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There has been great interest in experimental studies of charged particles in artificial gauge fields. Here,
we perform the first cold-atom explorations of the combination of artificial gauge fields and disorder. Using
synthetic lattice techniques based on parametrically coupled atomic momentum states, we engineer zigzag
chains with a tunable homogeneous flux. The breaking of time-reversal symmetry by the applied flux leads
to analogs of spin-orbit coupling and spin-momentum locking, which we observe directly through the
chiral dynamics of atoms initialized to single lattice sites. We additionally introduce precisely controlled
disorder in the site-energy landscape, allowing us to explore the interplay of disorder and large effective
magnetic fields. The combination of correlated disorder and controlled intrarow and interrow tunneling
in this system naturally supports energy-dependent localization, relating to a single-particle mobility edge.
We measure the localization properties of the extremal eigenstates of this system, the ground state and the
most-excited state, and demonstrate clear evidence for a flux-dependent mobility edge. These measure-
ments constitute the first direct evidence for energy-dependent localization in a lower-dimensional system,
as well as the first explorations of the combined influence of artificial gauge fields and engineered disorder.
Moreover, we provide direct evidence for interaction shifts of the localization transitions for both low- and
high-energy eigenstates in correlated disorder, relating to the presence of a many-body mobility edge. The
unique combination of strong interactions, controlled disorder, and tunable artificial gauge fields present
in this synthetic lattice system should enable myriad explorations into intriguing correlated transport
phenomena.
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I. INTRODUCTION

The idea that the transport of quantum particles in a
random environment can be completely arrested due to the
interference of multiple transport pathways was first pointed
out by Anderson six decades ago [1]. While Anderson
considered the localization of electrons in disordered solids,
the presence of electron-phonon coupling and electron-
electron interactions prohibits direct observation of most
single-particle localization phenomena in such systems, even
at low carrier density. In contrast, experiments using light [2]
or atoms [3] have become an important test bed for disorder
physics, since in these systems the issues of lattice phonons
and interparticle interactions are either naturally unimportant
or can be precisely controlled. For cold atoms, the abilities
to tune system dimensionality, applied disorder, atomic
interactions, artificial gauge fields, and lattice geometry

open up myriad possibilities for exploring novel localization
phenomena.
In the absence of interactions, Anderson localization

is the generic fate of quantum states in lower-dimensional
(d ≤ 2) systems featuring static, random potential energy
landscapes and short-ranged tunneling [1,4]. In higher
dimensions, the increasing density of states with increasing
energy ensures the possibility of delocalization. The
exploration of an energy-dependent localization transition,
i.e., a mobility edge, has even been undertaken in atomic
gases [5,6] in three dimensions through the precision
control over disorder and atomic state energies. Cold-atom
techniques in principle also allow for the exploration of
such physics in lower-dimensional systems, where mobility
edges can be introduced by correlations in the applied
disorder or modified lattice connectivities (e.g., through
long-range tunneling).
Despite the exquisite control over cold-atom systems

and the observations of localization in one dimension over
a decade ago, for both nearly random disorder [7] and
correlated pseudodisorder [8], single-particle mobility
edges (SPMEs) in lower dimensions have gone unexplored.
The reasons for this are somewhat technical—it is quite
difficult to modify lattice connectivities, and the varieties of
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engineered disorder that have been explored in experiment
have either been practically random (speckle disorder
[5–7,9], with short-range correlations due to diffraction)
or of a particular form of correlated disorder which, due to a
peculiar fine-tuning, does not admit a SPME. In the latter
case, the pseudodisorder that arises in a lattice system due
to shifts of the site energies by an added, weaker incom-
mensurate lattice is well described by the Aubry-André
(AA) model [8,10–12]. While this form of correlated
pseudodisorder allows for a localization transition in 1D,
the fine-tuning of the cosine-distributed site energies and
the cosine nearest-neighbor (NN) band dispersion results in
an energy-independent metal-insulator transition, and thus
the absence of a SPME. By deviating from this fine-tuned
condition, either by modifying the band dispersion [13]
or by modifying the form of the pseudodisorder [14], one
can, in principle, controllably introduce a SPME in such a
system.
In this work, we add multiranged tunneling pathways to a

one-dimensional lattice that features site-energy pseudodis-
order described by the Aubry-André model. Specifically,
we use our synthetic lattice system based on parametrically
coupled atomic momentum states to engineer independently
controllable nearest-neighbor and next-nearest-neighbor
(NNN) tunneling terms [Fig. 1(a)]. The combination of
NN and NNN tunneling pathways results in closed tunneling
loops that can support a nontrivial flux [Fig. 1(b)], which we
control directly through the complex phase of the various
tunneling terms. This system realizes an effective zigzag
chain with a tunable magnetic flux [15]. With the combi-
nation of controlled pseudodisorder and tunable flux, we
perform the first explorations of the interplay of disorder and
artificial gauge fields.
We observe direct evidence for a flux-dependent SPME

in this system, through measurement of the localization
properties of the extremal energy eigenstates. In addition to
the SPME that results from multiranged hopping, we
observe asymmetric (with applied flux) localization behav-
ior of the system’s lowest-energy and highest-energy
eigenstates, caused by the presence of effectively attractive
interparticle interactions in the lattice of momentum states
[16]. The influence of interactions is even more strongly
evident in the case of the 1D AA with only NN tunneling,
where a drastic shift in the localization transition is
observed between low- and high-energy eigenstates, cor-
responding to a mobility edge driven purely by interparticle
interactions.

II. EXPERIMENTAL METHODS

To experimentally engineer effective zigzag chains, which
are equivalent to a lattice model with NN and NNN
tunneling terms, we coherently couple an array of discrete
atomic momentum states with both first- and second-order
Bragg transitions, as depicted in Fig. 1(c). Starting with
atoms from a stationary Bose-Einstein condensate (BEC)

of ∼105 87Rb atoms, we apply a set of counterpropagating
lattice laser beams with wavelength λ ¼ 1064 nm, wave
number k ¼ 2π=λ, and frequency ωþ ¼ c=2πλ, allowing for
quantized momentum transfer to the atoms in units of�2ℏk.
The parametric coupling of states separated in momentum
by 2ℏk, which mimics NN tunneling, is realized by using a
pair of acousto-optic modulators to write a controlled
spectrum of frequency components onto one of the lattice
beams. Starting with atoms at rest, the counterpropagating
beams are able to couple the momentum states pn ¼ 2nℏk
as synthetic lattice sites. For example, to create a NN
tunneling link between adjacent momentum states p ¼ 0
and p ¼ 2ℏk, a first-order Bragg resonance [solid black
arrows in Fig. 1(c)] is fulfilled by matching the photon
energy difference of the two laser fields to the added kinetic
energy of an atom moving with momentum p ¼ 2ℏk. More
generally, there exists a unique energy difference between
any pair of adjacent states with momenta pn and pnþ1,
owing to the quadratic free-particle dispersion. In this way,
the multiple frequency tones imprinted onto the one Bragg
laser field enable the simultaneous addressing of many
Bragg resonances.
In this study, we introduce the novel capability to

engineer multirange tunneling through the simultaneous
addressing of first- and second-order Bragg transitions,
shown in Fig. 1(c) as solid black and dashed red arrows,
respectively. Because each of the spectral tones associated
with a given NN or NNN tunneling term is unique, we are
able to individually control each of the tunneling links in
our synthetic lattice. Specifically, all of the site energies,
tunneling amplitudes, and tunneling phases in our synthetic
zigzag chains are individually controlled by the strength,
phase, and frequency of a corresponding frequency

(c)(a)

(b)

FIG. 1. Constructing the zigzag lattice. (a) The one-
dimensional multirange hopping model with NN (solid black
lines, t) and NNN (dashed red, t0) tunnelings. (b) The two-
dimensional zigzag lattice representation, formed by a rear-
rangement of the one-dimensional picture of (a). A uniform
clockwise flux ϕ through each triangular plaquette is generated
via NNN tunneling phases ϕ with alternating sign. (c) Atomic
dispersion indicating first- (black arrows) and second-order
(dashed red arrows) Bragg transitions used to couple NN and
NNN lattice sites, respectively, in the momentum-space lattice.
The recoil energy is given by ER ¼ ℏ2k2=2MRb.
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component of the multifrequency beam. For all of the
studies described herein, a total of 21 synthetic lattice sites
(momentum states) are coupled through first- and second-
order Bragg transitions.
In addition to local parameter control, this system

supports site-resolved detection by a simple time-of-flight
expansion period where the momentum states separate in
space according to their momenta, after which absorption
imaging is used to determine the population at each site.
A more detailed description of this momentum-space lattice
scheme can be found in Refs. [17–20].

III. HOMOGENEOUS GAUGE FIELD STUDIES

We first demonstrate our control of a homogeneous
synthetic gauge field in the zigzag lattice. We directly
impose a synthetic magnetic flux ϕ on every three-site

plaquette using engineered tunneling phases. Because the
plaquettes alternate pointing up and down, to generate a
homogeneous positive flux ϕ we impose an alternating
sign on the NNN tunneling phases, as shown in Figs. 1(a)
and 1(b). The effective tight-binding Hamiltonian describ-
ing the 21-site zigzag lattice is then given by

Ĥ ¼ −t
X9

n¼−10
ðĉ†nþ1ĉn þ H:c:Þ

− t0
X8

n¼−10
ðeið−1Þnþ1ϕĉ†nþ2ĉn þ H:c:Þ; ð1Þ

where t (t0) is the NN (NNN) tunneling energy and ĉ†n (ĉn)
is the creation (annihilation) operator at site n.
The synthetic gauge field, which can lead to the breaking

of time-reversal symmetry, allows us to engineer an analog

(a)

(b)

(c)

(d)

FIG. 2. Chiral dynamics in the zigzag lattice. (a) Band structure for ϕ=π ¼ �0.5 considering a two-site unit cell (yellow boxes in
lattice illustration), for tunneling ratio t0=t ¼ 0.62. Color represents spin polarization hσi, or the overlap of the quasimomentum
eigenstate with the top (red, spin up) or bottom (blue, spin down) row of the lattice. Dashed black curves represent the folded band
structure for t0=t ¼ 0. q̃ should be considered “quasiposition” in our momentum-space lattice and is given in terms of the unit cell lattice
spacing d ¼ 4ℏk. (b) Population imbalance between sites 2 and −2 of the 21-site lattice, measured after 180 μs of dynamics (∼1.05ℏ=t)
with optical density (OD) images of atomic populations at ϕ=π ¼ 0,�0.5 above. Dashed and solid curves represent an ideal simulation
of the experiment using Eq. (1) and a full simulation of experimental parameters, respectively. (c),(d) Site population dynamics for
applied flux (c) ϕ=π ¼ 0.5 and (d) ϕ=π ¼ −0.5. Left to right: data, full simulation, and ideal simulation of experiment. Arrows indicate
direction of chiral motion. Data for (b)–(d) were taken with averaged NN tunneling time ℏ=t ¼ 176ð2Þ μs and tunneling ratio
t0=t ¼ 0.622ð3Þ. All error bars denote 1 standard error of the mean. OD images in (b) and extracted site populations in (c) and (d) are
plotted with the color scale in (b).
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of spin-momentum locking in the zigzag lattice [21–27].
We consider the upper and lower rows of the lattice as an
effective spin degree of freedom with (pseudo)spins σ ¼ 1
and −1, respectively [Fig. 2(a)]. Under conditions of
broken time-reversal symmetry (ϕ ≠ 0, �π), we expect
to observe chiral trajectories for atoms “polarized” on one
row of the lattice. The band structure (shown for the
tunneling ratio t0=t ¼ 0.62 used in experiment) of the
lattice shows this correlation between the sign of the group
velocity and the (colored) spin or row degree of freedom
[20]. The two bands here reflect the two-site unit cell of the
lattice, highlighted in yellow boxes.
To explore this spin-momentum locking in experiment,

we initialize atoms on the lower row at site 0 and quench on
the tunnel couplings according to Eq. (1). With zero applied
flux, the population delocalizes across the lattice symmet-
rically, as shown in the top middle optical density (OD)
image of Fig. 2(b). For positive flux ϕ=π ¼ þ0.5 (right-
hand panel), population initially in site 0 moves towards
lattice site 2, corresponding to counterclockwise chiral
motion. Under a negative flux ϕ=π ¼ −0.5 (left-hand
panel), population moves in a clockwise fashion to lattice
site −2. These observed chiral flows for ϕ ¼ �π=2 are
clear signatures of spin-momentum locking.
By tuning the applied flux, we map out the entire range

of chiral behavior, as shown in Fig. 2(b), bottom. Here
we plot the population imbalance P2 − P−2 between lattice
sites 2 and −2, such that a positive (negative) value of
imbalance indicates counterclockwise (clockwise) motion.
The data agree qualitatively with an ideal simulation of the
experiment using only Eq. (1) (dashed curve), but agree
more closely with a full simulation of the system param-
eters (solid curve), which considers the exact form of
atomic coupling to the many laser frequency components,
accounting for off-resonant Bragg couplings [20].
We are also able to directly observe the fully site-

resolved chiral dynamics of initially localized atomic wave
packets, as shown in Figs. 2(c) and 2(d). For positive flux,
we see that atomic population moves counterclockwise
from site 0 to site 2, and further on to sites 4 and 6,
remaining confined to the bottom row. Because the initial
state (site 0) does not project entirely onto states with
positive group velocity, a portion of the population stays
near the center plaquette and oscillates between site 0 and
sites �1. Off-resonant Bragg coupling causes deviations
from the ideal simulation (right), but these major qualitative
features remain present in both the data (left) and full
simulation (middle). For the case of negative applied flux,
we observe the opposite chiral behavior, demonstrating that
the nature of the spin-momentum locking can be controlled
by the applied synthetic flux.

IV. LOCALIZATION STUDIES

Localization phenomena in disordered quantum systems
depend intimately on the properties of applied disorder and

on the connectivity between regions of similar energy.
For random potential disorder in three dimensions, a
localization-delocalization transition is assured for states
with energies beyond a critical value due to an increasing
density of states. For a given disorder strength, a mobility
edge, or energy-dependent localization transition, is found
in such a system [5,6]. In lower dimensions, for truly
random potential disorder, all energy states remain local-
ized in the thermodynamic limit even for arbitrarily small
strengths of disorder [4].
Considering instead the influence of correlated pseudodis-

order, one finds that the localization physics is strongly
modified, with delocalization and mobility edges permitted
even in lower dimensions. One form of quasiperiodic
pseudodisorder that has been of interest to experimental
studies with both light [28] and atoms [8] is that described by
the diagonal AA model. Interest in this model has stemmed
in part from its intriguing localization phenomenology and
connections to the Hofstadter lattice model [10,29,30].
Experimental interest in this form of disorder has also been
driven by the relative ease of its realization through the
overlap of two incommensurate optical lattices [8].
The AA model of pseudodisorder has interesting

properties in the context of SPMEs. The highly correlated
disorder allows for the possibility of metallic, delocalized
states in lower dimensions. However, a subtlety arises
due to a correspondence between the distribution of
pseudodisorder—characterized by quasiperiodic, cosine-
distributed site energies—and the cosine dispersion in a
NN-coupled 1D lattice. This fine-tuning results in a
metal-insulator transition that occurs at the same critical
disorder value (in units of the tunneling energy) for all
energy eigenstates, and thus the absence of a mobility edge.
By moving away from this fine-tuned scenario in any
number of ways—by introducing longer-range hopping
[13], by modifying the pseudodisorder correlations [14],
or by adding nonlinear interactions [11,12,31–33]—a SPME
can be introduced into the AA model.
The addition of longer-range tunneling, as in our zigzag

lattice, allows for the band dispersion to be modified from
its simple cosinusoidal form. For a flux of ϕ ¼ �π=2, as
shown in Fig. 2(a), increasing the tunneling ratio t0=t from
zero leads to a deformation of the low-energy band
structure from quadratic, to quartic, to forming a double-
well structure [34–36], with a symmetric modification of the
band energies at high energy. The high ground state (GS)
degeneracy of the quartic band in this system and of
flatbands in similar multirange hopping models has attracted
great interest [37–39]. Such systems promise interesting
localization properties under disorder [13], and the inherent
high single-particle degeneracy allows for the study of
emergent physics driven by interactions [37–40]. For all
other flux values (ϕ ≠ �π=2) the dispersion of the bands at
low and high energies is asymmetric, and this system permits
the localization properties of the extremal energy eigenstates
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to be tuned through modification of the effective mass at low
and high energies.
Here, we study the localization properties under the

AA model on a 1D lattice and on the multirange hopping
zigzag lattice, observing evidence for an interaction-
induced mobility edge as well as the emergence of a
flux-dependent SPME.

A. 1D Aubry-André localization transition

We first examine the localization properties of the one-
dimensional AA model, or the t0=t ¼ 0 limit of the zigzag
lattice. Figure 3(a) shows this model’s pseudodisordered
distribution of site energies εn ¼ Δ cos ð2πβnþ φÞ, for an
irrational periodicity β ¼ ð ffiffiffi

5
p

− 1Þ=2 and a given value of
the phase degree of freedom φ. Under this model, all energy
eigenstates experience a transition from delocalized met-
allic states to localized insulating states at the same critical
disorder, ðΔ=tÞc ¼ 2, for an infinite system size. To probe

the crossover in our finite 21-site system, we initialize
various energy eigenstates and explore their localization
properties as a function of Δ=t.
The experiment begins with population at site 0 (the

BEC at rest) with all tunnelings turned off. In this initial
limit of infinite disorder ðΔ=tÞi ¼ ∞, all eigenstates are
trivially localized to individual sites of the lattice, with a
vanishing localization length. We can initialize our atoms
in a particular energy eigenstate of the system through
choice of φ, as the eigenstates and eigenstate energies are
solely determined by the site energies in this t ¼ 0 limit.
We then linearly ramp the magnitude of the tunneling
energy to a final value over 1 ms, and probe the localization
properties of the prepared eigenstate as a function of Δ=t.
The near-adiabatic quench of t to its final strength t=ℏ ¼
2π × 1013ð9Þ Hz [corresponding to a tunneling time of
ℏ=t ¼ 157ð1Þ μs, determined through two-site Rabi oscil-
lations] is slow enough to largely remain within the
prepared eigenstate. In each experiment, the disorder

(a)

(b)

(c)

(d)

FIG. 3. Localization in the 1D AA model with NN tunneling. (a) Lattice site energies under the AA model of quasiperiodic disorder,
εn ¼ Δ cos ð2πβnþ φÞ, for periodicity β ¼ ð ffiffiffi

5
p

− 1Þ=2 and amplitude Δ. (b) Measured population outside the central three lattice sites
(Pout) versus disorder-to-tunneling ratio Δ=t, averaged over four values of the AA phase φ=π ¼ f0.96; 0.64; 1.35; 1.88g. These φ values
correspond to the energy eigenstates fjψ0i; jψ7i; jψ7i; jψ18ig, where jψ0i is the ground state and jψ20i is the highest excited state.
Dashed and solid curves represent ideal and full simulations of experimental parameters, respectively. Arrow indicates experimental
ramp from ðΔ=tÞi ¼ ∞ to some final disorder value. Inset: Integrated OD image showing site populations versus disorder strength, also
averaged over the four eigenstates. (c) Integrated OD images for the individual eigenstates, labeled with the relevant AA phase value.
(d) Pout versus disorder strength for eigenstates jψ0i (red circles) and jψ18i (blue squares). Gray circles are the averaged data of (c).
Dashed red, dotted blue, and solid gray curves represent full simulation results including interactions of strength U=ℏ ≈ 2π × 500 Hz,
for jψ0i, jψ18i, and the averaged data, respectively. Inset: Illustration depicting lattice site energies for initial sites with low (left, red) and
high (right, blue) energy. Dashed lines show the effect of attractive interactions on the initially populated central site. Vertical lines in (b)
and (d) indicate the critical disorder ðΔ=tÞc ¼ 2 for an infinite system without interactions. Error bars in (b) and (d) denote 1 standard
error of the mean. OD images in (b) and (c) are plotted with the color scale in Fig. 2(b).
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strength is fixed to a given value Δ, such that the tunneling
ramp (always to the same t value) can be seen as traversing
in parameter space from Δ=t ¼ ∞ to the chosen final value
[shown as an arrow in Fig. 3(b)]. We expect that for final
values with Δ=t > ðΔ=tÞc, the population should largely
remain localized to the initial site, whereas for
Δ=t< ðΔ=tÞc, we should see population begin to delocalize
across the lattice.
In Fig. 3(b), we plot the measured population outside the

central three sites Pout, averaged over four realizations of
the AA phase φ=π ¼ f0.96; 0.64; 1.35; 1.88g correspond-
ing to energy eigenstates fjψ0i; jψ7i; jψ7i; jψ18ig, where
jψ0i is the ground state and jψ20i is the highest excited state
(ES). As expected, the measured delocalized fraction is
almost entirely absent for large disorder, and grows steeply
for Δ=t < ðΔ=tÞc. We find excellent agreement between
our φ-averaged measurements and numerical simulation
results based on our experimental ramp (dashed curve,
idealized simulations ignoring off-resonant Bragg cou-
plings) in Fig. 3(b), suggesting the observation of a
localization crossover that is broadened due to finite-size
effects as well as the finite ramp duration. This same
behavior can also be seen in the integrated optical density
data, shown in the inset, which directly show the averaged
site populations for each final disorder value Δ=t. For large
disorder, population remains localized to the initial site,
while the metallic regime shows population spreading out
to sites n ¼ �7.
The data for individual energy eigenstates are also

shown, both as integrated optical density images in
Fig. 3(c) and the Pout observable in Fig. 3(d). While all
four data runs show localization crossovers, their positions
in terms of a critical disorder-to-tunneling ratio ðΔ=tÞc
differ according to the state energies. Visually, the ground
state jψ0i appears to localize for smaller disorders than the
intermediate energy eigenstates, with the highly excited
state jψ18i requiring the largest critical disorder strength
for localization. While some of the broadening of the
transition observed in Fig. 3(b) can be attributed to effects
of finite size and finite ramp durations, to a large degree it is
explained by this averaging over unique localization
transitions of different energy eigenstates.
The difference in localization properties for different

energy eigenstates runs counter to our expectations of an
energy-independent transition for the NN-coupled AA
model, but can be explained by the presence of nonlinear
atomic interactions in our momentum-space lattice [16,20].
In particular, the interactions between indistinguishable
bosons in momentum space are effectively attractive and
site local, in the sense that direct interactions are present
for collisions between two atoms occupying any pair of
momentum modes, while exchange interactions are present
only when two identical bosons occupy distinguishable
modes [41,42]. Thus, while the momentum-space inter-
actions are physically long-ranged and repulsive, they give

rise to an effective local attraction. For atoms initially
prepared at the site with lowest energy, attractive inter-
actions can be seen to bring atoms further away from
tunneling resonance with other sites [Fig. 3(d), inset]. Thus,
such a state should remain localized even when the disorder
drops below the single-particle critical value. In contrast,
for atoms prepared at the highest energy site, attractive
interactions effectively lower the total site energy and bring
the atoms closer to tunneling resonance with the unoccu-
pied lower-energy sites of the lattice [Fig. 3(d), inset].
Then, by filling the high-energy sites with attractively
interacting bosons, the disorder potential can be effectively
smoothed out at high energies by atomic interactions [31].
This behavior for our effectively attractive momentum-

space interactions is exactly the opposite of that found for
real-space repulsive interactions, the influence of which
has previously been studied on ground state localization
properties of the AA model [31]. The simulation curves in
Fig. 3(d) take into account the effective attractive inter-
actions present in our system at an approximate, mean-field
level (also ignoring the inhomogeneous atomic density and
neglecting off-site contributions of the effective attraction,
which arise due to partial indistinguishability of atoms in
different momentum states resulting from superfluid
screening [20]). The simulations assume a mean-field
interaction based on our condensate’s central mean-field
energy U0=ℏ ≈ 2π × 860 Hz (as measured through Bragg
spectroscopy), which is of the order of the single-particle
tunneling energy t=ℏ ¼ 2π × 1013ð9Þ Hz. To account
for the inhomogeneous density distribution, we take a
weighted average over homogeneous mean-field energies
ranging from 0 to the peak mean-field energy U0 to get an
average mean-field energy of U=ℏ ≈ 2π × 500 Hz. We
then use this average value as a homogeneous mean-field
energy in our simulations. These simplified simulation
curves already reproduce well the observed shifts of the
localization transitions for the low- (jψ0i) and high-energy
(jψ18i) states. These direct observations of interaction-
induced localization and delocalization for low- and high-
energy states, respectively, are indicative of a many-body
mobility edge. Such measurements are enabled by our
ability to approximately prepare arbitrary eigenstates in our
synthetic lattice.

B. Localization studies in zigzag chains

With the addition of longer-range tunneling, the energy-
independent transition of the simple 1D AA model begins
to depend critically on the eigenstate energy even at the
single-particle level. By tuning the NNN tunneling strength
and the artificial flux in our effective zigzag chains, we can
introduce a tunable SPME through band structure engineer-
ing. While in the demonstration of control over flux and
the observation of spin-momentum locking in Fig. 2 we
employed a tunneling ratio of t0=t ≈ 0.6, here we work
at a smaller value of t0=t ≈ 1=4. Under this condition, a
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maximal difference in the band dispersion at low and high
energies appears for flux values of 0 and π, where a quartic
dispersion appears at high and low energies, respectively.
To probe the mobility edge, we prepare the two extremal

energy eigenstates of the system, the ground state and the
highest excited state, and compare their localization proper-
ties. As in the 1D study, our experiment begins with all
atomic population prepared at site 0 with all tunnelings
turned off, i.e., in the infinite-disorder limit of the system
(Δ=t ¼ Δ=t0 ¼ ∞) where all energy eigenstates are local-
ized to individual sites of the lattice. To initialize the atoms
in a particular energy eigenstate of the system, we simply
vary the AA phase: φ ¼ 0 for the GS and φ ¼ π for the ES.
In short, we track how the prepared eigenstate evolves as

the parameters of the Hamiltonian, given by

ĤðVÞ ≈
X10

n¼−10
ε0nðVÞĉ†nĉn − t

X9

n¼−10
ðĉ†nþ1ĉn þ H:c:Þ

− t0
X8

n¼−10
ðeið−1Þnþ1ϕĉ†nþ2ĉn þ H:c:Þ; ð2Þ

are smoothly and slowly varied to some final desired
conditions of Δ=t for fixed tunneling ratio t0=t and fixed
flux ϕ. To help ensure adiabaticity over a large part of the
parameter ramp, we added an extra potential offset of
strength V at the initial site n ¼ 0, such that the modified
site energies are given by ε0nðVÞ¼Δcosð2πβnþφÞ−Vδn;0.
By setting V > 0 (V < 0) for the GS (ES), we further
separate the initial eigenstate from the rest of the spectrum
by a potential well (hill). Starting from the initial limit
of V=t ¼ ∞ and Δ=t ¼ ∞, we perform a near-adiabatic
quench to approximately load our desired eigenstate by
linearly ramping up both tunneling terms (t and t0) over
2 ms while also smoothly removing the potential well by
ramping V to zero [20].
We perform this procedure over parameter ranges

1 ≤ Δ=t ≤ 4.25 and 0 ≤ ϕ=π ≤ 1, mapping out the locali-
zation behavior of the GS and the ES in Figs. 4(a) and 4(d).
We plot the standard deviation of the population distribu-
tion in the lattice σn (i.e., the momentum standard deviation
σp normalized to the spacing between sites of 2ℏk), where
the values are resampled from the actual ðΔ=t;ϕ=πÞ points
where data were taken (small black dots). The Δ=t values
of the data have variations and uncertainties stemming
from variations and measured uncertainties in calibrated
tunneling rates for the experimental runs, with an overall
averaged NN tunneling rate t=ℏ ¼ 493ð2Þ Hz and tunnel-
ing ratio t0=t ¼ 0.247ð4Þ.
For the ground state in Fig. 4(a), we see that the region of

metallic, delocalized states (red region, corresponding to
states with large σn) extends out to larger Δ=t values when
the applied flux is near zero than for the case of an applied π
flux. This can also be seen in the integrated optical density
images at the bottom: sites as far as n ¼ �2 remain

populated even at large disorder Δ=t ∼ 3.5 at small flux
ϕ=π ¼ 0.05 (left), while for large flux ϕ=π ¼ 0.95 (right)
population fully localizes for Δ=t > 3. The top panel of
Fig. 4(b) highlights that for a fixed disorder-to-tunneling
ratio of Δ=t ∼ 2.9, the GS can be driven from metallic to
insulating by changing only the flux.
In the absence of flux, the shift of the GS localization

transition to larger disorder values as compared to the
t0 ¼ 0 case is intuitive: simply adding longer-range tunnel-
ing increases the connectivity of the lattice, increasing the
dispersion at low energy, and enhancing delocalization.
As nonzero flux is added, however, the GS localization
transition shifts towards smaller critical disorder values.
This effect is perhaps surprising when considering effects
such as the suppression of weak localization by broken
time-reversal symmetry, as observed recently in measure-
ments of coherent backscattering [43]. However, in the
context of our zigzag flux chains, this flux-enhanced
localization of the GS is easy to interpret. The shift of
the GS localization transition towards smaller ðΔ=tÞc is
driven by a flattening of the low-energy band dispersion,
owing to kinetic frustration of the different tunneling
pathways. The system is maximally frustrated at ϕ ¼ π
for t0=t ¼ 1=4, corresponding to a nearly flat, quartic low-
energy dispersion [Fig. 4(c), right]. Under these conditions,
the states at low energy become heavy (large effective
mass) and easier to localize in the presence of disorder.
In considering the flux-dependent localization properties

of the highest-energy eigenstate, a similar line of argu-
mentation holds, but with the opposite trend with applied
flux. The high-energy states of the band structure are
maximally dispersive for ϕ ¼ π, becoming flatter for
decreasing flux, with a quartic band appearing for zero
flux. The consequence of this modified band structure on
the localization properties of the ES is reflected in the
measured dependence of the ES localization properties
following the near-adiabatic quench to final Δ=t values for
different flux values [Fig. 4(d)]. The flux dependence of the
localization transition is also seen in striking fashion in
the integrated OD images at the bottom of Fig. 4(d): while
the low-flux panel clearly shows a transition from localized
to delocalized behavior at Δ=t ∼ 2.3, in the high-flux panel
the site populations remain delocalized for all investigated
disorder values.
For both states, we empirically estimate the approximate

“critical” disorder strength (normalized to t) relating to the
metal-insulator transition by finding the Δ=t value at which
σn equals 0.68 lattice sites. This estimate is determined
for each flux value of the data, and the extracted critical
disorder strengths are shown as white circles in Figs. 4(a)
and 4(d). We can compare these experimentally extracted
points to the predicted threshold values of disorder, based
on numerical simulations of our experimental ramp pro-
tocol. These single-particle predictions are shown as
dashed lines in Figs. 4(a) and 4(d), and show the same
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qualitative trend as the experimental points for both the
GS and ES.
To better contrast the localization behavior of the GS

and ES, we additionally plot both the experimentally
determined transition points and the theory predictions
for both extremal eigenstates together in Fig. 5. With the
two data sets overlaid, one can more clearly see the direct
evidence for a flux-dependent SPME. While this sampling
of the two extremal eigenstates does not determine the
critical energy at which delocalization occurs for given
values of Δ=t and ϕ, it does provide the first direct
experimental evidence for a SPME in lower dimensions.
The behavior of the transition Δ=t values for the GS and

ES are nearly opposite to one another. For flux values near

zero, the disorder strength needed to localize the GS
exceeds that of the ES by nearly t, due to kinetic frustration
of the high-energy states. The situation reverses for flux
values near π: the GS becomes localized at lower disorder
strengths Δ=t ∼ 2.3, and the ES remains delocalized
even up to the highest disorder value used in experiment
Δ=t ∼ 4.25. This apparent asymmetry, i.e., that a larger
magnitude of shift between the GS and ES transition points
is found for flux values near π than for flux values near 0,
is in disagreement with the single-particle prediction.
Moreover, at the single-particle level the flux dependence
of the GS and ES localization properties should essentially
be mirror images of one another (dashed lines, with a
slight asymmetry resulting from effects due to off-resonant
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FIG. 4. Flux-dependent localization transition in the AA model with multirange tunneling. (a) Top: Ground state (GS) localization
behavior for varying values of disorder Δ=t and flux ϕ=π, in a zigzag lattice with NN tunneling t=ℏ ¼ 493ð2Þ Hz and NN to NNN
tunneling ratio t0=t ¼ 0.247ð4Þ. Colors indicate the width (standard deviation) of the site population distribution σn [inset color scale in
(d)], interpolated from the sampled data points (small solid black circles). The empirically determined transition disorder strength
between delocalized and localized regions is shown for the data (white circles), a noninteracting simulation of the experiment (dashed
black line), and a simulation including attractive interactions of strength U=ℏ ≈ 2π × 500 Hz (dotted black line). Bottom: Localization
properties as visualized by the integrated 1D density patterns for roughly 0 and π flux. The 1D atomic distributions are interpolated from
integrated OD images for ϕ=π ¼ 0.05 (left) and 0.95 (right), shown as a function of Δ=t. Horizontal lines show the empirically
determined localization transition point for data (solid red), noninteracting simulation (dashed gray), and simulation including
interactions (dotted gray). (b) Cuts as a function of ϕ showing site populations interpolated from integrated OD images, shown for
the GS (top) and the highest excited state (ES, bottom). These integrated OD plots are averaged from data taken in the ranges
2.75 ≤ Δ=t ≤ 3 and 3.2 ≤ Δ=t ≤ 3.5, respectively, as indicated by the shaded regions. (c) Band structure diagrams for the zigzag
lattice with applied flux ϕ=π ¼ 0 (left) and ϕ=π ¼ 1 (right). As in Fig. 2(a), color represents spin polarization. Dashed black curves
represent the folded band structure for t0=t ¼ 0. (d) ES localization behavior for varying disorder and flux values, with the same
format as in (a). Bottom: Localization properties of the ES as a function of Δ=t, also with the same format as in (a). Error bars in (a)
and (d) denote 1 standard error of the mean. OD images in (a), (b), and (d) are plotted with the color scale in Fig. 2(b).
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driving), such that their transition points should cross very
near to ϕ=π ¼ 0.5 (vertical gray line in Fig. 5). However,
the apparent crossing point is offset to lower flux values
by nearly 0.1π. As in the previously discussed case of
the 1D AA model with only NN interactions [Figs. 3(c)
and 3(d)], the nonlinear interactions present in our atomic
system are largely responsible for this asymmetry
observed between the localization properties of our
low- and high-energy eigenstates. We note that any effects
on the localization behavior due to trap confinement,
which causes our atomic wave packets to have a finite
extent in real space, should have similar impacts on the
observed ground state and excited state behavior. This is
not consistent with the qualitatively disparate behavior
that we observe in experiment.
As described earlier in the context of the NN-coupled

AA model, we can approximately capture the influence of
the momentum-space interactions in this system by includ-
ing a site-local mean-field attraction in a multisite nonlinear
Schrodinger equation [20], with an interaction energy that
is determined independently by calibration via Bragg
spectroscopy. Including these interactions [dotted lines,
also shown in Figs. 4(a) and 4(d)], the transition lines get
shifted to lower (GS) and higher (ES) disorder values, so
that they cross at lower flux values. The interacting
simulation results better capture the localization properties
of the ES, which was shifted to significantly higher disorder
strengths than was predicted at the single-particle level.

It also qualitatively captures the shift of the crossing of the
critical disorder curves in Fig. 5 to lower flux values,
although it predicts a slightly larger shift than seen in
experiment. In the future, by studying fluctuations of the
atomic number distribution and intersite correlations in our
synthetic lattice, or by more closely studying fine features
of the localization properties, this simulation platform may
enable unique explorations into the physics of interacting
disordered systems, in particular, related to the physics of
many-body localization. It also offers a unique platform to
study the interplay of disorder, artificial gauge fields, and
interactions.

V. CONCLUSIONS

This work represents the first direct observation of a
single-particle mobility edge in lower dimensions, which is
enabled by the unique ability to stably prepare atoms in any
energy eigenstate and explore their localization properties
in a system with precisely controlled disorder and tunable
artificial gauge fields. The multiranged tunneling zigzag
model that we have engineered displays many more
topological properties which could be interesting to probe
in experiment, such as a fractal energy spectrum and
topological flatbands [15]. We also present the first cold-
atom evidence for a many-body mobility edge through
direct eigenstate preparation, studied through a shift of the
localization properties of low- and high-energy eigenstates
in the 1D AA model that arise due to many-body inter-
actions. We note that previous studies have utilized other
techniques to observe a many-body mobility edge [12].
These interaction shifts are also observed in the localization
transitions of a multirange hopping AA model that admits a
flux-dependent SPME, leading to the interplay of single-
particle and many-body shifts of the localization transition
for states at different energies.
This work also constitutes the first cold-atom study

combining synthetic gauge fields and disorder, and its
extension to fully two-dimensional lattices beyond coupled
chains promises to pave the way towards studies of
disordered quantum Hall systems. In particular, by moving
to a larger system containing bulk lattice sites, a robustness
of the observed chiral-propagating modes to disorder
(similar to the robustness to disorder observed recently
for the bulk winding of chiral symmetric wires [19]) should
be readily observable.
Recently, two articles have been made available explor-

ing the SPMEs [44] that appear naturally due to NNN
tunneling in weak real-space optical lattices featuring AA
disorder [45] and exploring the interplay of disorder and
artificial gauge fields in kicked rotor systems [46].
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