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In the Dirac-Weyl semimetal, the chiral anomaly appears as an “axial” current arising from charge
pumping between the lowest (chiral) Landau levels of the Weyl nodes, when an electric field is applied
parallel to a magnetic field B. Evidence for the chiral anomaly was obtained from the longitudinal
magnetoresistance (LMR) in Na3Bi and GdPtBi. However, current-jetting effects (focusing of the current
density J) have raised general concerns about LMR experiments. Here, we implement a litmus test that
allows the intrinsic LMR in Na3Bi and GdPtBi to be sharply distinguished from pure current-jetting effects
(in pure Bi). Current jetting enhances J along the mid-line (spine) of the sample while decreasing it at the
edge. We measure the distortion by comparing the local voltage drop at the spine (expressed as the
resistance Rspine) with that at the edge (Redge). In Bi, Rspine sharply increases with B, but Redge decreases
(jetting effects are dominant). However, in Na3Bi and GdPtBi, both Rspine and Redge decrease (jetting effects
are subdominant). A numerical simulation allows the jetting distortions to be removed entirely. We find that
the intrinsic longitudinal resistivity ρxxðBÞ in Na3Bi decreases by a factor of 10.9 between B ¼ 0 and 10 T.
A second litmus test is obtained from the parametric plot of the planar angular magnetoresistance. These
results considerably strengthen the evidence for the intrinsic nature of the chiral-anomaly-induced LMR.
We briefly discuss how the squeeze test may be extended to test ZrTe5.
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I. INTRODUCTION

In the past two decades, research on the Dirac states in
graphene and topological insulators has uncovered many
novel properties arising from their linear Dirac dispersion.
In these materials, the Dirac states are confined to the two-
dimensional (2D) plane. Interest in three-dimensional (3D)
Dirac states may be traced to the even earlier prediction of
Nielsen and Ninomiya (1983) [1] that the chiral anomaly
may be observable in crystals (the space-time dimension
3þ 1D needs to be even). The anomaly, which appears as
a current in a longitudinal magnetic field B, arises from the
breaking of a fundamental, classical symmetry of massless
fermions—the chiral symmetry. Recent progress in topo-
logical quantum matter has led to several systems that

feature protected 3D Dirac and Weyl states in the
bulk [2,3].
A crucial step in the search for 3D Dirac states was the

realization that inclusion of point group symmetry [with
time-reversal (TR) symmetry and inversion symmetry]
allows Dirac nodes to be protected anywhere along
symmetry axes, instead of being pinned to TR-invariant
momenta on the Brillouin zone surface [4,5]. Relaxation
of this constraint led to the discovery of Na3Bi [6] and
Cd3As2, in which the two Dirac nodes are protected by C3

and C4 symmetry, respectively. In the absence of B, each
Dirac node is described by a 4 × 4 Hamiltonian that can be
block diagonalized into two 2 × 2 Weyl blocks with
opposite chiralities (χ ¼ �1). The absence of mixing
between the two Weyl fermions expresses the existence
of chiral symmetry. In a strong B, the Weyl states are
quantized into Landau levels. As shown in Fig. 1(a), a
distinguishing feature is that the lowest Landau level (LLL)
in each Weyl node is chiral, with a velocity v strictly kB (or
−B as dictated by χ) [3].
As a result, electrons occupying the LLL segregate into

two massless groups—left and right movers, with popula-
tions NL and NR, respectively. Independent conservation
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of NL and NR implies that the chiral charge density ρ5 ¼
ðNL − NRÞ=V is conserved, just like the total charge
density ρtot ¼ ðNL þ NRÞ=V (V is the sample volume).
However, application of an electric field EkB breaks the
chiral symmetry by inducing mixing between the left- and
right-moving branches [Fig. 1(a)] (for a pedagogical dis-
cussion, see Ref. [7]). A consequence is that conservation
of ρ5 is violated by a quantity A called the anomaly term,
viz. ∇ · J5 þ ∂tρ

5 ¼ eA, where J5 is the axial current
density. [From the density of states in the LLL and the
rate of change ∂kz=∂t induced by E, we obtain A ¼
ðe2=4π2ℏ2ÞE ·B.] The presence of J5 is detected as a large,
negative, longitudinal magnetoresistance (LMR). This
constitutes the chiral anomaly. (The anomaly first appeared
in the theory of π-meson decay [8,9]. See Refs. [10,11].)
The conditions for observing the anomaly in Dirac semi-
metals were discussed, e.g., in Refs. [3,12–15].
In 2015, Xiong et al. reported the observation of a

fivefold to sixfold suppression of the LMR in Na3Bi,
identified with the chiral anomaly [16]. A year later,
Hirschberger et al. [17] observed the chiral anomaly,
including its thermoelectric signature in the half-Heusler
GdPtBi. Although the low-lying states in GdPtBi are not
Dirac-like in zero B, the application of a Zeeman field
splits both conduction and valence bands to produce
protected crossings that define Weyl nodes. With BkE, a
fivefold LMR was observed with a profile very similar to
that in Na3Bi. In both Na3Bi and GdPtBi, the carrier
mobility is relatively low (3000 and 2000 cm2=Vs at 2 K,
respectively).
There have also been several reports of negative LMR

observed in the Weyl semimetals TaAs, NbP, and analogs
[18–21]. However, the weakness of their LMR signals

(50–100 times weaker than in Na3Bi) and their fragility
with respect to the placement of contacts, together with
the high mobilities of the Weyl semimetals (150 000 to
200 000 cm2=Vs), have raised concerns about current-
jetting artifacts [20,21]. As a consequence, there is consid-
erable confusion and uncertainties about LMR experiments,
in general, and the LMR reported in the Weyl semimetals, in
particular. The concerns seem to have spread to Na3Bi
and GdPtBi as well, notwithstanding their much larger
LMR signal.
There is good reason for the uncertainties. Among the

resistivity matrix elements, measurements of the longi-
tudinal resistivity ρxx (for Bkx̂) are the most vulnerable to
inhomogeneous flow caused by current jetting. Even when
the LMR signal in a sample is mostly intrinsic, the chiral
anomaly produces an intrinsic conductivity anisotropy u,
which unavoidably produces inhomogeneous current dis-
tributions that distort the observed LMR profile. Given the
prominent role of LMR in chiral-anomaly investigations, it
is highly desirable to understand these effects at a quanti-
tative level and to develop a procedure that removes the
distortions.
A major difference between the large LMR systems

Na3Bi and GdPtBi, on the one hand, and the Weyl semi-
metals, on the other, is their carrier densities. Because the
density is low in both Na3Bi (1 × 1017 cm−3) and in
GdPtBi (1.5 × 1017 cm−3), the field BQ required to force
the chemical potential ζ into the LLL is only 5–6 T. By
contrast, BQ is 7–40 T in the Weyl semimetals. As shown in
Fig. 1(a), the physics underlying the anomaly involves the
occupation of chiral, massless states. Occupation of the
higher LLs (when B < BQ) leads to strong suppression of
the anomaly [17]. Moreover, as discussed below, LMR
measurements involve a competition between the anomaly
mechanism (“the quantum effect”) and classical current-
jetting effects, which onset at a second field scale Bcyc.
The relative magnitudes of these field scales dictate which
effect dominates.
Here, we report a series of experiments designed to

separate intrinsic from extrinsic effects in LMR experi-
ments. Focusing of the current density JðrÞ into a beam
strongly reduces its value at the edges of a sample. As
shown in Sec. II, the effects of current jetting can be neatly
factored into a quantity Ly (line integral of Jx), which can
be measured by local voltage contact pairs. By comparing
local voltage drops at the maximum and minimum of the
profile of J, we devise a litmus test that sharply distin-
guishes the two chiral-anomaly semimetals from the case
of pure Bi (Sec. III). Adopting a quantitative treatment
(Sec. IV), we show how the intrinsic ρxxðBÞ can be derived
from the local voltage results. Applying this technique to
Na3Bi, we obtain the intrinsic profiles of ρxxðBÞ and the
anisotropy, with current-jetting distortions removed. The
degree of distortion at each B value becomes plainly
evident. The competition between the quantum and

(a)

(c)

(b)

FIG. 1. (a) The Landau spectrum of Weyl fermions. In a field
Bkx̂, the lowest Landau levels are chiral with velocity v either kB
or −B. Application ofEkB transfers charge between them, which
increases the left-moving population NL at the expense of the
right-moving population NR (the bold blue and red curves
indicate occupations of the LLs). Panel (b) shows a pair of
voltage contacts (blue dots) placed on the line joining the current
contacts (white circles). A second pair (yellow) is placed along an
edge. Panel (c) is a schematic drawing of the intensity map of Jx
(with dark regions being the most intense) when current-jetting
effects are pronounced. The profile of Jx vs y (with x at the
dashed line) is sketched on the right.
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classical effects is described in Sec. V. To look beyond
Na3Bi and GdPtBi, we discuss how the tests can be
extended using focused ion beam techniques to test
ZrTe5, which grows as a narrow ribbon. The Weyl
semimetals, e.g., TaAs, require availability of ultrathin
films. The planar angular magnetoresistance (Sec. VI)
provides a second litmus test—one that is visually direct
when displayed as a parametric plot (Sec. VII). In Sec. VIII,
we summarize our results.

II. THE SQUEEZE TEST

Current jetting refers to the focusing of the current
density JðrÞ into a narrow beam kB arising from the field-
induced anisotropy u of the conductivity (the drift of
carriers transverse to B is suppressed relative to the
longitudinal drift). To maximize the gradient of J along
the y axis, we select platelike samples with L,w ≫ t, where
w, L, and t are the width, length, and thickness, respectively
[Fig. 1(b)]. The x and y axes are aligned with the edges and
Bkx̂. As sketched in Fig. 1(c), the profile of Jx vs y is
strongly peaked at the center of the sample and suppressed
towards the edges. In the squeeze test, we measure the
voltage difference across a pair of contacts (blue dots)
along the line joining the current contacts (which we call
the spine), as well as that across a pair on the edge (yellow
dots). To accentuate current-jetting effects, we keep the
current contact diameters dc small (dc ≪ w) and place them
on the top face of the sample wherever possible. (The
squeeze test cannot be applied to needlelike crystals.)

A. Sample preparation

We provide details on the preparation of Na3Bi, which
is by far the most difficult of the three materials to work
with. Na3Bi crystallizes to form hexagonal platelets with
the broad face normal to (001). The crystals investigated
here were grown under the same conditions as the samples
used in Xiong et al. [16]; they have carrier densities
1 × 1017 cm−3 and BQ in the range 5–6 T. These crystals
should be distinguished from an earlier batch [22] that have
much higher carrier densities (3–6 × 1019 cm−3) for which
we estimate BQ ∼ 100 T. No evidence for negative LMR
was obtained in the highly doped crystals [22].
Because of the high Na content, crystals exposed to

ambient air undergo complete oxidation in about 5 s.
The stainless growth tubes containing the crystals were
opened in an argon glovebox equipped with a stereoscopic
microscope, and all sample preparation and mounting were
performed within the glovebox. The crystals have the
ductility of a soft metal. Using a sharp razor, we cleaved
the bulk crystal into platelets 1 × 1 mm2 on a side with
thickness 100 μm. Current and voltage contacts were
painted on using silver paint (Dupont 4922N). A major
difficulty was achieving low-resistance contacts on the top
face (for measuring Rspine). After much experimentation,

we found it expedient to remove a thin layer of oxide by
lightly sanding with fine emery paper (within the glove-
box). The sample was then placed inside a capsule made of
G10 epoxy. After sealing the lid with STYCASTepoxy, the
capsule was transferred to the cryostat.
We contrast two cases. In case 1, the anisotropy u ¼

σxx=σyy increases in a longitudinal field B because the
transverse conductivity σyy decreases steeply (as a result of
cyclotronic motion), while σxx is unchanged in B. With
Bkx̂, the two-band model gives the resistivity matrix

ρ̃ðBÞ ¼
� ½σe þ σh�−1 0

0 ½σeΔe
þ σh

Δh
�−1

�
ð1Þ

(we suppress the z component for simplicity). The zero-B
conductivities of the electron and hole pockets are given
by σe ¼ neμe and σh ¼ peμh, with n and p the electron
and hole densities, respectively, and e the elemental charge.
Note that μe and μh are the mobilities in the electron
and hole pockets, respectively, and Δe ¼ ð1þ μ2eB2Þ and
Δh ¼ ð1þ μ2hB

2Þ. With Bkx̂, the off-diagonal elements
vanish. In case 1, we assume that σe and σh remain
constant. Hence, the observed resistivity ρxx is unchanged
in B. However, the transverse conductivity σyy decreases
(as 1=B2 in high B). The anisotropy arises solely from the
suppression of the conduction transverse to B by the
cyclotron motion of both species of carriers.
Case 2 is the chiral anomaly regime in the Dirac

semimetal. Charge pumping between Landau levels
(LLs) of opposite chirality leads to an axial current that
causes σxx to increase with B. Simultaneously, the 1D
nature of the LL dispersion suppresses the transverse
conductivity σyy. Hence, the increase in u derives equally
from the opposite trends in σxx and σyy.
Denoting field-induced changes by Δ, we have

Case 1∶ Δu > 0 ⇔ Δσxx ∼ 0;Δσyy < 0; ð2Þ

Case 2∶ Δu > 0 ⇔ Δσxx > 0;Δσyy < 0: ð3Þ

In the test, the voltage drops Vspine and Vedge are given by

VedgeðBÞ ¼ −ρxxðBÞ
Z

l

0

Jxðx; w=2;BÞdx≡ ρxxLe; ð4Þ

VspineðBÞ ¼ −ρxxðBÞ
Z

l

0

Jxðx; 0;BÞdx≡ ρxxLs; ð5Þ

where LeðBÞ and LsðBÞ are the line integrals of Jx along
the edge and spine, respectively (l is the spacing between
voltage contacts). The intrinsic B dependence [expressed in
ρxxðBÞ] has been cleanly separated from the extrinsic B
dependence of LeðBÞ and LaðBÞ, which arises from current
focusing effects.
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The area under the curve of Jx vs y is conserved, i.e.,

Z
w=2

w=2
Jxðx; y;BÞdy ¼ I; ð6Þ

with I the applied current. At B ¼ 0, we may take J to be
uniform with the magnitude J0 ¼ I=ðwtÞ. The line integral
reduces to L0 ¼ J0l. In finite B, focusing of the current
beam implies that the current density is maximum along
the spine and minimum at the edge, i.e., Jxðx; 0;BÞ >
Jxðx; w=2;BÞ. Moreover, Eq. (6) implies that Jxðx; 0;BÞ >
J0 > Jxðx; w=2;BÞ. Hence, the line integrals satisfy the
inequalities

LsðBÞ > L0 > LeðBÞ: ð7Þ

If both σe and σh are B independent, as in case 1, we have
from Eqs. (4), (5), and (8),

VspineðBÞ > V0 > VedgeðBÞ; ð8Þ

where V0 is the voltage drop across both pairs at B ¼ 0.
Clearly, Vspine increases monotonically with B, while Vedge

decreases. Physically, focusing the current density along
the spine increases the local E field there. Current con-
servation then requires Jx to be proportionately suppressed
along the edges. Measuring Vedge alone yields a negative
LMR that is spurious.
In case 2, however, ρxx decreases intrinsically with B

because of the chiral anomaly, while Ls increases.
Competition between the two trends is explicitly seen in
the profile of Vspine vs B. As shown below, in Na3Bi and
GdPtBi, the intrinsic decrease in ρxx dominates, so both
Vspine and Vedge decrease with B. We remark that, from
Eq. (8), Vspine always lies above Vedge. Moreover, when the
rate of increase in Ls begins to exceed (in the absolute
sense) the rate of decrease in ρxx at sufficiently large B, the
curve of VspineðBÞ can display a broad minimum above
which Vspine increases.
Hence, if both Vspine and Vedge are observed to decrease

with increasing B, the squeeze test provides positive
confirmation that the observed LMR is intrinsic. Their
field profiles bracket the intrinsic behavior of ρxx.
Conversely, if intrinsic LMR is absent (i.e., σxx is
unchanged), Vspine and Vedge display opposite trends (the
marginal case when the intrinsic LMR is weak is discussed
in Sec. IV).
We remark that the current-jetting effects cannot be

eliminated by using very small samples (e.g., using nano-
lithography). As long as we remain in the classical transport
regime, the equations determining the functional form of
Jðx; yÞ in strong B are scale invariant. Because intrinsic
length scales (e.g., the magnetic length lB or the skin depth
δs) are absent in classical dc transport, the same flow
pattern is obtained on either mm or micron-length scales.

III. RESULTS OF SQUEEZE TEST

The results of applying the squeeze test on the three
systems are summarized in Fig. 2. In panels (a) and (b), we
show the voltage drops Vedge and Vspine measured in pure
bismuth (sample B1). The signals are expressed as the
effective resistances

Redge ¼ ρxxðBÞ:LeðBÞ=I; ð9Þ

Rspine ¼ ρxxðBÞ:LsðBÞ=I: ð10Þ

The steep decrease in Redge [panel (a)] illustrates how an
apparent but spurious LMR can easily appear when the
mobility is very high (in Bi, μe exceeds 106 cm2=Vs at
4 K). Comparison of Redge and Rspine measured simulta-
neously shows that they have opposite trends vs B. As σe
and σh are obviously B independent in Bi, ρxx is also B
independent. By Eqs. (9) and (10), the changes arise solely
from Le and Ls. Hence, Figs. 2(a) and 2(b) verify
experimentally that Vedge and Vspine display the predicted
large variations of opposite signs when current jetting is the
sole mechanism present (see simulations in Sec. IV).
Next, we consider Na3Bi. In this sample (N1), Redge

below 20 K decreases by a factor of 50 between B ¼ 0 and
10 T [Fig. 2(c)]. This is an order of magnitude larger than
observed in Ref. [16]. The increase arises from the
enhanced current focusing effect in the present contact
placement utilizing small current contacts attached to the
broad face of the crystal, as well as a larger u. In spite of
the enhanced jetting, Rspine shows a pronounced decrease in
contrast to the case for Bi. The intrinsic decrease in ρxx
dominates the increase in Ls throughout [see Eq. (10)].
Hence, we conclude that there exists a large intrinsic,
negative LMR that forces Rspine to decrease, despite the
focusing of JðrÞ along the ridge. Further evidence for the
competing scenario comes from the weak minimum at 10 T
in the curves below 40 K in Fig. 2(d). As anticipated above,
in large B, ρxx approaches a constant because of the
saturation chiral-anomaly term. However, Ls continues
to increase because the transverse conductance worsens.
Consequently, Rspine goes through a minimum before
increasing. This is seen in Rspine but absent in Redge.
A feature that we currently do not understand is the large

V-shaped cusp in weak B. At 100 K, the cusp is prominent
in Vspine but absent in Vedge.
In Figs. 2(e) and 2(f), we show the field profiles of Redge

and Rspine measured in GdPtBi (sample G1). Again, as in
Na3Bi, the anomaly-induced decrease in ρxx dominates the
increase in Ls, and Rspine is observed to decrease in
increasing B. The relative decrease in Redge is larger than
that in Rspine. Further, Rspine below 10 K shows the onset of
a broad minimum above 10 T [Fig. 2(f)], whereas Redge

continues to fall.
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These features, in accordance with the discussion above,
are amenable to a quantitative analysis that yields the
intrinsic field profiles of both ρxx and u (Sec. IV).

IV. THE INTRINSIC LMR PROFILE

The factorization expressed in Eqs. (9) and (10) allows
us to obtain the intrinsic field profile of ρxxðBÞ in the face of
strong current-density inhomogeneity induced by jetting.
To start, we note that, once the boundaries are fixed, the
functional form of the inhomogeneous current density JðrÞ
depends only on the conductivity anisotropy u regardless
of its microscopic origin. Assuming a constant ρxx ¼ ρ0
(i.e., case 1), we first calculate, by numerical simulation,
the effective resistances R0

edgeðuÞ and R0
spineðuÞ over a broad

range of u. For simplicity, the simulation is performed for a
sample in the 2D limit by solving the anisotropic Laplace
equation

½σxx∂2
x þ σyy∂2

y�ψðx; yÞ ¼ 0 ð11Þ

for the potential ψðx; yÞ at selected values of u. We used
the relaxation method on a triangular mesh with Dirichlet
boundary conditions at the current contacts [inset in
Fig. 3(a)].
Figure 3(a) displays the calculated curves of R0

edge and
R0
spine in a 2D sample with the aspect ratio matched to

that in the experiment on Na3Bi. As expected, with ρxx set
to a constant, the two curves diverge. This reflects the
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FIG. 2. Comparison of squeeze-test results in pure bismuth (case 1) and in Na3Bi and GdPtBi (case 2). Panels (a) and (b) display the
voltage drops Vedge and Vspine (expressed as Redge and Rspine, respectively) measured in Bi (sample B1). In panel (a), Redge displays a
steep decrease with increasing B that steepens as T decreases from 100 K to 2 K. By contrast, Rspine increases steeply. The opposite
trends in (a) and (b) imply that both arise from pure current jetting, strictly reflecting changes in Le and Ls, respectively [Eqs. (9) and
(10)]. By contrast, in Na3Bi (sample N1), both Redge decrease with B [panels (c) and (d), respectively]. This implies that ρxxðBÞ
decreases uniformly throughout the sample. Nonetheless, current focusing effects (expressed by Le and Ls) are visible. Below 20 K, Le
exaggerates the decrease in Redge, while Ls counters some of the intrinsic decrease in Rspine. A telling feature is the weak upturn in Rspine

above 10 T. When the intrinsic LMR is saturated, Ls produces a weak increase in Rspine. In GdPtBi [sample G1, panels (e) and (f)], both
Redge and Rspine also decrease with increasing B. Below 10 K, the decrease in Redge is much larger than that in Rspine. The latter also
attains a broad minimum above 10 T (but not the former). These features confirm that Le amplifies the growth in the intrinsic LMR,
while Ls partially counters it.
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measured curves. In this sample (N1), Rintr decreases by a factor of 10.9 between B ¼ 0 and 10 T. We note that Rspine displays a weak
minimum near 10 T, which results from the competing trends in ρxxðBÞ andLsðBÞ. Panel (b) displays the intrinsic uðBÞ in Na3Bi derived
from Eq. (13). The corresponding curves for GdPtBi (sample G1 at 2 K) are shown in panels (c) and (d). Again, RintrðBÞ in panel (c) is
sandwiched between the curves of RedgeðBÞ and RspineðBÞ. Panel (d) plots the intrinsic anisotropy uðBÞ. In GdPtBi, the Weyl nodes only
appear when B is strong enough to force band crossing. In G1, this occurs at 3.4 T (u remains close to 1 below this field).
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simultaneous enhancement of the E field along the spine
and its steep decrease at the edge caused by pure current
jetting.
From the calculated resistances, we form the ratio

F ðuÞ ¼ R0
edge=R

0
spine ¼ Le=Ls: ð12Þ

The template curve F ðuÞ, which depends only on u, is
plotted in semilog scale in Fig. 3(b).
Turning to the values of RedgeðBÞ and RspineðBÞmeasured

in Na3Bi at the field B, we form the ratio GðBÞ ¼
Redge=Rspine ¼ Le=Ls. Although G is implicitly a function
of u, it is experimentally determined as a function of B
(how u varies with B is not yet known). We remark that
GðBÞ and F ðuÞ represent the same physical quantity
expressed as functions of different variables. To find u,
we equate GðBÞ to F ðuÞ in the template curve. This process
leads to the equation

uðBÞ ¼ F−1(GðBÞ); ð13Þ

from which we determine u given B. Finally, because R0
edge

and R0
spine are known from the simulation, we obtain the

intrinsic profile of ρxx as a function of B using the relations

ρxxðBÞ ¼
RedgeðBÞ
R0
edgeðuÞ

ρ0 ¼
RspineðBÞ
R0
spineðuÞ

ρ0: ð14Þ

The redundancy (either resistance may be used) provides a
useful check for errors in the analysis.
The results of the analysis are shown in Fig. 4 for both

Na3Bi and GdPtBi. In Fig. 4(a), we plot ρxxðBÞ in Na3Bi [as
the intrinsic curve RintrðBÞ, in blue]. As expected, RintrðBÞ
is sandwiched between the measured curves of RedgeðBÞ
and RspineðBÞ. The field profile of the intrinsic anisotropy u
is displayed in Fig. 4(b). It is interesting to note that, in
Na3Bi at 2 K, the intrinsic conductivity anisotropy
increases to 8 as B is increased to 14 T. This engenders
significant distortion of JðrÞ away from uniform flow. The
analysis provides a quantitative measure of how current-
jetting effects distort the measurements. At 10 T, Rspine is
larger than Rintr by a factor of 2.3, whereas Redge is 4.0
times smaller than Rintr. The plots show explicitly how
RspineðBÞ still decreases (by a factor of about 5) between
B ¼ 0 and 10 T, despite the enhancement in Ls caused by
current jetting. Here, we see explicitly that this occurs
because the intrinsic LMR is so large (decreasing by a
factor of 10.9 between 0 and 10 T) that the current
squeezing factor is always subdominant. With the pro-
cedure described, this subdominant distortion can be
removed entirely. The corresponding profiles of ρxxðBÞ
and uðBÞ in GdPtBi are shown in Figs. 4(c) and 4(d),
respectively. Unlike the case in Na3Bi, a finite B is required

to create the Weyl nodes. This occurs at about 3.4 T in G1.
Below this field, the system is isotropic (u close to 1).

V. QUANTUM VS CLASSICAL EFFECTS

From the experimental viewpoint, it is helpful to view the
LMR experiment as a competition between the intrinsic
anomaly-induced decrease in ρxx (a quantum effect) and
the distortions engendered by current jetting (classical
effect). To observe a large, negative LMR induced by
the chiral anomaly, it is imperative to have the chemical
potential ζ enter the LLL. The field at which this occurs,
which we call BQ, sets the onset field for this quantum
effect. By contrast, the distortions to J caused by current
jetting onset at the field Bcyc, which is set by the inverse
mobility 1=μ. We write Bcyc ¼ A=μ, where the dimension-
less parameter A ¼ 5–10, based on the numerical simu-
lations [Eqs. (12) and (13)].
If BQ < Bcyc, the LLL is accessed before classical

current distortion appears in increasing B. This is the
situation in the upper shaded region in the BQ vs Bcyc

space in Fig. 5(a). The conditions are favorable for
observing the chiral anomaly without worrying about
classical current jetting. (To be sure, the chiral anomaly
itself leads to a large anisotropy σxx=σyy that can distort J.
However, this is a quantum effect that follows from the
chiral anomaly and can be compensated for.) The measured
curves of Rspine and Redge bracket the intrinsic ρxx, which
allows the latter to be obtained, as explained in Eqs. (12)–
(14). In both Na3Bi and GdPtBi, BQ ∼ 5–6 T, whereas Bcyc

exceeds 30 T. They fall safely within the shaded area.

(a) (b)

FIG. 5. Competition between the intrinsic chiral-anomaly LMR
(with onset field BQ) and the extrinsic classical effect of current
jetting (onset field Bcyc ¼ A=μ, A ¼ 5–10). Panel (a): In the
shaded upper-half region, the system enters the LLL before the
current-jetting effects dominate as B increases (BQ < Bcyc). Panel
(b) shows a hypothetical case close to the boundary BQ ≃ Bcyc. In
the profile of Rspine, an initial decrease is followed by a steep
increase above Bcyc. For systems in the unshaded region
(BQ > Bcyc), the LLL is entered long after current-jetting effects
become dominant. The classical effect effectively screens the
quantum behavior. Bulk crystals of Na3Bi and GdPtBi fall safely
in the upper half, whereas TaAs and NbAs fall in the lower half.
One way to avoid current jetting in the latter is to lower BQ by
gating ultrathin-film samples.
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As BQ approaches Bcyc [the diagonal boundary in Fig. 5(a)],
classical current jetting becomes increasingly problematical.
In Fig. 5(b), the schematic curve illustrates the trend of how
the quantum behavior can be swamped by the onset of
current jetting.
Finally, if BQ ≫ Bcyc, classical distortion effects onset

long before the LLL is accessed. In this case, Rspine and
Redge display divergent trends vs B. Even if an intrinsic
LMR exists, we are unable to observe it in the face of the
dominant (artifactual) change in Vxx caused by classical
current jetting. In the Weyl semimetals TaAs and NbAs,
BQ ≃ 7 and 40 T, respectively, whereas Bcyc ∼ 0.4 T
(because of their high mobilities). This makes LMR an
unreliable tool for establishing the chiral anomaly in the
Weyl semimetals. We illustrate the difficulties with Redge

and Rspine measured in TaAs [Fig. 6(a)] and in NbAs
[Fig. 6(b)].
In the initial reports, a weak LMR feature (5%–10%

overall decrease) was observed in TaAs and identified
with the chiral anomaly. Subsequently, several groups
found that both the magnitude and sign of the LMR feature
are highly sensitive to voltage contact placement. We can,
in fact, amplify the negative LMR to nearly 100%. To apply
the squeeze test, we have polished a crystal of TaAs to the
form of a thin square plate and mounted contacts in the
configuration sketched in Fig. 1(b), with small current
contacts (about 80 μm). As shown in Fig. 6(a), Redge
at 4 K (thick blue curve) displays a steep decrease, falling
to a value approaching our limit of resolution at 7 T.
Simultaneously, however, Rspine (red) increases rapidly. The
two profiles are categorically distinct from those in Na3Bi
and GdPtBi [Figs. 2(c)–2(f)] but very similar to the curves
for Bi [Figs. 2(a) and 2(b)]. Moreover, the weak SdH
oscillations fix the field BQ needed to access the LLL at
7.04 T [inset in (a)]. Since 1=μ ∼ 0.06 T, we infer that
the classical current-jetting effect onsets long before the
quantum limit is accessed. Hence, TaAs is deep in the right-
bottom corner of the phase diagram in Fig. 5(a). The
current-jetting effects appear well before TaAs attains the
quantum limit at BQ, and it completely precludes the chiral
anomaly from being observed by LMR.
Applying the squeeze test to NbAs next, we display the

curves of Redge (black) and Rspine (red) at 4 K in Fig. 6(b).
Here, both Redge and Rspine increase with B, but Rspine

increases 100 times faster (in the field interval 0 < B <
8.5 T, Redge doubles but Rspine increases by a factor of 280).
The vast difference in the rate of change is direct evidence
for the squeezing of JðrÞ along the spine, as depicted in
Fig. 1(c). Again, with BQ ∼ 40 T, we infer that NbAs falls
deep in the right-bottom corner of Fig. 5(a). Classical
current jetting dominates the LMR.
It is worth remarking that the squeeze-test results do not

invalidate the ARPES evidence, showing that TaAs and
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FIG. 6. The squeeze test applied to the Weyl semimetals TaAs
and NbAs. Panel (a) shows field profiles of Redge and Rspine in
TaAs (measured at 4 K) in an in-plane, longitudinal B along the
“spine” of the sample. The crystal is a thin plate of dimension
2.0 × 1.5 × 0.2 mm3 with spacing l between voltage contacts of
1.5 mm, and current-contact diameters dc ∼ 80 μm. Between
0.5 T and 6 T, Redge (thick blue curve, left axis) is observed to
decrease by a factor of about 50 to values below our resolution.
However, the spine resistance Rspine (red curve) increases by a
factor of 7.8 (the right axis replots Rspine and Redge reduced by a
factor of 10). This implies that the pronounced decrease in Redge

is an artifact caused by current jetting, just as observed in pure Bi.
The Landau level indices n of the weak SdH oscillations are
indicated by vertical arrows. The index plot (inset) shows that
n ¼ 1 is reached at BQ ¼ 7.04 T, whereas 1=μ ∼ 0.06 T. Panel
(b) shows field profiles of Redge (black curve, left axis) and Rspine

(red curve, right axis) measured in NbAs at 4 K in longitudinal B
(crystal size 1.5 × 1.0 × 0.4 mm3). The small negative LMR
anomaly near zero B in Redge has been invoked as evidence for the
chiral anomaly even though Redge increases above 1.2 T. By
contrast, Rspine increases monotonically at a very steep rate
(note the difference in vertical scales). In both high-mobility
semimetals, classical current-jetting effects onset near 0.4 T, well
below BQ. This makes the chiral anomaly virtually unobservable
by LMR.
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NbAs are Weyl semimetals. Rather, they demonstrate that
the negative LMR results reported to date in the Weyl
semimetals fall deep in the regime where classical current-
jetting effects dominate.
Figure 5(a) suggests a way to avoid the screening effect

of current jetting for the Weyl semimetals. By growing
ultrathin films, one may use gating to lower ζ towards zero
in the Weyl nodes. This allows the LLL to be accessed at a
much lower BQ. Simultaneously, the increased surface
scattering of the carriers will reduce μ (hence increase
Bcyc). By allowing the quantum effect to onset before the
classical effect becomes dominant, both trends shift the
“operating point” towards the shaded region BQ < Bcyc.
The ability to tune BQ by gating will enable more tests for
mapping out the current density distribution. The squeeze
test is actually easier to implement using thin-film samples.
Because several groups worldwide are attempting to grow
thin-film TaAs and NbAs, the prospects for the Weyl
semimetals seem quite encouraging.
A fourth candidate for the chiral anomaly is ZrTe5

[23,24], which displays a moderately large negative
LMR signal (ρxx decreases by 35%). A very recent experi-
ment [24] has detected a (true) planar Hall effect when the
chiral anomaly appears. This implies the simultaneous
appearance of a large Berry curvature in applied B.
However, currently available bulk crystals have a narrow
ribbonlike morphology unsuited for the squeeze test (a
platelike shape is optimal). However, using focused ion
beam (FIB) techniques, we may envisage sculpting the
ribbons into thin plates. Microlithography techniques can
then be harnessed to deposit voltage contacts for measuring
Rspine and Redge. We are not aware of any technical barrier
that would preclude applying the squeeze test on platelike
crystals tens of μm on a side. The field profiles of Rspine and
Redge may then be compared as reported here in both Na3Bi
and GdPtBi. The FIB technique can be applied to future
chiral-anomaly candidate materials that do not readily grow
as large crystals.

VI. PLANAR ANGULAR MAGNETORESISTANCE

As shown in Eqs. (2) and (3), the growth of the
anisotropy u arises differently in cases 1 and 2. The
difference leaves a strong imprint on the planar angular
magnetoresistance (AMR), which we describe here. In an
AMR experiment, B is rotated within the x-y plane, while
the longitudinal and transverse voltages are recorded. AMR
experiments have been used to investigate the resistivity
anisotropy produced by the magnetization M in ferromag-
netic thin films. Recently, Burkov [25] has suggested
that AMR measurements may be used to probe the chiral
anomaly.
The sample geometry is as defined above but now with

broad current contacts and a pair of standard Hall contacts
spaced along y [see inset in Fig. 7(b)]. The lab frame (x and

y axes) remain fixed to the sides of the sample. The in-plane
B determines the sample’s orthogonal frame a, b, and c
(akB is tilted at an angle θ relative to x̂ with ckẑ). The tilt
produces potential drops Vxx and Vyx given by

Vxx=I ¼ ρbb þ Δρ cos2 θ; ð15Þ

Vyx=I ¼ Δρ sin θ cos θ; ð16Þ

where ρaa and ρbb are the resistivities measured along axes
a and b, respectively, and Δρ ¼ ρaa − ρbb.
By convention, the transverse voltage Vyx is dubbed the

“planar Hall effect” even though it is strictly even in B. As
Vyx does not satisfy the Onsager relation for a true Hall
response, this is a misnomer. [In topological matter, the
Berry curvature can generate a true in-plane Hall signal that
is odd in B and distinct from Vyx in Eq. (16).] To avoid
confusion, we call Vyx the off-diagonal AMR signal and
Vxx the longitudinal AMR signal.
Generally, the AMR results are not very informative (the

same angular pattern is obtained regardless of the micro-
scopic origin of the anisotropy). However, for our problem,
we find that the parametric plot of Vyx vs Vxx provides a
litmus test that distinguishes case 1 from case 2.
In case 1, with θ ¼ 0 (Bkx̂), Vxx detects ρaaLe; its

“spurious” decrease as B increases arises entirely from Ls.
In the orthogonal situation θ ¼ π=2, Vxx detects ρbbL0

(i.e., beam focusing effects are absent). By juxtaposition,
the two measurements reveal how u behaves [see Eq. (2)].
This is best shown by plotting Vyx against Vxx, with θ as the
running parameter at a fixed value of the magnitude B.
In weak B, the contours describe small loops circling the
zero-B point. As B increases, they expand dramatically
away from the zero-B point in the direction of increasing
Vxx. This lopsided expansion (resembling a shock wave)
reflects the sharp increase in the resistivity ρbb measured
orthogonal to B [while ρaa remains unchanged; see
Eq. (1)]. Indeed, from Eq. (1), we have, in the high-B limit,

ρbb →
ðμeμhÞ2B2

ðσhμ2e þ σeμ
2
hÞ
: ð17Þ

Here, ρbb increases as B2 without saturation. Hence, in case
1, we expect the caliper of the contours (given by Δρ) to
expand without limit as B2.
Case 2 yields a qualitatively different parametric plot.

In the chiral anomaly regime, our measurements show that
ρaa (captured by Vxx at θ ¼ 0) decreases intrinsically with
increasing B, while ρbb (at θ ¼ π=2) increases by roughly
the same fraction. The balanced changes lead to closed
contours that expand roughly isotropically from the zero-B
point. Moreover, the contour calipers Δρ approach satu-
ration at large B.
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VII. PARAMETRIC PLOTS

As in Sec. III, we compare the planar angular MR
results in the three materials, pure Bi, Na3Bi, and GdPtBi.
Figure 7(a) displays the angular profiles ρxx vs θ at selected
field magnitudes Bmeasured in Bi at 200 K with Jkx̂. AsB
is tilted away from alignment with J (θ ¼ 0), ρxx increases
very rapidly at a rate that varies nominally as B2. The
overall behavior in ρxx is a very large increase with B as
soon as jθj exceeds 10°. However, at θ ¼ 0, a decrease in
ρxx of roughly 50% can be resolved. This is the spurious
LMR induced by pure current jetting. The off-diagonal
signal ρyx shows the sin θ: cos θ variation described in
Eq. (16) (ρyx is strictly even in B).
The corresponding traces of ρxx and ρyx measured in

Na3Bi at 2 K are shown in Figs. 7(c) and 7(d), respectively.

Although the curves for ρyx are similar to those in Bi, a
qualitatively different behavior in ρxx becomes apparent.
At θ ¼ 0, ρxx is suppressed by a factor of about 7 (when the
chiral anomaly appears). In the transverse direction
(θ ¼ 90°), the poor conductance transverse to B in the
LLL raises ρxx by a factor of about 2.5. In terms of absolute
magnitudes, the changes to ρxx are comparable along the
two orthogonal directions, in sharp contrast with the case
in Bi. This “balanced” growth leaves a clear imprint in the
parametric plots. The off-diagonal signal ρyx displays the
same sin θ: cos θ variation as in Bi.
The plots of ρxx and ρyx for GdPtBi in Figs. 7(e) and 7(f)

also show a concentric pattern. A complication in GdPtBi is
that the nature of the Weyl node creation in the field (by the
Zeeman shift of parabolic touching bands) is anisotropic
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FIG. 7. Planar AMR measurements in Bi, Na3Bi, and GdPtBi. Panels (a) and (b) show the θ dependence of the diagonal and off-
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(dependent on the direction of B). The existence of low-B
oscillations adds a modulation to the off-diagonal curves,
which distorts the variation from the sin θ: cos θ form.
Nonetheless, a balanced growth in ρxx is also observed]
Fig. 7(e)].
Figure 8 compares the parametric plots in Bi at T ¼

200 K [panel (a)] and 100 K [panel (b)]. In each orbit (B set
at the indicated value), θ starts at 0° on the left limb and
ends at 90° on the right. In Fig. 8(a), the steep increase on
the right limb causes the orbits to expand strongly to the
right. At 100 K [panel (b)], the higher mobility creates
exaggerated skewing of the rightward expansion, leading to
the emergence of a “shock-wave” pattern. By contrast, the
parametric plots in both Na3Bi [Fig. 8(c) and GdPtBi in
panel (d)] show concentric orbits that expand in a balanced
pattern as anticipated above. The contrast between case 1
[panels (a) and (b)] and case 2 directly reflects the distinct
nature of mechanisms that increase the anisotropy u [see
Eqs. (2) and (3)].

VIII. CONCLUDING REMARKS

As mentioned in Sec. I, the existence of a negative LMR
that is intrinsic is relatively rare. However, the observation

of an artifactual decrease Vxx in the LMR geometry is a
common experience in high-mobility semimetals. To assist
in the task of disentangling the rare intrinsic cases from
extrinsic cases (mostly caused by current jetting), we
described a test that determines the current-jetting distor-
tions and a procedure for removing them. The squeeze test
consists of comparing the effective resistance Rspine mea-
sured along the spine (line joining current contacts) with
that along an edge Redge. In pure Bi, Rspine increases
dramatically with B, while Redge decreases. However, in
both Na3Bi and GdPtBi, both Rspine and Redge decrease.
Hence, an inspection of the trend in Rspine allows case 1
(here Bi) to be distinguished from case 2, the two chiral-
anomaly semimetals. From the factorization implicit in
Eqs. (9) and (10), we relate the experimental ratio G to the
curve F obtained by numerical simulation. This enables
the intrinsic profiles of both ρxxðBÞ and u to be obtained
from measurements of Redge and Rspine. After removal of
the distortions, ρxx is seen to decrease by a large factor
(10.9) between B ¼ 0 and 10 T, while u increases by 8.
(For simplicity, the numerical simulation was done in the
2D limit, which we judge is adequate for flakelike samples.
Obviously, this can be improved by adopting a fully 3D
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simulation.) The yes or no nature of the test based on
inspection of Rspine, bolstered by the quantitative analysis
that removes the subdominant corrections, adds consider-
able confidence that the chiral-anomaly LMR profiles in
Na3Bi and GdPtBi are intrinsic. Moreover, the subdomi-
nant distortion factors arising from current jetting can be
effectively removed.
In Sec. V, we described LMR experiments as a com-

petition between the intrinsic quantum effect arising from
the chiral anomaly and the classical effects of current
jetting. The former describes a phenomenon intrinsic to
massless chiral fermions. To see it in full force, the applied
B should exceed BQ, the field needed to move ζ into the
LLL. This point seems worth emphasizing because in
many reports the claimed anomaly seems to appear in
weak fields, B ≪ BQ. The experimental concern is that
once current jetting appears (at the field scale Bcyc), it
inevitably engenders a dominant, negative LMR profile that
is extrinsic in origin. The divergent field profiles of Rspine

and Redge provide a strong warning that the LMR profile is
then highly unlikely to be intrinsic.
Looking ahead, we discussed in Sec. V how the classical

screening effect from current jetting may be avoided by
using ultrathin, gateable films of the Weyl semimetals,
which may become available in the near future. For the
fourth class of chiral anomaly semimetal ZrTe5 [23,24], we
propose using a focused ion beam to sculpt platelike
samples that are 10 μm on a side, and applying micro-
lithography to attach contacts for the squeeze test.
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