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We study the scrambling of local quantum information in chaotic many-body systems in the presence of a
locally conserved quantity like charge or energy that moves diffusively. The interplay between conservation
laws and scrambling sheds light on the mechanism by which unitary quantum dynamics, which is reversible,
gives rise to diffusive hydrodynamics, which is a slow dissipative process. We obtain our results in a random
quantum circuit model that is constrained to have a conservation law. We find that a generic spreading
operator consists of two parts: (i) a conserved part which comprises the weight of the spreading operator on
the local conserved densities, whose dynamics is described by diffusive charge spreading; this conserved
part also acts as a source that steadily emits a flux of (ii) nonconserved operators. This emission leads to
dissipation in the operator hydrodynamics, with the dissipative process being the slow conversion of
operator weight from local conserved operators to nonconserved, at a rate set by the local diffusion current.
The emitted nonconserved parts then spread ballistically at a butterfly speed, thus becoming highly nonlocal
and, hence, essentially nonobservable, thereby acting as the “reservoir” that facilitates the dissipation. In
addition, we find that the nonconserved component develops a power-law tail behind its leading ballistic
front due to the slow dynamics of the conserved components. This implies that the out-of-time-order
commutator between two initially separated operators grows sharply upon the arrival of the ballistic front,
but, in contrast to systems with no conservation laws, it develops a diffusive tail and approaches its
asymptotic late-time value only as a power of time instead of exponentially. We also derive these results
within an effective hydrodynamic description which contains multiple coupled diffusion equations.
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I. INTRODUCTION

The nature of quantum dynamics and thermalization in
isolated many-body systems is a topic of fundamental
interest. Over the past few years, a remarkable confluence
of theoretical progress and experimental advances in engi-
neering and controlling isolated many-body quantum sys-
tems, especially in cold-atomic gases, has led us to reexamine
our understanding of the very foundations of quantum
statistical mechanics [1–3]. On the theory side, research in
the field of many-body localization (MBL) [4–9] has
revealed the existence of classes of generically interacting
systems that do not obey quantum statistical mechanics, and
understanding the nature of different MBL phases [10,11]
and the transition(s) between MBL and thermalizing phases

[6,12–18] is an active area of research. Complementarily, the
development of tools like the AdS/CFT duality [19,20] has
led to new perspectives on the dynamics of thermalizing
strongly interacting systems. This duality has been used to
relate the physics of information scrambling in black holes to
the process of thermalization in condensed-matter systems of
interacting spins and/or particles [21–30].
One lens on the dynamics of isolatedmany-body quantum

systems is provided by studying the spreading of initially
local operators under the system’s unitary time evolution. In
the Heisenberg picture, an initially local operatorO0 evolves
into O0ðtÞ ¼ U†ðtÞO0UðtÞ with support on a spatial region
that grows with time. This spreading ofO0ðtÞ is reflected in
the growth of the commutator between O0ðtÞ and a typical
local operator Wx with support near position x. If x is well
away from the origin, then Wx initially commutes with O0.
We define OTOC as the expectation value of the “out-of-
time-order” commutator [31],

Cðx; tÞ ¼ 1

2
Trρeq½O0ðtÞ;Wx�†½O0ðtÞ;Wx�; ð1Þ
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in an appropriate equilibriumGibbs state ρeq. Wewill almost
exclusively consider the infinite-temperature ensemble in
which case the OTOC reduces to the squared Hilbert-
Schmidt norm of the commutator. The OTOC is related to
the commutator norm that appears in Lieb-Robinson bounds
[32], and has received a great deal of attention recently as a
diagnostic of information “scrambling” in quantum chaotic
systems [21–30,33–35]. For a spin-1=2 chain of length L, a
complete orthonormal basis for all operators is given by the
4L “Pauli strings” S, which are products of Pauli matrices on
distinct sites. We can then express our spreading operator in
this basis of Pauli strings:

O0ðtÞ ¼
X
S

aSðtÞS: ð2Þ

The initially local operatorO0 consists only of strings S that
are the local identity at all sites except one or a few sites near
the origin. But, with time, the strings that dominate this sum
grow in spatial extent, containing nonidentity local operators
at sites out to a “front” at a distance from the origin that grows
with time. TheOTOC remains near zero as long as the strings
that dominate in O0ðtÞ contain only local identities near
position x, but it becomes nonzero once the operator front
reaches this position.
In this paper, we are interested in understanding operator

spreading and scrambling in the physically ubiquitous
setting of thermalizing systems with one or a few local
conservation laws that result in diffusive transport. This
includes, for example, certain Hamiltonian models, since
they do conserve energy, and in many cases energy trans-
port is diffusive. It also includes certain Floquet systems
which do not conserve energy but do conserve a charge or
spin. We first investigate this question in a random tensor
network spin chain model where the tensors are constrained
to obey a single local Uð1Þ spin conservation law. We can
derive a number of exact results in this setting, which we
conjecture (and numerically verify) should also universally
apply to Hamiltonian and Floquet spin chains with diffus-
ing conserved quantities.
A set of recent papers has studied entanglement and

operator dynamics in random tensor network models with
no conservation laws [33,36–38]. A subset of these [37,38]
showed that, despite the absence of traditional hydrody-
namic conservation laws, unitarity alone amounts to a type
of conservation law since the operator norm Tr½O†

0ðtÞO0ðtÞ�
is conserved, which means that the total weight of the
operator on all Pauli strings

P
SjaSj2 is conserved. This

leads to an emergent “hydrodynamical” picture for describ-
ing operator spreading wherein, in one dimension, the
dynamics of the operator front can be described by a
distribution of biased random walkers (where the bias
reflects the fact that it is more likely for an operator string
to grow rather than to shrink) [37,38], while in higher
dimensions the front is modeled by a random growth model

[36,37]. This leads to a picture in which the operator front
propagates ballistically with “butterfly” speed vB, while in
low dimensions the width of the front grows as a sublinear
power of time (∼

ffiffi
t

p
in 1D) [37,38]. This means that the bulk

of the total weight ofO0ðtÞ is contained in the spatial region
lying within the “light cone” defined by the front whose
spatial linear size grows linearly with time. Further,O0ðtÞ is
scrambledwithin the spatial region defined by the light cone
and, with respect to some (but not all) measures, resembles
an unconstrained random operator in this region [39].
In this work, we build on the picture above and study the

interplay between the “actual” hydrodynamics governing
the dissipative diffusion of conserved charges and the
“emergent” hydrodynamics of unitary operator spreading
in systems with conservation laws. Starting from a local
operator that contains the conserved charge, we find that
there is again a ballistically propagating front describing
the operator spreading. However, unlike the fully non-
conserved case, O0ðtÞ has a significant (decreasing slowly
as a power law in time) amount of weight on operator
strings whose fronts lag far behind the main operator front.
This can be understood as follows. Since conserved charges
spread diffusively, the parts of O0ðtÞ that overlap with the
conserved charges are “left behind” in a region of linear
size ∼

ffiffi
t

p
near the origin, even while the main operator front

has reached distance vBt. But the total weight of O0ðtÞ on
these local conserved operators decreases as a power law in
time ∼t−d=2 in d dimensions as the conserved density
spreads diffusively. This loss of operator weight makes this
diffusion effectively nonunitary and thus dissipative. But
the full dynamics of the system is unitary, so the full
operator weight is not lost. Instead, the dissipation due to
the diffusive currents of the conserved density steadily
converts operator weight from conserved to nonconserved
operators, thus emitting a “flux” of nonconserved operators
that then spread ballistically. This emitted flux is propor-
tional to the square of the diffusive current, as expected for
“Ohmic” dissipation. One point of view is that once the
nonconserved operators start spreading ballistically, they
rapidly become so highly nonlocal that they stop being
observables. Then they can be viewed as effectively
random, functioning as the bath whose entropy increases
due to the dissipative diffusion.
An important point is that the conversion of operator

weight from locally conserved to nonconserved (and non-
local) happens at a power law slow rate set by the diffusion
current, and thus the dissipation shows up as a slow
hydrodynamic process in the operator dynamics. By con-
trast, in an unconstrained model, the dissipative conversion
of operator weight from local to nonlocal happens on an
Oð1Þ timescale and thus does not show up as a slow
hydrodynamic process. An explicit elucidation of how
unitary time evolution with conservation laws can lead
to slow dissipative hydrodynamics is one of the main
contributions of this work.
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Moreover, in the models we study here, we can also
study the unitary “inner workings” of this effective bath,
following the spreading of the nonconserved parts of the
operator. The bulk of these nonconserved operators are
emitted almost immediately, near time t ¼ 0, and these
grow to form the leading operator front at distance vBt at
time t. However, as a result of the conservation law, there is
still significant weight left on the conserved parts even after
the initial emission, and these continue to emit noncon-
served operators at a slow rate that decreases only as a
power law in time. Thus, those nonconserved parts of the
operator that are emitted at a later time te have a front that
lags behind the main operator front by distance vBte. This
leads to a power-law tail in the operator profile behind the
front. By contrast, the unconstrained random circuit model
does not show such a power-law tail, since in that case there
are no slow dissipative modes, so no significant part of the
operator has a front that lags substantially behind the main
operator front. Figure 3 shows a sketch of the operator
profile depicting all three regimes: (i) the diffusive con-
served charges remaining near the origin, (ii) the ballis-
tically moving front, and (iii) the power-law tail behind
the front.
The picture that emerges from our study is of multiple

coupled hydrodynamic equations. The first is the dissipa-
tive diffusion of the conserved quantity. This dissipation
serves as the source of the ballistically spreading non-
conserved operators. The dynamics of the fronts of these
nonconserved operators is biased diffusion in 1D and a
random growth model in higher dimensions [36,37].
Moreover, we find that the local operator content in the
interior of the spreading operator is also governed by two
coupled noisy diffusion equations, with the leading front of
the operator serving as a moving boundary condition on
these equations. And finally, there is at least one more
“layer” of this hydrodynamics that governs the entangle-
ment dynamics of the spreading operator [40].
The spatial profile of the spreading operator described

above is also reflected in the behavior of the OTOC Cðx; tÞ
defined in Eq (1). We show that Cðx; tÞ increases sharply
when the ballistic operator front reaches x but, as a result of
the power-law tails behind the main operator front, it only
approaches its asymptotic late-time value as a power law in
time. This is contrast to systems without conservation laws
where there are no such power-law diffusive tails [37,38].
Our results help explain the numerical observations in
Ref. [41], where this late-time power law in the OTOC was
observed in systems with conservation laws.
We note that much recent work has focused on comput-

ing the OTOC at low temperatures in systems with energy
conservation, and bounds on the growth of the OTOC have
been derived in this setting [42]. On the other hand, random
circuit models do not conserve energy, and thus, the
“infinite-temperature” Gibbs ensemble is the only mean-
ingful one for such models. Nevertheless, for circuit models

endowed with extra conservation laws like total spin or
charge, the dynamics can be resolved into different spin
sectors with the “chemical potential” μ now playing a role
somewhat analogous to the inverse temperature β. We
mostly focus on μ ¼ 0 in this work, while briefly address-
ing the μ ≠ 0 case.
We note that several papers have recently noted that

quantum information can spread ballistically in systems with
diffusively relaxing conserved charges [43–48]. This, by
itself, is not that surprising since even MBL systems with no
charge transport can show logarithmic spreading of entangle-
ment [8,49]. Of these papers, Refs. [46–48] study a weakly
interacting diffusive metal and, using a perturbative semi-
classical scattering calculation, relate the butterfly speedvB to
the diffusion constant of themetal via a “Lyapunov exponent”
which characterizes the exponential growth of “chaos” in this
semiclassical setting as measured by the growth of the OTOC
before the front arrives: Cðx; tÞ ∼ e−λLðx−vBtÞ.
On the other hand, Refs. [43–45] numerically study fully

quantum spin chains which cannot be treated semiclassi-
cally, and for which no prolonged period of exponential
growth in the OTOC has been observed to date (the
existence of a fully quantum Lyapunov exponent in
spatially extended systems with small local Hilbert spaces
and only short-range interactions, while perhaps expected,
is a presently unresolved question [35,50,51]). In this fully
quantum setting where semiclassical analytical methods do
not apply, the aforementioned numerical papers [43–45]
generally treat the diffusive charge relaxation and the
ballistic information spreading as two independent numeri-
cal observations that do not interface with one another.
One of our main contributions in this work is to connect

the diffusive charge dynamics with the ballistic front
spreading in strongly quantum systems with local con-
servation laws into a composite picture for the operator
profile, showing how the different regimes connect at
different timescales and length scales. En route, we
elucidate how reversible unitary dynamics can still display
dissipative hydrodynamic modes, wherein the dissipative
process is the conversion of operator weight from locally
observable conserved parts to nonlocal and essentially
unobservable nonconserved parts at a slow rate set by
the local diffusion current of the conserved densities. Thus,
while the von Neumann entropy of the full system is
conserved under the unitary dynamics, we show how the
local “observable” entropy can still increase at a slow
hydrodynamic rate, very concretely illustrating a resolution
of the fundamental tension between unitarity and dissipa-
tion in closed quantum systems.
The balance of this paper is structured as follows. We

begin in Sec. II with a description of our constrained
random unitary circuit model which has a local Uð1Þ
conservation law total for total spin. This is followed by
a detailed discussion of the spatial profile of spreading
operators in Sec. III. We show that the conserved charges
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evolve diffusively under the action of the circuit. The
coupling between the charge conservation and unitarity
produces a steady flux of operator weight from the
diffusively spreading conserved components to ballistically
spreading nonconserved components, leading to a power-
law tail in the spatial profile of the operator weight. We
present the coupled hydrodynamics describing this process.
Next, in Sec. IV, we expose another layer of structure in the
spreading operator by studying the local operator content of
the highly nonlocal operator strings within the light cone
defined by the leading ballistic front. We find that the
distribution of different local operators is itself governed by
a set of coupled noisy diffusion equations that “turn on”
once the front passes a given position. In Sec. V, we turn to
a discussion of OTOCs in this model, and find that the
diffusive processes governing the shape and internal
structure of the spreading operators lead to a late-time
diffusive tail in OTOCs involving the conserved charges.
We numerically verify that the universal aspects of our
results also apply to more “physical” spin chains with
energy and/or charge conservation in Sec. VI, and conclude
in Sec. VII. Some additional details are discussed in
Appendixes A–D.

II. RANDOM UNITARY CIRCUIT MODEL

As an explicit example where we can obtain analytical
results, we consider a one-dimensional chain of length L
sites where the degree of freedom on each site is the direct
product of a spin 1=2 (or qubit) and a qudit with Hilbert
space dimension q. The time evolution is constrained to
conserve the total z component of the spin 1=2’s, which we
call Stotz , while the qudits are not subject to any conservation
laws. We note that we include the qudit at each site because
some results can only be obtained analytically in the large-q
limit, although some of our results do apply for all q,
including the case q ¼ 1 that has no qudits. For definiteness
we take a finite L, but we will be interested in the behavior
in the limit of infinite L.
Generalizing from Refs. [33,36–38], the time evolution

is governed by a random quantum circuit comprising
staggered layers of two-site unitary gates acting on even
and odd spatial bonds at even and odd times, respectively
(see Fig. 1). The time-evolution operator is given by
UðtÞ ¼ Q

t
t0¼1

Uðt0; t0 − 1Þ, where

Uðt0; t0 − 1Þ ¼

8>><
>>:

Q
i
U2i;2iþ1 if t0is even;

Q
i
U2i−1;2i if t0is odd:

ð3Þ

As a result of the conservation law, each two-site unitary
gate Ui;iþ1 is a ð4q2 × 4q2Þ-dimensional block-diagonal
matrix. Labeling the spin state on each site i as ð↑aÞi or
ð↓bÞi, where the first label is the spin state in the Pauli z
basis and the second label is the qudit state, the structure of

Ui;iþ1 looks like (i) a ðq2 × q2Þ block acting in the ð↑aÞi ⊗
ð↑bÞiþ1 subspace, (ii) a ð2q2 × 2q2Þ block acting in the
ð↑aÞi ⊗ ð↓bÞiþ1; ð↓aÞi ⊗ ð↑bÞiþ1 subspace, and (iii) a
ðq2 × q2Þ block acting in the ð↓aÞi ⊗ ð↓bÞiþ1 subspace.
Each of these blocks is a Haar-random unitary, and each
block in each two-site gate is chosen independently of all
others.
To characterize the time evolution of local operators, it is

useful to define a complete orthonormal basis of operators
on each site. For the spin, we can use the Pauli matrices on
each site to define an on-site basis as

fσμ¼0;1;2;3
i g≡ fIi; ri; li; zig ¼

�
Ii;

σþiffiffiffi
2

p ;
σ−iffiffiffi
2

p ; σzi

�
;

so ri and li are suitably normalized spin-raising and -
lowering operators, respectively. These basis operators all
have a definiteΔStotz (such as “raise or lower by one”) under
the Uð1Þ symmetry that conserves Stotz and are thus more
convenient than the Pauli σx=yi matrices for characterizing
the Uð1Þ-conserving dynamics. For the qudit, one can
construct higher-dimensional generalizations of the Pauli

matrices fΣμ¼0;1;…;q2−1
i g that are normalized such that

TrðΣμ†
i Σν

i Þ=q ¼ δμν. Then, the tensor product Bμν
i ≡ σμi ⊗

Σν
i generates a local basis for the 4q2 operators acting on

each composite site i, denoted in shorthand as ðIΣνÞi,
ðrΣνÞi, ðlΣνÞi, and ðzΣνÞi. Using this basis, the time-
evolved operator OðtÞ can be expanded as

OðtÞ ¼
X
S

aSðtÞS; ð4Þ

where each generalized Pauli string S is one of ð4q2ÞL basis
product operators

Q
iB

μiνi
i . Since the basis strings satisfy

Tr½S†S0�=ð2qÞL ¼ δSS0 , the coefficients aS can be obtained
as aSðtÞ ¼ Tr½S†OðtÞ�=ð2qÞL. Finally, we normalize the

FIG. 1. Left: Diagram of the random unitary circuit. Each site
(black dot) is the direct product of a two-state qubit and a q-state
qudit. Each gate (blue box) locally conserves Stotz , the total z
component of the two qubits it acts upon, and is thus a block-
diagonal unitary of the form shown on the right, with each block
of each gate independently Haar random. The smaller blocks do
not flip the qubits and thus operate only on the two qudits, while
the larger block also produces Stotz -conserving qubit “flip flops”.
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initial operator O0 such that Tr½O†
0O0� ¼ ð2qÞL which, by

the unitarity of the dynamics, implies that the total weight
of OðtÞ on all strings S is also normalized to 1:

X
S

jaSðtÞj2 ¼ 1: ð5Þ

This sum rule is the effective conservation law due to
unitarity [37,38].
There are a few classes of operators on site i that evolve

differently under the action of this conserving unitary
circuit. First, ðzIÞi measures the local conserved charge,
and ðIIÞi is the identity operator. The conservation law
implies that Stotz is conserved so that

Stotz ¼
X
i

ðzIÞi; UðtÞ†Stotz UðtÞ ¼ Stotz ; ð6Þ

and the operators ðIIÞiðIIÞiþ1, ðzIÞiðzIÞiþ1, and
½ðzIÞiðIIÞiþ1 þ ðIIÞiðzIÞiþ1�=

ffiffiffi
2

p
are left invariant by the

action of all local gates Ui;iþ1. Further, if one starts with
an operator with a definite ΔStotz under the Uð1Þ symmetry
[for example, ðrΣνÞi raises the spin by one], the action of
the circuit preserves thisΔStotz . Appendix A summarizes the
action of Ui;iþ1 on all possible two-site operators.
It will be subsequently useful to separate the spreading

operator into conserved and nonconserved pieces. To
intuitively understand this separation, consider an initial
density matrix

ρð0Þ ¼ ðIall þ AO0Þ=ð2qÞL; ð7Þ

where Iall is the background equilibrium state which is the
identity on the full system; AO0 is a traceless local on-site
perturbation at the origin to this equilibrium state, with O0

normalized such that Tr½O†
0O0� ¼ ð2qÞL; and A is the

amplitude of this perturbation, which must be small enough
so ρ remains non-negative. The system conserves Stotz
Eq. (6) so that

hStotz iðtÞ¼A
Tr½O0ðtÞStotz �

ð2qÞL ¼hStotz ið0Þ¼A
Tr½O0Stotz �
ð2qÞL ; ð8Þ

where hiðtÞ denotes expectation values in the state ρðtÞ. If
the perturbation injects some local charge at the origin,
then, on general grounds, we expect this “extra” charge to
spread diffusively so that hðzIÞxi ∼ ð1= ffiffi

t
p Þe−x2=4Dt. We will

see how this diffusion arises in operator language and
explore its consequences for operator dynamics in this
system.
To separate the part of O0ðtÞ that has overlap with the

conserved charges, we define aci ðtÞ as the amplitude of the
conserved charge ðzIÞi in the operator expansion of O0ðtÞ:

aci ðtÞ≡ 1

ð2qÞL Tr½O0ðtÞðzIÞi� ¼ hðzIÞiiðtÞ: ð9Þ

The conserved charges, which act as ðzIÞi on site i and as
the identity everywhere else, are a subset of the full basis of
operator strings, and the “conserved part” of O0ðtÞ is
defined as the part of O0ðtÞ with weight on these basis
strings:

Oc
0ðtÞ ¼

X
i

aci ðtÞðzIÞi; ð10Þ

with the “nonconserved part” being the rest, Onc
0 ðtÞ ¼

O0ðtÞ −Oc
0ðtÞ. Finally, the conservation law Eq. (8)

requires

X
i

aci ðtÞ ¼ const: ð11Þ

The dynamics of operator spreading in this model is
governed by the interplay between (i) this explicit charge
conservation Eq. (11), which is a sum rule on the
amplitudes of the conserved operators, and (ii) the con-
servation of the operator weight (which follows from
unitarity), which is a sum rule on the squares of the
amplitudes of all basis strings Eq. (5).

III. “SHAPE” OF SPREADING OPERATORS

A complete characterization of the spreading and scram-
bling of an initially local operator O0 requires knowledge
of the exponentially many coefficients aSðtÞ in the expan-
sion of O0ðtÞ as in Eq. (4). Instead of doing this, we first
consider a more coarse-grained approach and define the
“right weight” ρRði; tÞ as the total weight in OðtÞ of basis
strings that end at site i, which means that they act as the
identity on all sites to the right of site i, but act as a
nonidentity on site i. This is the weight on all strings
of the form S ∼ ðQk<iB

μkνk
k ÞðnÞiðIIÞiþ1ðIIÞiþ2…ðIIÞL,

where ðnÞi ∈ fðrΣμÞi; ðlΣμÞi; ðzΣμÞi; ðIΣμ>0Þig denotes a
nonidentity operator on site i:

ρRði; tÞ ¼
X

strings S with
rightmost non-
identity on site i

jaSj2;
X
i

ρRði; tÞ ¼ 1: ð12Þ

The conservation law on ρRði; tÞ which follows from
unitarity Eq. (5) gives ρRði; tÞ the interpretation of an
emergent local conserved “density,” and Refs. [37,38]
showed that the (hydro)dynamics for ρRði; tÞ is governed
by a biased diffusion equation. Of course, one can
analogously define the left weight ρLði; tÞ and, together,
these can be used to characterize some illuminating aspects
of the spatial structure of the spreading operator (we
consider other measures probing the local operator content
inside the spreading operator in the next section).
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It is instructive to first understand the dynamics of
ρRði; tÞ in an unconstrained random circuit model in 1D
with local Hilbert space dimension q. It was shown in
Refs. [37,38] that the weighted distribution of the end
points of the basis strings in the operator time evolve as
biased random walkers, where the bias reflects the fact that
it is more likely for the strings to grow rather than to shrink.
If we define the “right front” of a string as the location of
the rightmost unitary gate that sees a nonidentity, one can
obtain the probabilities for the front to move forward or
backward by noting that under the action of the front gate,
all the ðq4 − 1Þ nonidentity operators at the gate are
produced with equal weights, on average. If the front gate
is Ui;iþ1, only q2 − 1 of the operators that can be produced
by this gate act as the identity on the right site of the gate
(iþ 1), and each of these outcomes results in the front
moving a step backward, an event with probability
p ¼ ½1=ðq2 þ 1Þ�. Because we define the front as living
on gates (bonds) rather than sites, the even-odd structure of
the circuit in time implies that the front moves backward
when the end point of a string does not grow (illustrated
in Fig. 2).
Then, from the theory of random walks, the mean loca-

tion of the front after time t is hxi ¼ ð1 − 2pÞt≡ vBt,
which defines the butterfly speed vB, and the width of the
front grows as ∼

ffiffiffiffiffiffiffiffi
Dρt

p
, where Dρ ¼ ð1 − v2BÞ=2 is the

diffusivity of the resulting biased random walk. Evidently,
the front location can be described by the emergent random
walk hydrodynamics [37,38] ∂tρRðx; tÞ ¼ vB∂xρRðx; tÞþ
Dρ∂2

xρRðx; tÞ, and the fact that the right-hand side of this
equation is a total spatial derivative reflects the conserva-
tion of the emergent density ρR Eq. (12). Figure 3(c) shows
a sketch of the Haar-averaged front for this random circuit
evolution which, in the scaling limit t; x → ∞ for x ≈ vBt,
takes the form [37,38]

ρrandR ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDρt

p e−ðx−vBtÞ2=4Dρt: ð13Þ

In the limit q → ∞, the front becomes sharp and vB∼
1 − ð2=q2Þ → 1, so that the front deterministically moves
forward for all basis strings at each time step in this limit

[Fig. 3(d)]. Note that the geometry of the circuit limits the
operator growth to at most one site on the left and right ends
per time step. This imposes a strict upper bound on vB set
by the “causal limit speed” vCL ¼ 1, and vB goes to this
limit as q → ∞.
Let us now turn to how this picture changes in the

presence of an explicit Uð1Þ conservation law with dif-
fusively spreading charges.

A. Spreading of the local conserved charge

Let us begin with the case when the initial operator is a
conserved Uð1Þ charge located at the origin,O0 ¼ ðzIÞ0. In
this case, the spatial structure of the operator shows three
regimes: (i) a ballistic front, (ii) a power-law tail behind the
front, and (iii) diffusively spreading charges near the origin.

1. Diffusion of conserved charge

We start by discussing the diffusive dynamics of the
conserved parts of the operator. For the initial operator
O0 ¼ ðzIÞ0, the initial conserved amplitudes are aci ð0Þ ¼
δi0 and the conservation laws Eqs. (8) and (11) give

X
i

aci ðtÞ ¼ 1: ð14Þ

When viewed as a perturbation to an equilibrium
state Eq. (7), O0 ¼ ðzIÞ0 creates an excess of charge at
the origin which should spread diffusively. Thus, on
general grounds, at late times we expect hðzIÞxiðtÞ ¼
acxðtÞ ∼ ð1= ffiffi

t
p Þe−x2=ð4DctÞ, where Dc is the charge diffusiv-

ity. We now see how this arises.
To understand the evolution of aci ðtÞ, consider the action

of a particular gate U12 on the superposition ½ac1ðzIÞ1þ
ac2ðzIÞ2�. It can be shown (Appendix C) that the action of a
gate makes the average amplitudes ac equal on the two sites
acted upon by it, while preserving the sum of amplitudes.
That is, after the action of the gate, the Haar-averaged
amplitudes are

ac1ðtþ 1Þ ¼ ac2ðtþ 1Þ ¼ a1ðtÞ þ a2ðtÞ
2

; ð15Þ

and the gate has produced a current between these two sites
of the conserved charge that is ∼½a1ðtÞ − a2ðtÞ� ∼ ∂xaðx; tÞ.
Note the “smoothing” action of the circuit, which locally
makes the averaged amplitudes equal, and thus reduces
∂xaðx; tÞ in time. This action gives a binomial charge
distribution (Appendix C):

aci ðtÞ ¼
1

2t

�
t − 1

biþt−1
2

c
�
; ð16Þ

which is an exact result true for all q including q ¼ 1. If we
coarse grain, in the scaling limit x, t → ∞, we get

FIG. 2. A Pauli string S (green) with its rightmost nonidentity
operator on site i at time t has its right front on the gate ði; iþ 1Þ
(red). Under the action of the circuit, the front moves forward if
the end point of the string moves to (iþ 1) at time tþ 1 (left),
while the front moves backward if the action of the circuit leaves
the end point at site i (right).
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acðx; tÞ ¼
ffiffiffiffiffiffiffi
1

2πt

r
e−x

2=2t; ð17Þ

showing diffusion of the conserved charge with diffusion
constant Dc ¼ 1=2. If we consider similar random circuits
acting on a system in higher dimensions d > 1, a similar
diffusive behavior will be present, just with diffusion along
all directions. It is noteworthy that as a consequence of the
conservation law, the Haar-averaged amplitudes aci ðtÞ are
nonzero [Eq. (16)]. In an unconstrained random circuit,

only the squared weights jaSj2 survive Haar averaging
while all amplitudes average to zero. Likewise, in our
model with Stotz conservation, certain off-diagonal products
of amplitudes aSaS0 can also survive Haar averaging
(Appendix C), while all such averages are zero in the
unconstrained model.

2. Ballistic front and power-law tails

We now turn to the effect of the diffusive dynamics on
the shape of the spreading operator as measured by ρRði; tÞ.

It is important to note that ρRðiÞ measures the weights jaSj2
of all operator strings ending on i, while the preceding
discussion was about the diffusive dynamics of the ampli-
tudes aci of only the conserved charges in the expansion of
O0ðtÞ; these conserved operators are strings of length one
site. Of course, the weight of O0ðtÞ on a conserved charge
at site i contributes to ρRði; tÞ, and it is convenient to
separate out this contribution:

ρRði; tÞ ¼ jaci ðtÞj2 þ ρncR ði; tÞ
≡ ρcði; tÞ þ ρncR ði; tÞ; ð18Þ

where ρncR denotes the right weight from all “nonconserved”
operator strings that are not one of the conserved charges
ðzIÞi. Defining ρctot ≡P

ijaci ðtÞj2 and ρnctot ≡
P

iρ
nc
R ði; tÞ, we

know from Eq. (12) that

ρctot þ ρnctot ¼ 1: ð19Þ
We will show that the total weight of O0ðtÞ on the
conserved charges ρctot decreases as a power law in time;

(a) (c)

(b) (d)

/
/

FIG. 3. (a),(b) Right/left-weight profiles ρR=Lðx; tÞ showing the spreading of an initially local conserved charge ðzIÞ0ðtÞ in a random
circuit model with Stotz conservation in a system of size L ¼ 1000 at different times t. These profiles depict three regimes. (i) A “lump” in
the region jxj ≲ ffiffiffiffiffiffiffiffi

Dct
p

reflecting the weight of the operator on diffusively spreading conserved charges (shaded purple). This lump emits
ballistically spreading nonconserved operators at a slow power-law rate. This emission creates (ii) the leading ballistic “fronts” near
jxj ∼ vBtwithin which the majority of the operator right and left weight is contained (shaded red for the latest time). These leading fronts
are from nonconserved operators emitted at early times and they are perfectly sharp at q ¼ ∞, where vB ¼ 1 (b), and have a width

ffiffiffiffiffiffiffiffi
Dρt

p
for finite q (a). Finally, the slow emission also leads to (iii) diffusive tails ∼ðvBt − jxjÞ−3=2 behind the leading fronts which reflect the
operator weight in “lagging” fronts of nonconserved operator strings that were emitted at later times (shaded blue for the latest time).
The curves in (a) are obtained via a simulation at q ¼ 3, which takes into account the different processes (diffusion of charges, emission
of nonconserved operators, and the biased diffusion of the nonconserved right and left weights) to order 1=q2. The red dashed curve is
the exact infinite q answer for the “tail” Eq. (24). (c),(d) For comparison, ρR=Lðx; tÞ in an unconstrained random circuit model [37,38],
where z0ðtÞ is not “special.” Regimes (i) and (iii) do not exist in an unconstrained circuit, and the ballistically spreading operator fronts
describe the entire right- and left-weight profiles. The fronts are again infinitely sharp at q ¼ ∞ (d) and have a finite width ∼

ffiffiffiffiffiffiffiffi
Dρt

p
for

q < ∞ (c).
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the conserved densities thus act as a source, continuously
emitting a flux of nonconserved operators that spread
ballistically and contribute to ρnctot [52].
Let us see how this comes about. First, we show in

Appendix C that the circuit-to-circuit variance in the
conserved amplitudes is suppressed both in the large q
and the late-time t limit:

Δa
i ðtÞ≡ jaci ðtÞj2 − jaci ðtÞj2 ∼

1

q4
1

t2
; ð20Þ

while the leading term jaci ðtÞj2 scales as ∼1=t Eq. (17). In
this limit, Δa

i ðtÞ ≈ 0 and jaci ðtÞj2 ≈ jaci ðtÞj2. Then, the
power law decrease in ρctot is obtained as

ρctotðtÞ ≈
Z

dxjacxðtÞj2 ¼
Z

dx
1

2πt
e−x

2=t ¼ 1

2
ffiffiffiffiffi
πt

p ; ð21Þ

where we coarse grain at long times to obtain the penulti-
mate equality, using Eq. (17). Likewise, in higher dimen-
sions, this power law decrease will scale as ρctotðtÞ ∼ t−d=2,
as can be easily seen by considering the higher dimensional
generalization of Eq. (17). Because of the conservation of
total density Eq. (19), this decrease in ρctot has to be
compensated by a corresponding increase in ρnctot. Indeed,
from the previous discussion, we see that the local decrease
in ρctot (at q ¼ ∞) due to action of a gate Ui;iþ1 Eq. (15) is

−δρci ðtÞ ¼
½aiðtÞ − aiþ1ðtÞ�2

2
: ð22Þ

This is the increase in ρnctot that is locally generated at this
gate, and this quantity is proportional to the square of the
conserved quantity’s local current. These newly produced
nonconserved operators then evolve under the unitary
dynamics and get converted to other nonconserved oper-
ators with increasing size. As in the case of the evolution of
ρRðx; tÞ for an unconstrained random circuit, the front of
nonconserved operators (once generated) spreads ballisti-
cally, with vB ¼ 1 for q ¼ ∞ since the likelihood of the
front moving backward is again suppressed by ∼1=q2
(Appendix B). Further, in the q ¼ ∞ limit, there is no
“backflow” of density from nonconserved operators to
conserved charges; this backflow only appears at order
1=q4. Thus, at q ¼ ∞ and in the scaling limit, these
considerations imply that

ρncR ðx; tÞ ¼ −
Z

x

x−vBt

dy
vB

∂ρcðy; t0Þ
∂t0

����
ðt0¼t−ðx−yÞ=vBÞ

: ð23Þ

This expression tells a very natural story. The total non-
conserved right weight at position x at time t is the
integrated weight of all “fronts” emitted at locations y at
times ty ¼ t − ðx − yÞ=vB such that the front traveling with
velocity vB makes it to position x at time t. Moreover, since

the conserved charges are primarily spread within a
distance ∼

ffiffiffiffiffiffiffiffi
Dct

p
near the origin, the emission of non-

conserved flux is only significant at locations within this
diffusively spreading “lump of charge.” Then, at late time t,
we see the three pieces in the shape of ρRðx; tÞ mentioned
earlier.
(1) The diffusive “lump”: In the spatial region jxj ≲ffiffiffiffiffiffiffiffi

Dct
p

near the origin, the right weight comes almost
entirely from the diffusively spreading conserved
part of the operator, ρRðx; tÞ ≃ jacðx; tÞj2. As a
result, the spreading operator has significant weight
that is “left behind” near the starting position of the
operator, and this weight decreases only as a power
law in time ∼t−d=2 in d dimensions Eq. (21). By
contrast, a spreading operator in the unconstrained
circuit model has negligible right weight (exponen-
tially decreasing with t) near its initial location at
late times.

(2) The ballistic front: The leading ballistic operator
front (at the right end) is at x ¼ vBt, and the weight
at the leading front is from nonconserved operators
that were emitted at early times. At q ¼ ∞, the
leading front is sharp, the right weight is strictly zero
for x > vBt with vB ¼ 1, and the sharp front is due
to those nonconserved operators that were emitted
by gates acting at the precise edge of the causal light
cone. At finite q, as in the unconstrained circuit
model [37,38], the front distributions execute biased
diffusion instead of strictly moving forward at each
time step. This leads to an order 1=q2 correction in
vB: vB ≃ 1–8=ð9q2Þ (Appendix B) and gives
the main operator front a nonzero width ∼

ffiffiffiffiffiffiffiffi
Dρt

p
∼ffiffiffiffiffiffiffiffiffi

t=q2
p

. Thus, at finite q, the leading front is mostly
due to nonconserved operators that were emitted at
early times te ≲ ffiffiffiffiffiffiffiffi

Dρt
p

=vB. For systems in d > 1,
the broadening of the front at finite q is given by a
random growth model and grows (if at all) with a
smaller power of time [36,37].

(3) The diffusive tail: Finally, the fronts of noncon-
served operator strings that were emitted at later
times te ≫

ffiffiffiffiffiffiffiffi
Dρt

p
=vB lag behind the leading front

by vBte, leading to the development of power-law
tails in the right weight behind the main operator
front. Consider positions x well separated from
both the leading ballistic front and the diffusively
spreading charge “lump” such that

ffiffiffiffiffiffiffiffi
Dct

p
≪ x and

vBt − x ≫ maxfDρt; 1g. In this regime, at infinite q,

ρncR ðx; tÞ ≈
1

4
ffiffiffi
π

p ðt − x=vBÞ3=2
; ð24Þ

which has a power-law tail in both space and time.
Indeed, for x far separated from the lump, the
diffusive charge lump emitting nonconserved flux

KHEMANI, VISHWANATH, and HUSE PHYS. REV. X 8, 031057 (2018)

031057-8



can be approximately treated as a point source with
the same integrated weight, so that ρncR ðx; tÞ is given
by the rate of change of the total conserved density
in the lump ∂ρctot=∂t ∼ t−3=2 at time te ¼ ðt − x=vBÞ,
which explains the 3=2 power Eq. (21). The leading
functional dependence of this tail is the same at both
infinite and finite q. For d > 1, the exponent in this
power law is 1þ ðd=2Þ. By contrast, there is no such
tail in the spatial profile of operators evolving under
unconstrained circuits, since such circuits have no
mechanism for generating fronts that significantly
lag behind the main operator front. At q ¼ ∞ for the
unconstrained circuit, ρrandR ¼ δðx − vBtÞ, so there is
strictly no tail; at finite q, the right weight behind the
leading front for the unconstrained circuit falls off
exponentially in time at locations x behind the front
scaling with any fixed 0 ≤ x=t < vB.

The left weight shows the same three regimes, by reflection
symmetry.
Figure 3 shows ρR=Lðx; tÞ for both the unconstrained and

charge-conserving random circuit models at infinite and
finite q starting with an initially local conserved charge at
the origin ðzIÞ0. The finite q plots are obtained via a
simulation at q ¼ 3 which takes into account the different
processes (diffusion of charges, emission of nonconserved
operators, and the biased diffusion of the nonconserved
right and left weights) to order 1=q2. Higher-order correc-
tions, including backflow from nonconserved densities to
conserved charges, are not included. More explicitly, we
use the exact q-independent expression for the amplitude of
diffusing conserved charges Eq. (16) to obtain both ρc and
the density of nonconserved operators generated on each
bond at every time step Eq. (22). These newly generated
nonconserved operators are then assumed to execute biased
diffusion, just as in an unconstrained circuit, with a
probability of moving backward equal to 4=ð9q2Þ. The
net density profile of nonconserved operators is obtained
via a spatial and temporal convolution of the “source” terms
on each bond at each time with the corresponding biased
diffusion result for the evolution of ρR=L in an uncon-
strained circuit Eq. (13) [with suitably modified expres-
sions for vB and Dρ, correct to Oð1=q2Þ].

3. Hydrodynamic description

We now turn to a long-time hydrodynamic description of
the coupled processes involving diffusion of the conserved
“charge” and the propagation of the fronts of the non-
conserved operators emitted from this diffusing conserved
charge.
For specificity, we restrict our attention to systems that

are statistically translationally invariant and inversion
symmetric. In such systems the amplitudes of the con-
served part of the operator obey an unbiased diffusion
equation. In more than one dimension, the diffusivity may

not be isotropic; if that is the case, we rescale distances
along the eigendirections of the diffusivity to make it
isotropic:

∂tacðx; tÞ ¼ Dc∇2acðx; tÞ; ð25Þ

where Dc ¼ 1=2 in our d ¼ 1 random circuit model
Eq. (17). This diffusion is also subject to noise, which
will lead to fluctuations in ac across different realizations of
the random circuit but, as we discussed above Eq. (20),
for initial operators that do contain the conserved quantity,
the noise is a parametrically subleading correction to the
amplitudes ac in the late-time limit that is relevant to the
hydrodynamics.
Diffusion is a dissipative process, and this is reflected

here in the decrease with time of the total operator weight of
the conserved part of the operator, ρctotðtÞ ¼

R
dxjacðx; tÞj2.

Since the full system is undergoing unitary dynamics, this
loss of conserved operator weight means that weight is
being converted to nonconserved operator weight. The
density of local rate of this emission of nonconserved
operators is 2Dcj∇acj2 Eq. (22), where we show that this
coefficient is 2Dc below. Note that this dissipation is a slow
hydrodynamic process—proportional to the conserved
quantity’s local current squared, as in Ohm’s law. These
“emitted” nonconserved operators then spread rapidly,
becoming highly nonlocal. This is an example of a
presumably much more general picture of how dissipative
processes happen within closed systems undergoing uni-
tary dynamics: Correlations captured by low-order observ-
ables are moved by the unitary dynamics to highly
nonlocal, and thus effectively nonobservable operators.
Dissipation in such closed systems is thus the “hiding”
of correlations in highly nonlocal operators so that the
correlations that remain detectable to low-order observables
are reduced and thus the observable entropy increases, even
though the von Neumann entropy of the full system
remains unchanged.
To more explicitly define the observable entropy, con-

sider the density matrix ϱðtÞ ¼ ½1=ð2qÞL�½1þOðtÞ�. By
unitarity, the von Neumann entropy of this state is inde-
pendent of time. Now, if we consider the conserved part of
this state ϱcðtÞ ¼ ½1=ð2qÞL�½1þOcðtÞ�, then the entropy of
this state is ScðtÞ ¼ Tr½ϱcðtÞ log ϱcðtÞ� ¼ L logð2qÞ−
½1=ð2qÞL�Tr½OcðtÞ2=2� þ � � �, considering only the leading
term in an expansion in powers ofOcðtÞ, which is valid due
to the smallness of Oc at late times. Thus, ScðtÞ ¼
Seq∞ − ρctotðtÞ=2þ � � �. So, ScðtÞ increases (towards the
infinite-temperature equilibrium value) at a rate propor-
tional to the power law slow rate of decrease of conserved
weight ρctotðtÞ Eq. (21). Since the conserved operators are
local (single site), ϱcðtÞ is observable and ScðtÞ is a good
proxy for the observable entropy. More generally, one
should define the observable part of a state as comprising
all local (say, single-site) operators rather than just the
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conserved ones. However, the rate of increase of SobsðtÞ
will still be dominated by the conserved parts since the
weight on these only decreases as a power law in time, in
contrast to the exponential in time decrease in the weight of
local nonconserved operators. This is the reason why the
increase in observable entropy in an unconstrained circuit,
while present, is not a hydrodynamically slow process
while models with conservation law show a power law slow
increase in the observable entropy at a rate proportional to
the local diffusion current Eq. (22).
Next, the dynamics of the spreading of the front of the

emitted nonconserved operators is given by a random and
nonlinear growth model for d > 1, which we do not discuss
further here [36,37]. For d ¼ 1, the weighted distributions
of the fronts of the spreading strings move by biased
diffusion [37,38]. We focus on the right-moving front, but
the left-moving front is doing the same thing, just spatially
reflected so it moves in the opposite direction.
Thus, the leading-order continuum hydrodynamics in

d ¼ 1 of the right density ρncR ðx; tÞ is described by a
diffusion equation with drift and a source term representing
the emission of nonconserved operators from local gra-
dients in acðx; tÞ:

∂tρ
nc
R ðx; tÞ ¼ vB∂xρ

nc
R ðx; tÞ þDρ∂2

xρ
nc
R ðx; tÞ

þ 2Dcj∂xacðx; tÞj2; ð26Þ

where we show in Appendix B that the drift and diffusion
constants are vB ≃ 1 − ½8=ð9q2Þ� and Dρ ≃ ½8=ð9q2Þ�
neglecting corrections of order 1=q4 and higher. Further,
it was shown in Refs. [37,38] that the circuit-to-circuit
fluctuations in ρRðx; tÞ [and hence ρncR ðx; tÞ] scale with a
parametrically smaller power of t, so we can ignore the
noise in ρncR in the leading-order hydrodynamics. Thus,
the coupled diffusion equations (25) and (26) describe the
leading-order hydrodynamics for those aspects of the shape
of the operator that are described by ρRðx; tÞ.
It is instructive to also directly consider the hydro-

dynamics for the total right weight, ρRðx; tÞ ¼ ρncR ðx; tÞþ
½acðx; tÞ�2, an exercise that explicitly reveals the form of the
source term for ρncR in Eq. (26). Consider

∂tρRðx; tÞ ¼ ∂tρ
nc
R ðx; tÞ þ ∂tjacðx; tÞj2

¼ vB∂xρ
nc
R ðx; tÞ þDρ∂2

xρ
nc
R ðx; tÞ þS ncðx; tÞ

þDc∂2
xjacðx; tÞj2 − 2Dcj∂xacðx; tÞj2; ð27Þ

where we have left the functional form of the source term
S nc for ρncR undetermined, and we have used Eq. (25) in
evaluating the time derivative for the squared amplitudes of
the conserved charges. Note, however, that sinceR
dxρRðx; tÞ is conserved, the continuity equation requires

that ∂tρRðx; tÞ is the total spatial gradient of a current
J ðx; tÞ. Thus, the two terms in Eq. (27) that are not spatial

derivatives must cancel each other (up to a total derivative),
giving

S ncðx; tÞ ¼ 2Dcj∂xacðx; tÞj2; ð28Þ

which gives the hydrodynamics for ρncR Eq. (26). With this
relation,

∂tρRðx; tÞ ¼ vB∂xρ
nc
R ðx; tÞ þDρ∂2

xρ
nc
R ðx; tÞ

þDc∂2
xjacðx; tÞj2; ð29Þ

which nicely shows that the nonconserved part of ρR
exhibits diffusive dynamics with a drift, while the con-
served part simply diffuses with no net drift.

B. Spreading of local nonconserved operators

We now briefly describe the spreading of initial operators
O0 that are orthogonal to Stotz such that TrðO0Stotz Þ ¼ 0.
These operators come in two categories: those with ΔStotz ≠
0 (such as the raising and lowering operators r0 and l0 with
ΔStotz ¼ �1, respectively) and those with ΔStotz ¼ 0 (such
as r1l2). The first category of operators only have weight on
basis strings with the same ΔSz ≠ 0 for all times, and thus
remain orthogonal to each conserved charge ðzIÞi so that
aci ðtÞ ¼ 0∀ i, t. Thus, in this case, ρRðx; tÞ ¼ ρncR ðx; tÞ,
and these operators do not have any left or right weight that
is left behind near the initial location due to slow diffusive
dynamics. This means that their right-weight profile does
not have diffusive tails and looks essentially the same as ρR
for an operator spreading under the action of an uncon-
strained random circuit Eq. (13), albeit with different drift
and diffusion coefficients. This can also be seen from the
hydrodynamic equation (26) since the source term will be
zero for this case. However, we show in the next section
that the local operator content within the spreading oper-
ator, i.e., internal to the light cone, still shows power-law
correlations due to the conservation law.
Let us now turn to the second category of initial

operators with ΔStotz ¼ 0. These include “dipole” operators
of the form Odip

01 ¼ f½ðzIÞ0 − ðzIÞ1�=
ffiffiffi
2

p g, which still con-
tain the local conserved charges but with amplitudes that
sum to zero. In this case, one can show that the coarse-
grained Haar-averaged conserved amplitudes acðx; tÞ look
like the spatial derivative of the amplitudes obtained for the
case starting with a monopole source Eq. (17):

acdipðx; tÞ ∼
x

t3=2
e−x

2=2t;
Z

dx acdipðx; tÞ ¼ 0: ð30Þ

Indeed, this is also easily obtained from the hydrodynamic
diffusion equation (25) with a dipole initial condition.
Then, the total conserved weight again decreases as a power
law in time, but with a faster decay as compared to the
monopole case: ρctotðtÞ ∼ t−3=2 in 1D. The conserved
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densities again act as a source of nonconserved operators
leading to a power-law tail in ρRðx; tÞ, but with scaling
1=ðx − vBtÞ5=2 in 1D, as is seen by considering the rate of
change of ρctotðtÞ. For q < ∞, charge-neutral operators like
r1l2 create a dipole with nonzero probability at early times
which then spreads as just described, again giving such a
power-law tail in the asymptotic operator shape.
This brings us to a technical aside about the large q limit

which is relevant for the spreading of nonconserved
operators. An initial operator ðrIÞ1ðlIÞ2 becomes a super-
position of order q4 operators, each with ΔSz ¼ 0, under
the action of the first gate. Only operators that act as the
identity on the qudit spins (and as z on the spin 1=2) have a
chance of making a charge dipole and thereby contributing
to the conserved weight ρctot—but these are suppressed in
probability by 1=q4. This illustrates one aspect of the
dynamics that is suppressed by the infinite q limit, namely
the likelihood for certain operators to make dipoles and
thus to pick up power-law tails in ρRðx; tÞ. As a related
point, if one starts directly with the dipole operator Odip

01 as
before, then the q ¼ ∞ limit is sensitive to whether the
dipole is acted upon by a single gate U01 at the first time
step, or whether it is acted upon by the two gates U−10 and
U12. The latter case proceeds exactly as described above
since each initial gate sees a conserved ðzIÞ, while in the
former case the single gate immediately converts the dipole
to order q4 nonconserved operators leading to a 1=q4

suppression in the power-law tail. This strong sensitivity to
microscopic initial details in the spreading of this class of
operators is a peculiarity of the large q limit.

C. Spreading of multilocal conserved operators

We now briefly address the spreading of initial Pauli
strings that are a product of N conserved charges,

Oi1i2…iN ðt ¼ 0Þ ¼ ðzIÞi1ðzIÞi2…ðzIÞiN ;

with the sites ordered so that i1 < i2 < … < iN . The operator
dynamics of such strings is also directly constrained by the
conversation law since the conservation of Stotz implies the
conservation of ðStotz ÞN ¼ P

j1j2…jN ðzIÞj1…ðzIÞjN , and thus
“multilocalized” strings of charges act as the “conserved
densities” of this higher-order conservation law. Then, as in
Eq. (14), the sum of all amplitudes acj1j2…jN

of the strings of z
that appear in the expansion of ðStotz ÞN is conserved in time.
Further, if Oðt ¼ 0Þ has N conserved charges, then only
amplitudes aS on basis strings with exactly N conserved
charges survive Haar averaging, even though the expansion
ðStotz ÞN involves basis stringswith less thanN charges [in fact,
the relevant conserved operator is the appropriate weighted
sum of ðStotz ÞN , ðStotz ÞN−2, etc., such that it contains only these
basis strings of exactly N charges].
We can now ask about the time evolution of amplitudes

of the form aj1j2…jN with j1 < j2 < … < jN . Note that if

all the j’s lie on different gates at a given time t, then we
have independent diffusion of charges on each of the
gates and action of the circuit simply averages all the
intergate correlations and makes them equal. Indeed, if one
starts in an infinitely large system with the charges in the
initial string well spaced such that the “diffusive cones” of
the individual charges never intersect, then aj1j2…jN ðtÞ≃
½1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDct
p Þ�N Q

N
k¼1 e

−ðjk−ikÞ2=4Dct, and these amplitudes
decay with time parametrically faster than those for a single
conserved charge. On the other hand, if we start with a
finite density of charges such that the independently
diffusing charges encounter each other on a gate, then
we have to account for the “hard-core” interaction between
these charges which is encoded in the invariance of
ðzIÞiðzIÞiþ1 under the action of a gate. As a result of this,
the diffusing charges can never pass each other and the
coarse-grained problem is that of “single-file diffusion” of
N particles with a hard-core contact interaction. This
problem has been solved in the literature [53], and predicts
that

acj1j2…jN
ðtÞ ¼

X
σ∈SN

YN
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDct

p e−½σðjkÞ−ik�2=4Dct; ð31Þ

where the sum is over all N! permutations σ for the particle
labels at time t, the initial locations of the charges are
i1…iN , and we require j1 < j2… < jN .
Finally, note that initial strings that are products of

conserved operators on some sites and nonconserved
operators on other sites do not have any overlap with
any of the conserved charges or their higher moments. All
Haar-averaged amplitudes for all basis strings will be zero
in this case (although two-point correlations of the ampli-
tudes can still survive averaging). Further, even if there is
initially a diffusive “cone” of locally conserved charges in
the vicinity of a conserved operator in the initial string,
these quickly lose their coherence upon encountering the
ballistic cones emanating from the initial locations of the
nonconserved operators.

IV. INTERNAL STRUCTURE OF
SPREADING OPERATORS

So far, we have discussed the shape of the spreading
operator in terms of the right weight ρRðx; tÞ; we have used
this to describe the ballistic light cone within which the
operator has spread, and the power-law tails in the
distributions of right and left weights within the light cone.
We now turn to another layer of structure in the “shape” of
the spreading operator that is relevant, for example, for the
resulting OTOCs. This is the weighted local distributions of
the different qubit operators (I, r, l, z) within the strings S
that make up the operator. For an unconstrained random
circuit, the distribution of these local operators is uniform
between the four operator types after the leading operator
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front has passed a given location, but the distribution is
highly biased towards identities before the front reaches.
On the other hand, different operators are inequivalent in
the conserving random circuit, leading to imbalances in
these local densities that persist after the front passes.
Indeed, the evolution of these local densities and their
correlations are constrained by two further conservation
laws that encode the fact that the unitary circuit conserves
the action of the initial operator under the Uð1Þ symmetry.
These are the conservation of the total “spin” s if one starts
in a state with definite Stotz and the conservation of the net
“raising charge”R≡ ΔStotz of an operator. Further, we will
see that these conservation laws are coupled to each other
through suitably defined two-point correlations of charge or
spin within the operator.

A. Conservation of raising charge

The action of the conserving circuit preserves the net
raising charge R≡ ΔStotz of an initial operator that starts
with a definite ΔStotz action. Concretely, for a given basis
string S, the localRi ¼ þ1 if the qubit operator in S at site
i is a raising operator r, while a lowering operator l has
Ri ¼ −1, and z and I haveRi ¼ 0. Note thatRi is sensitive
to neither the qudit operator content nor the operator
content on all other sites. The unitary circuit conserves
Rtot ¼

P
iRi for operators that start with a definite Rtot,

and the operator’s local raising charge Ri moves diffu-
sively. Nevertheless, the circuit still converts a given basis
string into a superposition of many strings each with
different local patterns of Ri (but with the same Rtot),
and this choice of strings means that the diffusion of raising
charge is subject to noise. For example, if a unitary gateU12

acts on a two-site operator with Rtot ¼ þ1 such as
ðrIÞ1ðzIÞ2, the action of the gate produces a superposition
of ð4q4Þ two-site strings of the form fðraÞ1ðIbÞ2;
ðraÞ1ðzbÞ2; ðIaÞ1ðrbÞ2; ðzaÞ1ðrbÞ2g, where a and b are
arbitrary operators on the qudit and, within this ensemble
of strings, the raising charge r is equally likely to be on
either of the two sites acted upon by the gate (Appendix A).
Of course, there is also noise from circuit-to-circuit
fluctuations. If we average over the weighted ensemble
of all strings within an operator that is evolved by a
particular circuit and across circuits, then

hRiðtÞi ¼
X

strings S∶
Si¼ðraÞ

jaSðtÞj2 −
X

strings S∶
Si¼ðlaÞ

jaSðtÞj2

≡ ρrði; tÞ − ρlði; tÞ ð32Þ

where hi denotes the joint average, and the notation Si ¼
ðraÞmeans that the basis string acts as r on the spin 1=2 on
site i and acts arbitrarily on the qudit. The last equality
defines ρr=lði; tÞ as the weight on all basis strings in the
operator expansion of OðtÞ that locally act as r=l on the
spin 1=2 on site i [one can analogously define ρI=zði; tÞ]. As

discussed above, the action of a gate U12 makes hRii equal
on the two sites and produces a raising charge current
∼∂xRðx; tÞ:

hR1ðtþ 1Þi ¼ hR2ðtþ 1Þi ¼ hR1ðtÞi þ hR2ðtÞi
2

; ð33Þ

which is identical to the structure we had previously
obtained for the dynamics of aci ðtÞ [Eq. (15)]. Thus, any
initially local spatial distribution of hRii, for example, if
O0 ¼ ðrIÞ0, spreads diffusively with diffusion constant
Dr ¼ Dc.

B. Conservation of spin

Likewise, there is a noisy diffusion process governing
the conservation of total spin s which measures the
projections onto definite Stotz states. If we rotate the local
spin-1=2 operator basis to the projection “up” u ¼ ðI þ
zÞ= ffiffiffi

2
p

and “down” d ¼ ðI − zÞ= ffiffiffi
2

p
operators, then these

are charged under s as s ¼ �1, respectively, while r, l have
s ¼ 0. In this basis, the operators ðuIÞiðuIÞiþ1, ðdIÞiðdIÞiþ1,
and ½ðuIÞiðdIÞiþ1 þ ðdIÞiðuIÞiþ1�=

ffiffiffi
2

p
are special and left

invariant by the action of all two-site gates Ui;iþ1, while the
others mix between themselves in a manner that locally
conserves stot ¼

P
isi on each gate. Thus, as before, the

circuit conserves total stot while generating noise, so that
after averaging over circuits and strings,

hsiðtÞi ¼
X

strings S∶
Si¼ðuaÞ

jaSðtÞj2 −
X

strings S∶
Si¼ðdaÞ

jaSðtÞj2

≡ ρuði; tÞ − ρdði; tÞ ð34Þ
The action of a gate makes the average spin equal on the
two sites:

hs1ðtþ 1Þi ¼ hs2ðtþ 1Þi ¼ hs1ðtÞi þ hs2ðtÞi
2

: ð35Þ

This again means that an initial spin polarization spreads
diffusively with Ds ¼ Dc. Note that this equality between
diffusivities and the one for raising charge above Eq. (33)
are not completely trivial statements, since Dc is for the
amplitudes of the conserved operators that are a nonidentity
only at one site, while Ds=Dr are for the local operator
weights (amplitudes squared) of u=d’s and r=l’s within all
strings, both conserved and nonconserved.

C. Coupling between spin and raising charge

If the initially local operator contains a nonzero net value
of either of these two “charges,” then that charge will only
spread diffusively. Thus, if we look near the ballistically
moving operator front at long times, none of this initial
charge can be there yet. Moreover, the action of the circuit is
symmetric with respect to interchanging r ↔ l and u ↔ d
(Appendix A), so that no new imbalances of the average
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charges is created due to the action of the circuit. Thus, both
these average charges are zero far from the initial location at
late times, so that ρrðx; tÞ ¼ ρlðx; tÞ and ρuðx; tÞ ¼ ρdðx; tÞ
for jxj ≫ ffiffiffiffiffiffiffiffi

Dct
p

. However, for all ballistically spreading
operators, there is a next layer of structure in the two-point
correlations of these charge densities that evolves diffusively
near the front and influences some of the OTOCs. This
structure stems from the initial condition in which the local
operators are the identity on all sites except those near the
origin, and these identities contribute only to ρu=d and not to
ρl=r. That is, before the front comes through, the operator is
locally the identity which is an equal-amplitude linear
combination of all strings that contain only u’s and d’s.
On the other hand, in the final “local equilibrium” state of the
operator, all local strings are equally likely a long time after
the front has passed through (up to corrections that decay as a
power law inL). This equilibrium state is reached via a noisy
diffusion process that turns on at each position when the
front passes through that position. The two-point correla-
tions before the front passes through are hRiRji ¼ 0 and
hsisji ¼ δij, and these serve as the initial conditions on the
diffusion process. This diffusion relaxes the initial
imbalances between the relative density of local operators
charged under spin and raising charge, in particular, the
imbalance in ½ρuðx; tÞ þ ρdðx; tÞ� − ½ρrðx; tÞ þ ρlðx; tÞ�. We
now see how this comes about.
To start, we look at the dynamics of intergate correla-

tions. Consider two different gates acting at the same time t
on sites i, iþ 1 and j, jþ 1. These two gates simply set all
intergate correlations of each type equal, just as they do for
the average densities:

hsisjiðtþ 1Þ ¼ hsisj þ sisjþ1 þ siþ1sj þ siþ1sjþ1iðtÞ
4

;

ð36Þ

and seven other similar equations for the other intergate
correlations of s and R of the form hRiRjþ1iðtþ 1Þ, etc.
For concreteness, sisj ¼ þ1 for strings that locally look
like uiuj=didj on sites i, j, and sisj ¼ −1 for strings that
look like uidj=diuj, and is zero otherwise (analogous
expressions for RiRj), and the equation above can be
derived by looking at the action of the circuit gates on the
different types of operators (Appendix A). The zero
intergate correlations before the front comes through are
indeed invariant under this dynamics. The coarse-grained
diffusion equation for this two-point correlation for x ≠ y is
thus

∂thsðxÞsðyÞiðtÞ ¼ Dcð∂2
x þ ∂2

yÞhsðxÞsðyÞiðtÞ; ð37Þ

with hRðxÞRðyÞiðtÞ obeying the same equation. This is for
d ¼ 1, but the generalization of this and the results below to
higher d seems straightforward.

Thus far, we have two separate diffusion processes
governing the diffusion of raising charge R and spin s
correlations. In fact, these two processes are coupled once
we consider the action within one gate on dipoles. The
dipoles of R are net raising-neutral operators like
fðraÞiðlbÞiþ1; ðlaÞiðrbÞiþ1g, while the dipoles of spin s
are operators of the form fðuaÞiðdbÞiþ1; ðdaÞiðubÞiþ1g.
The coupling between spin and raising charge stems from
the fact that, while the total density of all such dipoles
within one gate is locally conserved, the different dipole
species mix among each other under the action of the gate.
And it is this process that allows an initial operator that
contains no r’s or l’s to relax to the final equilibrium where
all local strings are equally likely. The precise “boundary
conditions” that couple the above diffusion equations
within one gate, i.e., at x ¼ y, are q dependent and involve
other correlations that can initially be well out of equilib-
rium just after the front passes.
The coupling between the charges can be simplified by

looking at particular linear combinations of the hRiRji and
hsisji correlations. If we consider hRiRj þ sisji, this has
the initial condition hRiRj þ sisji ¼ δij. This initial con-
dition is identical to the equilibrium final state where all
strings are equally likely. And if we consider the action
both within one gate and between two different gates, it
does not change this quantity, which is therefore time
independent. Thus, although we do have two coupled
diffusion equations, it reduces to just one diffusion equation
for

GijðtÞ≡ hsisj −RiRjiðtÞ ð38Þ

for this initial state, which also hasGijð0Þ ¼ δij as its initial
condition. The local effective diffusivity due to the processes
within one gate is, in general,q dependent and different from
that when i and j are in different gates, but at long time this
affects a “region” of Gij that is a fraction ∼

ffiffiffiffiffiffiffi
1=t

p
of the

distance (i − j) over which it has spread. Thus, the leading
coarse-grained long-time behavior of Gij is

Gðx; y; tÞ ≈ 1

2
ffiffiffiffiffi
πt

p e−ðx−yÞ2=4t; ð39Þ

where the time t here is measured from the time when the
front passes, say, the point ðxþ yÞ=2. Note that the effective
diffusivity here is 2Dc ¼ 1, since we have independent
diffusion at the locations x and y. In fact, at q ¼ ∞, the
evolution ofGijðtÞwithin one gate is identical in structure to
the intragate evolution and we can solve for Gij exactly in
this limit (Appendix D), and the coarse-grained answer
agrees with Eq. (39). Finally, note that this form for
Gðx; y; tÞ when evaluated at x ¼ y shows how the initial
imbalances in the populations of u, d versus r, l decay
diffusively away from the location of the front:
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ΔRsðx;tÞ≡Gðx;x;tÞ
¼ ½ρuðx;tÞþρdðx;tÞ�− ½ρrðx;tÞþρlðx;tÞ�: ð40Þ

For q ¼ ∞, where vB ¼ 1, these imbalances can be evalu-
ated exactly and they take the form

ΔRsðx; tÞ ¼
1

3

X2bðt−jxjÞ2
c

n¼bðt−jxjÞ
2

c

�
1

3

�
n
�

n

2n − 2bðt−jxjÞ
2

c

�

×

�
2n − 2bðt−jxjÞ

2
c

n − bðt−jxjÞ
2

c

�
ð41Þ

≈
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðt − jxj=vBÞ

p ; ð42Þ

wherewe have taken the late-time coarse-grained limit in the
last line to evaluate the sum via a saddle-point approxima-
tion (Appendix D), and restored units. At finite q, we expect
the leading functional dependence to still be the same, just
with a reduced vB. This equation, coupled with the fact that
ρl ≈ ρr and ρu ≈ ρd away from the diffusive lump, allows us
to solve for the local densities of the different operators, and
this is sketched in Fig. 4, showing how all local densities
diffusively approach the equilibrium value of 1=4 after
the front passes through. This diffusive relaxation of the

imbalance leads to a power-law diffusive tail in certain
OTOCs, as we see in the next section.

V. OUT-OF-TIME-ORDER COMMUTATORS

We now turn to measuring the out-of-time-order com-
mutator between different classes of operators Eq. (1). We
find that, in several cases, this quantity is sensitive to both
the “shape” and the internal structure of spreading oper-
ators. If we consider the OTOC between two generic
(initially) local operators, then this quantity is close to
zero until the arrival of the ballistically spreading operator
front and shows a sharp increase upon the arrival of the
front. However, the OTOC for systems with local con-
servation laws also generically develops a “diffusive tail”
and approaches its late-time asymptotic value only as a
power law in time. Let us now see how this arises.
Define

Cμαβðx; tÞ ¼
1

2
Trfρeqμ j½σα0ðtÞ; σβx�j2g; ð43Þ

where σfα¼1;2;3g
x ¼ frx; lx; zxg as before, we suppress the

identity operators acting on the qudit spins on sites 0, x for
notational simplicity, and

ρeqμ ¼ eμS
tot
z

TreμS
tot
z

ð44Þ

is the equilibrium “grand-canonical” ensemble at a par-
ticular chemical potential μ. Note that while the infinite-
temperature average is the only equilibrium for a random
circuit model with no energy conservation, for a circuit
model with an extra conservation law (like ours), we may
also consider a nonzero chemical potential which weights
the different spin sectors as above. We focus on the equal-
weight ensemble with μ ¼ 0 for the majority of this section,
briefly commenting on μ ≠ 0 towards the end. We now
study the OTOC for several different choices of α, β.

A. OTOC between z0ðtÞ and rx
Let us start with μ ¼ 0, α ¼ 3 ¼ z, and β ¼ 1 ¼ r. Then,

C0zrðx; tÞ ¼
1

2
Trfρeq0 j½z0ðtÞ; rx�j2g; ð45Þ

and it is clear that only basis strings in the operator
expansion of z0ðtÞ that act as ðlaÞ or ðzaÞ on site x
contribute to C0zrðx; tÞ. Then, using the commutation
relations ½zx; rx� ¼ 2rx and ½lx; rx� ¼ −2zx, and the ortho-
normality of basis strings, we get

C0zrðx; tÞ ¼
X

strings S∶
Sx¼ðlaÞ;ðzaÞ

2jazSðtÞj2;

where the notation azSðtÞ denotes the amplitude of basis
string S in the expansion of z0ðtÞ. A bit of algebra shows

FIG. 4. Densities of local operators charged under “spin” and
“raising action” behind the ballistic front of a spreading operator
at q ¼ ∞ and late times Eq. (41). ρu=dðx; tÞ measures the local
operator weight on site x on u=d operators that are charged under
spin, while ρr=lðx; tÞ measures the local weight on r=l operators
that have raising charge. Outside the ballistic operator front (at
jxj > vBt), the spreading operator locally is purely identities
which contribute equally to ρu=d ¼ 1=2, but do not contribute to
ρr=l ¼ 0. The arrival of the front at a given site turns on a noisy
coupled diffusion process between the spin and raising charges
which relaxes the initially imbalanced densities of these charges
to the final “equilibrium” value where all local operators are
equally likely. Note that ρu ¼ ρd and ρr ¼ ρl in this regime since
any initial imbalances in raising or spin charges spread only
diffusively and are not present near the ballistic front at late times.
Dashed lines plot the “coarse-grained” densities in the scaling
limit Eq. (42).
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C0zrðx; tÞ ¼ 1 −
X
i<x

ρRði; tÞ

þ
X

jazSj2
strings S∶

rhsðSÞ≥x and
Sx¼ðlaÞ;ðzaÞ

− X
jazSj2

strings S∶
rhsðSÞ≥x and
Sx¼ðIaÞ;ðraÞ

ð46Þ

which is a useful way of writing this for x > 0; an
analogous expression involving the left weight ρL can be
written for x < 0.
Note that the first two terms in Eq. (46) are sensitive to

the overall operator shape, namely, the right-weight profile
of the spreading operator, while the latter two terms are
sensitive to the local “internal” operator content after the
front has passed site x. In random circuits with no
conservation laws, all operator types are equally likely
after the front has passed through and thus only the first two
terms contribute substantially to the OTOC [37,38]. Notice
that for this particular pair of operators, the second line
measures the local raising charge Rx Eq. (32) and the
difference between the local densities of z’s and I’s at site x
after the front has passed x. As discussed in the previous
section, there is no average raising charge away from the
diffusing “lump” near the origin, and the difference in local
densities of z’s versus I’s is also zero except near the origin
and right at the front. So, to leading order the second line in
Eq. (46) vanishes in the region between the diffusive lump
and the front. Further, since we start with zero raising
charge, the only contribution to the second line comes from
the imbalance between ρzðxÞ and ρIðxÞ. Indeed, all con-
served operators ðzIÞi with i ≥ x contribute to ρIðxÞ, while
only ðzIÞx contributes to ρzðxÞ. These conserved operators
are the leading source of the imbalance between ρIðxÞ and
ρzðxÞ near the origin. Nonconserved strings do not sub-
stantially contribute to the imbalance between ρzðxÞ and
ρIðxÞ away from the front. Then, putting it all together,

1 − C0zrðx; tÞ ≈
X
i<x

ρncR ði; tÞ þ
X
i>x

ρncL ði; tÞ

þ ρctotðtÞ − 2ρcðx; tÞ; ð47Þ

where we have separated the contributions from conserved
and nonconserved operators Eq. (18) and used also the left
weight ρncL to produce an expression that is valid at late time
for all x. Since ρctotðtÞ ∼ t−1=2 ≫ ρcðx; tÞ ∼ t−1 at late times,
the contribution of ρcðx; tÞ is also subdominant at late times
and is neglected below, although it is visible as a weak
“dimple” in the diffusive regime near the origin in Fig. 5.
Thus, away from the fronts and the diffusive regime near
the origin, the OTOC for this pair of operators receives its
primary contribution from the total right or left weights
alone, just as in the unconstrained circuit [37,38]. We saw
above that the right- and left-weight profiles for zðtÞ show
diffusive power-law tails, and these translate into diffusive
tails for this OTOC as well.

Let us now examine thisOTOC in different regimes at late
times such that the leading ballistic front is well separated
from the diffusive “lump” near the origin:

ffiffiffiffiffiffiffiffi
Dct

p
≪ vBt.

(1) Outside the light cone jxj > t: Because of the
locality of the circuit, a spreading operator O0ðtÞ
acts as the identity outside the light cone defined by
jxj ≤ t. Thus, the commutator Cðx; tÞ ¼ 0 in this
regime.

(2) Beyond the leading operator fronts so jxj ≫ vBtþffiffiffiffiffiffiffiffi
Dρt

p
, but within the causal light cone so jxj < t:

Before the main operator front gets to x, any operator
weight that is not locally the identity is exponentially
small in t and thus the OTOC is also exponentially
small in t (for fixed x=t in this regime). This regime
does not exist for q ¼ ∞. Reference [38] showed
that the OTOC shows a near-exponential increase
with time in this regime for the unconstrained circuit
model, but with a position-dependent analog of the
“Lyapunov exponent.” We expect the same qualita-
tive behavior in this regime for our model, since this
operator “edge” just comes from nonconserved

FIG. 5. One minus the out-of-time-order commutator (OTOC)
between z0ðtÞ and rx at zero chemical potential C0zr plotted against
x for a system of length L ¼ 1000 at different times t showing the
different regimes discussed in the text. For jxj > t (outside the
dashed vertical lines), the OTOC is strictly zero due to the locality
of the circuit. In the region vBt < jxj < t, which is inside the
causal light cone but before the leading front arrives, the OTOC is
exponentially small (green shaded area for the latest time). The
arrival of the ballistic operator front (jxj ∼ vBt) leads to a strong
increase in the OTOC from a value exponentially small to an
Oð1Þ value (shaded red area for the latest time). However,
diffusive tails in the operator shape or internal structure lead
to diffusive power-law tails in space and time ∼ðx − vBtÞ−1=2 in
the late-time approach of the OTOC to its final value of 1 (shaded
blue area for the latest time). By contrast, for an unconstrained
random circuit (not shown), the OTOC at a given site approaches
one exponentially quickly after the leading front passes [37,38].
The diffusive region near the origin jxj ≲ ffiffiffiffiffiffiffiffi

Dct
p

(shaded purple)
receives a subleading 1=t contribution from the conserved
charges which shows up as a “dimple” in the curves at early
times which becomes weaker at late times. All curves are
obtained via a simulation using q ¼ 3 and taking into account
all processes to order 1=q2. The dashed red curve is the q ¼ ∞
prediction for the functional form of the tail [Eq. (48)].
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operators emitted at early times whose right and left
weights then show biased diffusion, just as in the
unconstrained circuit.

(3) Within the leading operator fronts, jxj − vBt∼ffiffiffiffiffiffiffiffi
Dρt

p
: This regime describes the growth of the

OTOC from an exponentially small value in t to an
order 1 number due to the arrival of the ballistic
front. Here, the operator right or left weight is again
from nonconserved operators emitted at early times
and, to leading order at long time for finite q, is a
Gaussian of width ∼

ffiffiffiffiffiffiffiffi
Dρt

p
, so the leading behavior

of the OTOC in this regime is given by the
corresponding error function that is the integral of
this Gaussian profile, just as in the unconstrained
circuit [37,38].

(4) In the “tails,” jxj ≪ vBt −
ffiffiffiffiffiffiffiffi
Dρt

p
: This regime de-

scribes the late-time approach of the OTOC to its
final asymptotic value long after the main front has
passed site x. In this regime, the deviation of the
OTOC from its final value of one is given by the total
weight (conserved and nonconserved) of operator
strings that have not yet reached site x at time t. This
is obtained by considering the total conserved
weight at time t0 ¼ ðt − jxj=vBÞ, since any non-
conserved fronts emitted after after time t0 do not
reach site x by time t. Then, from Eqs. (47) and (21),

1 − C0
zrðx; tÞ ≈

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π½t − ðjxj=vBÞ�

p : ð48Þ

Thus, the tails in the right and left weights of z0ðtÞ
lead to tails in the OTOC and, long after the front has
passed site x, the OTOC still has a power law (in x
and t) deficit from its asymptotic value. By contrast,
in an unconstrained random circuit, the OTOC
approaches 1 exponentially in time after the front
passes. This slow power-law approach characterizes
the diffusive tail in the late-time behavior of the
OTOC. In the diffusive regime near the origin,
jxj ∼ ffiffiffiffiffiffiffiffi

Dct
p

, there are further corrections to this of
order ∼1=t from ρcðxÞ that smoothly connect the
OTOC’s x dependence between x < 0 and x > 0.

Figure 5 shows a sketch of C0
zrðx; tÞ at different times,

depicting the different regimes above.

B. OTOC between r0ðtÞ and zx
Let us now consider the OTOC between r0ðtÞ and zx, so

that μ ¼ 0, α ¼ 1 ¼ r, and β ¼ 3 ¼ z. Then,

C0rzðx; tÞ ¼ 1 −
X
i<x

ρRði; tÞ

þ
X

jazSj2
strings S∶

rhsðSÞ≥x and
Sx¼ðraÞ;ðlaÞ

− X
jazSj2

strings S∶
rhsðSÞ≥x and
Sx¼ðIaÞ;ðzaÞ

; ð49Þ

In this case, the first line is again sensitive to the overall
operator shape, while the second line cares about the
relative density difference within strings between local
operators that are charged versus uncharged under R, i.e.,
the difference in the local densities of r=l’s compared to
I=z’s—note that this is a different combination of local
densities as compared to the one in Eq. (46).
Next, note that the average OTOC between r0ðtÞ and zx

should equal the average OTOC between z0ðtÞ and rx since
the two are related by time reversal: C0rzðx; tÞ ¼ C0zrðx;−tÞ,
and the average properties of our circuit are invariant under
time reversal. In the previous section, we saw that the
diffusive tail in the OTOC C0zr Eq. (48) came from the tail in
the right-weight profile of z0ðtÞ. However, recall from
Sec. III B that the spreading r0ðtÞ shows no tails in its ρR,
since this operator starts out orthogonal to the conserved
charges so that ρRðx; tÞ ∼ e−ðx−vBtÞ2=4Dρt=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDρt

p
, and

ρRðx; tÞ is exponentially small for x ≪ vBt. Thus, the tail
in C0rz behind the ballistic front must come from the
imbalance between the density of raising charges r=l and
spin charges u=d (which are superpositions of I=z). Indeed,
we saw in Sec. IV that the coupling of spin and raising charge
combinedwith the initial condition at the left and right fronts
leads to a diffusive decay of the imbalanceΔRs between the
local ρr=ρl and ρu=ρd densities away from the locations of
the fronts Eq. (42) (Fig. 4). Using Eq. (42), we find that the
OTOC C0rz in the regime

ffiffiffiffiffiffiffiffi
Dct

p
≪ jxj ≪ vBt is given by

1 − C0rzðx; tÞ ≈ ΔRsðx; tÞ ≈ f1=½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðt − jxj=vBÞ

p �g, which
agrees with Eq. (48), as it must.
This case provides a nice example of how the OTOC can

probe the internal operator content inside the light cone and
show diffusive tails, even when there are no tails in the
overall operator shape of the spreading operator as mea-
sured by ρR=L.

C. OTOC between z0ðtÞ and zx
Turning next to the “diagonal” case μ ¼ 0,

α ¼ β ¼ 3 ¼ z, we find that C0zz has the same structure
as in Eq. (49), but ρR now refers to the right-weight profile
of z0ðtÞ. Thus, this commutator receives contributions both
from the tails in the right weight and from the tails in the
imbalance between the spin and raising charges, so that
1 − C0zzðx; tÞ ≈ f1=½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðt − jxj=vBÞ
p �g for jxj ≪ vBt. Thus,

a commutator between two conserved charges couples
more strongly to the diffusive processes in the system,
doubling the amplitude of the diffusive power-law tail in
the OTOC, relative to the two other cases discussed above.

D. OTOC between r0ðtÞ and rx
Finally, consider the commutator between r0ðtÞ and rx so

that α ¼ β ¼ 1. Note that C0rr has the same structure as in
Eq. (46) [with ρR referring to the right weight of r0ðtÞ]. This
commutator again shows a sharp increase when the ballistic
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front reaches site x, but now both the contributions from the
right weight and the “internal” operator content are
exponentially suppressed away from the front so this
OTOC does not show power-law tails in the regimeffiffiffiffiffiffiffiffi
Dct

p
≪ x ≪ vBt and approaches its asymptotic value

exponentially after the front passes through. Instead, if
we probe the commutator at short distances x ∼

ffiffiffiffiffiffiffiffi
Dct

p
, then

the OTOC displays a weak effect within the diffusive cone
from the diffusion of the initial raising charge, i.e., the
diffusion of the imbalance between ρr and ρl. The same is
true for OTOCs between rðtÞ and lx.
This result emphasizes that the diffusive tails in the

OTOC at long distances and late times are tied to the
operator dynamics of the conserved charges in the system.
OTOCs between operators that are both orthogonal to the
conserved charges do not display diffusive tails behind their
fronts. Of course, if one simply measures the OTOC
between two generic local operators, then these will have
some overlap with the conserved charges and show
diffusive tails.

E. μ ≠ 0

We now consider OTOCs evaluated in an equilibrium
ensemble with a chemical potential μ > 0 that weights
different Stotz sectors, and we are interested in under-
standing the degree to which this compares with the
finite-temperature OTOCs that have been evaluated for
Hamiltonian models. A difference between the energy-
conserving and Stotz -conserving cases is that, on the
Hamiltonian side, both the Gibbs factor e−βH and the time
evolution are governed by the same Hamiltonian. On the
other hand, for the Uð1Þ problem, the “Gibbs factor” eμN

commutes with the time-evolution operator UðtÞ but is
otherwise unrelated to it. This distinction between the two
becomes important when considering nonzero μ.
To start, consider again the equilibrium Gibbs ensemble

for a given chemical potential:

ρeqμ ¼ eμS
tot
z

TreμS
tot
z
¼

YL
i¼1

1þ zi tanh μ
2q

¼
YL
i¼1

1

2q

�
ui

�
1þ tanh μffiffiffi

2
p

�
þ di

�
1 − tanh μffiffiffi

2
p

�	
; ð50Þ

where we have switched to the (normalized) u=d basis
which projects onto up and down conserved spins in the last
line. In the limit μ → ∞,

ρeq∞ ¼ ð2qÞ−L
Y
i

ð
ffiffiffi
2

p
uiÞ ¼ q−L

Y
i

ðj↑ih↑j ⊗ IÞi: ð51Þ

In this limit, ρeq∞ projects the conserved spins to the “all up”
state so that the conserved part of the dynamics is
completely “frozen out,” reducing the system to just the

unconstrained qudit spins. The unconstrained qudit system
is chaotic and displays ballistic growth of operators with a
nonzero q-dependent butterfly velocity, just as in the
unconstrained random circuit model [37,38]. This illus-
trates how the independence of UðtÞ and ρeq can lead to
chaotic dynamics even in the μ → ∞ limit, while the
analogous T → 0 limit for Hamiltonian systems arrests
chaos. On the other hand, if one considers μ → ∞ with
q ¼ 1, then the butterfly speed does go to zero since spin
flips in this fully polarized background can move at most
diffusively. Thus, the q ¼ 1 problem as μ → ∞ is closer to
the zero-temperature dynamics of Hamiltonian systems. In
the rest of this section, we work at q ¼ 1 in the μ → ∞
limit.
We start with μ ¼ ∞ where ρeq∞ reduces to the projector

on the j0i≡ j↑↑ � � �↑i state. Then,

C∞αβ ¼
1

2
h0jj½σα0ðtÞ; σβx�j2j0i: ð52Þ

First consider OTOCs involving z and r. Since j0i is an
eigenstate of both r and z (with eigenvalues 0 and 1,
respectively), any commutator involving only r’s or z’s
must be strictly zero. Thus, the only nontrivial OTOCs are
those involving ½l0ðtÞ; zx� and ½l0ðtÞ; rx� (the commutators
between ½z0ðtÞ; lx� and ½r0ðtÞ; lx� will be related to these by
time reversal). Let us start with C∞lz . Expanding the
commutator, we find

C∞lz ¼ 1

2
h0jj½l0ðtÞ; zx�j2j0i

¼ 1

2
h0jj½zxr0ðtÞ − r0ðtÞzx�½l0ðtÞzx − zxl0ðtÞ�j0i

¼ 2 − h0jr0ðtÞzxl0ðtÞj0i; ð53Þ

where we have made use of the fact that j0i is an eigenstate
of UðtÞ; z and r0l0 in the last line, with eigenvalues 1,1,
and 2, respectively. Now, every basis string that appears in
the operator expansion of l0ðtÞ has net raising charge
Rtot ¼ −1. Since j0i is annihilated by any ri, all strings in
the expansion of l0ðtÞ that contain r’s cannot contribute to
the OTOC, and thus only strings containing exactly one li
on some site (with arbitrary I’s and z’s on the others) can
contribute. These create single spin flips in the polarized
background. Of these, only the strings which contain lx fail
to commute with zx. However, due to the diffusion of
raising charge Ri discussed in Sec. IV, the weight of the
operator on such “single l” strings decays only diffusively
away from the origin, showing that this OTOC displays
only diffusive (as opposed to ballistic) behavior corre-
sponding to a zero butterfly speed. Likewise, consider the
infinite μ OTOC involving ½l0ðtÞ; rx�:
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C∞lr ¼ 1

2
h0jj½l0ðtÞ; rx�j2j0i

¼ 1

2
h0jr0ðtÞðlxrxÞl0ðtÞj0i

¼ 1

2
−
1

2
h0jr0ðtÞzxl0ðtÞj0i; ð54Þ

where we have made use of the fact that rxj0i ¼ h0jlx ¼ 0,
and ðlrÞ ¼ ð1 − zÞ. Thus, this OTOC has an identical
structure to Eq. (53) and also displays purely diffusive
behavior. Perturbing ρ∞μ away from μ ¼ ∞ to leading order
in large but not infinite μ gives [Eq. (50)]

ρeqμ→∞ ≈ ð2Þ−L
Y
i

ffiffiffi
2

p
½ð1 − e−2μÞui þ e−2μdi�: ð55Þ

Understanding the modifications to the diffusive μ ¼ ∞
behavior of the OTOCs at large but finite μ is an interesting
question that has been explored in detail in Ref. [54].

VI. PHYSICAL SYSTEMS

Let us now turn to more generic examples of thermal-
izing spin chains with conservation laws, and examine to
what extent the universal aspects of our results continue to
hold in this setting. Since analytic results for the dynamics
are not easily obtained for these systems, we will study
them numerically using exact diagonalization. We will first
look at a periodically driven “Floquet” spin chain where
energy is not conserved, but Stotz is, just like in our random
circuit model. We then turn to a interacting quantum
chaotic spin chain with energy conservation.

A. Stotz -conserving Floquet chain

We consider a one-dimensional chain of spin-1=2 qubits
that is periodically driven in timewith period τ between two
separate Hamiltonians Hz and Hxy, each of which act
for half the period. The time-evolution operator for this
system is

UFðτÞ ¼ eiðτ=2ÞHzeiðτ=2ÞHxy ; ð56Þ

with

Hz ¼ Jz
X
i

σziσ
z
iþ1;

Hxy ¼
X
i

½Jxσxi σxiþ1 þ Jyσ
y
i σ

y
iþ1�: ð57Þ

The parameters we choose for this model are Jz ¼
ð10þ ffiffiffi

5
p Þ=16, Jx ¼ Jy ¼ ð5þ 5

ffiffiffi
5

p Þ=16, and τ ¼ 1,
where we have found numerically that this system is well
thermalizing, even though the individual Hamiltonians in
the drive are integrable [55]. The time evolution conserves
total Stotz : ½UðτÞ; Stotz � ¼ 0 and, just as in the random circuit

problem, operators like r=l have a definite ΔStotz action
which is respected by the time evolution. We will measure
time discretely in multiples of τ, and the time evolution
of operators in the Heisenberg picture is given by
OðnτÞ ¼ U†

FðnτÞOð0ÞUFðnτÞ. Finally, there is no random-
ness in this problem, and the time evolution respects
locality.
Of course, the fact that charges in this thermalizing

model will display diffusive dynamics is well understood.
We wish to probe the interaction between the diffusive
charge dynamics and the ballistic operator growth, say, as
probed through the right-weight profiles ρRðx; tÞ of r0ðtÞ
and z0ðtÞ. While ρR for zðtÞ does show a tail for this model,
it is difficult to tease apart the different regimes for small
finite-sized systems accessible to exact-diagonalization
studies (it only takes time t ∼ L2 for the diffusive charges
to reach the end of the chain). To aid with this, we consider
a related quantity, the l weight Wlðx; tÞ, which measures
the weight on all Pauli strings with maximum end-to-end
separation between nonidentity elements equal to x:

Wlðx; tÞ ¼
X

S∶ lhsðSÞ−
rhsðSÞ¼x

jaSj2; ð58Þ

where, as before, the lhs and rhs of S define the locations of
the rightmost and leftmost nonidentity operators in S. This
has the advantage that all conserved charges have the form
zi and these are all mapped to x ¼ 0. On the other hand,
strings that are part of the ballistic front and stretched
between −vBt, vBt contribute to x ¼ 2vBt. Thus, the
nonconserved contributions to this quantity still show
ballistic dynamics. In a system with no conservation laws,
Wlðx; tÞ for x < vBt decays exponentially with t and
quickly approaches its asymptotic value which is itself
exponentially small in L. On the other hand, in a system
with conservation laws, this quantity decays as a power law
and approaches its asymptotic value which is instead only
power law small in L if one starts with an initial operator
which has overlap with the conserved densities (at late
times, each conserved amplitude ∼1=L, so that the total
weight on all conserved charges is ∼L=L2 ¼ 1=L). This
helps us tease apart the dynamics of the conserved charge at
these small sizes.
Figure 6 shows the l-weight profiles Wlðx; tÞ for both

r0ðtÞ and z0ðtÞ for a 12-site chain, with both operators
starting at the end of the chain to maximize the available
distance for spreading. We clearly see the tail and “lump”
with enhanced l weight at x ¼ 0 for z0ðtÞ. On the other
hand, the late-time profile for r0ðtÞ shows a simple decay of
the l weight, with the most weight on strings stretched
across the entire system, i.e., those with x ¼ L. These data
show that the central aspects of our results on operator
shape seem to be born out for this more “physical” spin
chain, although for such a short chain this can only be
qualitatively tested in the numerics.
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B. Hamiltonian spin chain

We now turn to a thermalizing Hamiltonian spin chain
with energy conservation, but no other continuous sym-
metries [43]:

H ¼
X
i

Jσziσ
z
iþ1 þ hxσxi þ hzσ

z
i ; ð59Þ

where J ¼ 1, hx ¼ ð ffiffiffi
5

p þ 5Þ=8, hz ¼ ð ffiffiffi
5

p þ 1Þ=4. The
local energy density operators are one- and two-site
Pauli strings of the form σxi , σ

z
i , and σziσ

z
iþ1. The con-

servation of total energy implies that Tr½O0ðtÞH� ¼ const,
and thus, if we start with an operator with a nonzero overlap
with a local energy density, then the sum of the amplitudes
of the spreading operator on all the local energy density
strings is conserved. A difference between this Hamiltonian
model and the Uð1Þ conserving model is that energy is not
quantized and there are no special operators (like r) with
definite algebras under H. Even if we start with a local
operator that is orthogonal to all the conserved energy

densities (like σyi ), its operator expansion will, in time,
develop some overlaps with the conserved charges.
Figure 7 shows the l-weight profile for the spreading of

σx0ðtÞ and σy0ðtÞ in a system of length L ¼ 14 obtained using
exact diagonalization and, once again, we see the lump at
x ¼ 0, 1 only in the former. Notice, however, that the
difference between σx0 and σ

y
0 in the decay ofWlðx; tÞ away

from x ¼ L at late times is not as pronounced as it is in the
Floquet problem (Fig. 6). We attribute this to the fact that
the time-evolving σy0ðtÞ develops nontrivial overlap with
the diffusing conserved charges (even though the sum
of the amplitudes on all conserved charges is constrained to
be zero), slowing down its dynamics relative to r0ðtÞ in the
Floquet model, which always evolves strictly orthogonal to
the conserved charges. This is one example of a difference
between Uð1Þ conservation with quantized charges and
energy conservation where the charges are continuous.

(a)

(b)

FIG. 6. l-weight profile Wlðx; tÞ Eq. (58) of spreading oper-
ators z0ðtÞ and r0ðtÞ in a Floquet model that conserves Stotz
Eq. (57), plotted for a system of length L ¼ 12. The expected
diffusive “lump” in the right-weight profile of the spreading
conserved charge is manifested in the enhanced weight of
Wlðx; tÞ at x ¼ 0 for z0ðtÞ, even at late times (b). No such
enhancement is observed for r0ðtÞ which evolves orthogonal to
the conserved charges (a). Notice also that the late-time decay of
Wlðx; tÞ away from x ¼ L is much slower for z0ðtÞ as compared
to r0ðtÞ, consistent with the presence of power-law diffusive tails
in the right-weight profile of the former but not the latter.

(a)

(b)

FIG. 7. l-weight profile Wlðx; tÞ Eq. (58) of spreading oper-
ators σx0ðtÞ and σy0ðtÞ in a thermalizing Hamiltonian model that
conserves energy Eq. (59), plotted for a system of length L ¼ 14.
σx0 has nontrivial overlap with the local conserved energy density
operators, which is visible in the enhanced weight ofWlðx; tÞ for
x ¼ 0, 1 even at late times (a). By contrast, σy0 starts out
orthogonal to the conserved charges and its late-time l-weight
profile does not show a “lump” at x ¼ 0, 1. While the late-time
decay of Wlðx; tÞ away from x ¼ L is again faster for σy0ðtÞ as
compared to σx0ðtÞ, the difference is not as pronounced as the
difference between z0ðtÞ and r0ðtÞ in the Uð1Þ Floquet case. This
is because σy0ðtÞ can develop overlap with the slow conserved
charges, unlike r0ðtÞ which is constrained to remain strictly
orthogonal to the charges during its entire evolution.
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As discussed in the previous section, these power-law
tails in operator shape translate into power-law tails in the
long-distance and late-time OTOC, and these have been
observed numerically in Hamiltonian systems with con-
servation laws [41].

VII. CONCLUSIONS

In conclusion, we present an extensive study of the
“scrambling” dynamics of local operators in chaotic quan-
tum systems with a conserved, diffusing charge (or energy)
density. A generic local operator in this setting has some
weight on the conserved charges, and the late-time spread-
ing dynamics of such an operator is described by multiple
coupled hydrodynamic processes. The first is the “physi-
cal” hydrodynamics associated with the diffusive dynamics
of the conserved charges. We show that the total operator
weight on these conserved charges decreases as power
law in time which, by unitarity, necessitates a steady
“emission” process that transfers operator weight from
local conserved densities to nonconserved operators. This
emission happens at a slow hydrodynamic rate set by the
local diffusive currents of the conserved density but, once
emitted, the fronts of the nonconserved operators spread
ballistically and rapidly become nonlocal. The propagation
of the nonconserved fronts is described via an “emergent
hydrodynamics” that is biased diffusion for the one-
dimensional case [37,38], and this coupled diffusion-
emission-propagation process reveals a composite picture
for the operator profile, showing how the ballistic and
diffusive processes in the system connect at different
timescales and length scales. In particular, the presence
of slow diffusive modes leads to the development of a
power-law tail in the operator profile that reflects the weight
of nonconserved operator strings emitted at later times that
“lag” behind the leading ballistic front.
Our picture illustrates how reversible unitary dynamics

in closed quantum systems can display dissipative diffusive
hydrodynamic modes. The dissipation arises from the
conversion of operator weight from locally observable
conserved parts to nonlocal nonconserved parts at a slow
hydrodynamic rate, a process which increases the “observ-
able” entropy of the system. By contrast, in systems
without conservation laws, any local operator is rapidly
converted to nonlocal, so the dissipation does not appear in
the late-time hydrodynamics of operator or entanglement
spreading.
In addition to the diffusive tails in the distribution of

operator weight, we find an additional layer of structure
describing the local operator content behind the ballistic
front, within the spreading operator. Outside the ballistic
operator front, the spreading operator locally consists only
of local identities. The arrival of the front at a given site
turns on a noisy coupled diffusion process between differ-
ent species of local operators, which relaxes the initially
imbalanced local operator content to the final equilibrium

value where all local operators are equally likely. Once
again, this relaxation happens at a power law slow rate and
contributes to the operator hydrodynamics, in contrast to
the unconstrained random circuit case where the action of a
single gate at the front erases the initial bias towards the
identities. These power-law tails in the distributions of
operator weight and local operator content also lead to
diffusive tails in the late-time approach of certain out-of-
time-order commutators to their asymptotic values.
In all, our work reveals several rich layers of physics in

the scrambling dynamics of systems with conservation
laws. We expect this approach (which builds on work by
Refs [36–38]) of probing the dynamics of such systems via
an analytically tractable constrained random unitary cir-
cuits will have broader applicability in understanding the
many open questions about the fundamentals of thermal-
ization and quantum statistical mechanics in chaotic quan-
tum systems with conservation laws. It would also be
interesting to ask which of our results can also be calculated
(or extended) in a holographic setting, where they might
connect with the dynamics of black holes with charges.
Recently, we became aware of related work by

Rakovszky et al. [54]. While these authors take a somewhat
different approach, our results appear to agree where they
overlap.
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APPENDIX A: ACTION OF Stotz -CONSERVING
UNITARY ON DIFFERENT OPERATORS

There are a few classes of operators on site i that evolve
differently under the action of U. These are ðraÞi, ðlaÞi,
ðzIÞi, ðznÞi, ðIIÞi, and ðInÞi. We use the labels a ¼ “any”
and n ¼ “nonidentity” to refer to the set of qudit operators
that take any value or that act as the nonidentity, respec-
tively. If one starts with an operator with a definite action
(such as “raise by one”) under the Uð1Þ symmetry, the
circuit preserves this action. The action of Ui;iþ1 on two-
site operators can be summarized as follows (in all cases the
norm of the operator is preserved).
(1) The operators ðIIÞiðIIÞiþ1, ðzIÞiðzIÞiþ1, and

½ðzIÞiðIIÞiþ1 þ ðIIÞiðzIÞiþ1�=
ffiffiffi
2

p
are invariant under

the action of the gate due to the conservation law.
(2) The 4q4 raise-by-one operators ðraÞiðIaÞiþ1,

ðraÞiðzaÞiþ1, ðIaÞiðraÞiþ1, and ðzaÞiðraÞiþ1 each
transition to a uniformly random linear combination
of these operators. Similarly, the lower-by-one
operators ðlaÞiðIaÞiþ1, ðlaÞiðzaÞiþ1, ðIaÞiðlaÞiþ1,
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and ðzaÞiðlaÞiþ1 each transition to a uniformly
random linear combination of these 4q4 operators.

(3) The q4 raise-by-two operators ðraÞiðraÞiþ1 each
transition to a uniformly random linear combination
of these operators. Likewise, the lower-by-two
operators ðlaÞiðlaÞiþ1 each transition to uniformly
a random linear combination of these q4 operators.

(4) The ð6q4 − 3Þ Stotz -conserving operators
ðraÞiðlaÞiþ1, ðlaÞiðraÞiþ1, ðIaÞiðIaÞiþ1,
ðzaÞiðzaÞiþ1, ðIaÞiðzaÞiþ1, and ðzaÞiðIaÞiþ1 (exclud-
ing the three special operators in case 1 above) each
transition to a random linear combination of these
operators, but here with nonuniform probabilities.
This is due to the fact that the I’s and z’s are
superpositions of the conserved up and down spin
charges introduced in Sec. IV.
Thus, it is more convenient to express these

transitions directly in terms of the up and down
qubit projection operators u ¼ ½ðI þ zÞ= ffiffiffi

2
p � and

d ¼ ½ðI − zÞ= ffiffiffi
2

p �:
(a) ðuIÞiðuIÞiþ1, ðdIÞiðdIÞiþ1, and ½ðuIÞiðdIÞiþ1 þ

ðdIÞiðuIÞiþ1�=
ffiffiffi
2

p
are left invariant by the action

of the circuit.
(b) The ðq4 − 1Þ operators ðuaÞiðuaÞiþ1 [but not

including the conserved ðuIÞiðuIÞiþ1] each tran-
sition to a uniformly random linear combination
of these operators.

(c) Likewise, the ðq4 − 1Þ operators ðdaÞiðdaÞiþ1

[but not including the conserved ðdIÞiðdIÞiþ1]
each transition to a uniformly random linear
combination of these operators.

(d) The ð4q4 − 1Þ operators ðraÞiðlaÞiþ1,
ðlaÞiðraÞiþ1, ðuaÞiðdaÞiþ1, and ðdaÞiðuaÞiþ1

[not including the conserved ½ðuIÞiðdIÞiþ1þ
ðdIÞiðuIÞiþ1�=

ffiffiffi
2

p
] each transition to a uniformly

random linear combination of these operators.
Finally, for completeness, we note that the raise- or

lower-by-one operators in case (2) above split into two
groups each in the u, d basis:
(a) The 2q4 operators of the form ðraÞiðuaÞiþ1,

ðuaÞiðraÞiþ1 mix between each other with equal
probability 1=2q4. These act on states (on this two
site subspace) with Stotz ¼ 0 and produce states
with Stotz ¼ 1.

(b) The 2q4 operators of the form ðraÞiðdaÞiþ1,
ðdaÞiðraÞiþ1 mix between each other with equal
probability 1=2q4. These act on states (on this two
site subspace) with Stotz ¼ −2 and produce states with
Stotz ¼ −1.

(c) The 2q4 operators of the form ðlaÞiðuaÞiþ1,
ðuaÞiðlaÞiþ1 mix between each other with equal
probability 1=2q4. These act on states (on this two
site subspace) with Stotz ¼ 2 and produce states with
Stotz ¼ 1.

(d) The 2q4 operators of the form ðlaÞiðdaÞiþ1,
ðdaÞiðlaÞiþ1 mix between each other with equal
probability 1=2q4. These act on states (on this two
site subspace) with Stotz ¼ 0 and produce states
with Stotz ¼ −1.

Note that in the u, d, r, l basis, the action of the circuit
looks symmetric with respect to interchanging r ↔ l
and u ↔ d.

APPENDIX B: DERIVATION OF THE
BUTTERFLY SPEED vB AND THE

DIFFUSION CONSTANT Dρ TO Oð1=q2Þ
In this appendix, we derive the butterfly speed vB and the

diffusion constant Dρ characterizing the biased diffusion of
the nonconserved operator fronts. We assume we are
working at late times, so the ballistic front of nonconserved
operators is well separated from the diffusive lump of
conserved charges near the origin. We present the dis-
cussion below for the propagation of the right front, but the
same holds for the left front as well, just reflected.
We find it convenient to define the right front of an

operator string as the location of the rightmost two-site
unitary gate that sees a nonidentity operator at time t. So,
for instance, if an operator string ends on site i at time t, the
front (for this string) is either between sites ði; iþ 1Þ or
between sites ði − 1; iÞ, depending on the evenness and
oddness of t, i due to the even-odd staggered structure of
the circuit (Fig. 1). Without loss of generality, let us
consider a particular operator string for which the front
at time t is at the gate on sites ði; iþ 1Þ. Now, under the
action of the circuit, the front gate has a probability that is
suppressed as Oð1=q2Þ for creating ðIIÞiþ1 on site (iþ 1)
(Appendix A) [unless the string’s local operators at the
front gate are ðzIÞiðIIÞiþ1, ðIIÞiðzIÞiþ1 or ðzIÞiðzIÞiþ1; we
return to these cases below, which are themselves sup-
pressed in probability by Oð1=q2Þ, Oð1=q4Þ, and Oð1=q4Þ,
respectively]. When the front gate creates an identity on site
(iþ 1), the string ends on site i at time (tþ 1). But, due to
the even-odd staggering of gates, this means that the front at
time (tþ 1) is on the sites ði − 1; iÞ, which means it moved
back one step. On the other hand, if the front gate at time t
produces a nonidentity on site (iþ 1) [which happens with
probability 1 −Oð1=q2Þ], then the front at time (tþ 1) is
on sites ðiþ 1; iþ 2Þ, which means it moves forward one
step. At q ¼ ∞, the front deterministically moves forward
at every time step which gives a butterfly velocity vB ¼ 1.
Also, in this limit, the front of the full initially local
operator remains perfectly sharp since there is no prob-
abilistic spread in the locations of the fronts of the strings
that make up the resulting spreading operator.
We now estimate the leading 1=q2 correction to

the butterfly speed. To do this, we need to estimate the
probability of the front moving backward. Note that the
most probable configuration of local operators on the front
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gate takes the form ðnÞiðIIÞiþ1, where n is a nonidentity.
This is because if the action of the front gate ði − 1; iÞ at
time (t − 1) produces a nonidentity on site i (which is the
most probable option at large q), then this nonidentity
meets the identity on site (iþ 1) on the front gate at the next
time step, which is at ði; iþ 1Þ. The different types of front
operators that belong to this category are (i) ðraÞiðIIÞiþ1,
(ii) ðlaÞiðIIÞiþ1, (iii) ðInÞiðIIÞiþ1, (iv) ðznÞiðIIÞiþ1, and
(v) ðzIÞiðIIÞiþ1, where we have split the z case into two
for reasons that will become clear momentarily. To estimate
the probability of the front moving backward, we need to
estimate the steady-state probability of getting these differ-
ent operator types at the front, and the probability of the
different types moving back. We will find that cases (i)–
(iv) exist with Oð1Þ probabilities and move back with
probability Oð1=q2Þ, while case (v) exists with probability
ð1=q2Þ andmoves backwith probabilityOð1Þ. Thus, each of
these gives an Oð1=q2Þ probability of moving backward.
Note that we do not need to consider front operators of the
form ðaÞiðnÞiþ1 at this order, because the only way to
produce front operators of this form is for the front to have
moved backward at the previous step (t − 1), i.e., the front at
(t − 1) was at sites ðiþ 1; iþ 2Þ and created an identity on
site (iþ 2) leading to the front moving to sites ði; iþ 1Þ at
time t, where the nonidentity on site (iþ 1) now generically
meets a nonidentity on the “backward” site iwith probability
Oð1 − 1=q2Þ. Thus, the front gate seesmotifs like ðnÞiðnÞiþ1

with probability Oð1=q2Þ and they move back with prob-
ability Oð1=q2Þ, thereby giving a higher-order Oð1=q4Þ
correction to vB. The casewhere the front sees ðIIÞiðzIÞiþ1 is
further reduced by a factor of 1=q2 since this case requires
both the front to move back at the previous time step and for
the qudit operator on site i to be the identity.
We now turn to the steady-state probabilities of the

different operator types (i)–(v) at the front. Since we only
need the probabilities for (i)–(iv) correct to Oð1Þ, we can
estimate them at infinite q. The infinite q answer for Δrs
Eq. (41) evaluated at the location of the front x ¼ t,
combined with the fact that ρr ¼ ρl and ρu ¼ ρd at the
front, tells us that, at infinite q, the front gate looks like
ðraÞiðIIÞiþ1 or ðlaÞiðIIÞiþ1 with equal probability 1=6, and
it looks like ðunÞiðIIÞiþ1 or ðdnÞiðIIÞiþ1 with probability
1=3. The latter two cases translate to an equal 1=3
probability for obtaining ðznÞiðIIÞiþ1 and ðInÞiðIIÞiþ1 at
the front gate. On the other hand, the probability for seeing
a ðzIÞiðIIÞiþ1 at the gate is only Oð1=q2Þ. This is because,
away from the location of the diffusing charges, processes
that generate such an operator at a site have q2 choices for
the operator on the qudit spin, and an I on the qudit spin
reflects only one of these q2 choices. Thus, we denote the
probability of obtaining ðzIÞiðIIÞiþ1 at the front as ðpz=q2Þ,
and self-consistently solve for pz below.
(1) The input to the last gate is ðraÞiðIIÞiþ1 or

ðlaÞiðIIÞiþ1 with equal probability 1=6þOð1=q2Þ.

These produce a ðIIÞiþ1 on site (iþ 1) with prob-
ability 1=ð4q2Þ (Appendix A), which makes the
front move back. Or they produce ½ðzIÞiþ1] on site
(iþ 1) with probability 1=ð4q2Þ, which results in the
front gate at the time (tþ 1) seeing the operator
ðzIÞiðIIÞiþ1.

(2) With probability 2=3þOð1=q2Þ, the last gate gets
input ðznÞiðIIÞiþ1 or ðInÞiðIIÞiþ1 These are either
ðunÞðuIÞ, ðdnÞðdIÞ, ðunÞðdIÞ, or ðdnÞðuIÞwith equal
probabilities, where we have expressed the qubit
operators z and I as an superpositions of u and d.
Now, under the action of the circuit, ðunÞðuIÞ
transforms into a uniformly random linear combi-
nation of all ðuaÞðuaÞ except ðuIÞðuIÞ, and ðdnÞðdIÞ
does likewise (Appendix A). Thus, these only make
z and I qubit operators at these two sites. On the
other hand, ðunÞðdIÞ, ðdnÞðuIÞ equally make all four
qubit operator types ðr; l; z; IÞ, since these mix
between ðraÞiðlaÞiþ1, ðlaÞiðraÞiþ1, ðuaÞiðdaÞiþ1,
and ðdaÞiðuaÞiþ1 with equal probability to order
1=q2. As a result, given this input, the outputs on
qubits are I’s with probability 3=8, z’s with proba-
bility 3=8, and otherwise r’s or l’s. So for these cases
the resulting output on the front site (iþ 1) is ðIIÞiþ1

with probability 3=ð8q2Þ, and this results in the front
moving backward. Similarly, the resulting output on
the front site is ðzIÞiþ1 with probability 3=ð8q2Þ,
which results in the front gate at the time (tþ 1)
seeing the operator ðzIÞiðIIÞiþ1.

(3) Finally, with probabilitypz=q2 the last gate gets input
ðzIÞiðIIÞiþ1 (wherepz=q2 is a steady-state probability
yet to be determined). With probability 1=4 þ
Oð1=q2Þ this is left alone, so the front moves back.
Or the resulting output on the front site is ðzIÞiþ1

with probability ð1=4þOð1=q2Þ. This follows
since ðzIÞiðIIÞiþ1¼f½ðzIÞiðIIÞiþ1þðIIÞiðzIÞiþ1�=2gþ
f½ðzIÞiðIIÞiþ1−ðIIÞiðzIÞiþ1�=2g, and the former is
conserved under the action of the circuit while the
latter mixes between q4 different operators. The
conservation of the former gives the leading 1=4
probability for producing ðzIÞi or ðzIÞiþ1.

We can now use (i)–(iii) to self-consistently solve for the
steady-state value of pz at the front:

pz

q2
ðtþ 1Þ ¼ 1

4q2
2

6
þ 3

8q2
2

3
þ 1

4

pz

q2
ðtÞ ¼ pz

q2
ðtÞ;

where the last equality is true in the steady state. Solving
this gives pz ¼ 4=9. Finally, putting together the proba-
bility of each operator type at the front with the probability
for a given type to move back gives a net probability for
the front to move back equal to pbackward ¼ 4=9q2,
which means the butterfly velocity is vB ¼ ðpforward−
pbackwardÞ ¼ 1–8=ð9q2Þ.
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Next, we estimate the diffusion constant for the biased
random walk of the operator front. After t steps, the
expectation value of the location of the front is denoted
hXit ¼ hPt

i¼1 xii, where xi ¼ −1with probability pbackward
and xi ¼ þ1 with probability 1 − pbackward. Then,

ΔX ≡

�Xt

i¼1

xi

�2�
−

Xt

i¼1

xi

�2

¼ tþ

X

i≠j
xixj

�
− ðvBtÞ2:

Unlike a Markovian random walk where xi and xj at
different time steps are independent, the constrained action
of the circuit does introduce correlations between xi and xj.
However, these appear only at Oð1=q4Þ and higher. To see
this, one can look at the modified probabilities of the front
operators at time t given that the front moved forward or
backward at time t − 1 (and other such processes), and we
find that all of these only receive higher-order corrections at
1=q4. Thus, to leading order in 1=q2, the random walk does
look Markovian, which gives a diffusion constant equal
to Dρ ¼ ð1 − v2BÞ=2 ≈ 8=ð9q2Þ.

APPENDIX C: AMPLITUDES AND WEIGHTS
OF THE EVOLVING OPERATOR ON THE

CONSERVED DENSITIES

To see the evolution of the conserved amplitudes aci ðtÞ
under the unitary dynamics, consider the action of the gate
U12 on ½ac1ðzIÞ1 þ ac2ðzIÞ2�:

ac1ðzIÞ1 þ ac2ðzIÞ2 ¼ ðac1 þ ac2Þ
�ðzIÞ1ðIIÞ2 þ ðIIÞ1ðzIÞ2

2

	

þ ðac1 − ac2Þ
�ðzIÞ1ðIIÞ2 − ðIIÞ1ðzIÞ2

2

	
:

ðC1Þ

The first term above is unchanged under the action of U12,
and the second term is a nonconserved operator since its net
overlap with Stotz is zero. Under the action of U12, the
second term transitions to a random superposition of order
q4 operators that locally conserve Stotz but act arbitrarily on
the qudit (Appendix A). Only one of these operators—
corresponding to the second term returning to itself—
contributes to the amplitudes of the conserved charges. The
amplitude for this term is of order 1=q2, but it is random
and vanishes upon averaging over different random cir-
cuits. Thus, after the action of the gate, the Haar-averaged
amplitude of the conserved local operator on both outgoing
sites is equal to the average of the incoming amplitudes:

ac1ðtþ 1Þ ¼ ac2ðtþ 1Þ ¼ a1ðtÞ þ a2ðtÞ
2

: ðC2Þ

Starting with ðzIÞ0 on a single site and recursively applying
this formula gives a “doubled” version of Pascal’s triangle
(due to the even-odd structure of the circuit) according to
which the amplitudes on the different sites are

aci ðtÞ ¼
1

2t

�
t − 1

biþt−1
2

c
�
: ðC3Þ

Additionally, as a result of the “equalizing” action
Eq. (C2), the circuit-to-circuit variance in the conserved
amplitudes is suppressed both in the large q and the late t
limit:

Δa
i ðtÞ≡ jac1ðtÞj2 − jac1ðtÞj2 ∼

1

q4
1

t2
: ðC4Þ

This can be understood from Eq. (C1) since the difference
Δa

1ðtÞ is proportional to the weight of nonconserved terms
∼jðac1ðtÞ − ac2Þj2 ∼ ð∂xacxÞ2, which scales as ∼1=t2 in the
region x ∼

ffiffi
t

p
where aci ðtÞ is appreciable Eq. (17). This

suppression reflects the “smoothing” action of the circuit
which locally makes the averaged amplitudes of the
conserved charges equal and thus reduces ð∂xacxÞ in time.
Further, the additional (1=q4) suppression comes from the
fact that only transitions of nonconserved operators to
½ðzIÞi − ðzIÞiþ1Þ� contribute to Δa

i ðtÞ, and this transition is
only one of order q4 possibilities. Likewise, we can see how
this process introduces correlations in the amplitudes aci
and aciþ1 and

jac1ðtÞac2ðtÞj − jac1ðtÞj jac2ðtÞj∼
1

q4
1

t2
: ðC5Þ

APPENDIX D: TWO-POINT CORRELATIONS
OF SPIN AND RAISING CHARGE

We derive Eq. (41) at q ¼ ∞. At infinite q, the intergate
and intragate correlations of spin and raising charge
Eq. (36) have an identical structure, as can be seen from
the transition amplitudes in Appendix A. Then, if we work
in the frame of the front, so that all distances below refer to
distances away from the front location which is t at infinite
q, we can easily derive a recursion relation for the steady-
state values of Gij Eq. (38), which takes the form

G2j;2k ¼
1

3
ðG2j;2k−2 þ G2j−2;2k þ G2j−2;2k−2Þ: ðD1Þ

Because of the even-odd structure of the circuit, the
correlations involving odd sites or pairs of even and odd
sites can all be derived from the correlations of the even
sites alone. Solving this recursion relation by standard
methods gives the solution
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G2j;2k¼
1

3

Xjþk

n¼k

�
1

3

�
n
�

n
2n−ðjþkÞ

��
2n−ðjþkÞ

n−j

�
; ðD2Þ

which, after taking care of even-odd effects, reduces to
Eq. (41) at j ¼ k.
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