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Causal asymmetry is one of the great surprises in predictive modeling: The memory required to predict the
future differs from the memory required to retrodict the past. There is a privileged temporal direction for
modeling a stochastic process where memory costs are minimal. Models operating in the other direction incur
an unavoidable memory overhead. Here, we show that this overhead can vanish when quantum models are
allowed. Quantum models forced to run in the less-natural temporal direction not only surpass their optimal
classical counterparts but also any classical model running in reverse time. This holds even when the memory

overhead is unbounded, resulting in quantum models with unbounded memory advantage.
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I. INTRODUCTION

How can we observe an asymmetry in the temporal order
of events when physics at the quantum level is time
symmetric? The source of time’s barbed arrow is a long-
standing puzzle in foundational science [1-4]. Causal
asymmetry offers a provocative perspective [5]. It asks
how Occam’s razor—the principle of assuming no more
causes of natural things than are both true and sufficient to
explain their appearances—can privilege one particular
temporal direction over another. In other words, if we want
to model a process causally—such that the model makes
statistically correct future predictions based only on infor-
mation from the past—what is the minimum past information
we must store? Are we forced to store more data if we model
events in one particular temporal order over the other
(see Fig. 1)?
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Consider a cannonball in free fall. To model its future
trajectory, we need only its current position and velocity. This
remains true even when we view the process in reverse time.

Entropy C~

Entropy C*

FIG. 1. A stochastic process can be modeled in either temporal
order. (a) A causal model takes information available in the past X
and uses it to make statistically accurate predictions about the
process’s conditional future behavior P(X|X = ). (b) A retro-
causal model replicates the system’s behavior, as seen by an
observer who scans the outputs from right to left, encountering
X, before X,. Thus, it stores relevant future information X, in
order to generate a statistically accurate retrodiction of the past
P()? |)? = X). Causal asymmetry implies a nonzero gap between
the minimum memory required by any causal model C* and its
retrocausal counterpart C~.
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This exemplifies causal symmetry. There is no difference in
the amount of information we must track for prediction
versus retrodiction. However, this is not as obvious for more
complex processes. Take a glass shattering upon impact with
the floor. In one temporal direction, the future distribution of
shards depends only on the glass’s current position, velocity,
and orientation. In the opposite direction, we may need to
track relevant information regarding each glass shard to infer
the glass’s prior trajectory. Does this require more or less
information? This potential divergence is quantified in the
theory of computational mechanics [6]. It is not only
generally nonzero, but it can also be unbounded. This
phenomenon implies that a simulator operating in the
“less-natural” temporal direction is penalized with poten-
tially unbounded memory overhead and is cited as a
candidate source of time’s barbed arrow [5].

These studies assumed that all models are implemented
using classical physics. Could the observed causal asym-
metry be a consequence of this classicality constraint? Here,
we first consider a particular stochastic process that is
causally asymmetric. We determine the minimal information
needed to model the same process in forward versus reverse
time using quantum physics, and we prove that these
quantities exactly coincide. More generally, we present
systematic methods to model any causally asymmetric
stochastic process quantum mechanically. Critically, the
resulting quantum models not only use less information
than any classical counterpart but also than any classical
model of the time-reversed process. Thus, quantum models
can field a memory advantage that always exceeds the
memory overhead incurred by causal asymmetry. Our work
indicates that this overhead can emerge when imposing
classical causal explanations. These results remain true even
in cases where causal asymmetry becomes unbounded.

II. BACKGROUND

A. Framework

Consider a system that emits an output x, governed by
some random variable X, at each discrete point in time ¢.
This behavior can be described by a stochastic process
P—a joint probability distribution P()? X ) that correlates
past behavior, X = ...X_»X_;, with future expectations,
X = XpX,.... Each instance of the past x = ...x_px_;
exhibits a conditional future X = xyx;... with probabil-
ity P(X = X|X = X).

Suppose that a model for this system can replicate this
future statistical behavior using only H bits of past informa-
tion. Then, this model can be executed by encoding the past X
into a state s(x) € S of a physical system E of entropy H,
such that repeated application of a systematic action M on =2
sequentially generates x, x; ... governed by the conditional
future P(X|X = ¥). The model is causal if, at each instance
of time, all the information = contains about the future can be

obtained from the past [7]. Implementing it on a computer
then gives us a statistically faithful simulation of the process’s

realizations. The simplest causal model for a process P()? X )
is the model that minimizes H.

The statistical complexity C* is defined as the entropy H
of this simplest model—it is the minimal amount of past
information needed to make statistically correct future
predictions [13,14]. This measure is used to quantify
structure in diverse settings [15-17], including hidden
variable models emulating quantum contextuality [18].
Here, C* also fields thermodynamic significance, having
been linked to the minimal heat dissipation in stochastic
simulation and the minimal structure a device needs to fully
extract free energy from nonequilibrium environments
[19-22].

Causal asymmetry captures the discrepancy in statistical
complexity when a process is viewed in forward versus
reverse time [23]. Consider an observer that encounters X, , |
before X,. Their observations are characterized by the time-

reversed stochastic process P~ = P‘(I? , 17) where past and
future are interchanged, such that Y=..X 1Xo, while Y=
X1 X5...and Y, = X_, ). A causal model for the time-
reversed process then corresponds to a retrocausal model for
the forward process P()? X ). It generates a statistically

accurate retrodiction of the conditional past P(X|X = ¥),
using only information contained in the future X. The
statistical complexity of this time-reversed process C~
(referred to as the retrodictive statistical complexity
for P) quantifies the minimal amount of causal information

we must assign to model P(}? X ) in order of decreasing 7.
Causal asymmetry captures the divergence AC =
|C~ — C*|. When AC > 0, a particular temporal direction
is privileged, such that modeling the process in the other
temporal direction incurs a memory overhead of AC.
Note that the definitions above are entropic measures and
thus take operational meaning at the i.i.d. limit—i.e.,
modeling N instances of a stochastic process with statistical
complexity C* requires NC* bits of past information, in
the limit of large N. While this is the most commonly
adopted measure in computational mechanics, single-shot
variants do exist. The topological state complexity D" is
particularly noteworthy [13]. It captures the minimum
number of dimensions (max entropy) = must have to
generate future statistics. A single-shot variant of causal
asymmetry can thus be defined by the difference AD =
|D~ — D| between the topological state complexities of
Pt and P~. Here, we focus on statistical complexity for
clarity. However, many of our results also hold in this
single-shot regime. We return to this when relevant.

B. Classical models

Prior studies of causal asymmetry assumed all models
were classical. In this context, causal asymmetry can be
explicitly demonstrated using e-machines, the provably
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(a) The e-machine for the process P} ()? X ), created by flipping a biased coin and emitting outcome 2 when H — T, 0 when

T — T,and 1 when T/H — H. This process has two causal states 5| and s¢ , where the latter includes all pasts ending in either 0 or 2.

(b) The time-reversed process P‘(? Y ). Here, pasts ending in 0, 1, and 2 now all lead to qualitatively different future behavior and must
be stored in distinct causal states sy, s7, and s;, respectively, which occur with respective probabilities 7y = (¢ — pq)/(p + q),

7y = =p/(p+q), and 73 = pg/(p +q).

optimal classical causal models [13,14]. This involves
dividing the set of pasts into equivalence classes, such that
two pasts, X and X', lie in the same class if and only if they
have coinciding future behavior, ie., P(X |)? =X)=
P(X|X = ¥'). Instead of recording the entire past, an
e-machine records only which equivalence class X lies
within—inducing an encoding function £:y — S from the
space of pasts y onto the space of equivalence classes
S = {s;}, known as causal states. At each time step, the
machine operates according to a collection of transition
probabilities 77;: the probability that an e-machine initially in
s; will transition to s; while emitting output x. The classical
statistical complexity thus coincides with the amount of
information needed to store the current causal state

Ch = —Zzz,- log ;. (1)

where 7; is the probability the past lies within s;. Note that e-
machines are also optimal with respect to the max entropy
[24], such that the topological state complexity D, of a
process is the logarithm of the number of causal states [13].
Despite their provable optimality, e-machines still appear to
waste memory. The amount of past information they demand
typically exceeds the amount the past contains about the

future—the mutual information E = I(X, X). Observing an
e-machine’s entire future is insufficient for deducing its
initial state. Some of the information it stores in the present is
never reflected in future statistics and is thus effectively
erased during operation. In general, this waste differs
between prediction and retrodiction, inducing nonzero causal
asymmetry.

C. Examples

We illustrate this by examples, starting with the per-
turbed coin. Consider a box containing a single biased coin.
At each time step, the box is perturbed, causing the coin to
flip with probability p if it is in heads (0) and ¢ if it is in
tails (1). The coin’s state is then emitted as output. This
describes a stochastic process Pj . As only the last output is
necessary for generating correct future statistics, P has

two causal states, corresponding to the states of the coin.
The statistical complexity h(z]) thus represents the
entropy of the biased coin, where z{ = [p/(p + q)] is
the probability the coin is in heads and 4(x) = —xlogx —
(1 —x)log(1 —x) is the binary entropy. Furthermore, P
is clearly symmetric under time reversal (i.e., Py = Py)
and thus trivially causally symmetric.

Suppose we postprocess the output of the perturbed coin,
replacing the first O of each consecutive substring of Os
with a 2 (for example, ...1000110100... becomes

..1200112120...). This results in a new stochastic process,

P/ ()? , X ), called the heralding coin P, ", which also has two
causal states, s;7 = {¥|x_; =1} and 5§ = {¥[x_; # 1}. In
fact, one can model P (}? X ) by perturbing the same biased
coin in a box and modifying it to output 2—instead of 0—
when it transitions from heads to tails (see Fig. 2). Thus, the
heralding coin also has classical statistical complex-
ity C;f = h(x}).

Its retrodlctlve statistical complexity, however, is higher.
The time-reversed process P; (Y Y ) represents an alter-
native postprocessing of the perturbed coin—replacing the
last 0 in each consecutive substring of Os with a 2. Now,
0 can be followed by O or 2, while 1 can be followed by
anything, and 2 can only be followed by 1, inducing three
causal states s7 = {y[y_; = j} (see Fig. 2). This immedi-
ately establishes a difference in the number of distinct
configurations needed for causal versus retrocausal model-
ing. Indeed, P, ™ fields causal asymmetry,

(1 =a7)h(y), (2)

where y = 7, /(1 — x7) and 7 = P}/ (y € s7). To under-
stand this asymmetry, note that when modeling P, ", we
need only know if the previous output was 1 (i.e., current
state of the coin) to decide whether a 0 should be replaced
by a 2. To model P, ~, however, one cannot simply look
into the “future” to see if the system will output 1 next.
Causal asymmetry thus captures the overhead required to
accommodate this restriction.

In general, causal asymmetry can be unbounded. In
Appendix D, we describe the class of n-m flower processes,

AC, =C; —C} =
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where C, scales as O(log n) while C;; scales as O(logm).
Note that n and m can be adjusted independently, allowing
construction of processes where AC, > K for any given
constant K. Setting m = 2, for example, can yield a process
where C,; can be made arbitrarily high, while C,; < log 3.
When this occurs, the memory overhead incurred for
modeling the process in the less-natural direction scales
towards infinity.

D. Quantum models

A quantum causal model is described formally by an
ordered tuple Q = (f, Q, M), where Q is a set of quantum
states; f:y — Q defines how each past X is encoded into a
state f(x) = |sg) of a physical system E; and M is a
quantum measurement process. To model P()? X )s
repeated applications of M on E must generate correct
conditional future behavior. In other words, application of
M on a system E in state |s5) must (i) generate an output x
with probability P(X, = x|X = X) and (i) transition Z into
a new state f(¥')=|sg), where X = Xx, such that
L-repeated applications of M will generate xg,...,x;_;
with correct probability P(Xj. L|)? = Xx) for any desired
L € Z* [25]. The entropy of a model Q is given by
the von Neumann entropy S(p) = —Tr(plogp), where
p =S P(X =X)|s;)(sz|. Thus, the quantum statistical
complexity Cq+ of a process can be computed by minimiz-
ing S(p) over all valid models [26].

This optimization is highly nontrivial. There exists no
systematic techniques for constructing optimal quantum
models or for proving the optimality of a given candidate
model. To date, C; has only been evaluated for the Ising
chain [25]. However, this process is symmetric under time
reversal, implying that AC,, is trivially zero. Nevertheless,
recent advances show multiple settings where quantum
models outperform optimal classical counterparts [27-31].
In fact, for every stochastic process where the optimal
classical models are wasteful (i.e., C; > F), it is always
possible to design a simpler quantum model [27]. Indeed,
sometimes the quantum memory advantage C,; — C; can
be unbounded [32]. Could quantum models mitigate the
memory overhead induced by causal asymmetry?

III. RESULTS

We study this question via two complementary
approaches. The first is a case study of the heralding
coin—the aforementioned process that exhibits causal
asymmetry. We pioneer methods to establish its provably
optimal quantum causal and retrocausal models and thus
produce a precise picture of how quantum mechanics
mitigates all present causal asymmetry. The second case
studies quantum modeling of arbitrary processes with
causal asymmetry. Here, C, and C, cannot be directly
evaluated but can nevertheless be bounded. In doing so, we

FIG. 3. Quantum circuits for generating (a) P;()? X ) and
(b) P;(f Y ). Here, Cy; (black circle and line) is the standard
control gate Cy:|w)ly) — [w)U™ ™4 2)|y). Meanwhile, C,
(white circle, black line) is defined as Cylw)|y) =
|0) 0#+1 mod 2)|y) - (a) To simulate P, (X, X), we initialize a qubit
in state |s;") and an ancilla in state |0). Executing the local unitary
V,|0) = |sg), followed by the two-qubit gate Cy , where
V,V,|0) = |si), creates a suitable entangled state—such that a
computation basis measurement of the top qubit yields x, and
simultaneously collapses the bottom qubit into the causal state for
the next time step. (b) To simulate P;(I? , I?), we prepare state
|s7)]0)[0) as input. Execution of Cy ., where U,|0)=
V1=p|0)+./p[1), followed by Cy; , where U,, satisfies U,[0) =
V4l0) + /T —¢|1), and finally, Cy, where X is the Pauli X
operator, generates a suitable entangled state—such that measuring
the first two qubits yields y, (provided we identify measurement
outcome 00 - y, =0, 10 » y, =1, and 01 — y, = 2) and col-
lapses the remaining qubit into the quantum causal state for the next
time step. In either circuit, retaining only the state of = (green circle)
at each time step is sufficient for generating statistically correct
predictions or retrodictions.

show that when forced to model such a process in the less-
natural direction, the quantum advantage always exceeds
the memory overhead AC,,.

A. The heralding coin

Let P, ™ denote the heralding coin process. Here, we first
state the optimal quantum models of ;™ and P),”. We then
outline how their optimality is established, leaving details
of the formal proof to Appendix B. The optimal causal
model QT has two internal states:

ls0) = /1= pl0) +/pI1),
[s7) = val2) + V1 -4ql1), (3)
with associated encoding function ¢ () = |s;") if and only

if ¥ € 57 Given a qubit in state ¢ (¥), Fig. 3 establishes the
sequential procedure that replicates expected future behav-

ior, i.e., samples P, (X|X = ¥).
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Meanwhile, the optimal quantum retrocausal model Q~
has encoding function € (y) = [s;) if and only if y € 57,
where

s5) = 10),
[s7) = v4l0) + /1 —4|1),
[s3) = [1). (4)

The associated procedure for sequential generation of y as
governed by P; (Y|Y = ¥) is outlined in Fig. 3.

To establish optimality, we first invoke the causal-state
correspondence: For any stochastic process with causal
states {s;} that occur with probability z;, there exists an
optimal model @ = (eq, Q, M), where the elements of Q
are in one-to-one correspondence with {s;} (see Lemma 1
of Appendix A). Since the heralding coin process has two
forward causal states, we can restrict our computation of
C; to quantum models where Q= {|ly{).|w])}.
Moreover, we can show that the data-processing inequality
implies |(y{|yi)| < /p(1—¢q)=F (see Lemma 2 of
Appendix A). The monotonicity between |{y |y )| and
the entropy of the resulting model, together with the
observation that |(sg|s{)| = F, then implies optimality
of QT (see Theorem 1 in Appendix). This result establishes
C; = S(p*) for p* = Yo |s7) (57 |

Proving the optimality of O~ is more involved. First,
note that the causal-state correspondence allows us to
consider only candidate models Q = (f,Q, M), where
Q = {|y}) }r—o.» has three elements. The data processing
inequality can then be used to establish the fidelity

@ g b) 7 @ cf

constraints  [(y; [y )| < [(s7[sy)| (see Lemma 2 of
Appendix A). Let 6 =) 7 |y )(w;|, with eigenvalues
A, and p~ =" ap|sy)(s;|, with eigenvalues ;. In
Lemma 4 of Appendix B, we prove that for all choices
of |y ) satisfying the fidelity constraint, A, majorizes A;.
Thus, p~ has minimal entropy among all valid retrocausal
quantum models.

Note that Q" and Q~ exhibit different encoding func-
tions (one maps onto two code words, the other onto three)
and invoke seemingly unrelated quantum circuits for
generating future statistics (see Fig. 3). Nevertheless, direct
computation yields

1+\/E>’ (5)

C;:C,;:h( 5

where c=(p*(1+4(1-¢)q)~2pq+q*)/(p+q)* and h(-)
is the binary entropy. Thus, AC, =0 for all values of
p and ¢g. This establishes our first result:

Result 1. There exists stochastic processes that are
causally asymmetric (C/;Ir # C,)) but exhibit no such asym-
metry when modeled quantum mechanically (C} = C7).

This vanishing of causal asymmetry at the quantum level
is not simply the result of saturating the bound given by E.
Figure 4 shows that E < C,]+ = C; < Cj < C, for almost
all values of p and ¢g. While both quantum causal and
retrocausal models reduce memory resources beyond
classical limits [ie., C; <C; and C; < C,—see
Figs. 4(f) and 4(g)], they each still store some unnecessary
information [C;, C; > E—see Fig. 4(i)].

Our results persist when considering minimal dimensions,
rather than minimal entropy required for causal modeling.
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FIG. 4. Complexity of the heralding coin plotted against p and ¢. The figure illustrates £ < C; = C; < C,; < C, across all values of
the parameter space (0 < p, ¢ < 1). Panel (d) depicts the classical causal asymmetry AC,, and panel (f) effectively demonstrates

Cy = C; and thus AC, = 0.
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Here, P,™ requires only two causal states and thus can be
modeled using a two-level system (D, = log2). However,
‘P~ has three causal states. Modeling it thus requires a three-
level system (D, = log3). In contrast, the three quantum
causal states of P, ~ can be embedded within a single qubit;
thus, the dynamics of the heralding coin can be modeled
using a single qubit in either temporal direction. Therefore,
this vanishing of causal asymmetry also applies in single-
shot settings.

B. General processes

We now study quantum mitigation of causal asymmetry
for general stochastic processes by bounding C, and C;
from above. Let Cj'™ = min(C;, C;) represent the mini-
mum amount of information we need to classically model
P(X,X) when allowed to optimize over the temporal
direction. Meanwhile, let C7™* = max(C,.C;) be the
minimal memory a quantum system needs when forced
to model the process in the least favorable temporal
direction. In Appendix C, we establish the following:

Result 2. For any stochastic process P,

max(Cy, C;) <min(C,, Cy). (6)

Equality occurs only if Cj = C, = E, such that P is
causally symmetric.

Consider any causally asymmetric process P, such that
modeling it in the less-favorable temporal direction incurs
memory overhead AC,,. Result 2 implies that this overhead
can be entirely mitigated by quantum models. There exists
a quantum model that is not only provably simpler than its
optimal classical counterpart but is also simpler than any
classical model of the time-reversed process P~. In Lemma
7 (see Appendix C), we show that such models can be
systematically constructed and aligned with the simplest,
currently known, quantum models—q-machines [33,34].
As a corollary, causal asymmetry guarantees both C, <
C;’ and C; < Cy;i.e., anonzero quantum advantage exists
when modeling in either causal direction.

A variant of these results also applies to topological state
complexity. Suppose the number of causal states for P and
its time reversal P~ differ, such that D; # D). Let D; and
Dy, respectively, be the logarithm of the minimal dimen-
sions needed to model P and P~ quantum mechanically.
Appendix C also establishes the following result.

Result 3. For any stochastic process P,

max(Dj, D;) < min(Dj;, D). (7)

Given that there exists stochastic processes where
predictive and retrodictive topological complexities differ
(e.g., the heralding coin), this immediately implies the
following corollary.

Result 4. The quantum topological complexity D, can
be strictly less than the classical topological complexity D,,.

This solves an open question in quantum modeling—
whether quantum mechanics allows for models that sim-
ulate stochastic processes using not only reduced memory
but also reduced dimensions.

These results have a particular impact when AC, is
exceedingly large. Recall that in the case of the n—2
flower process, C}j’i“ < log3, while C, scales as O(logn).
Our theorem then implies that Cg < C,Ti“ <log3. Thus,
we immediately identify a class of processes whose optimal
classical models require a memory that scales as O(logn)
and yet can be modeled quantum mechanically using a
single qutrit.

IV. FUTURE DIRECTIONS

There are a number of potential relations between causal
asymmetry and innovations on the arrow of time and
retrodictive quantum theory. In this section, we survey
some of these connections and highlight promising future
research directions.

A. Retrodictive quantum mechanics

Consider the evolution of an open quantum system that is
monitored continuously in time. Standard quantum trajec-
tory theory describes how the system’s internal state p(t)
evolves, encapsulating how our expectations of future
measurement outcomes are updated based on past obser-
vations. Retrodictive quantum mechanics introduces the
effect matrix E(f)—a time-reversed analogue of the density
matrix p(¢) [35-37]. Note that E(¢) propagates backwards
through time, representing how our expectations of the past
change as we scan future measurement outcomes in time-
reversed order. The original motivation was that p(r) and
E(r) combined yield a more accurate estimate of the
measurement statistics at time ¢ than p(¢) alone, allowing
improved smoothing procedures [38—41].

While this framework and causal asymmetry differ in
motivation and details (e.g., monitoring is done in con-
tinuous time, whereas we have so far only considered
discrete time), there are also notable coinciding concepts.
The standard propagation equation for p(r) parallels a
causal model for observed measurement statistics, while its
time-reversed counterpart governing E(t) parallels a cor-
responding retrocausal model. It would certainly be inter-
esting to see if such systems exhibit either classical or
quantum causal asymmetry. For example, does the resource
cost of tracking E(r) differ from that of p(¢) under some
appropriate measure [42]?

Answering these questions will likely involve significant
extensions of current results. Our framework presently
assumes that the process evolves autonomously and that
time is divided into discrete steps. These restrictions will
need to be lifted by combining present results with recent
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generalizations of classical and quantum computational
mechanics to continuum time [43,44] and input-dependent
regimes [21,45,46]. More generally, such developments
will enable a formal study of causal asymmetry in the
quantum-trajectory formulation of open quantum systems.

B. Arrow of time in quantum measurement

Related to such open systems are recent proposals for
inferring an arrow of time from continuous measurement
[47]. These proposals consider continuously monitoring a
quantum system initialized in state p;, resulting in a
measurement record r(¢) with some probability P[r(z)|p;].
Concurrently, the state of the system evolves through a
quantum trajectory p(¢) into some final configuration
p(T) = py. The goal is to identify an alternative sequence
of measurements, such that for at least one possible outcome
record /() occurring with nonzero probability P[r'(t)|p/],
the trajectory rewinds. In other words, a system initially in
state p will evolve into p;, passing through all intermediary
states in time-reversed order. An arrow of time emerges as
P[r(t)|p;] and P[r'(t)|p;] generally differ, such that one of
the two directions occurs with greater probability. An
argument via Bayes’ theorem then assigns different prob-
abilistic likelihoods towards whether p(#) occurred in
forward or reverse time.

This framework provides a complementary perspective
to our results. It aims to reverse the trajectory of the
system’s internal state p(7), placing no constraints on the
relation between the measurement statistics governing r(7)
and 7/(¢). In contrast, causal asymmetry deals with revers-
ing the observed measurement statistics (as described by
some stochastic process P) while placing no restrictions on
the internal dynamics of the causal and retrocausal models
(the two models may even field different Hilbert space
dimensions, such as in the heralding coin example).

We also observe some striking parallels. Both works start
out with some sequential data but no knowledge about
whether the sequence occurred in forward or reverse time.
Both ask the following question: Is there some sort of
asymmetry singling out one temporal direction over the
other? In the emerging arrow of time from quantum
measurement, we are given a trajectory p(f), and asym-
metry arises from the difficulty (in terms of success
probability) of realizing this trajectory in forward versus
reverse time. Meanwhile, in causal asymmetry, we are
given the observed measurement statistics, and an arrow of
time arises from the difference in resource costs needed to
realize these statistics causally in forward versus reverse
time. It would then be interesting to see if a similar
argument via Bayes’ theorem can be adapted to causal
asymmetry. If we suppose that more complex machines are
less likely to exist in nature (e.g., due to dimensional or
entropic constraints), could we then argue whether a given
stochastic process is more likely to occur in one causal
direction versus the other?

V. DISCUSSION

Causal asymmetry captures the memory overhead
incurred when modeling a stochastic process in one
temporal order versus the other. This induces a privileged
temporal direction when one seeks the simplest causal
explanation. Here, we demonstrate a process where this
overhead is nonzero when using classical models and yet
vanishes when quantum models are allowed. For arbitrary
processes exhibiting causal asymmetry, we prove that
quantum models forced to operate in a given temporal
order always require less memory than classical counter-
parts, even when the latter are permitted to operate in either
temporal direction. The former result represents a concrete
case where causal asymmetry vanishes in the quantum
regime. The latter implies that the more causally asym-
metric a process, the greater the resource advantage of
modeling it quantum mechanically.

Our results also hold when memory is quantified by max
entropy. They thus establish that quantum mechanics can
reduce the dimensionality needed to simulate a process
beyond classical limits. Indeed, our results isolate families
of processes whose statistical complexity grows without
bound but can nevertheless be modeled exactly by a
quantum system of bounded dimension. These features
make such processes ideal for demonstrating the practical
benefits of quantum models—allowing us to verify an
arbitrarily large quantum advantage in single-shot regimes
[24,48] and avoiding the need to measure von Neumann
entropy as in current state-of-the-art experiments [29].

One compelling open question is the potential thermo-
dynamic consequences of causal asymmetry. In computa-
tional mechanics, C,; has thermodynamical relevance in the
contexts of prediction and pattern manipulation [19-22,49].
For instance, the minimum heat one must dissipate to
generate future predictions based on only past observations
is given by Wy, . = kzT(C,; — E), where kg is Boltzmann’s
constant, 7" is the environmental temperature, and the
excess entropy E is symmetric with respect to time reversal.
Therefore, nonzero causal asymmetry implies that flipping
the temporal order in which we ascribe predictions incurs
an energetic overhead of AWy, = kgTAC,. In processes
where AC), scales without bound, this cost may become
prohibitive. Could our observation that AC, < C,‘}‘i“ imply
that such energetic penalties become strongly mitigated
when quantum simulators are taken into account?

A second direction is to isolate what properties of
quantum processing enable it to mitigate causal asymmetry.
In Appendix C, we establish that all deterministic processes
are causally symmetric, such that C; = C; = E (see
Lemma 6 of Appendix C). Randomness is therefore
essential for causal asymmetry. Observe also that the
provably optimal quantum causal and retrocausal models
for the heralding coin both operated unitarily—such that
their dynamics are entirely deterministic (modulo
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measurement of outputs). Indeed, such unitary quantum
models can always be constructed [34], and we conjecture
that this unitarity implies causal symmetry. However, it
remains an open question as to whether the optimal
quantum model is always unitary.

Insights here will ultimately help answer the big out-
standing question of whether the quantum statistical com-
plexity ever displays asymmetry under time reversal.
Identifying any process for which such asymmetry persists
implies that Occam’s preference for minimal cause can
privilege a temporal direction in a fully quantum world.
Proof that no such process exists would be equally exciting,
indicating that causal asymmetry is a consequence of
enforcing all causal explanations to be classical in a
fundamentally quantum world.
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APPENDIX A: TECHNICAL DEFINITIONS

We first introduce further technical notation and back-
ground that will be used for subsequent proofs.

Definition 1 (Quantum causal model) Consider an
ordered tuple Q = (f, Q, M), where Q is a set of quantum
states; f:y — Q is an encoding function that maps each x
onto a state f(x) = |s;) of a physical system E; and M is a
quantum process. Q is a quantum model for P()? X ) if and
only if, for any X € ¥, whenever E is prepared in f(X),
subsequent application of M (i) generates an output x with
probability P(X, = x|X = ¥) and (ii) transitions Z into a
new state f(X') = |sg), where X' = xx [25].

Condition (i) guarantees that if a quantum model is
initialized in state f(X), then the model’s future output
Xo=x will be statistically indistinguishable from the
output of the process itself. Condition (ii) ensures that
the internal memory of the quantum model is updated to
record the event X, = x, allowing the model to stay
synchronized with the sequence of outputs it has generated
so far. Thus, a series of L repeated applications of M acting
on E generates output xg.; = Xxg...x;_; With probability
P(Xy.. = Xo: L|)? = X) and simultaneously transitions 2
into the state f(xxy.;). In the limit L — oo, the model
produces a sequence of outputs X = xgx,... with proba-
bility P(X|X = %).

The entropy of a quantum model Q is given by

C,(Q) = S(p) = —Tr(plogp),

where S(-) is the von Neumann entropy, p = > wzzp5 for
pi = |sz)(s¢l, and 7z = P(X = X).
Definition 2 O is an optimal quantum model for a

(A1)

process P(X,X) if, given any other model ', we
have C,(Q') > C,(Q).

Consider a stationary stochastic process P(}? X ), such
that P(Xy.;) = P(X,.,.p) for any L€ Z", te€ Z. Let
P(X.X) have causal states S = {s;} each occurring with
stationary probability z;. Define the conditional distribution
P;(X) = P(X|]X =X €s,) as the future morph of causal
state s;. We make use of the following two results derived
in Ref. [25]. .

Lemma 1 (Causal-state correspondence). Let P(X, X)
be a stochastic process with causal states {s; }. There exists
an optimal model Q = (e,, Q, M), where Q = {|s;)} and
€,(¥) = |s;) if and only if X € s;.

This implies that we can limit our search for optimal
models Q = (f, Q, M) to those whose internal states Q =
{|w;)} are in one-to-one correspondence with the classical
causal states. In addition, it can be shown that Q must
satisfy the following constraint: .

Lemma 2 (Maximum fidelity constraint). Let P(X, X)
be a stochastic process with causal states {s;}, and let
Q=(f,Q, M) be a valid quantum model satisfying
f(x) = |w;) iff X € 5;. Then, [(y;|y ;)| < F;;, where F;; =
> :[Pi(X)P; (¥)]2 is the fidelity between the future morphs
of s; and s;.

These definitions assume that all elements of Q are pure.
This is because computational mechanics considers only
causal models—models whose internal states do not store
more information about the future than what is available
from the past. Specifically, let R be a random variable
governing the state of a model at # = 0. Then, I(R, X|X) is
known as the oracular information, and it represents the

amount of extra information R contains about the future X
that is not contained in the past X. For causal models,
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I(R,X|X) = 0[8]. In Appendix E, we show that this allows
us to assume that all elements of € are pure without loss of
generality.

APPENDIX B: PROOFS OF OPTIMALITY
Here, we formally prove that the quantum models for the
heralding coin given in Egs. (3) and (4) are optimal.
1. Optimality of the causal model

Let P,* denote the heralding coin process, with the
corresponding e-machine depicted in Fig. 2(a).

Theorem 1. Consider Qf = (e, Q", M™), where
g5 (xX) = |s;") if and only if X € s, with
Iso) = /1= pl0) +/pl1),

Is7) = Val2) + /1 —=ql1), (B1)

Q" ={|sg),Is7)}, and M™ described by the quantum
circuit in Fig. 3(a). Here, Q1 is an optimal quantum model
for P,*.

Proof.—We prove this by contradiction. Assume there
exists some Q = (f,Q, M) such that C,(Q) < C,(Q7).
Lemma 1 implies that we can assume Q = {|y), [y;)} for
some |y) and |y) and encoding function f(X) = |y;) if
and only if X € 57", without loss of generality. Here, C,(Q),
the von Neumann entropy of the ensemble {|y;), 7/}, is a
monotonically decreasing function of |{y|w)| [50]. Thus,
C,(Q) < C,(Q") implies that [(yoly)| > (5§ I5})| =

V/P(1 = q). Meanwhile, Lemma 2 implies

[wolwn)| <D IPEEPFEE=/p(1-q). (B2)
This is a contradiction. Thus, no such Q exists. ]

2. Optimality of the retrocausal model

Let P,~ denote the time reversal of the heralding coin
process, with the corresponding e-machine in Fig. 2(b).

Theorem 2. Define Q- = (¢;,,Q7,M™), where
e,() = |s7) if and only if y € 57, with
lsg) =10),
IsT) =/4l0) + /1 —ql1),
ls3) = [1), (B3)

Q= {|s7)}, and the measurement process M~ given in
Fig. 3(b). Here, Q~ is an optimal quantum model for P,~.
Below, we break down the proof of this theorem into a
series of small steps. Each step is phrased as a lemma.
Lemma 3. Let Q = (f, Q, M) be a quantum model for
P, satisfying f(¥) = |w;) iff y € s7. Then, up to a unitary
rotation,

lwo) = 10),
ly1) = rsin@e™|0) + V' 1 — r?e®|1) + rcos 6]2),
lwa) = 1), (B4)

for some 6 € [0,7/2], 0 < r <1, a,w € [0, 2x], such that
rsind < /g and V1 -r* </T—q.

Proof.—Set Fi; =3 :[P; ()P} ()] Explicit evalu-
ation yields Fy; = ./q, Fo, =0, F, = /1 —¢q. By the
maximum fidelity constraint, |(y;ly;)| < F7;.  Thus,
(Woly>) = 0. Therefore, [yo) = |0) and |y) = [1) up to
a unitary rotation. We can then write |y/) in the form above
without loss of generality, as the coefficient of |2) can be
made real and positive by choosing a suitable definition of
basis element |2). Meanwhile, constraints on |{y|w,)| <
V1I=¢q and [{(yolw,)| < V/q imply rsiné <./q and
Vi-rr< /1= q. O

Our models described in Eq. (4) can be obtained by
setting rsinfe™ = ,/qg and V1-r?e®=,/T—¢ in
Eq. (B4) (i.e., this corresponds to choosing |yq) = |57 ),
lw1) = |s7), and |y,) = |s3)). The subsequent lemma then
establishes that this is the optimal choice.

Lemma 4. For any quantum model Q = (f,Q, M) of
P, satisfying f(¥) = |y;) if and only if y € s7,

€,(9) 2 C,(Q). (BS)
In other words, Q~, as described by Eq. (4), is the lowest
entropy (optimal) model that satisfies the causal-state
correspondence.

Proof.—By definition, C,(Q7)=S(p7) for
p~ =i |s7)(s7|, where z; =P, (y€s;) and the
states |s;) are given in Eq. (4). We label the eigenvalues
of this state from largest to smallest by Ay, 47, 43.
Meanwhile, by the above lemma, C,(Q) = S(p¥"), where

P = |0) (0] + 3 [1) (1] + 27 [yr1) (i |,

and |y) is described by Eq. (B4). We label the eigenvalues
of p¥1 from largest to smallest by Af*, ", 5. To establish
that C,(Q) > C,(Q7), it is sufficient to show A™>A"",
where > denotes majorization [51]. This is established by
proving that (1) A > A% and (2) A5 + A7 > A" + V.

We begin by establishing i; > 4}'. By the minimax
principle [52], the largest eigenvalue for p¥! is

A= max (x|p¥1|x).
0 |<x|x>\2:1< lp" |x)

(B6)

Suppose that this maximum is attained for some |x) =
|x(t,¢.x,17)) such that

lx) = £singe|0) + e/ 1 — 2[1) + tcosp|2),  (B7)
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where ¢ €1[0,7/2], 0<r<1, and 7, «€]0,2x].
We can assume the coefficient of |2) is real and positive
because Eq. (B6) remains unchanged when |x) — ¢¥|x).
Substituting Eq. (B7) into Eq. (B6) yields

W = 75| (x[0))> + 5 |(x|1)|> + a7 |rt sin O sin e’ @)

+eil@x\/1 = 23/1 = 2 + rtcos O cos ¢|2.

We defined |x(z, ¢, k,7)) to be the vector that maximizes
Eq. (B8); thus, we have implicitly optimized over x and 7 in
Eq. (B8). This optimization will automatically set ¢/(*~%) =
e!®) = 1 [since any two complex numbers ¢, ¢, € C
satisfy |c; + ¢»]* < (Jey| + |ea])?]. Using this and trigo-
nometry identities to simplify Eq. (B8), we obtain

(B8)

W =nmyrtsin? g+ 5 (1 — 1)
+ap)rtcos (p—0) + V1 -r2V1 -2 (BY)

We now show that there always exists some /12’)/‘ such that
Ay > /Ig‘ > /12’)". The maximum fidelity constraint implies
rsin(f) < ./q. Thus, there exists some df such that
rsin(6 + df) = /q (in particular, we choose the solution
of this equation where 0 < 8 + d@ < n/2). Consider

A= max (x|pi|x)
O p= ’

P = 75 10) (0] + 23 | 1) (1] + 77 [yh) (wh

)

where

ly}) = rsin (0 + d0)|0) + V' 1 — r?|1) + rcos (6 + dO)|2)
= /q|0) +siny+/1 —q|1) +cosy\/1 — q|2),

(B10)

for siny =+V1-r?/\/T—¢q. Furthermore, let |x')=
|x(2,3,0,0)) be defined as

X'y = tsin|0) + V' 1 — £2|1) + rcos ]2) (B11)

for f = min(z/2, ¢ + dB). Then, we have

2 (@)
=nyt?sin’ B+ 25 (1 — %)
+ a7|rtcos (B—0—do) + V1 -rPV1-2
> mytsin? ¢ + 75 (1 — %)
+ a7|rtcos (¢ — 0) + V1= rPV1 =2

=, (B12)

where we have used the fact that 0 <¢p <p<x/2
and |f— 0 —dO| < |¢p — 6| < =/2. Specifically, these two
conditions imply sinf >sin¢ and cos(f —60—df) >
cos (¢ —0) > 0. Thus, we have ;' > A"

To show 45 > 4, ', we define |y) to be the state satisfying

A" = (y|p¥1]y). In general, we can parametrize

[y) = wei@|0) + V1 —w?sine®|1) + v/ 1 — w? cos &[2)
for0<w<1, €(0,7/2], and a, b € [0,27]. Using the
same argument as in Eq. (B9), we can show a = b = 0 and

thus

A= mgw? 4 75 (1 — w?)sin?g

+ 27|/ 1 =gV 1 =w?cos (y — &) +\/c_1w|2.

(B13)

Define |y’) = w|0) + V1 —w?|1). By mirroring the
analysis in Eq. (B12), we find

Ao = (lp71y)
=mgw? + 75 (1 —w?)
2
+ 7|1 =gV 1—w?+ /qw|

> A (B14)
Together, the above results imply 4; > lgll > A0, establish-
ing step (1), Ay > 45".

For step (2), we must show A5 +A7 > 45" + A1
However, by construction, p~ only spans a two-dimen-
sional Hilbert space; thus, we have A5 + A7 = 1. It follows
that A5 + A7 > A)" + A", Together, these results imply
A==A" and therefore C,(Q7) < C,(Q). O

By Lemma 1, P,~ has an optimal quantum model that
satisfies the causal-state correspondence. Meanwhile, by
Lemma 4, any O satisfying the causal-state correspondence
must have C,(Q) > C,(Q7). It follows that Q~ is an
optimal quantum model for P,~.

APPENDIX C: PROOF OF RESULT 2

Here, we prove Result 2. To do this, we require some
preliminary lemmas. The first connects the capacity for
quantum models to improve upon their optimal classical
counterparts with causal asymmetry.

Lemma 5. If the classical and quantum statistical com-
plexities of a process P coincide, such that Cj = C;f,then P
is causally symmetric and C,; = C, = E.

Proof.-—We first make use of the prior results, showing
that whenever classical models waste information, more
efficient quantum models exist [27]. Specifically, C; > E
if and only if C; < C,. Thus, C; = C,; implies that
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Ct = E. It is therefore sufficient to show that C,} = E
implies C,; = E.

We prove this by contradiction. Assume C/}L = F but
C; > E. Now, C; = E implies H(S_;|X) = 0, where S_,
is the random variable governing the causal state at r = —1
[14]. Thus, given X, we can find a unique s; such that
P(X = X|X = X) is only nonzero when X € s;. It follows
that the sets 7; = {X|P;(X = X) # 0} form a partitioning on
the space of all futures (i.e., 7, N 7; = & for i ;é ])

Furthermore, any two X, ¥ € s; satisfy P(X |X =X) =
P(X|X = ¥), by definition of s;. Thus, Bayes’ theorem
implies that the z; partition the future into equivalence
classes X ~ X if and only if P(X|X = %) = P(X|X = ¥)
[53]. Hence, {7;} constitute the retrocausal states. Bayes’
= x|X =X € 1;) # 0 only when
X € s;. This implies H(S,|X = ¥) = 0, where S~ governs
the retrocausal state at time 1 = —1. Hence, C,; = E, which
is a contradiction. U

It follows as a direct corollary of this result that causal
asymmetry vanishes for deterministic processes [i.e., proc-
esses where H(X|X) = 0].

Lemma 6. Any deterministic process P(X,X) has
AC, =0.

Proof.—Any deterministic process has E = C,; [14,54].
Since E < C; < Cy, it follows that E = C = Cq+; thus,
according to the above lemma, ACM =0. O

Our next lemma makes use of g-machines [33], the
simplest currently known quantum models. Consider a
process P = P(X,X) whose classical e-machine has a
collection of causal states S = {s;} and transition proba-
bilities 77};. Let k denote the cryptic order of P(}?, }?),
defined as the smallest [ such that H(S;|Xy.o) =0
[28,33,54]. The g-machine of P has internal states |S;)
defined by a recursive relation

theorem also yields P(X

IS;) =1|S:(l=k)), where (C1)
=D \/TH IS = 1). (€2)

and |S;(0)) = [i). The associated encoding function sat-
isfies f(X) = [S;) whenever X € s, [28,33]. Let C, = S(p)
be the g-machine complexity—the amount of information a
g-machine stores about the past, where p = > ,7;[S;)(S;].
Meanwhile, let the max entropy D, = logtr[p]° be the g-
machine state complexity—the minimum dimensionality of
any quantum system = capable of storing these internal
states. Note that since g-machines are valid quantum
models, C; <C; and C; <C,. Likewise, DS <D/
and D; < D;. We now establish that the g-machine for
‘P and its time reversal P~ have coinciding von Neumann
entropies and coinciding max entropies.

Lemma 7. Let P(X,X) be a stationary stochastic
process and P‘(f Y ) its time reversal, with g-machine
complexity C; and C;, and g-machine state complexity
Dy and Dy, respectively. Then, C; = C; and D} = Dj,.

Proof.—We first introduce some compact notation. Let
PX=xX=%) = XX =X =
Pyg, P(X =[S, = 5;) = P,(%), as well as P(X = %) =
P;and P(xes;) ==

Now let |S7") denote the internal states of the g-machine for
P(X,X), such that p* = >, SF)(S{| and C} = S(p*).
From existing work [28,33], we know that
limy_, o (S;(1)|S;(1)) = (S;:(k)|S;(k)). Thus, let w*(l) =
SmSHDY(S ()] and @' = lim;_ @' (l) such that
C; = S(w™). Then,

P- and, similarly, P(}_f

(C3)

Furthermore, the forward q-machine complexity is given by
C, = S(w™). A similar argument shows that C; is given by

C‘ = S(w™), where

@ = Pﬂ;P}PFR/P}/ 5}’;\;r|‘)€> <(.X_'/| (C4)
FR IR
Consider now the pure state
Wizz =D VPET)|ED), (C5)

which represents the quantum superposition, or the g sample
[55], over all possible output strings of the stochastic process

P()? X ), with associated density operator

Pri = D20 D D/ PPy MR FIF

/o

ll XGY XEX X, X

(C6)

We can verify that % = Try[pg 5] and 0™ = =Trg % %)
Thus, S(w™) =S(w"), and therefore, C; =C,. The
g-machine complexities of the forward and backward proc-
esses thus coincide.

Note that the ranks of ™ and @~ must also
coincide. Thus, an analogous argument establishes that
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log tr[p*]® = log tr[p~]°, indicating the two models also
have the same dimensionality. Therefore, D/ = D;. [

‘We now prove Result 2. Consider any stochastic process P.
First, assume P is causally asymmetric, such that AC, # 0.
Note that this implies C,,C, > E (by Lemma 5).
Meanwhile, Lemma 7 implies that Cj = C,. Thus, it is
sufficient to show that C+ < C,f and C < C;, whenever
Ci.C, > E.

Note that for a general process, Cq < C, if and only if
the g-machine has two internal states with nonzero overlap
(S;|S;) > 0 [56]. It was also previously established that
whenever C, > E, we can find some (S;(1)[S;(1)) >0
[27], as defined by Eq. (C1). It follows from the iterative
construction that (S;]S;) > 0, and thus C, < C,. Therefore,
C; > E implies Cj < Cf and C; > E implies C; < C;,.
Hence, for any causally asymmetric P,

max(C,, Cy;) < min(C,, Cy). (C7)
Conversely, suppose max(C,,C;, ) =min(C, ,C,). Without
loss of generality, we can assume C,; < C,. This implies
either (i) C; = C,; or (ii) C; = C,/. In the case of (i), direct
application of Lemma 5 implies C,; = C,, = E. In the case
of (ii), we have C;; > (_J;r = (_7; > C; = C,;, which implies
Cj = C;. In other words, g-machines are not more efficient
than e-machines in modeling P. This is true if and only if
Cy = C,} [27,.28]. Thus, Lemma 5 again implies C, =
C, = E. This completes the proof.

APPENDIX D: n-m FLOWER PROCESS

The family of n-m flower processes demonstrates how
causal asymmetry can be potentially unbounded (see
Fig. 5). The process has statistical complexity
C; =1+ 3log[n]. In contrast, the time-reversed process
will have at most m + 1 causal states, and thus
C,, <log[m + 1]. Meanwhile, the predictive and retrodic-
tive topological state complexities satisfy D, = log[n + 1]
and D, <log[m + 1]. Note that n and m can be adjusted
independently. Setting m = 2, and allowing n — oo, yields
diverging C, but finite C,,. Thus, AC, also diverges to
infinity. A similar divergence is witnessed for topological
state complexity.

Applying Result 2, we see that C; and C, are both
bounded above by log 3. The same is also true for D and
Dy . Thus, quantum models of this process can fit within a
single qutrit, whether modeling in forward or reverse time.
In the specific case of the former, C,} and D, diverge to
infinity. Thus, we obtain a family of processes whose
quantum models field an unbounded memory advantage—
in both the entropic and single-shot sense.

n+2|ppsz

2
n+2lpp

n+1lpl

1
/2|5

FIG. 5. The n-m flower process, illustrated for the case m = 2,
and n even. Physically, this process can be generated by a set
{d,, ..., d,} of m-sided dice, where each die d; is biased so that it
lands on side j € {1, ..., m} with probability pj- (and, in general,
the bias on each die is different, such that pj- * pjf for i # k). We

randomly select a die d;, recording the choice x, = i. Afterwards,
we role the die, transcribing the outcome j as x,,| = j + n.

APPENDIX E: EXCLUDING
MIXED-STATE MODELS

In this appendix, we consider more general causal
models Q = (f, Q, M), which have the freedom to encode

pasts
= Wiz = ZCIk

into mixed quantum states. We show that this does not
allow for models that are more optimal than those that only
encode pasts into pure quantum states.

Theorem 3. Consider a stochastic process P(X,X),
with a causal model Q = (f,Q, M). If the internal states
of Q are mixed, such that f(¥) = ,¢;(X)|y¥) (w?], then
we can always find a causal model Q" = (f’, Q', M) such
that f(7) = |ss)(s¢] and C,(Q') < Cy(Q).

Proof—Let P(X,X) have causal states S = {s;}.
Suppose Q = (f,Q, M) is an optimal causal model for

P()? X ), with mixed internal states.

It is trivial to generalize the causal-state correspondence
to mixed-state models. Thus, we can assume that O has an
encoding function, where

(i)
Z‘]k |ll’k vl

if and only if X € s;. Therefore, the internal states Q =
{w;} are in one-to-one correspondence with the classical
causal states.

Our proof makes use of the requirement that_causal
models store no oracular information, ie., I(R,X|X) =

S P(X)I(R, X|X = %) = 0, where R is the random variable

|V/k lI/k (El)

(E2)
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governing the memory. Regrouping the pasts into causal-
state equivalence classes yields ) ¢ cs7;1(R, X|x € s;) =0,
where 7; is the probability that the past belongs to s;. Thus,
I(R.X|X€s;) =0forevery s; €S.

We have assumed some elements of € are mixed. In
particular, suppose we have a specific w; = @ € Q with
S(w) > 0, which occurs with probability z; = 7. Let X be a
particular past such that f(X) = w, and let ¥ = {|w;)} be a
set of pure states that form an unraveling of @. There must
exist some g, € [0, 1] such that @ = >, q|y) (wi|- Now,
let O, be a quantum process that maps @ to a classical
random variable X governed by probability distribution
P(X|X = X). By definition of a quantum model, this
process can always be constructed by concatenations of
M acting on a physical system E.

Let A represent the state of E, and let B be the random
variable that governs the resulting output of O, acting on
E. Zero oracular information implies that A and B must be
uncorrelated when conditioned on observing past X.

Therefore, O (i) (W) =Ou (1) (W) =O (@) for
all |yy), |y;) €.

Now, consider the entropy of Q. By concavity of
entropy,

S(?ﬂ,@;) — S(;qk <7Z|Wk><Wk| + Zﬂjw‘i))

W FW

> Zk:qkS <ﬂ|wk><wk| + Z”ﬁ%’)

W;Fw

2 mink5<”|l//k><l//k| + Z”j%‘)- (E3)

@ F#w

Without loss of generality, we can assume that this
minimum is obtained for k=0. Let Q" = (Q\w) U
{lwo) (wo|} be a set of internal states, where w is replaced
with |wq){(wy|, and define the encoding function f” such
that f”(x) = f(X), except when f(X)= w, whereby
f"(%) = lwo)(wo|. Define a new quantum model
Q" = (f".Q", M). Clearly, C,(Q") < C,(Q).

If any of the states in Q" are still mixed, then by
repeating the above procedure, we can replace them with
pure states, thereby constructing a model Q' = (f/, Q', M)
with pure internal states such that C,(Q') < C,(Q). [
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