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Simulating the real-time evolution of quantum spin systems far out of equilibrium poses a major
theoretical challenge, especially in more than one dimension. We experimentally explore quench dynamics
in a two-dimensional Ising spin system with transverse and longitudinal fields. We realize the system with a
near unit-occupancy atomic array of over 200 atoms obtained by loading a spin-polarized band insulator of
fermionic lithium into an optical lattice and induce short-range interactions by direct excitation to a low-
lying Rydberg state. Using site-resolved microscopy, we probe antiferromagnetic correlations in the system
after a sudden quench from a paramagnetic state and compare our measurements to numerical calculations
using state-of-the-art techniques. We achieve many-body states with longer-range antiferromagnetic
correlations by implementing a near-adiabatic quench of the longitudinal field and study the buildup of
correlations as we vary the rate with which we change the field.
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Lattice quantum spin models serve as a paradigm for
exploring a range of many-body phenomena, including
quantum phase transitions [1,2], equilibration and thermal-
ization [3,4], and quench dynamics [5–10]. While there
exists a variety of well-developed theoretical techniques to
study the equilibrium properties of quantum spin systems
[11–17], the toolkit for simulating real-time dynamics of
these systems is rather limited and can only capture the
evolution accurately for short times, especially for systems
in more than one dimension [11,18–20]. Recent advances
in the field of quantum simulation have introduced several
experimental platforms where the dynamics of quantum
spin systems can be measured over long evolution times,
providing much needed benchmarks for testing uncon-
trolled theoretical approximations. Examples of such
platforms include trapped ions [21–23], polar molecules
[24], Rydberg atoms [25–29], magnetic atoms [30,31],
and atoms interacting through superexchange in optical
lattices [32–37].
In thiswork,we explore the dynamics of a two-dimensional

quantum Ising model using a nearly defect-free array of

neutral atoms which are coupled with laser light to a low-
lying Rydberg state in an optical lattice [38]. The spin
coupling in the model arises due to a van der Waals
interaction between atoms in the Rydberg state. If one atom
is in a Rydberg state, the excitation of another atom to a
Rydberg state is strongly suppressed within a blockade
radius Rb [39–43]. This is because the interaction between
the Rydberg atoms within this radius is much larger than
the laser coupling strength. Previous experiments in 2D
arrays have studied the regime Rb ≫ al, where al is the
lattice spacing [25,28]. In this regime, the Rydberg block-
ade makes it difficult to access many-body states with a
large Rydberg fraction. This significantly reduces the size
of the relevant Hilbert space of the system from the
maximum possible size of 2N , where N is the number of
sites, rendering simulation of the quantum dynamics
feasible for the experimentally realized system sizes.
Here, we focus on the regime Rb ∼ al, where there is no
such reduction of the Hilbert space size. This regime is
particularly interesting because it features a direct quantum
phase transition between a paramagnet and an antiferro-
magnet with broken Z2 symmetry. Recently, Rydberg
atoms in rearrangeable optical tweezers have explored this
regime in 1D chains [29] and rings [28].
We realize a quantum Ising spin system with an array of

6Li atoms in an optical lattice with near unit-occupancy.
The lattice is deep enough to suppress tunneling over the
timescale of the experiments. We prepare all the atoms in
the same hyperfine ground state j↓i. Interactions are
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introduced by globally coupling the atoms with a single
laser field to a Rydberg state j↑i. The van der Waals
interaction between atoms in the Rydberg state is isotropic
and takes the form Vij ¼ C6=jri − rjj6. The Hamiltonian of
the system is given by

H ¼ ℏΩ
X

i

Ŝxi þ
X

i

ðI i − ΔÞŜzi þ
X

i≠j

Vij

2
Ŝzi Ŝ

z
j: ð1Þ

Here, Ŝαi are the spin 1=2 operators for the ith lattice site
and α ¼ x, y, z. The first two terms of this Hamiltonian
describe transverse and longitudinal magnetic fields that
couple to the pseudospin. The Rabi frequency Ω that drives
a transition between the ground and the Rydberg state for
an isolated atom determines the transverse field, while the
detuning Δ of the laser frequency from atomic resonance
determines the longitudinal field. I i ¼

P
j;ði≠jÞðVij=2Þ can

be taken as a site-independent detuning in a large system as
ours. We work with an attractively interacting (Vij < 0)
Rydberg state [44]. In the absence of the fields (Ω ¼ 0 and
I i − Δ ¼ 0), the Hamiltonian’s most excited state is a
classical antiferromagnet. This state can be adiabatically
connected to our initial state by slowly changing the fields.
To achieve that, the starting state needs to be the most
excited eigenstate of the initial Hamiltonian. For the rest of
this paper, we find it convenient to invert the energy
spectrum by introducing the Hamiltonian H̃ ¼ −H, so
that we describe our work in a more familiar setting where
the dynamics occurs close to the ground state of H̃ rather
than the most excited state. For Rb ¼ ðjC6j=ℏΩÞ1=6 ≫ al,
the ground state phase diagram of H̃ in ℏΩ–Δ parameter
space contains multiple Rydberg crystalline phases with
different Rydberg atom fractions [29,45–49]. However, for
Rb ∼ al, the regime we study in this experiment, H̃, can be
approximated by a nearest-neighbor Ising Hamiltonian
with coupling J ¼ jC6j=a6l . A phase diagram for this
model is shown in Fig. 1(a) and has only one ordered
phase, the antiferromagnet [50–57]. The initial state in the
experiment is the paramagnetic ground state of H̃ for
positive detuning Δ ≫ J ≫ ℏΩ. In this work, we quench
the fields from this initial configuration to fields that
support an antiferromagnetic ground state. We do this with
varying degrees of adiabaticity and study the ensuing
dynamics of the spin correlations.
We prepare nearly defect-free 2D arrays of atoms by

taking advantage of Pauli blocking in a highly spin-
imbalanced degenerate Fermi gas loaded into a square
optical lattice (for details, see Ref. [37]). The spin mixture
consists of the first j1i and third j3i lowest hyperfine
ground states of 6Li, with j1i as the majority. The minority
atoms, needed to thermalize the gas while loading into the
lattice, are subsequently removed with a pulse of resonant
light. We focus our analysis on an annular region with outer
(inner) radius of 9 (4) sites, where the average occupancy of
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FIG. 1. Realization of a 2D quantum Ising model with Rydberg
atoms in an optical lattice. (a) Ground-state phase diagram of the
2D quantum Ising model H̃; with nearest-neighbor coupling J.
This is an approximate phase diagram of our Rydberg system
when the blockade radius is comparable to the lattice spacing.
Transverse and longitudinal fields are controlled by the Rabi
frequency Ω and laser detuning Δ, respectively. There is only one
ordered phase, the antiferromagnet (AFM). Outside of this region
there is a paramagnetic (PM) phase where the spins align with the
field. (b) Experimental setup consisting of a 2D array of atoms at
the focus of a high-resolution objective, capable of resolving
individual sites of the lattice. Atoms in the ground state (small
blue spheres) are directly coupled to the 23P Rydberg state (large
red spheres) with 230-nm laser light. (c) Typical atom configu-
rations at different stages of the experiment. The initial state
consists of an array of atoms in the electronic ground state (blue,
left). This state is quenched into a state with antiferromagnetic
correlations (Rydberg atoms in red, center). By increasing the
lattice depth, Rydberg atoms are lost and only the ground state
atoms are imaged (right). (d) Raw fluorescence images of an
initial (left) and a postquench (right) configuration with strong
antiferromagnetic correlations, together with reconstructed im-
ages (each blue pixel depicts a detected atom in the ground state).
The annular region we used for analysis is shown delimited by
dotted lines.

ELMER GUARDADO-SANCHEZ et al. PHYS. REV. X 8, 021069 (2018)

021069-2



the remaining state j1i atoms, measured from repeated
preparations of the system, is maximal and corresponds to
95.7(4)%.
We couple the state j1i atoms to the 23P (ml ¼ 0,

ms ¼ −1=2, mI ¼ 1) Rydberg state using single-photon
excitation with an ultraviolet (UV) laser at 230 nm. The
experiments are performed at a bias magnetic field of 595 G
pointing orthogonal to the 2D layer, allowing us to address
a single jml;ms;mIi Rydberg state. Up to 60 mW of UV
light is available from a frequency-quadrupled diode-laser
system. The light is π-polarized and focused to a waist of
35 μm. The intensity and the frequency of the light can be
changed rapidly to control the time dependence of the
transverse and longitudinal fields in the Hamiltonian [44].
The atoms are located at the focus of a high resolution

objective that can resolve individual sites of the optical
lattice [Fig. 1(b)]. The Rydberg dynamics takes place in a
lattice of depth 55ER, where ER ¼ ðπℏÞ2=2ma2l is the recoil
energy and al ¼ 1064 nm=

ffiffiffi
2

p
. We image the distribution of

ground state atoms after removing Rydberg atoms with an
efficiency of 90(3)% by increasing the lattice depth to
2500ER, leading to rapid photoionization or expulsion of
the antitrapped Rydberg atoms [Fig. 1(c)]. We obtain site-
resolved fluorescence images of the ground state atoms by
collecting approximately 1000 photons per atom scattered
from laser beams in a Raman cooling configuration [37].
We calibrate the transverse and longitudinal fields of the

Hamiltonian using sparse clouds, where the average spacing
between atoms is much larger than Rb. The location of the

Rydberg resonance (Δ ¼ 0) is determined by finding the
laser frequency that maximizes atom loss during a long
exposure to the UV light, since atoms in the Rydberg state
experience an antitrapping optical potential. The Rabi
frequency Ω is determined by measuring single atom
Rabi oscillations, and we attain a maximum Rabi frequency
Ωmax ¼ 2π × 5.4ð1Þ MHz (the error bar takes into account
shot-to-shot intensity fluctuations) [44]. Ω varies 4.9(3)%
over the region of interest due to the Gaussian intensity
profile of the UV beam. The C6 coefficient, which deter-
mines the strength of the van der Waals interaction, depends
strongly on the principal quantum number. We obtain a
theoretical C6=h¼−1.92ð6ÞMHzμm6¼−10.6ð3ÞMHza6l
for the 23P, ml ¼ 0 state at an offset field of 595 G [44].
The angular dependence of the interaction potential in the P-
state is unimportant in our experiments since the magnetic
quantization axis is orthogonal to the plane of the lattice,
leading to an isotropic interaction for atoms in the 2D plane.
For these parameters, ℏΩmax, J ≫ h=τ, where τ ∼ 20 μs is
the lifetime of the Rydberg state [58], leading to negligible
decay over the relevant timescales.
We first study dynamics in the Ising system after a

sudden quench, where the transverse field is switched on
quickly compared toΩ−1. The system is initially in a product
state, with all spins in j↓i, and we image the atoms after an
evolution time T. From the images, we extract the spin
correlators CðrÞ ¼ 4hŜzi Ŝziþric ¼ 4ðhŜzi Ŝziþri − hŜziihŜziþriÞ.
The correlators Cð0; 0Þ; Cð1; 0Þ; Cð0; 1Þ; and Cð1; 1Þ
are shown in Figs. 2(a)–2(d) for ΩT ¼ 0.50ð2Þπ
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FIG. 2. Sudden quench dynamics. (a)–(d) Spin correlations after a sudden quench with ΩT ¼ 0.50ð2Þπ [Ω ¼ 2π × 4.1ð1Þ MHz] at
various detunings Δ. The correlators shown are (a) Cð0; 0Þ; (b) Cð1; 0Þ; (c) Cð0; 1Þ; and (d) Cð1; 1Þ. For comparison, we show the fits to
dynamics computed with NLCE (solid line) and exact diagonalization on a 4 × 4 lattice with open boundary conditions (dashed line).
(e)–(h) Spin correlations after a longer quench of ΩT ¼ 2.97ð7Þπ [Ω ¼ 2π × 5.3ð1Þ MHz] at various detunings.
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(Ω ¼ 2π × 4.1ð1Þ MHz) and varying detuning Δ. The
correlator Cð0; 0Þ is linked to the magnetization as
Cð0; 0Þ ¼ 1–4hŜzii2. We observe a change in the sign of
the nearest-neighbor correlations as the detuningΔ is varied.
For such short times, the correlations remain short range

and, therefore, we can compare our results to calculations
obtained using a dynamical version [44,59] of the numeri-
cal linked cluster expansion (NLCE) [16,60]. The dynam-
ics is computed on clusters of increasing size (the “order”
of the expansion), and the results are expected to converge
if the correlation length is smaller than the cluster size. We
find good convergence for times ΩT ≲ π [44]. The 11th
order NLCE results for the on-site and nearest-neighbor
correlations are fit to the measured correlations after the
quench with two free parameters: the van der Waals
interaction coefficient C6 and a scaling factor α corre-
sponding to the Rydberg imaging efficiency. The NLCE
dynamics calculations take into account interactions up to
next-nearest neighbors and experimental imperfections
including the finite rise and fall time of Ω and 2.8%
anisotropy of the lattice spacing [37], which translates to an
18% anisotropy of the interactions on the nearest-neighbor

sites. We also compare the data to exact diagonalization
results on a 4 × 4 lattice. From these fits, we obtain an
experimental C6=h¼−1.1ð1ÞMHzμm6¼−6.0ð3ÞMHza6l
and a scaling factor α ¼ 0.89ð1Þ, which agrees with the
expected detection efficiency [44]. The fitted value of C6 is
about 40% lower than the theoretically calculated C6,
which has possible systematic errors due to uncertainties
in the matrix elements in lithium, in particular at high
magnetic fields, and finite wave function size of the atoms
on the lattice sites [44,61].
To go beyond the regime where the dynamics can be

calculated with NLCE, we perform a longer quench with
ΩT ¼ 2.97ð7Þπ. The extracted correlators are shown in
Figs. 2(e)–2(h). In this case, even the next-nearest-neighbor
correlations exhibit a zero crossing as a function of
detuning, showing that the system is building up longer-
range correlations. The different NLCE orders already stop
converging at much earlier times [44].
To prepare many-body states with longer antiferromag-

netic correlations, we investigate a more adiabatic quench
scheme [48,62,63], illustrated in the inset of Fig. 3. In the
following,weuseJ ¼ h × 6 MHz for all presented units.We
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FIG. 3. Time evolution of spin correlations after near-adiabatic quenches and comparison with phenomenological decoherence
models: experimental correlations after near-adiabatic quenches [blue circles for Cð0; 1Þ and blue squares for Cð1; 1Þ] for different
quench rates (left to right panels) and varying final detuning Δf . These are compared with MCWF simulations taking into account
different types of decoherence (lines). We studied T1 type decoherence with T1 ¼ 20 μs (green) and T2 type decoherence with
T2 ¼ 0.5 μs (red). The T1 value is chosen as the lifetime of the Rydberg state and the T2 value is an aggressive lower bound given by our
Ramsey calibration [44]. Additionally, we show the combination of T1 decoherence with two-particle “interaction noise” for nearest-
neighbor pairs (yellow). For the latter, the decoherence rate (ΓJ ¼ 1 μs−1) was a free parameter chosen to obtain reasonable agreement
with experimental correlations for all four quenches simultaneously [44]. The shaded regions depict the standard error of the mean of the
simulations. For reference, the calculations without decoherence are also shown (dashed blue lines). Inset: Time dependence of the
Rabi frequency Ω and detuning Δ used for the near-adiabatic quenches. The time for switching on and off the laser coupling was fixed
to tr ¼ 0.6h=J for all quenches. The maximum total length of the quench tp varies from 0.3 to 0.9 μs, depending on the quench rate.
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start from the same initial state but use a soft switch on and off
of the Rabi frequency and a linear ramp of the detuning from
Δi ¼ 3.3J to a varying Δf. During the detuning ramp, the
Rabi frequency is fixed at Ω0 ¼ 0.9ð1ÞJ=ℏ. We explore a
variety of detuning ramp rates _Δ, ranging from 8.9J2=h to
1.6J2=h. For each _Δ, we measure correlations at different
times in the ramp. Figure 3 shows the buildup of nearest-
neighbor and next-nearest-neighbor antiferromagnetic cor-
relations as the longitudinal field is ramped at different rates.
The buildup of antiferromagnetic correlations starts approx-
imately at the time the detuning ramp crossesΔ ¼ 0. For the
fastest quench rates, we see a correlation buildup before
crossing of the resonance, which we attribute to strong
nonadiabaticities. For all quench rates studied, we observe
that the correlations reach a maximum at Δ=J ∼ −2, as
would be expected in the adiabatic limit from the phase
diagram in Fig. 1(a). The peak value of the correlations
initially increases as the quench rate is reduced, as one might
expect for approaching the adiabatic limit, but then decreases
for slower ramps. This is likely due to decoherence starting to
play a role in the slower quenches. Therefore,we have to take
decoherence effects into account for a numericalmodeling of
the time dependence of the correlations.
We performed a phenomenological study of the influ-

ence of decoherence on the near-adiabatic ramps by solving
the master equation using the Monte Carlo wave function
method (MCWF) on a 4 × 4 lattice [64,65]. Single-particle
decoherence comes in the form of decay from the Rydberg
state (T1) and dephasing that can be characterized in our
system using a Ramsey sequence in a sparse cloud (T2)
[44]. In Fig. 3, we show MCWF simulations with values of
T1 ¼ 20 μs and T2 ¼ 0.5 μs. We found that the impact of
single-particle decoherence on the correlations is too small
to reproduce our experimental results. However, motional
effects can lead to many-body decoherence. Mechanisms
leading to atomic motion include strong attractive forces
between atoms in the Rydberg state, laser recoil, and
changes of the lattice potential experienced by the atoms
due to a difference in the polarizability between the ground
and Rydberg states. These motional effects are stronger in
our system compared to previous optical tweezer experi-
ments [28,29] due to the light mass of lithium and the
relatively small lattice spacing. This motion of the atoms,
estimated in Ref. [44], leads to decoherence in the spin
system by changing the coupling J. To model this two-
particle decoherence, we approximated the movement of
the atoms as “interaction noise” between nearest-neighbor
pairs. Although the motion is expected to be coherent at
short times, we make the assumption that the motion is
sufficiently chaotic at long times to allow us to use this
decoherence approximation. We implement the “interaction
noise” by adding a time-independent conditional nearest-
neighbor dephasing term with rate ΓJ ¼ 1 μs−1 to the
Lindblad master equation [44]. As the “interaction noise”
is not constrained by our single-particle calibrations, we

use its strength as a single free parameter to fit our data.
This phenomenological simulation allows us to achieve
better agreement with our data for the longer quench rates,
suggesting that our main source of decoherence is two- or
many-body in nature. A more detailed discussion of the
modeling of decoherence effects can be found in Ref. [44].
At the end of the ramps, where significant antiferro-

magnetic correlations have built up, we find that we can fit
the decay of the correlations with distance to an exponential
[Fig. 4(a)]. The fitted correlation lengths range from
ξ ¼ 0.74ð6Þal to ξ ¼ 1.9ð2Þal depending on _Δ. We com-
pared these data to the results of equilibrium Monte Carlo
calculations at Δf ¼ −2J and Ω ¼ 0 to check if we can
describe the system in terms of an effective temperature.
While these calculations also give correlations that decay
exponentially, there is no temperature that reproduces
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FIG. 4. Characterizing many-body states during and after a
slow quench. (a) Spatial decay of the correlations after a sweep
with _Δ ¼ 2.2J2=h, with an exponential fit that yields a
correlation length ξ ¼ 1.4ð1Þal. (b) Time evolution of the
probabilities of observing different configurations in 3 × 3
subsystems, not corrected for detection efficiencies. The prob-
abilities are shown for the two antiferromagnetic states (red), the
all-grounds state (green), one-Rydberg-atom states (blue), and all
other states (grey). The evolution is shown during a ramp with
_Δ ¼ 4.4J2=h. The antiferromagnetic configurations become
most probable at the end of the quench. (c) Full correlation
matrices Cði; jÞ at different final detunings during a slow quench
with _Δ ¼ 2.2J2=h, showing the growing range of the antiferro-
magnetic correlations.
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both the strength and range of the correlations. We find a
temperature of kBTξ ≈ 0.51ð1ÞJ for matching the correla-
tion length and kBTnn ≈ 0.82ð4ÞJ when matching the
nearest-neighbor correlator for the data shown in
Fig. 4(a) (for details, see Ref. [44]). The fact that these
two temperatures are not within error bars leads us to the
conclusion that the system is not equilibrated at the end of
the quench.
Another way to characterize the states created by

these slow quenches is by extracting the probabilities for
observing a particular spin configuration in a subsystem. In
Fig. 4(b), we show the probability of observing different
spin configurations in 3 × 3 subsystems, not correcting for
detection fidelities. The two antiferromagnetic states are the
most probable states near the end of the ramp, with an
enhancement of a factor of 16(2) over a uniform distribu-
tion in the Hilbert space.
In conclusion, we studied quench dynamics in a 2D Ising

model realized with ultracold atoms coupled to a Rydberg
state in an optical lattice. The use of a light fermionic atom,
6Li, allows us to use Pauli blocking in a relatively large
spacing lattice to create 2D atomic arrays with high filling
(approximately 96%), comparable to what is achieved in
atom-by-atom assembler experiments [66,67]. Combining
the large spacing with the use of a low-lying Rydberg state,
we reached the strong correlation regime with Rb ∼ al and
prepared states exhibiting strong short-range antiferromag-
netic correlations. We found good agreement of our data
with state-of-the-art numerics for short-time quench
dynamics without taking into account decoherence. In
our study of near-adiabatic quenches, we obtained evidence
for beyond single-particle decoherence in our system and
observed nonequilibrated final states with longer-range
antiferromagnetic correlations. Our new ultracold 6Li
Rydberg platform opens many interesting directions for
future work. Rydberg excitation in a Fermi gas may allow
the exploration of impurity dynamics in the presence of
Pauli blocking effects [68,69]. Another possible direction is
the use of Rydberg dressing techniques to realize a dipolar
Fermi gas, taking advantage of the fast tunneling of lithium
in an optical lattice to go beyond the frozen gas regime
[27,70–72].
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Note added.—Recently, antiferromagnetic correlations
have been observed in 2D arrays of Rydberg atoms trapped
in optical tweezers in experiments at the Institut d’Optique
by Vincent Lienhard et al. [73].
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