a�1 ¼ ð2π=aÞð1;−1= ffiffiffi

3
p Þ and a�2 ¼ ð2π=aÞð0; 2= ffiffiffi

3
p Þ. After

the rotation, the lattice vectors of layer l are given by

aðlÞi ¼ Rð∓ θ=2Þai, with ∓ for l ¼ 1, 2, respectively,
where RðθÞ represents the rotation by θ. Likewise, the

reciprocal lattice vectors become a�ðlÞi ¼ Rð∓ θ=2Þa�i .
With respect to the registered B sites, TBG has point group
D3 generated by a threefold in-plane rotation C3z along the
z axis and a twofold rotation C2y along the y axis.
In a small angle TBG, the slight mismatch of the lattice

periods of two layers gives rise to a long-period moiré
interference pattern. The reciprocal lattice vectors for the

moiré pattern are given by GM
i ¼ a�ð1Þi − a�ð2Þi ði ¼ 1; 2Þ.

The real-space lattice vectors LM
j can then be obtained

from GM
i ·LM

j ¼ 2πδij. A moiré unit cell is spanned by
LM

1 and LM
2 . The lattice constant LM ¼ jLM

1 j ¼ jLM
2 j is

LM ¼ a=½2 sinðθ=2Þ�. Figure 1(a) illustrates the atomic
structure of TBG with θ ¼ 3.89°. The lattice structure
locally resembles the regular stacking such as AA, AB, or
BA, depending on the position, where AA represents the
perfect overlapping of hexagons, and AB (BA) is the
shifted configuration in which the A1ðB1Þ sublattice is
right above B2ðA2Þ. In Fig. 1(a), AA spots are located at the
crossing points of the grid lines, and AB and BA spots are
at the centers of triangles indicated by dots. Figure 1(b)
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FIG. 1. (a) Atomic structure of TBG with θ ¼ 3.89° and D3

symmetry. AA spots are located at the crossing points of the grid
lines, and AB and BA spots are at the centers of triangles
indicated by dots. (b) Brillouin zone folding in TBG with
θ ¼ 3.89°. Two large hexagons represent the first Brillouin zones
of graphene layers 1 and 2, and the small hexagon is the moiré
Brillouin zone of TBG.
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shows the corresponding folding of the Brillouin zone,
where two large hexagons represent the first Brillouin
zones of layers 1 and 2, and the small hexagon is the moiré
Brillouin zone of TBG. The graphene’s Dirac points (the

band touching points) are located at KðlÞ
ξ ¼ −ξ½2aðlÞ�1 þ

aðlÞ�2 �=3 for layer l, where ξ ¼ �1 is the valley index. We
label the symmetric points of the reduced Brillouin zone as
Γ̄, M̄, K̄, and K̄0 as in Fig. 1(b).
We can construct the TBG in alternative manners, for

example, by rotating around the hexagon centers instead of
the B site. In that case, we have the different superlattice
structure with point group D6. For completeness, we leave
the discussion of the D6 structure and other superlattice
structures to the Supplemental Material [40].

III. EFFECTIVE CONTINUUM MODEL

When the moiré period is much longer than the atomic
scale, the electronic structure can be described by an
effective continuum model [23,28,29,31,34–36]. Here,
the intervalley mixing between ξ ¼ � can be safely
neglected, and the total Hamiltonian is block-diagonalized
into the two independent valleys. The effective Hamiltonian
of the continuum model for the valley ξ is written in a 4 × 4
matrix for the basis of ðA1; B1; A2; B2Þ as

HðξÞ ¼
�
H1 U†

U H2

�
: ð1Þ

Here, Hlðl ¼ 1; 2Þ is the intralayer Hamiltonian of layer l,
which is given by the two-dimensional Weyl equation

centered at the KðlÞ
ξ point,

Hl ¼ −ℏv½Rð�θ=2Þðk −KðlÞ
ξ Þ� · ðξσx; σyÞ; ð2Þ

where � is for l ¼ 1 and 2, respectively. We take ℏv=a ¼
2.1354 eV [34]. Note that U is the effective interlayer
coupling given by [34–36]

U ¼
�
UA2A1

UA2B1

UB2A1
UB2B1

�

¼
�

u u0

u0 u

�
þ
�

u u0ω−ξ

u0ωξ u

�
eiξG

M
1
·r

þ
�

u u0ωξ

u0ω−ξ u

�
eiξðGM

1
þGM

2
Þ·r; ð3Þ

where ω ¼ e2πi=3. Here, u and u0 describe the amplitudes of
diagonal and off-diagonal terms, respectively, in the sub-
lattice space. The effective models in the previous studies
[34–36] assume u ¼ u0, which corresponds to a flat TBG in
which the interlayer spacing d is constant everywhere. On
the other hand, several theoretical studies predicted that the
optimized lattice structure of TBG is actually corrugated in
the out-of-plane direction, in such a way that d is the widest
in the AA stacking region and the narrowest in the AB/BA

stacking region [41–44]. Here, we incorporate the corru-
gation effect as a difference between u ¼ 0.0797 eV and
u0 ¼ 0.0975 eV in the effective model, a detailed derivation
of which is presented in the Appendix. As we show in the
following, the difference between u and u0 introduces
energy gaps between the lowest bands and the excited
bands, in qualitative agreement with the experimental
observation [1,2,37]. It was found that the energy gaps
isolating the lowest nearly flat bands are also caused by the
in-plane distortion [38].
We perform the calculation of the energy bands and

the eigenstates in the k-space picture. For a single Bloch
vector k in the moiré Brillouin zone, the moiré interlayer
coupling hybridizes the graphene’s eigenstates at q ¼
kþG, where G ¼ m1GM

1 þm2GM
2 and m1 and m2 are

integers. Therefore, the eigenstate is written as

ψX
nkðrÞ ¼

X
G

CX
nkðGÞeiðkþGÞ·r; ð4Þ

where X ¼ A1, B1, A2, B2 is the sublattice index, n is the
band index, and k is the Bloch wave vector in the moiré
Brillouin zone. As the low-energy states are expected to be
dominated by the individual graphene eigenstates near the
original Dirac points, we pick up q’s inside the cutoff circle
jq − q0j < qc, where q0 is taken as the midpoint between

Kð1Þ
ξ and Kð2Þ

ξ , and qc is set to 4GMðGM ¼ jGM
1 j ¼ jGM

2 jÞ.
Since the intervalley coupling can be neglected, the calcu-
lation is performed independently for each of ξ ¼ � as we
discussed previously. We then numerically diagonalize the
Hamiltonian within the limited wave space inside the cutoff
circle and obtain the eigenenergies and eigenstates.
Figure 2(a) shows the energy band and the density of

states of TBG at themagic angle θ ¼ 1.05°, calculated using
the approach mentioned. Here and in the following, the
origin of the band energy axis is set to the charge neutral
point. The lower panel is the enlarged plot of the zero-
energy region where the nearly flat bands are located. The
black solid line and red dashed line represent the energy
bands of ξ ¼ � valleys, respectively. They are the time-
reversal partners of each other, and the energy bands of
ξ ¼ − are obtained by inverting k to −k. The flat band
cluster consists of two bands per spin and valley, which are
denoted as E1ðkÞ and E2ðkÞ for the hole side and the
electron side, respectively. The overall structure is about
7.5 meV wide in the energy axis and separated from the
excited bands by an energy gap of about 14 meV in both
the electron side and the hole side. Figure 2(b) shows the
contour plots ofE1ðkÞ andE2ðkÞ for the valley ξ ¼ þ. Note
that E1ðkÞ and E2ðkÞ are trigonally warped in opposite
directions, so E1ðkÞ ≠ E1ð−kÞ and E2ðkÞ ≠ E2ð−kÞ. The
particle-hole symmetry is absent, and the E1 band is wider
than the E2 band. The van Hove singularity is located at
E ≈ −0.11 meV and 0.16 meV, which correspond to the
carrier density n=n0 ≈ −0.78 and 0.63, respectively, with
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spin and valley included. Here, n0 ¼ 1=SM, SM ¼
ð ffiffiffi

3
p

=2ÞL2
M is the moiré unit area (the band gap is

n=n0 ¼ �4) and LM is 13.4 nm at θ ¼ 1.05°. The filling
of two electrons/holes per supercell (n=n0 ¼ �2) corre-
sponds to E ≈ 0.289 meV and −0.286 meV, respectively,
which are indicated by dashed contours in Fig. 2(b).

IV. WANNIER ORBITALS

We construct the localized Wannier orbitals from the
Bloch wave functions of the effective model. Since the
nearly flat bands are energetically isolated from other

bands, we expect that well-localized orbits can be made
purely from the flat band states, with all other bands
neglected. The number of independentWannier orbitals in a
unit cell coincides with the number of energy bands taken
into account, so we have two Wannier orbitals per spin and
valley. According to the symmetry analysis [4], the two
orbitals should be centered at the AB and BA spots to form
a honeycomb lattice. Our strategy is to first prepare certain
initial orbitals centered at AB and BA and then apply the
maximally localized algorithm [39]. The following process
is applied to ξ ¼ � valleys separately, and we omit the
valley index ξ hereafter.
The initial wave functions can be prepared as follows.

First, we fix the global phase factor of the Bloch states in
two different ways: In gauge 1, we fix the phase so that
ψB1

nkðrBAÞ is real, and in gauge 2, we fix the phase so that
ψA1

nkðrABÞ is real. Here, rBA ¼ ð1=2; ffiffiffi
3

p
=2ÞðLM=

ffiffiffi
3

p Þ and
rAB ¼ ð−1=2; ffiffiffi

3
p

=2ÞðLM=
ffiffiffi
3

p Þ are the positions of the BA
and AB spots, respectively, measured from the AA spot
(0,0) [Fig. 1(a)]. We write the Bloch function in gauge 1 as
ψnk and that in gauge 2 as eiϕnkψnk, where eiϕnk is the
relative phase factor between gauges 1 and 2. We construct
the initial Wannier orbitals 1 and 2 by summing the Bloch
states of the bands ψ1k and ψ2k [corresponding to E1ðkÞ
and E2ðkÞ, respectively] as

jR; 1i0 ¼
1ffiffiffiffi
N

p
X
k

e−ik·R
1ffiffiffi
2

p ðjψ1ki þ jψ2kiÞ;

jR; 2i0 ¼
1ffiffiffiffi
N

p
X
k

e−ik·R
1ffiffiffi
2

p eiϕ1kðjψ1ki − jψ2kiÞ: ð5Þ

Here, R ¼ n1LM
1 þ n2LM

2 is the moiré lattice vector,
and the summation in k is taken over N discrete points
in the moiré Brillouin zone. We take N ¼ 18 × 18 in this
study. It is straightforward to check the orthonormality,

0hR0; n0jR; ni0 ¼ δR;R0δn;n0 .
While jR; 1i0 and jR; 2i0 are already well localized

around the center positions Rþ rBA and Rþ rAB, respec-
tively, we can even reduce the spread of the wave function
using a maximally localizing method [39]. The final
expression for the orbital nð¼ 1; 2Þ is given by

jR; ni ¼ 1ffiffiffiffi
N

p
X
k

e−ik·R
X
m¼1;2

UðkÞ
mn jψmki; ð6Þ

where UðkÞ
mn is a 2 × 2 unitary matrix. The algorithm

optimizes UðkÞ
mn to minimize the spread functional. We

set Eq. (5) as the initial value of UðkÞ
mn and iterate the

minimization process until the convergence. In each step,

we impose the symmetry constraint on UðkÞ
mn. The optimized

Wannier orbitals for the valley ξ ¼ þ are illustrated in
Fig. 3. Those for the opposite valley ξ ¼ − are given by the
complex conjugate. For both orbitals 1 and 2, the top five
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panels show the contour maps for the squared amplitudes of
the total wave function and of the four sublattice compo-
nents. We actually see that orbitals 1 and 2 are centered at
the BA and AB positions, respectively, while the maxima of
the wave amplitudes are located not at the center but near
three AA spots surrounding the center. This reflects the fact
that the Bloch wave functions of the nearly flat bands are
mostly localized AA spots of the moiré pattern [25,41].
The lower panels illustrate the phase of the envelope

function FXlðrÞ (X ¼ A, B and l ¼ 1, 2) on some sample
points, where the total wave function is ψXlðrÞ ¼
eiK

ðlÞ
ξ ·rFXlðrÞ. Here, the absolute value of FXlðrÞ is indicated

by the radius of a circle, and its phase factor is shown by the
direction of the bar and also by color. Now, we see that the
envelope functions on different sublattices have different
eigenvalues of C0

3z, in-plane rotation with respect to its own
center. However, noting that the Bloch factor eiKξ·r also
carries a nonzero eigenvalue of C0

3z, the total wave function
ψ ¼ ðψA1 ;ψB1 ;ψA2 ;ψB2Þ is found to be an eigenstate ofC0

3z
with a single eigenvalue. In orbital 1, for example, the C0

3z
eigenvalue of FXl is ðω; 1; 1;ω�Þ for ðA1; B1; A2; B2Þ, so the
angular momentum of the envelope function is written as

LðenvÞ
z ¼ ð−1; 0; 0; 1Þ. On the other hand, theC0

3z eigenvalue
for the Bloch factor eiKξ·r can be found by noting that the BA

y
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FIG. 3. Maximally localized Wannier orbitals of the valley ξ ¼ þ, in the low-energy flat band of TBG with θ ¼ 1.05°. For both
orbitals 1 and 2, the top five panels show the contour maps for the squared amplitudes of the total wave function and of the four sublattice
components. The lower panels illustrate the phase of the envelope function on some sample points, where the amplitude is indicated by
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spot (the orbital center) coincides with the A1 site and the
center of the hexagon of layer 2 [Fig. 1(a)], and then, we

obtainLðBlochÞ
z ¼ ð0;−1;−1; 1Þ. Therefore, the total angular

momentum Lz ¼ LðenvÞ
z þ LðBlochÞ

z is −1 for all the sublat-
tices. Similarly, we can also show Lz ¼ −1 for orbital 2.
Since the Wannier functions at the opposite valleys are
related by the complex conjugate, we finally conclude that
the eigenvalue of C0

3z is ω
ξ ¼ eξ2πi=3 for both orbitals 1 and

2. Namely, orbitals 1 and 2 from the same valley ξ have the
same nonzero angular momentum Lz ¼ −ξ, in accordance
with the symmetry analysis [4].
The initial guess of the Wannier orbital in Eq. (5) is

closely related to the angular momentum of the envelope
function. For orbital 1, the envelope function of B1 has zero
angular momentum, so it has a finite amplitude at the
orbital center rBA as seen in Fig. 3. It does not contradict
with the nonzero total angular momentum Lz ¼ −1
because the BA spot does not coincide with the B1 site.
The finite amplitude at rBA is actually linked to the gauge
choice for jR; 1i0, which requires that ψB1

nkðrBAÞ is real. In
the summation in k, all the wave functions add up in
the same phase at rBA, so we have an orbital localized at
rBA with finite amplitude. The same is true for orbital 2, in
which the envelope angular momentum vanishes at A1. The
wrong gauge choices [e.g., ψA1

nkðrBAÞ is real] do not make a
well-localized orbital because the angular momentum of
the Wannier function is forced by symmetry. Also, the
hybridized form of jψ1ki � jψ2ki in Eq. (5) localizes the
wave function better than just using jψ1ki, jψ2ki. This is
similar to monolayer graphene having the same honeycomb
lattice structure, where the superposition of the positive and
negative energy states is required to have an A-site or a
B-site localized orbital.

V. EFFECTIVE TIGHT-BINDING MODEL

From the Wannier orbitals and the energy bands, we can
derive the effective tight-binding model to exactly repro-
duce the dispersion of the nearly flat bands. In a straight-
forward calculation, the hopping integral between the
Wannier orbitals is written as

hR0;n0jHjR;ni

¼ 1

N

X
k

eik·ðR0−RÞ
�
ÛðkÞ†

�
E1ðkÞ 0

0 E2ðkÞ

�
ÛðkÞ

�
n0n
; ð7Þ

where ÛðkÞ represents the matrix UðkÞ
mn , and we use

hψn0k0 jHjψnki ¼ δnn0δkk0EnðkÞ. In Figs. 4(a) and 4(b),
we plot the hopping integrals from orbitals 1 and 2,
respectively, for the valley ξ ¼ þ. Here, the honeycomb
lattice represents the network of BA spots (orbital 1) and
AB spots (orbital 2). The radius of the circle at each lattice
point indicates the absolute value of the hopping integral
from the origin (green circle at the center) to that point, and

the direction of the bar represents the phase in the complex
plane. The effective tight-binding model for the valley
ξ ¼ − is given by taking the complex conjugate. The list of
the hopping integrals for the valley ξ ¼ þ is included in the
Supplemental Material [45].
To understand this effective tight-binding model, we

need to analyze the symmetry properties of Wannier
orbitals under point group D3, as in Ref. [4]. Recall that
orbitals 1 and 2 have nonzero angular momentum Lz ¼ −ξ
at the valley ξ. Furthermore, under twofold rotation C2y,
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FIG. 4. Hopping integrals in the effective tight-binding model
for the low-energy flat band of TBG at θ ¼ 1.05°. Panels (a) and
(b) present the hopping parameters from the Wannier orbitals 1
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point indicates the absolute value of the hopping integral from the
origin to that point, and the direction of the bar represents the
phase in the complex plane.
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which interchanges two graphene layers, we find that
orbital 1 from valley ξ is mapped to orbital 2 from valley
−ξ and vice versa, as shown in Fig. 3. Hence, we can regard
orbitals 1 and 2 from valley ξ as the p-wave-like orbitals
pξ ≡ px þ iξpy residing on BA and AB spots, respectively.
The angular momentum of the pξ orbital is Lz ¼ −ξ,
whether its center is at a BA or AB spot, which is consistent
with Lz of orbitals 1 and 2. Under C2y, the two graphene
layers, and hence BA and AB spots, are interchanged, and
ðpx; pyÞ → ð−px; pyÞ or pξ → −p−ξ. In other words, C2y

interchanges the pξ orbital at the BA spot and the p−ξ
orbital at the AB spot, which reproduces the symmetry
transformation of orbitals 1 and 2 under C2y.
Once we identify the symmetries of orbitals 1 and 2, the

tight-binding model then describes hopping among
ðpx; pyÞ orbitals on the honeycomb lattice formed by the
BA and AB spots, which reads

H ¼
X
ξ¼�

X
ij

tðrijÞeiξϕðrijÞc†iξcjξ; ð8Þ

where ciξ annihilates a pξ-orbital electron at site i, rij is the
vector from site i to j, and tðrÞ, ϕðrÞ are as shown in
Figs. 4(a) and 4(b).
The symmetry group of the tight-binding model of

Eq. (8) is G ¼ D3 ×Uð1Þ × SUð2Þ × T, where D3 is the
point group of TBG, which acts jointly on lattice sites and
ðpx; pyÞ orbitals, U(1) acts in orbital space, SU(2) acts in
spin space, and T is the time-reversal symmetry. As
discussed in Ref. [4], the microscopic origin of this orbital
U(1) symmetry is that at small twist angles, the intervalley
coupling is strongly suppressed, leading to this approxi-
mate valley conservation that exists independent of crystal
symmetries.
The hopping integral tðrÞ roughly decays with increasing

r ¼ jrj. To include dominant contributions, we consider the
nearest five hopping integrals t1 to t5 shown in Figs. 4(a) and
4(b), which are within the range r ≤

ffiffiffi
3

p
LM. Notice that the

subscripts are not labeled according to r. In the present
model, we have t1≈0.331meV, t2≈ð−0.010�0.097iÞmeV,
t3 ≈ 0.016 meV, t4 ≈ 0.036 meV, and t5 ≈ 0.119 meV.
Figure 5 presents the band structure in the effective tight-
bindingmodels with (a) t1 and t2, (b) t1, t2, and t5, and (c) all
the hopping parameters within the distance r < 9LM. The
dashed line indicates the original energy band of the
effective continuum model.
With hopping terms t1 and t2 only, the tight-binding

model (8) becomes the minimum model introduced in
Ref. [4],

H0 ¼ −μ
X
i

c†i · ci þ
X
hiji

t1c
†
i · cj þ H:c:

þ
X
hiji0

t̃2c
†
i · cj þ t02ðc†i × cjÞz þ H:c:; ð9Þ

where ci ¼ ðci;x; ci;yÞT, with ci;xðyÞ annihilating an electron

with a pxðyÞ orbital at site i, cjξ ¼ ðcjx þ iξcjyÞ=
ffiffiffi
2

p
. Here,

μ is the on-site chemical potential, t̃2 ¼ Reðt2Þ, t02 ¼
Imðt2Þ, and the sum over hiji0 includes bonds with lengthffiffiffi
3

p
LM along three directions: x̂, C3zx̂, and C2

3zx̂. The
minimum tight-binding model (9) gives rise to a spectrum
with Dirac nodes at K̄, K̄0 points. Notice that t1 denotes
hopping between two sublattices, and we can always make
t1 real by properly choosing the relative phase between
sublattices. The t02 term describes the hexagonal warping
effect in orbital space, which is responsible for band
splittings along Γ̄ M̄ lines as shown in Fig. 5.
The symmetry groupG allows finite gaps at K̄, K̄0 points

[4]. However, because of the approximate sublattice sym-
metry at small twist angles [31], we can introduce an
additional Z2 symmetry g∶cRξ → c−R;−ξ, which combines
twofold rotation in real space and a chirality flip in orbital
space. In the presence of g and original symmetry group G,
the gapless Dirac nodes at K̄, K̄0 points are guaranteed. The
minimum model (9) satisfies both G and g.
With this additional Z2 symmetry g, we then consider

additional hopping terms t3, t4, and t5. As finite Imðt3Þ
obeys G while it violates g, we find Imðt3Þ ¼ 0 from our
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FIG. 5. Band structure in the effective tight-binding model for
θ ¼ 1.05°, with (a) t1 and t2, (b) t1, t2, and t5, and (c) all the
hopping parameters within the distance r < 9LM. The dashed
line indicates the original energy band of the effective continuum
model. The right panels show the corresponding contour plots of
E1ðkÞ for the valley ξ ¼ þ.
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numerical calculation of hopping integrals. The nonzero
t̃3 ≡ Reðt3Þ, t4, t5 terms preserve both G and g and
quantitatively modify the band structure of the minimum
model (9). In fact, including t1 to t5, we have m−1

e;h¼
3ðt̃3−3t̃2Þ∓ j1

2
t1þ2t4þ7t5j and v¼ð ffiffiffi

3
p

=2Þjt1−2t4−t5j,
where me;h denote effective masses at the Γ̄ point on the
electron and hole sides, respectively, and v is the Fermi
velocity at the K̄, K̄0 points.
We can also incorporate the effect of intervalley coupling

in the effective tight-binding model by introducing U(1)-
breaking hopping terms such as those in Ref. [4], which
may explain Landau-level-degeneracy lifting in experi-
ments. A detailed analysis of Dirac nodes and mass
generation will be presented in a forthcoming work.

VI. ELECTRON-ELECTRON INTERACTION

We can calculate the electron-electron interaction param-
eters between the Wannier orbitals directly from the wave
functions obtained above. The direct Coulomb interaction
V and the exchange interaction J between jR; mi and
jR0; m0i are defined by

VR0m0;Rm ¼
X
XX0

ZZ
drdr0jψX0

R0m0 ðr0Þj2 e2

ϵjr − r0j jψ
X
RmðrÞj2;

ð10Þ

JR0m0;Rm ¼
X
XX0

ZZ
drdr0

× ψX0�
R0m0 ðr0ÞψX�

RmðrÞ
e2

ϵjr − r0jψ
X
R0m0 ðrÞψX0

Rmðr0Þ;

ð11Þ

where ϵ is the dielectric constant induced by the electrons in
other bands and by the external environment (e.g., the
substrate). The direct term is the classical Coulomb
interaction, and it works for any combination of spin
and valley. On the other hand, the exchange interaction
works only for the same spin and the same valley.
Rigorously speaking, the exchange term between different
valleys (and the same spin) is not exactly zero, but there, the
integral of eiðKþ−K−Þ·ðr−r0Þ=jr − r0j in Eq. (11) becomes
much smaller than that for the same valley, so we neglect it.
We label the direct interaction terms at different distances

as V0; V1; V2… as in Fig. 6(a), where V0 is the on-site
interaction, V1 is the nearest-neighbor interaction, and so
forth. Similarly, the exchange terms can be labeled as
J1; J2…, where J0 does not exist because of the Pauli
principle. The calculated interaction parameters are listed in
Table I. Here, we notice that the on-site interaction V0 is not
much greater than others, but it has a similar magnitude as
the nearest-neighbor interaction V1. The further inter-
actions V2 and V3 are more than half of V0. This case

is quite different from the usual Hubbard-type models
where V0 dominates the interaction effect. The peculiar
distance dependence of the Coulomb interaction in this
model is closely related to the three-peak structure of the

(b)

(a)

V0 V1

V2 V3

V0

V1

V2
V3

V5 V4

x 

y 

LM

LM

x 

y 

AB (orbital 2) BA (orbital 1)

FIG. 6. (a) Labeling of the direct Coulomb interaction at
different distances. Note that V0; V1; V2… represent the potential
amplitudes between the origin and the indicated lattice points.
(b) Overlapping of two Wannier orbitals in the configuration V0,
V1, V2, V3. The three circles of the same line type represent the
three peaks of a single Wannier state (Fig. 3).

TABLE I. Direct interaction Vn and the exchange interaction Jn
for the Wannier orbitals in units of e2=ðϵLMÞ. The definition of

V0; V1… is presented in Fig. 6(a). Here, VðapproxÞ
n is the direct

interaction term estimated by the point-charge approximation
(see the text).

n 0 1 2 3 4 5

Vn 1.857 1.533 1.145 1.068 0.697 0.614

VðapproxÞ
n

1.857 1.524 1.136 1.081 0.679 0.610

Jn N=A 0.376 0.0645 0.010 0.014 0.001
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Wannier orbital. For a single electron, each of the three
peaks accommodates the electric charge of −e=3, and thus,
the interacting potential between two electrons can be
written as a summation over the nine combinations of those
fractional charges. The direct Coulomb potential between
two fractional charges located at the same peak (i.e., the
“on-site interaction” for the fractional charges) is
u0 ≈ ðe=3Þ2=ϵ=ð0.28LMÞ, while the potential between dif-
ferent peaks is well approximated by that for the point
charges, i.e., ðe=3Þ2=ϵ=r, where r is the distance between
the peak centers. The direct interaction terms estimated by

this approximation are presented as VðapproxÞ
n in Table I,

where the error is found to be 1% or less.

Obviously, the dominant contribution to Vn comes from
the on-site part u0. As shown in Fig. 6(b), the electrons
located at the same orbital (V0) share all three peaks, the
nearest-neighbor configuration (V1) the two peaks, and
the next-nearest ones (V2, V3) a single peak. Therefore,
the on-site interactions of the fractional charges included
in V0, V1, V2, V3 are 3u0, 2u0, u0, u0, respectively, and
this result explains the dominant part of the relative
amplitudes of Vn’s. These relatively long-range elec-
tron-electron interactions can potentially modify the hop-
ping parameters and hence renormalize the low-energy
band structure.
At the filling of two electrons per supercell, in particular,

the triangular charge distribution results in an unexpected
coincidence in the direct Coulomb energy between two
different many-body states shown in Fig. 7, with (a) a
homogeneous state where an electron resides at every
sublattice of the honeycomb lattice, and (b) a charge-
ordered state where two electrons enter every two sub-
lattices. It may seem that the direct Coulomb energy in
(b) is greater than in (a) because of the double occupancy.
However, since an electron at the honeycomb site is
actually composed of three 1=3 charges at the triangle
corners, states (a) and (b) have nearly identical charge
distribution, as shown in the right panels, where the charge
of −2e is registered to every AA spot. Considering that the
direct Coulomb interaction is very well approximated by
the simple point-charge model as argued above, the total
direct energies of (a) and (b) must be nearly equal. The
competing nature of the two completely different states
may suggest a nontrivial many-body ground state. For
further consideration, we need to include the exchange
interaction and also the kinetic energy. Lastly, Fig. 7(c)
illustrates an excitation from state (a), where an electron is
transferred from a single honeycomb site to another. This
actually corresponds to a pair creation of the fractional
charges ð�1=3Þe as shown in the right panel. This is
another intriguing property at this filling factor.

VII. CONCLUSION

An extended Hubbard model is obtained for the nearly
flat band in the low-angle TBG by starting from the Bloch
states in a realistic continuummodel. The obtainedWannier
localized state is centered at the AB or BA spot to form a
honeycomb lattice. The wave function of the Wannier
orbital takes a triangular form, which peaks at three AA
spots surrounding the center, and it leads to a competition
between the on-site interaction and the neighboring inter-
action. At the filling of two electrons per supercell, in
particular, we have an unusual degeneracy of the charge-
ordered state and a homogeneous state, which implies a
nontrivial nature of the ground state. The detailed studies
for the many-body ground states in this model will be left
for future works.

=
(a)

(b)

−e / 3

−e / 3

−e / 3

−2e

−2e

(c)

−2e

−   e5
3

−   e7
3

FIG. 7. Several conceivable many-body states illustrated in the
honeycomb lattice picture (left panels) and the fractional charge
picture (right panels). (a) The homogeneous state where an
electron resides at every sublattice. (b) The charge-ordered state
where two electrons enter every two sublattices. Opposite arrows
in a single site represent two electrons with different spins or
valley pseudospins. (c) An excited state from state (a), where an
electron is transferred from a single site to another.
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Note added.—Recently, we became aware of a preprint that
reports the maximally localized Wannier states for
TBG [46].

APPENDIX: DERIVATION OF THE EFFECTIVE
CONTINUUM MODEL UNDER CORRUGATION

We derive the effective interlayer interaction of a
corrugated TBG in Eq. (3), following the method in
Ref. [34]. We start from the single-orbital tight-binding
model for the pz orbital of carbon atoms. We assume that
the transfer integral between any two orbitals is written in
terms of the Slater-Koster form as

−tðRÞ ¼ Vppπ

�
1 −

�
R · ez
R

�
2
�
þ Vppσ

�
R · ez
R

�
2

;

Vppπ ¼ V0
ppπe−ðR−a0Þ=r0 ; Vppσ ¼ V0

ppσe−ðR−d0Þ=r0 :

ðA1Þ

Here, ez is the unit vector perpendicular to the graphene
plane, a0 ¼ a=

ffiffiffi
3

p
≈ 0.142 nm is the distance of neighbor-

ing A and B sites on graphene, and d0 ≈ 0.335 nm is the
interlayer spacing of graphite. The parameter V0

ppπ is the
transfer integral between the nearest-neighbor atoms on
graphene, and V0

ppσ is the transfer integral between
vertically located atoms on the neighboring layers of
graphite. We take V0

ppπ ≈ −2.7 eV, V0
ppσ ≈ 0.48 eV to fit

the dispersions of monolayer graphene [34]. Here, r0 is the
decay length of the transfer integral, and it is chosen as
0.184a so that the next-nearest intralayer coupling
becomes 0.1V0

ppπ .
To construct the Hamiltonian matrix, we define the

Bloch wave bases as

jk; Ali ¼
1ffiffiffiffi
N

p
X
RAl

eik·RAl jRAl
i;

jk; Bli ¼
1ffiffiffiffi
N

p
X
RBl

eik·RBl jRBl
i; ðA2Þ

where the positionRAl
ðRBl

Þ runs over all AðBÞ sites on the
layer lð¼ 1; 2Þ,N is the number of the monolayer’s unit cell
in the whole system, and k is the two-dimensional Bloch
wave vector defined in the first Brillouin zone of the
monolayer on layer l.
For the interlayer coupling, we first consider a non-

rotated bilayer graphene with θ ¼ 0 and a constant in-plane
displacement δ from AA stacking. The unit cell is spanned
by the monolayer’s lattice vectors, a1 ¼ að1; 0Þ and a2 ¼
að1=2; ffiffiffi

3
p

=2Þ, which are now shared by both layers. Then,
the lattice points of the sublattice Xð¼ A1; B1;
A2; B2Þ are given by

RA1
¼ n1a1 þ n2a2 þ τA1

;

RB1
¼ n1a1 þ n2a2 þ τB1

;

RA2
¼ n1a1 þ n2a2 þ τA2

þ δþ dðδÞez;
RB2

¼ n1a1 þ n2a2 þ τB2
þ δþ dðδÞez: ðA3Þ

Here, τA1
¼ τA2

¼ 0, τB1
¼ τB2

¼ −τ1, with τ1 ¼ ð2a2−
a1Þ=3 ¼ ð0; a= ffiffiffi

3
p Þ, and dðδÞ is the optimized interlayer

distance, which generally depends on δ. Note that dðδÞ is a
periodic function of δ with periods of a1 and a2 because the
interlayer shift by a lattice vector just gives the equivalent
structure. It is known that the interlayer spacing takes the
maximum value dAA at AA stacking (δ ¼ 0) and the
minimum at dAB at AB stacking (δ ¼ τ1) [47]. Here, we
adopt dAA ¼ 0.360 nm and dAB ¼ 0.335 nm [41,47]. The
distance at intermediate δ can be interpolated by

dðδÞ ¼ d0 þ 2d1
X3
j¼1

cos a�i δ; ðA4Þ

where a�3 ¼ −a�1 − a�2, and

d0 ¼
1

3
ðdAA þ 2dABÞ; ðA5Þ

d1 ¼
1

9
ðdAA − dABÞ: ðA6Þ

The interlayer matrix element from X ¼ A1, B1 to
X0 ¼ A2, B2 is obtained by taking all the transfer
integrals between atoms of layer 1 and layer 2. It is
explicitly written as

UX0Xðk; δÞ≡ hk; X0jHjk; Xi
¼

X
n1;n2

− t½n1a1 þ n2a2 þ τX0X þ δþ dðδÞez�

× exp ½−ik · ðn1a1 þ n2a2 þ τX0X þ δÞ�;
ðA7Þ

where τX0X ¼ τX0 − τX. Note that UX0Xðk; δÞ is also a
periodic function of δwith periods a1 and a2, and therefore,
it can be written as a Fourier expansion,
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UX0Xðk; δÞ≡ hk; X0jHjk; Xi
¼

X
m1;m2

ŨX0Xðm1a�1 þm2a�2 þ kÞ

× exp ½iðm1a�1 þm2a�2Þ · ðδþ τX0XÞ�: ðA8Þ
Here, we define

ŨX0XðqÞ¼−
1

S0

Z
t½RþdðR−τX0XÞez�e−iq·Rd2R; ðA9Þ

where S0 ¼ ð ffiffiffi
3

p
=2Þa2 is the unit area of monolayer

graphene, and the integral in R is over the infinite two-
dimensional space. Note that ŨX0XðqÞ is circular symmetric
and only depends on jqj. Since tðRÞ exponentially decays
in R ∼ r0, the Fourier transform ŨX0XðqÞ decays in
q ∼ 1=r0.
When we rotate one graphene layer to another by a small

twist angle θ, the local lattice structure in the moiré pattern
is approximately viewed as a nonrotated bilayer graphene,
where the displacement δ slowly depends on the position r
in accordance with [38]

δðrÞ ¼ ½Rðθ=2Þ − Rð−θ=2Þ�r: ðA10Þ
The interlayer matrix element for valley ξ is then approx-
imately written asUX0X½Kξ; δðrÞ� [34]. Using Eqs. (A8) and
(A10), we obtain

UX0X½Kξ; δðrÞ�
¼

X
m1;m2

ŨX0Xðm1a�1 þm2a�2 þKξÞ

× exp ½iðm1a�1 þm2a�2Þ · τX0X�
× exp ½iðm1GM

1 þm2GM
2 Þ · r�; ðA11Þ

where we use the relationship a�i · δðrÞ ¼ GM
i · r. Now, we

see that Eq. (A11) is periodic in r with the moiré reciprocal
vectors GM

i . Since ŨX0XðqÞ rapidly decays in q, we only
need a few Fourier components in Eq. (A11). By taking the
largest three terms given by ðm1; m2Þ ¼ ð0; 0Þ, ξð1; 0Þ,
ξð1; 1Þ, we have the Hamiltonian in Eq. (3), where

u ¼ −
1

S0

Z
t½Rþ dðRÞez�e−iKξ·Rd2R;

u0 ¼ −
1

S0

Z
t½Rþ dðR − τ1Þez�e−iKξ·Rd2R: ðA12Þ

We obtain u ¼ 0.0797 eV and u0 ¼ 0.0975 eV for the
present parameters. In a flat TBG, the interlayer distance
dðδÞ is constant, and therefore, we have u ¼ u0 [34].
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Patterns in Twisted Bilayer Graphenes, Phys. Rev. B 90,
155451 (2014).

[42] M.M. van Wijk, A. Schuring, M. I. Katsnelson, and A.
Fasolino, Relaxation of Moiré Patterns for Slightly
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