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The main thread that links classical thermodynamics and the thermodynamics of small quantum systems
is the celebrated Clausius inequality form of the second law. However, its application to small quantum
systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and
environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some
other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios).
We address these deficiencies by developing the notion of global passivity and employing it as a tool for
deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the
global passivity framework recovers the Clausius inequality. More generally, global passivity provides an
extension of the Clausius inequality that holds even in the presences of strong initial system-environment
correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation
values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and
weak feedback operations (“Maxwell demons”) that the Clausius inequality cannot detect. In addition, it is
shown that global passivity can put practical upper and lower bounds on the buildup of system-environment
correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems
such as ion traps, superconducting circuits, atoms in optical cavities, and more.

DOI: 10.1103/PhysRevX.8.021064 Subject Areas: Quantum Physics,
Quantum Information,
Statistical Physics

I. INTRODUCTION

Recent years have seen a surge of interest in the
thermodynamics of small systems. Classical thermody-
namics was developed for macroscopic systems that are
weakly coupled to large environments. Technological
advances now allow studying various processes in nano-
scopic systems and it is of great interest to understand such
processes from a thermodynamic point of view.
Applying thermodynamics to processes in small systems

requires going beyond the assumptions and methodologies
used in classical thermodynamics for several reasons.
(1) The dynamics of microscopic systems is quantum,
and questions regarding the thermodynamic role of quantum
coherence, entanglement, and measurements become
important. (2) The system-environment coupling cannot
generally be assumed to be weak. As a result, the environ-
ment is modified by the system, and strong recurrences may

take place. (3) A non-negligible degree of initial system-
environment correlation may be present, leading to effects
such as heat flow from a cold subsystem to a hot one [1,2].
(4) Small quantum systems are easily taken out of equilib-
rium, and therefore their dynamics cannot be efficiently
described by small number of quantities such as volume,
average energy, and so on. In summary, it is of great interest
to try to adapt thermodynamics to deal with some of these
deviations from the assumptions used in classical macro-
scopic thermodynamics.
Several theoretical advances that extend thermodynam-

ics were developed in the past few decades. Stochastic
thermodynamics [3,4] describes the fluctuations in thermo-
dynamic characteristics of a process such as heat and work.
These were found to satisfy the celebrated fluctuation
theorems [5,6], a family of equalities that also hold far
from equilibrium. Thermodynamic resource theory [7–10]
studies the possible transformations a system can undergo
by interacting with a thermal bath. Both theories have their
limitations. Stochastic thermodynamics consider either
systems decoupled from the environment, or systems
coupled to macroscopic environments that remain in
equilibrium during the process. Resource theory is limited
to a specific set of operations called “thermal operations”.
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The interest in the thermodynamics of small systems has
led to several experimental realizations of microscopic
processes that take after macroscopic thermodynamics. A
heat engine with a single ion as a working fluid [11] as well
as a three-ion absorption refrigerator [12] have been imple-
mented. Algorithmic cooling [13] has been demonstrated in
NMR [14]. In addition, quantum features of heat machines
have also been recently observed in Nitrogen Vacancy
centers in diamonds [15]. An experiment demonstrating
the thermodynamic role of initial correlations was done in
NMR [2]. While these experiments verify the validity of the
second law for the smallest quantum systems, they also offer
the possibility of testing new thermodynamic predictions
such as the ones suggested in this paper.
In this work, we aremostly interested in processes where a

small system of interest is coupled to other small systems
that act as environments (Fig. 1). As a starting point, the
small environments are assumed to be initially in Gibbs
states ρðiÞ0 ¼ expð−βiHiÞ=tr½expð−βiHiÞ�, where Hi is the
Hamiltonian of environment i and βi is its inverse temper-
atures. The system of interest can start in any state. Because
of the microscopic size of the small environments, the
interaction with the system will in general modify them,
and they can substantially deviate from their initial Gibbs
state. Moreover, they may develop a strong correlation to the
system of interest. We call such small and initially thermal
environments “microbaths” to distinguish them frommacro-
scopic baths encountered in classical thermodynamics.
The dynamics of the whole setup containing the system

of interest and all the microbaths is described by a global
unitary dynamics (quantum evolution). More generally, the
dynamics can be described by a statistical mixture of
unitaries. Physically, a mixture of unitaries corresponds
to the scenario where there is some noise in the controls
generating the thermodynamic protocol. These global
unitaries act on both the system and the microbaths (leading
to heat flows), and can also do work. Our goal is to describe
the thermodynamics of such processes even when the
elements are initially correlated to each other.
One of the characteristics of thermodynamics is the

appearance of inequalities. The second and third laws tell
us that there are tasks that cannot be done. In the current
setup the most relevant form of the second law is the
Clausius inequality (CI). In the following, we show that the
concept of passivity [16–20] can be extended and can be
used to derive additional inequalities. These inequalities
have several appealing features not exhibited by the CI:
(1) they hold for systems that have some initial quantum or
classical correlation to the environment, (2) they can set
upper and lower bounds on the system-environment corre-
lation buildup, and (3) they allow us to derive families of
inequalities that can detect external tempering in the form
of heat leaks or feedback (e.g., a Maxwell demon) even
when the CI fails to detect the external intervention.
The flexibility and general applicability of the global

passivity framework presented in this work come at a

price. Global passivity connects the initial state of the setup
to the observable appearing in the resulting inequalities.
As a result, in some cases the predictions obtained from
these inequalities may involve nonintuitive observables.
Nevertheless, the examples we give in this paper demonstrate
that one can derive interesting new predictions in various
important scenarios that were thus far outside the scope of the
thermodynamic description. We believe that the flexibility of
this framework is useful, and will lead to additional pre-
dictions on measurable quantities in nanoscopic setups.
In Sec. II, we introduce the notion of global passivity and

use it to derive a version of the Clausius inequality that is
valid in the presence of initial system-environment correla-
tion. Several important examples are studied in detail.
Section III uses the concept of global passivity to obtain
a new type of inequalities. We exemplify the use of these
new inequalities for detecting unaccounted heat leaks, for
detecting the presence of “lazy” Maxwell demons, and for
studying the buildup of system-environment correlation in a
dephasing scenario. In these examples, the results obtained
from global passivity are much more useful compared to the
standard second law. We summarize our findings in Sec. IV.

II. EXTENDING THE CLAUSIUS INEQUALITY
USING GLOBAL PASSIVITY

In this the section, we introduce the notion of global
passivity and demonstrate how it can be used to derive
various thermodynamic inequalities. Before doing so, we

FIG. 1. (a) A typical scenario for our theory. A microbath with
very small heat capacity (e.g., several spins) is initially prepared in a
thermal state and then coupled to a system in a nonthermal state. In
such scenarios the dynamics is highly non-Markovian and, in
addition, the unitary transformation that generates the interactions
may add or remove energy from the system-environment setup.
(b) In the standard quantum thermodynamic setup all elements
(microbaths and system) are initially uncorrelated and then a global
unitary (a thermodynamic protocol) describes their interaction.
(c) In this paper we consider any initial conditions including strong
entanglement between the system and the microbaths. Moreover,
we allow for amixture of unitaries which include the possibilities of
noise in the thermodynamic protocol.
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present the celebrated Clausius inequality formulation of
the second law of thermodynamics. Under some restric-
tions, this formulation holds in some microscopic setups.
We discuss its structure and its limitations when applied to
microscopic systems.

A. Clausius inequality in microscopic setups

Historically, the second law was developed for macro-
scopic systems such as steam engines and large thermal
reservoirs. However, it turns out that under some conditions
one of its formulations, the Clausius inequality, also holds
for small quantum systems interacting with each other and
with external fields. Since this corresponds to the setup
considered in this paper, the CI will serve as a natural
reference for the new results described in this article.
Consider the setup shown in Fig. 1(b) in which a system

of interest and several other small systems are prepared in
an initially uncorrelated state of the form

ρtot0 ¼ ρsys0 ⊗ e−β1H1 ⊗ � � � e−βNHN=Z0; ð1Þ

where Z0 ¼ tr½e−
P

N
i¼1

βiHi � is a normalization factor,Hi are
the Hamiltonians of the systems that act as microbaths,
where βi corresponds to the initial inverse temperatures.
A thermodynamic process is realized via some time-
dependent global Hamiltonian that acts on all elements
(not necessarily simultaneously). As a result, the setup
evolves unitarily in time. The initial preparation distin-
guishes the system of interest, which can be in any initial
state, from the microbaths that are initially in a thermal
state. We note that this initial state is special due to the lack
of correlation between the different elements.
The process described above satisfies a quantum-

microscopic version of the CI [21–24],

ΔSsys þ
X
k

βkqbathk ≥ 0; ð2Þ

where qk ¼ ΔhHki is the change in the average energy
of microbath k. ΔSsys ¼ Sðρsysf Þ − Sðρsys0 Þ is the change
in the von Neumann entropy of the system SsysðρsysÞ ≐
−tr½ρsys ln ρsys�, where ρsys ¼ trbaths½ρtot�. This microscopic
version goes beyond the assumptions of classical thermo-
dynamics since the microbaths can be arbitrarily small in
size and driven far from equilibrium during the process.
However, it is restricted by the demand that all the elements
are initially uncorrelated and that the microbaths start in
thermal state.
One of the goals of this paper is to generalize Eq. (2) to

the case where the elements are initially correlated. To
make sure we find a plausible generalization we now take a
closer look at the structure of the CI. The first term deals
with changes in a quantity that is nonlinear in the density
matrix SðρÞ ¼ −tr½ρ ln ρ�. The nonlinearity appears in both
the initial and the final state. As such, it is not an observable

that can be directly measured, but rather a quantity that is
calculated after ρ has been evaluated via tomography of the
system. Nevertheless, its informational interpretation makes
it very useful. The second term,

P
kβkq

bath
k , is a measurable

quantity that describes changes in expectation values.
With this combination of system information and

observables, the CI neatly expresses the energy-
information relation that appears in fundamental processes
such as Landauer’s erasure, the Szilard engine, and revers-
ible state preparation [25,26]. When extending the CI it is
desirable to maintain this information-expectation value
structure. See Ref. [26] for an extension of the second law
that preserves the information-observable structure, and
Refs. [9,10] for an extension that does not.
Finally, we point out that using Eq. (1) and ρenv0 ≐

trsysρtot0 , the term
P

kβkq
bath
k can be written as

tr½ðρenvf − ρenv0 Þð− ln ρenv0 Þ�. Using the notation

Benv ≐ − ln ρenv0 ; ð3Þ
the standard CI Eq. (2) can be written in a form that will be
useful later:

ΔSsys þ ΔhBenvi ≥ 0: ð4Þ

B. Passivity and expectation values inequalities

Passivity [16–20,27] is defined as follows: a time-
independent operator A and a density matrix ρ are said
to be passive with respect to each other if (i) ρ and A are
diagonal in the same basis (same eigenvectors) and (ii) in a
basis sorted in increasing order of eigenvalues of A, the
eigenvalues of ρ are decreasing. Since the eigenvalues of ρ
correspond to probabilities, it implies that when measuring
A in a system prepared in a passive state, higher eigen-
values of A are less probable to be observed than lower
eigenvalues. This is illustrated in Fig. 2(a).
Passive pairs fA; ρAg satisfy an important inequality.

Consider an initial passive state ρA with respect toA that is
mapped to a final state via a unitary transformation,

ρf ¼ UρAU†; ð5Þ
or more generally by a mixture of unitaries,

ρf ¼
X
k

pkUkρAU
†
k; ð6Þ

where pk denotes the probability of executing the unitary
Uk. The passivity of the initial state ensures that the
expectation value hAif ¼ trðρfAÞ satisfies

hAif ≥ hAipass ¼ trðρAAÞ: ð7Þ

Alternatively stated, the passive state gives the lowest
expectation value achievable by mixture of unitary
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transformations. The validity for mixture of unitaries
follows from linearity and the validity for any single
unitary Eq. (5). To see why Eq. (7) holds for any unitary,
we use the fact that when a unitary operates on a diagonal
matrix, then it holds that p⃗f, the diagonal elements of the
new density matrix, are related to the original diagonals p⃗0

via a mixture of permutations Πk that are executed with
some probability ζk: p⃗f ¼ P

kζkΠkp⃗0. When the initial
distribution is passive with respect to A, p⃗0 ¼ p⃗pass, any
permutation or a mixture of permutations (doubly stochas-
tic map) will increase the expectation value ofA [Fig. 2(b)].
Alternatively, one can use the proof presented in Ref. [18].
Traditionally in thermodynamics, the passivity inequal-

ity is related to the amount of work that can be extracted
from a system using a transient unitary operation on the
system. That is, the Hamiltonian of the system is driven by
some external fields for some time, but in the end it returns
to its original value (cyclic Hamiltonian). This maximum
extractable work is called the ergotropy of the system [18],
and it is obtained in a unitary process in which the
system ends in a passive state with respect to the system
Hamiltonian.
Among all the passive states with respect to the

Hamiltonian, the Gibbs state has a special status. The
Gibbs state is the only state that has the property of
complete passivity with respect to the Hamiltonian [16].
A collection of N copies of the system in a Gibbs state is
also a passive state with respect to the total Hamiltonian.
Thus, no unitary that acts on the N copies (including
unitaries that describe interactions between the copies) can
be used to reduce the total energy. This provides a link to
the second law, as it excludes the work extraction from a
single thermal reservoir.
Motivated by work extraction, in previous studies

of passivity [16–20,27] the operator A was the

Hamiltonian of the system (or of the environment [20]).
The use of passivity in this paper is different from the
standard one in three different ways. (1) Here, passivity is
applied to the entire setup and not just to the system. We
use the term “global passivity” to distinguish this scenario
from the standard use of passivity that deals with work
extraction from a specific element in the setup. In particu-
lar, the energy flows involved in global passivity include
heat flows between the elements. (2) We apply passivity to
various operators not just to Hamiltonians. (3) In traditional
passivity the operator (the Hamiltonian) is given and the
passive states are the focus of interest. In contrast, in this
paper we ask the question, given an initial density matrix
ρ0, what are the operatorsA that are passive with respect to
ρ0? The motivation is that for such an operator A it is
guaranteed that

ΔhAi ¼ tr½ðρf − ρ0ÞA� ≥ 0 ð8Þ

for any ρf generated from ρ0 by a mixture of unitaries.
These three differences lead to a new connection between
passivity and the second law, and to new thermodynamic
inequalities.
Before we apply Eq. (8) to thermodynamic scenarios, we

describe two simple extensions of Eq. (8) that are used in
this paper to obtain additional inequalities on expectation
values of observables.
The first extension concerns operators which are not

passive with respect to the initial state. Let ρf be the density
matrix obtained from ρ0 by a mixture of unitaries. We are
interested in the change of the expectation value of an
operator Ã. Even when the operator of interest Ã and the
initial state ρ0 are not passive with respect to each other we
can write

ΔhÃi ≐ hÃif − hÃi0 ð9Þ

≥ hÃimin − hÃi0; ð10Þ

where hÃimin is the minimal expectation value of Ã
obtained by transforming ρ0 via a mixture of unitaries.
From the definition of passive states it holds that
hÃimin ¼ tr½ρÃpassÃ� ≐ hÃiÃpass, where ρÃpass is obtained
from ρ0 via a unitary rotation V so that ρÃpass is passivewith

respect to Ã. Therefore, we obtain

ΔhÃi ≥ hÃiÃpass − hÃi0: ð11Þ

Importantly, the right-hand side is independent of ρf.
Thus, it can be evaluated before running the experiment
without knowing the details of the evolution. As shown in
Sec. III C, Eq. (11) can be quite useful.
The second extension of passivity we exploit in this

paper concerns the case where a passive operator with

FIG. 2. (a) Passivity of a general Hermitian operator A with
respect to (w.r.t.) initial density matrix ρ0. p⃗i denote the
eigenvalues of ρ0. In passive distributions with respect to an
observable A, larger eigenvalues of A (measurement results λi)
have lower probability to be observed (probability is given by the
size of the circles). Panel (b) illustrates that starting from passive
distribution, any permutation must increase the expectation value
hAi. This implies that hAi increases under a unitary operation
(ΔhAi ≥ 0). (c) If A is passive with respect to p⃗i, then, Aα is
passive with respect to p⃗i for any α > 0.
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respect to the initial density matrix is given, and we want to
find additional passive operators in order to set additional
constraints on additional observable quantities. Let A
be a passive operator with respect to ρ0, and let g be an
analytic and monotonically increasing function in the
interval between the smallest and largest eigenvalues
of A. It holds that the operator gðAÞ is also passive with
respect to ρ0 and, therefore,

ΔhgðAÞi ≥ 0 ð12Þ

for any mixture of unitaries. As we demonstrate later, these
new inequalities are not just a restatement of Eq. (8) and
they have different physical content. The proof of Eq. (12)
immediately follows from the fact thatA and gðAÞ have the
same eigenvectors and also the same eigenvalue ordering
since monotonically increasing functions just “stretches”
the spectrum [Fig. 2(c)] but does not change the order of the
eigenvalues. As a result, any density matrix ρ0 that is
passive with respect to A is also automatically passive with
respect to gðAÞ.

C. Global passivity and its relation
to Clausius inequality

To introduce the notion of global passivity and its
relation to the second law, we first examine a simplified
scenario. In Sec. II D we treat the general case. Consider a
setup that includes only initially uncorrelated microbaths.
That is, there is no system that is initially in a nonthermal
state. The initial state of the whole setup is therefore
given by

ρtot0 ¼ e−β1H1 ⊗ � � � e−βNHN=Z0; ð13Þ

where Z0 ¼ tr½e−β1H1 ⊗ � � � e−βNHN � is a normalization
factor. This situation can describe an absorption refrigerator
such as the one implemented in Ref. [12]. For this initial
state, the CI reduces to

X
k

βkqbathk ≥ 0: ð14Þ

To apply passivity for this setup we look for operators that
are passive with respect to ρtot0 . A simple and systematic
way to achieve this is to use ρtot0 for the construction of the
passive operators. We start with the elementary choice

Btot ≐ − ln ρtot0 : ð15Þ

We emphasize that Eq. (15) defines a time-independent
operator based on the initial state. In particular, the
expectation value of this operator at time t reads
hBtoti ¼ tr½ρtotðtÞð− ln ρtot0 Þ�. It is simple to verify that
Btot is ρtot0 passive. By inverting Eq. (15) we get

ρtot0 ¼ e−B
tot
, which immediately implies that larger eigen-

values of Btot are associated with lower probabilities.
Next, the setup evolves by a global unitary or mixture of

unitaries:

ρtotf ¼
X
k

pkUkρ
tot
0 U†

k: ð16Þ

From passivity of Btot with respect to ρtot0 , we get the
inequality

ΔhBtoti ≥ 0: ð17Þ

For the specific initial state Eq. (13), Btot¼ βkHk− ðlnZ0ÞI,
where I is the identity operator. As a result, Eq. (17)
becomes

P
βkqk ≥ 0, and we retrieve the result predicted

from the CI for this setup.
As mentioned earlier, we call this approach global

passivity since we apply passivity for the whole setup
and not just to the system of interest. In standard passivity,
the operator is fixed (the Hamiltonian of the system) and
the quantity of interest is the passive state. Here, the state is
fixed or given by the initial preparation of the setup, and
we are interested in operators that are passive with respect
to it. In that sense, the present approach is complementary
to the one usually used in the literature on passivity
[16–20,27].
The global passivity inequality Eq. (17) is valid also for a

setup that includes a system with an arbitrary initial state
Eq. (1). The resulting inequality is less tight than the CI. On
the other hand, it involves quantities that are easier to
evaluate since all quantities are linear in the final density
matrix. Hence, there is no need to perform a full system
tomography in order to evaluate SsysðρfÞ, which appears in
the CI. Details can be found in Appendix A.
Next, to obtain the complete CI form Eq. (2) that

includes the system entropy term, we introduce the pas-
sivity-divergence relation. Quite remarkably, we obtain that
the passivity-divergence relation not only reproduces the
full CI but also yields a version of the CI that is valid in the
presence of initial system-environment correlation.

D. Passivity-divergence relation and the initial
correlation Clausius inequality

In thermal machines and in various thermal processes
(e.g., thermal state preparation [25]), there is often a system
of interest that does not start in a thermal state. In such
cases, the inequality Eq. (14) is not applicable and Eq. (2)
has to be used. Next, we use a more powerful version of
global passivity to obtain an inequality that distinguishes
between a system and its environment. We emphasize that
this is not just a rederivation of the CI since the inequality
we obtain can handle initial correlation between the system
and the environment (in contrast to the CI).
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Let us consider a setup initially prepared in a state ρtot0 . In
contrast to the assumption of lack of correlation between the
systemof the environmentEq. (1), we now allow for a general
density matrix ρtot0 that may contain classical and quantum
correlations between the various elements of the setup
[Fig. 1(c)]. The initial reduced state of the system is obtained
by tracing out the environment ρsys0 ¼ trenvρtot0 . Similarly, the
initial state of the environment is ρenv0 ¼ trsysρtot0 .
Our starting point is the following identity:

tr½ðρ2 − ρ1Þð− ln ρ1Þ�≡ Sðρ2Þ − Sðρ1Þ þDðρ2jρ1Þ; ð18Þ

where

Dðρ2jρ1Þ ≐ tr½ρ2ðln ρ2 − ln ρ1Þ� ≥ 0 ð19Þ

is the quantum relative entropy. To connect it to the notion
of global passivity, we set ρ2 ¼ ρtotf , ρ1 ¼ ρtot0 ≡ expð−BtotÞ
in Eq. (18) and obtain

ΔhBtoti≡ ΔStot þDðρtotf jρtot0 Þ: ð20Þ

We now focus on the first term in the right-hand side of
Eq. (20) that describes the change of the total von Neumann
entropy of the setup. If the evolution of the setup is given by
an exact unitary transformation ρtotf ¼ Uρtot0 U, thenΔStot ¼
Sðρtotf Þ − Sðρtot0 Þ ¼ 0 [28]. When a mixture of unitaries
Eq. (16) is applied to the setup, it holds that ΔStot ≥ 0. This
follows from the fact that the von Neumann entropy is
Schur concave [29], and ρtot0 majorizes ρtotf [the majoriza-
tion follows immediately from Eq. (16)]. Physically, a
mixture of unitaries describes the dynamics in the presence
of some noise or randomness in the protocol.
Using ΔStot ≥ 0 in Eq. (20), we obtain the passivity-

divergence relation:

ΔhBtoti ≥ Dðρtotf jρtot0 Þ: ð21Þ

Since Dðρtotf jρtot0 Þ ≥ 0, the passivity divergence relation
Eq. (21) immediately implies the global passivity
ΔhBtoti ≥ 0. This is alternative proof of the global passivity
inequality.
Relation Eq. (21) is expressed using global quantities

that involve the whole setup. To derive an inequality that
distinguishes between system and environment and has a
clear connection to the CI, we use the monotonicity
property of the quantum relative entropy: the quantum
relative entropy decreases when subsystems are traced out
[30]. In particular, it holds that

Dðρtotf jρtot0 Þ ≥ Dðρsysf jρsys0 Þ ð22Þ

for any ρtotf , ρtot0 (even if the system is correlated to the rest
of the setup). As a result, we get

ΔhBtoti ≥ Dðρsysf jρsys0 Þ: ð23Þ

Applying Eq. (18) to the system density matrix and using it
in Eq. (23), we obtain the initial correlation Clausius
inequality (ICCI),

ΔSsys þ Δ½hBtoti − hBsysi� ≥ 0; ð24Þ

where Bsys is defined as

Bsys ≐ − ln ρsys0 :

The ICCI immediately reduces to the CI when the system
and the environment are initially uncorrelated, since in this
case hBtoti − hBsysi ¼ hBenvi. The ICCI Eq. (24) is one of
the main results in this paper.
The ICCI can also be recast in a slightly different form,

ΔSsys þ ΔhBenvi þ ΔhBcorri ≥ 0; ð25Þ

where

Bcorr ≐ Btot − Bsys ⊗ Ienv − Isys ⊗ Benv; ð26Þ

where I is the identity operator and Bcorr is a Hermitian
operator that identically vanishes when the system and
environment are initially uncorrelated. As the other B
operators, Bcorr is a time-independent operator that is
determined by ρtot0 .
We use the terminology correlation compatible Clausius

inequality for two reasons. Firstly, it reduces to the CI when
ρtot0 ¼ ρsys0 ⊗ ρenv0 . Secondly, the ICCI has the same struc-
ture as that of the CI: it relates changes in the von Neumann
entropy of the system of interest and changes in expectation
values. The difference is that on top of the changes in the
environment expectation values, there is also a change in
expectation value related to the initial system-environment
correlation.
There is a “price” for incorporating the initial system-

enviroment correlation into the second law in the form of
expectation values. For the same initial reduced state of the
environment, the form of Bcorr will depend on the initial
correlations in ρtot0 . That is, for different correlations,
different expectation values appear in the ICCI. To put
this “price” in perspective, it is important to note that the
relation between the initial state of the setup and the
expectation values that appears in the ICCI is already
present in the standard CI. The initial preparation of the
environment in Gibbs states leads to the

P
kβkqk term in

the CI. In the ICCI we get that not only the initial state of
the environment determines the expectation values but also
the correlation to the system.
The role of the new correlation operator can be exper-

imentally studied in various setups such as ion traps,
superconducting qubits, and more. One of the simplest
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physical scenarios where this term strongly manifests is
heat flow between two initially correlated spins. This has
recently been experimentally demonstrated with NMR
spins with quantum correlation [2]. The quantum correla-
tion of the initial state [Fig. 3(a)] manifests in nonzero
geometric quantum discord. The initially colder spin (c)
will constitute the system, and the initially hotter (h) will
constitute the environment. Because of the initial correla-
tion, heat can flow from the cold spin to the hot spin and
make the cold spin colder and the hot spin hotter.
To test the ICCI we use the experimental parameters of

Ref. [2] and plot [Fig. 3(b)] the CI (accumulated) entropy
production: ΔSc þ βqh and the left-hand side of the ICCI
ΔSc þ βqh þ ΔhBcorri. When there is no initial correlation
both expressions are identical, as shown in Fig. 3(b). In the
presence of correlation [Fig. 3(c)], the standard entropy
productionΔSc þ βqh becomes negative as the CI no longer
holds for this scenario. In contrast, the ICCI expression
ΔSc þ βqh þ ΔhBcorri remains positive at all times.
Finally, we emphasize that the essence of the ICCI is the

inequality Dðρtotf jρtot0 Þ ≥ Dðρsysf jρsys0 Þ and not ΔStot ≥ 0.

ΔStot > 0 is simply another layer of randomness that is
externally added by the noise in the controls. By using low
noise control devices, an experimentalist can ensure that the
evolution is carried out by a single unitary to very high
accuracy. We also point out that the ICCI is a non-
perturbative result and is valid for arbitrarily strong initial
correlations and/or interactions between the elements.
In Sec. II E, we study an important thermodynamic

scenario and work out explicitly the various terms in the
ICCI. As a side comment, we point out that the derivation
above for the case ρtot0 ¼ ρsys0 ⊗ ρenv0 constitutes an alter-
native to the previous derivations of the standard CI second
law for microscopic quantum systems [21–24,31] (for the
classical mechanics version, see Ref. [31]).

E. ICCI for a coupled thermal state

Next, we study an important case where the ICCI can be
written more explicitly. Key quantities such as the inter-
action energy and the potential of mean force will emerge
naturally in the derivation. Moreover, in Appendix B the
structure obtained in this section is shown to be valid in
much more general circumstances.
Let us consider a system that is permanently coupled to

one of the small environments available in the setup by
some interaction Hamiltonian HI;0. When preparing this
small environment in a thermal state with inverse temper-
ature βh (e.g., by weakly coupling it to a larger thermal bath
that is later entirely decoupled from the setup), the system is
also affected so the resulting system-environment state is
ρhs0 ¼ ð1=ZhsÞe−βhðHhþHsþHI;0Þ. Hs and Hh are the bare
Hamiltonians of the system and the small environment,
respectively. Note that the reduced state of the system or
the environment is generally not Boltzmann distributed.
For generality, let us include another initially uncorre-

lated microbath at inverse temperature βc. Thus, the initial
density matrix is

ρtot0 ¼ 1

ZhsZc
e−βhðHhþHsþHI;0Þe−βcHc : ð27Þ

For this setup the ICCI Eq. (24) yields the following
inequality:

ΔSsys þ βcqc þ βhqh þ βh½ΔhHI;0i þ ΔhHs −Heff
s i�

≥ 0: ð28Þ

As before, qc, qh are the change in the average “bare”
energies of the microbaths hHci; hHhi and

Heff
s ≐ −

1

βh
ln ρsys0 ¼ −

1

βh
ln trhe−βhðHsþHI;0þHhÞ: ð29Þ

FIG. 3. The passivity-divergence relation offers an extension of
the Clausius inequality (second law) that can handle initial
correlation between environments or systems. (a) Hot and cold
qubits are prepared with initial correlation in the form of
coherence (superposition) between states j01i and j10i as shown
by the form of the initial density. (b) In the absence of initial
correlation (C ¼ 0), an energy-conserving interaction makes the
hot spin colder and the cold spin hotter. (c) In the presence of
initial correlation C ¼ −0.19, the same interaction makes the
cold spin colder and the hot one hotter. All parameters are taken
from a recent NMR experiment [2]. The top graph shows that the
CI “entropy production” (red) and the left-hand side (lhs) of the
ICCI (blue) have the same values for this case and both are
positive at all time. However, in the presence of initial correlation
(bottom graph), the lhs of Eq. (2) attains negative values, and the
CI fails. In contrast, the ICCI remains valid (positive) at all
times.
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The quantity Heff
s −Hs is known as the potential of means

force [32] or as the solvation potential [33]. The first three
terms in Eq. (28) are the “bare” terms that appear in the
Clausius inequality. The fourth term, ΔhHI;0i, originates
from the ICCI and it expresses the change in the interaction
energy during the process. The last term in Eq. (28),
ΔðHs −Heff

s Þ, is the change in the “dressing energy” of the
system. Because of the non-negligible interaction with the
environment, the system is not initially in the thermal state
of the bare system Hamiltonian.
Recently, it was brought to our attention that the ICCI for

the coupled thermal state has some similarity to a recent
classical formulation of the second law [33] for a very
similar scenario. Despite the similarity there are quite a few
differences between our result, Eq. (28), and Ref. [33]. We
point out the two most important ones. First, our result is
valid also in the presence of coherences (in the energy
basis) and quantum correlations that arise from the initial
system-environment coupling. Second, CI-like inequalities
that are derived from fluctuation theorems [33–35] involve
the equilibrium entropy and equilibrium free energy. In
contrast, our result involves the von Neumann entropy of
the nonequilibrium state and its corresponding nonequili-
brium free energy [24,36].
In Refs. [37,38], appealing treatments of initial correla-

tions were presented in terms of changes in mutual infor-
mation and conditional entropy. Such quantities cannot be
expressed as expectation values (observables), and their
evaluation requires costly, or even impractical, system-
environment tomography. In contrast, in the ICCI, the initial
correlation manifests only in terms of measurable expect-
ation values. Furthermore, Ref. [37] assumes large environ-
ment, the availability of an external ancilla, and the
feasibility of global operations on many copies of the setup.
None of these assumptions are needed for the ICCI. Finally,
Ref. [37] requires locally thermal states and therefore cannot
handle the important initial states such as the coupled
thermal state studied above Eq. (27). In Ref. [39], an
interesting exchange fluctuation theorem is suggested.
However, this approach is valid only for systems that are
initially in local equilibrium. Moreover, it has no entropy
term as in the CI and the ICCI. Thus, while Refs. [37–39]
constitute important contributions to the field, the findings in
these studies do not overlap with the results presented in this
section. In particular, in Sec. III we derive additional
inequalities that were not obtained in Refs. [37–39].
Equation (28) was derived for a setup prepared in a

coupled thermal state Eq. (27). Its form seems to be rather
different from the more general ICCI Eq. (24). However, in
Appendix B we show that the same form also exists for a
general initial state. In Appendix C we study in more detail
two physically interesting system-environment inter-
actions. The first is an energy-conserving creation annihi-
lation swaplike interaction, and the second is a dephasing
interaction.

III. ADDITIONAL PASSIVITY INEQUALITIES
AND THEIR APPLICATION

A. Using passivity to generate new
thermodynamic inequalities

In Sec. II B it was shown that if an operator A is passive
with respect to ρ0, then gðAÞ is also a passive operator with
respect to ρ0, where gðxÞ is a monotonically increasing
function in the domain covering the eigenvalues of A. As
shown before, the operator Btot ¼ − ln ρ0 is passive with
respect to ρtot0 for any thermodynamic protocol. Its eigen-
values are non-negative. The function gðxÞ ¼ xα is an
increasing function for x ≥ 0 and α > 0. As a result, we
get a new family of global passivity inequalities,

ΔhBαi ≥ 0; ð30Þ

for any α > 0 and for any thermodynamic protocol Eq. (6).
For brevity, in Sec. III “tot” is omitted and B will always
refer to the whole setup. The α ¼ 1 case was shown earlier
to coincide with the CI in the case of initially uncoupled
microbaths that interact with each other. Below, we
demonstrate using three examples that the inequalities
Eq. (30) have different physical content for different values
of α. This means that inequalities with α ≠ 1 carry
information that is absent in the CI. We also note that
different α inequalities obey a hierarchical structure, as
shown in Appendix D.

B. Heat leaks detection

Let us assume that we are given a quantum chip (e.g.,
superconducting circuit with several qubits). The unitary
operation that the chip is supposed to carry out is unknown
to us, but we do have information on the number of qubits,
qudits, and so on that constitute the input and output of the
device. The thermodynamic challenge we face is to verify if
this chip is isolated from the surroundings (for all practical
purpose), or perhaps it interacts with some unaccounted for
(hidden) heat bath, e.g., via spontaneous emission or
thermalization to the substrate temperature. Note that the
unitary implemented by the chip is in general not energy
conserving (involves work). Hence, energy conservation
cannot be used to detect the heat leak to the hidden
environment.
One possible approach is to perform state tomography of

the final state of the setup and check if the eigenvalues of
the density matrix have been modified by an external agent.
However, tomography of several qubits is very hard to
perform and impractical for dozens of qubits. This method
of detecting heat leaks is therefore very costly.
Another possibility is to use the second law. We prepare

the input state in a product of thermal states ρtot0 ¼
e−

P
βiHi=Z. According to the CI Eq. (2) the final density

matrix satisfies
P

iβitr½ρtotf Hi� ≥
P

iβitr½ρtot0 Hi�. Indeed, if
this inequality does not hold, one can deduce that there is a
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heat leak in progress. Crucially, if the CI is not violated, no
conclusion can be made, as it possible that the heat leak is
too small to be detected by the CI.
The global passivity inequalities Eq. (30) suggest a third

possibility. A heat leak from the setup (chip) to some
unaccounted environment cannot be described as a mixture
of unitary on the setup only. Thus, in the presence of a heat
leak from the chip, inequalities Eq. (30) may be violated
and indicate the presence of a heat leak.
As an example, we study a three-qubit circuit with a

CNOT interaction Hamiltonian between qubits 1 and 2, and
qubits 2 and 3 [Fig. 4(a)]. The CNOT interaction strength is
ϵ ¼ 1, so the CNOT operation is implemented in a time ℏ=ϵ.
The two CNOT interactions operate simultaneously. In
addition, there is a heat leak to a zero temperature bath
(e.g., spontaneous emission) at a rate γ ¼ ϵ=1000. That is,
1000 CNOT cycles pass by before the decay becomes
dominant. Nevertheless, our goal is to detect the heat leak
as soon as possible since the chip typically operates only
for a very short time with respect to 1=γ.
The initial density matrix is ρtot0 ¼ e−

P
βiσ

ðiÞ
z =Z, with

β1 ¼ 1, β2 ¼ 0.5, β3 ¼ 0.1. Figure 4(b) shows that for the
depicted time the effect of the decay on the polarization of
the qubits is not visible. In Fig. 4(c) we plot the values of
ΔhBαi as a function of time for various α values. When the
curves take negative values the heat leak is detected. The
plot shows that larger α values can detect the heat leak
much sooner compared to the α ¼ 1 (which in this case
equivalent to the CI). It is important to emphasize that
to evaluate ΔhBαi only local energy measurements
fE1; E2; E3g are needed in each realization (in each run
of the experiment). hBαi is obtained by the mean value of
ðβ1E1 þ β2E2 þ β3E3Þα in many runs. This is a much less
demanding task compared to a three-qubit tomography that
involves many nonlocal measurements.
These results show that different values of α contain

different physical information. Moreover, it raises the

interesting question of the existence of sufficient conditions
for guaranteed detection of any heat leak.

C. Bounds on system-environment correlation
in a dephasing process

As an additional example for the usefulness of the
additional inequalities Eq. (30), let us consider the case
where a system is coupled to the environment via a
dephasing interaction. A dephasing interaction HI satisfies
½HI;Hsys� ¼ 0, and as a result it cannot affect the energy
populations of the system. We also assume that the
interaction does not change the energy populations of
the environment ½HI;Henv� ¼ 0. In summary, the reduced
energy distributions of both the system and environment
are conserved (i.e., all energy moments are conserved).
In our example, the system is a single spin with a

Hamiltonian Hs ¼ σz. This spin is prepared with
some initial coherence in the x direction so that ρsys0 ¼
e−βxσx=Zsys where βx is dimensionless. As an environment,
we take a three-spin microbath at inverse temperature β [see

inset in Fig. 5(a)] and a HamiltonianHenv ¼
P

3
i¼1 σ

ðiÞ
z . The

system and the microbath are initially uncorrelated. The
total initial density matrix is

ρtot0 ¼ e−βHenv⊗Is−βxIenv⊗σx=Z; ð31Þ

FIG. 4. (a) Heat leak detection in a three-qubit circuit with two
CNOT interactions. The qubits also undergo decay to the ground
state at a rate γ ¼ 1=1000. This weak decay is not visible in the
polarization dynamics shown in (b). For example, the polariza-
tion of qubit 1 (blue) looks perfectly flat. Panel (c) shows a
validity check of the inequalities Eq. (30). Since the α ¼ 1 curve
that corresponds to the CI is always positive for the depicted time,
it cannot be used to detect the heat leak. On the other hand, the
α ¼ 5 and α ¼ 6 global passivity inequalities are violated in less
than 3=1000 of the decay time (which is 1=γ ¼ 1000).

FIG. 5. Bounds on the system-environment correlation dynam-
ics derived from the global passivity inequalities Eq. (30). (a) The
blue curve depicts corr½Henv; σx� between the energy of a three-
spin microbath and the coherence hσxi of a one-spin system (see
upper right-hand box) as a function of time under a dephasing-
type interaction. The red and green shaded area show lower and
upper bound on this correlation as obtained from the α ¼ 2 global
passivity inequality. (b) The α ¼ 3 passivity inequality leads to
even tighter bound (red) on the correlation to higher energy
moments of the environment PðH2

envÞ ¼ β2xβH̃env þ ðβHenvÞ2,
where β is the temperature of the environment and βx determines
the magnitude of the initial coherence of the system.
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where Ienv, Is are identity operators in the Hilbert space of
the microbath and the system, and Z normalizes the density
matrix.
For convenience we define a shifted version of B̂,

B̃ ¼ βH̃env þ βxσ̃x; ð32Þ

H̃env ¼ Henv ⊗ Is − Eenv;0I; ð33Þ

σ̃x ¼ Ienv ⊗ σx þ 1=2I; ð34Þ

where I ¼ Ienv ⊗ Is is the identity operator in the joint
system-microbath space, and Eenv;0 is the ground state
energy of the environment. Now, H̃env, σ̃env, and B̃ are all
positive operators, and in addition it holds that σ̃nx ¼ σ̃x,
which will be useful later on. This shift is needed to ensure
that powers of B̃ will remain passivewith respect to ρtot0 . For
example, if the operator is shifted so that it contains both
positive and negative eigenvalues, then squaring it will
change the eigenvalue’s order and destroy passivity with
respect to ρtot0 . Alternatively stated, g ¼ x2 is increasing
only for x > 0, so B̃ must be non-negative for even orders
of Eq. (30) to be passive.
Next, we want to find a bound on the covariance between

the energy of the microbath and the σx values of the system
at time t, i.e., cov½Henv; σx�t ¼ hHenvσxit − hHenvihσxit.
Since hHenvi ¼ const and hσxi is easy to measure, the
nontrivial term is hHenvσxit. This term can be bounded
using Eq. (30). After some algebra, the α ¼ 2 inequality
ΔhðβH̃env þ βsσ̃xÞ2i ≥ 0 leads to

2ββxΔhH̃envσ̃xi ≥ β2xΔhσ̃2xi ¼ β2xΔhσ̃xi: ð35Þ

Subtracting hHenvihσxit − hHenvihσxi0, we get

cov½Henv; σx�t ≥
�
βx
β
− hHenvi

�
Δhσ̃xi: ð36Þ

We now turn to consider Eq. (30) with α ¼ 3. Some
straightforward algebraic manipulations result in

cov½PðH̃2
envÞ; σ̃x�t ≥ c0Δhσ̃xi; ð37Þ

where

PðH̃2
envÞ ¼ ðβH̃envÞ2 þ β2xðβH̃envÞ; ð38Þ

and c0 ¼ ½1
3
β2x − hβ2H̃2

env þ β2xβH̃envi�. Because of the
dephasing interaction, c0 is fixed in time and is process
independent.
Equations (36) and (37) bound the buildup of

system-environment covariance. To test these thermody-
namic bounds numerically we choose the interaction
Hamiltonian HI ¼

P
3
i¼1 ξiσ

ðiÞ
z ⊗ σsystz , where ξ1 ¼ 0.7,

ξ2 ¼ 0.5, ξ3 ¼ 0.3, that mimics a coupling that depends
on the proximity of each microbath spin to the system.
The blue curve in Fig. 5(a) shows the exact evolution
of the correlation function corr½Henv; σx� ¼ cov½Henv; σx�t=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðHenvÞVarðσxÞ

p
. The red shaded areas show

the lower bound Eq. (36) obtained from the α ¼ 2
global passivity inequality. Figure 5(b) plots the
correlation function corr½PðH̃2

envÞ;σx�¼cov½PðH̃2
envÞ;σx�t=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½PðH̃2
envÞ�VarðσxÞ

p
(blue curve) and the lower bound

Eq. (37) obtained from the α ¼ 3 global passivity
inequality.
Using the α global passivity inequalitiess Eq. (30)

and (11), it is also possible to get other types of bounds.
In the example above, by applying a π pulse (a unitary
transformation) we obtain ρ1, which is identical to ρ0, but
the system spin points in the opposite direction σx → −σx.
As a result, we get an upper bound on the system-
environment covariance as shown by the green shaded
areas in Fig. 5. We note that for small setups, upper bounds
can also be obtained from the hierarchy relation described
in Appendix D.

D. Detecting evasive feedback demons

A feedback is an operation applied to the system of
interest, where the type of operation to be applied depends
on the present state of the system. That is, the system is first
measured and then different operations are executed
depending on the measurement result. It is well known
that feedback can completely change the thermodynamics
of a process, and has to be properly accounted for. The most
well-known example is Maxwell’s celebrated demon [40].
In this thought experiment feedback is used to separate cold
molecules from hot molecules, and thereby “violate” the
second law of thermodynamics. A more modern viewpoint
suggests that the second law holds if the information gained
by the measurement is taken into account, or if the demon
and the system are treated jointly as one big setup. The
thermodynamics of information has become an active
research field with many theoretical advances [41].
Several experimental realizations have also been reported
[42–45].
In this section, we study the operation of a “lazy

Maxwell demon.” As in Maxwell’s original thought experi-
ment, the demon attempts to create an “anomalous heat
flow” where heat flows from the cold environment the hot
environment. Since the second law forbids such a heat flow
in the absence of a feedback or external work, the presence
of the demon can be detected if the CI Eq. (2) does not hold.
To challenge the limits of thermodynamics we assume that
our demon is lazy. Even when the conditions are such that
the demon should take action (i.e., shut the trap door) it
may doze off and do nothing. Specifically, it will act a
fraction χ of the times it should. When χ is sufficiently
small (χ ≤ χcrit), no anomalous heat will be observed. Thus,
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the action of the demon will not violate the CI, and the CI
cannot be used to detect the demon.
Similarly to the discussion in Sec. III B, when the CI

holds we cannot exclude the presence of feedback. In
particular, there are two cases where this strategy can fail:
(1) the feedback is very weak with respect to the flows
generated by the thermodynamic protocol and (2) the
elements (e.g., microbath) are initially correlated so the
CI fails even without feedback. In this latter case, we can
check for violation of the ICCI Eq. (25). Yet, in this case as
well, the feedback may be too weak to violate the ICCI.
Therefore, we focus here on the weak feedback scenario
(small χ).
The question we pose is, can thermodynamics be used to

detect lazy demons that the CI cannot detect (χ < χcrit)?
Below, we present an example that demonstrates that the
global passivity inequalities Eq. (30) can do the job.
In quantum mechanics, feedback can be described in the

following way. The demon measures an observable with
outcome k. For simplicity, we consider standard projective
measurements (see Ref. [46] for feedback with weak
measurement in thermodynamics). The measurement oper-
ation is described by a projection operator Π2

k ¼ Πk.
Depending on the result k, the experimentalist applies
different unitaries Vk. The final density matrix with feed-
back is given by

ρtotf ¼
X
k0
Vk0Πk0

�X
k

pkUkρ
tot
0 U†

k

�
Πk0V

†
k0 ; ð39Þ

where the expression in the square bracket is ρtotf just before
the feedback. While both Eqs. (6) and (39) are Kraus maps,
Eq. (39) is not a mixture of unitaries due to the presence of
the measurement projectors. Hence, the inequalities
Eq. (30) are guaranteed to hold for Eq. (6) while for
Eq. (39) they may be violated (ΔhBαi < 0). This can be
used to detect whether a feedback has been applied to the
system.
Obviously, if for a specific α the inequality ΔhBαi ≥ 0

holds, the presence of a demon cannot be excluded, and
other α values should be checked. The interesting question
about the existence of a sufficient set of tests to detect any
feedback is outside the scope of the present paper and will
be explored elsewhere. Our more modest goal here is
simply to demonstrate that in some cases the global
passivity inequalities Eq. (30) are more sensitive compared
to the CI, and can detect weak feedback that the CI cannot
detect.
To illustrate how the global passivity inequalities

Eq. (30) can assist in feedback detection, we study a
simple setup of two microbaths composed of two spins
each [Fig. 6(a)]. The cold (hot) microbath is initially
prepared in temperature Tc ¼ 1.5 (Th ¼ 2.5). The
Hamiltonian of the setup before the interaction is

H0 ¼
P

4
i¼1 σ

ðiÞ
z . The initial state of the setup is

ρtot0 ¼ exp½−βcðσð1Þz þ σð2Þz Þ − βhðσð3Þz þ σð3Þz Þ�=Z. At t ¼ 0

an “all to all” interaction is turned on: HI ¼
P

i>jσ
ðiÞ
þ σðjÞ− þ

σðiÞ− σðjÞþ . Such “all to all” coupling can be realized in ion
traps or in superconducting qubits. The system evolves
until t ¼ 1 under the Hamiltonian H ¼ H0 þHI. After the
evolution, the demon is awake with probability χ and then it
measures the setup. If the demon finds the setup to be in the
state j↑c↑c↓h↓hi, it changes it to j↓c↓c↑h↑hi (where ↑ and
↓ stand for spin-up or spin-down states). In all other cases,
the demon does nothing. This operation is energy con-
serving and transfers energy (heat) from the cold microbath
to the hot microbath. Thus, no work is involved in applying
this feedback. The process is shown in Fig. 6(a).
Numerically, we apply the feedback and check if it is
detectable. For χ ¼ 0 (the demon never does anything) heat
flows to the cold microbath, and the dynamics is consistent
with the CI. Thus, for small values of χ this very subtle
form of feedback may not be detectable by the CI.
Since our setup includes two microbaths and no system,

the inequality Eq. (30) with α ¼ 1 is identical to the CI
Eq. (14): βcqq þ βhqh ≥ 0. We find that for χ values
exceeding χcrit ≃ 0.56, heat flows from the cold microbath
to the hot microbath and the demon is detectable by the CI
Eq. (14). For other α values, we denote by χ�ðαÞ ≐
minχðΔhBαi < 0Þ the smallest feedback strength that leads
to violation of ΔhBαi ≥ 0. The blue curve in Fig. 6(b)
shows χ�ðαÞ. Interestingly, this curves is not necessarily

FIG. 6. (a) A schematic description of a process with a weak
feedback (“lazy demon”). A hot and cold microbath are coupled,
and evolve unitarily for a finite time. Then a feedback (see text) is
applied to the setup with probability χ (feedback strength).
(b) Lazy demon detection using global passivity inequalities
Eq. (30). When the feedback strength exceeds χcrit, the heat
changes its sign, and flows from the (initially) cold qubits to the
hot qubits. In this case the action of the demon can be detected by
a violation of CI. For χ ≤ χcrit, the CI cannot detect the demon.
The blue curve depicts the value of χ�ðαÞ for which ΔhBαi ¼ 0.
The global passivity inequalities Eq. (30) can detect the demon
for χ ≥ χ�ðαÞ (right green arrow). Since for 1 ≤ α ≤ αmax,
χ�ðαÞ ≤ χcrit, we conclude that global passivity can be used to
detect the demon that CI cannot. Interestingly, the best detection
takes place at a noninteger value αopt ≃ 2.6.
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monotonically decreasing with α. For this feedback oper-
ation, we find that among the α inequalities Eq. (30) there is
an optimal value αopt ≃ 2.6, where the largest detection
range is observed (right green arrow). In this example, the
best detection takes place for a noninteger value of α. This
gives a justification for studying also fractional values of α.
Figure 6(b) shows that the global passivity inequalities

Eq. (30) successfully detect “lazy demons” that the CI
cannot detect. As in Sec. IV, these results demonstrate that
different values of α contain different physical information.

IV. CONCLUSION

The second law of thermodynamics is one of the pillars of
theoretical physics with countless applications in engineer-
ing and science. It was originally formulated formacroscopic
systems and reservoirs where one could assume weak
coupling, extensivity, and lack of recurrences. Under some
restrictions, the second law can also be applied to micro-
scopic systems and microscopic environments. However,
these restrictions exclude important microscopic setups. In
othermicroscopic scenarios (e.g., dephasing), the second law
is valid but provides trivial information that is of little use.
In this paper, we introduce the notion of global passivity.

We show that under the standard thermodynamic assump-
tions global passivity (complemented by a passivity-
divergence relation) recovers the Clausius inequality
formulation of the second law. We then show that global
passivity leads to a modified Clausius inequality that
remains valid even when the system and environment
are initially strongly correlated. This extension is important
since for small systems the interaction between system and
environment and the resulting initial correlations are, in
general, non-negligible and the standard second law (in
particular, the Clausius inequality form) cannot be used.
Our second main finding is a continuous family of global

passivity inequalities that accompany the second law. We
demonstrate how they can be used to detect heat leaks and
feedback (demons) in cases where the second law fails to
do so. In addition, the same inequalities are used to put
upper and lower bounds on the buildup of system-
environment covariance in a dephasing scenario. Such
predictions are presently outside the scope of other modern
thermodynamic frameworks (e.g., stochastic thermody-
namics, and thermodynamic resource theory).
Beyond the two main findings of this paper, the global

passivity formalism presents a set of tools that impose
restrictions on observables in thermodynamic processes in
quantum systems. As an example, in a different publica-
tion, we study the intimate relation between passivity-
divergence relations and quantum coherence measures.
Further research is needed in order to identify which
inequalities are the most useful for a given setup.
The present predictions of global passivity are relevant to

present-day experimental setups such as ion traps, super-
conducting circuits, optical lattices, and NMR.
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APPENDIX A: ALL OBSERVABLE ANALOG
OF THE CLAUSIUS INEQUALITY

Let us start with the standard initial condition of
thermodynamic setups [assumptions (1) and (2) in
Sec. II A]:

ρtot0 ¼ ρsys0 ⊗ ρ−
P

βkHk=Z; ðA1Þ

where Z is a normalization factor, Hk is the Hamiltonian of
microbath k, and βk is its inverse temperature at time zero.
Substituting Eq. (A1) in the global passivity inequality
Eq. (17) gives

ΔhBsysi þ
X
k

βkqk ≥ 0; ðA2Þ

where

Bsys ≐ − ln ρsys0 : ðA3Þ

Equation (A2) is the observable-only analog of the CI. It
contains only linear terms in the final density matrix. The
CI and Eq. (A2) both reduce to

P
kβkqk ≥ 0 in two

important cases: (1) when there is no mediating system
(e.g., in absorption refrigerators with a tricycle interaction
[12,47]) and (2) in (quasi)stationary periodic operation
of a heat machine interacting with a large bath, where
ΔhBsysi is negligible with respect to the accumulated heat
exchanges.
Despite the similarities, Eq. (A2) and the CI differ on a

fundamental level. Equation (A2) contains only changes in
expectation values of operators. Alternatively stated, it is
linear in the final density matrix ρtotf . It is nonlinear in ρtot0 ,
but this is due to the fact that the observable B is
constructed from ρtot0 . In contrast, the term ΔSsys in the
CI does not have an expectation value structure and it is a
nonlinear function of ρtotf .
Even though the CI and Eq. (A2) involve different

quantities, they can be quantitatively compared, as both
provide a prediction on the quantity

P
βkqk. Using the

identity Eq. (18) for the system density matrix, Eq. (A2)
can be recast as

ΔSsys þ
X
k

βkqk ≥ −Dðρsysf jρsys0 Þ: ðA4Þ
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Since the right-hand side of Eq. (A1) is negative, it
becomes evident that the CI Eq. (2) is a tighter inequality
compared to Eq. (A2). On the other hand, it is important to
emphasize that Eq. (A2) takes less resources to evaluate in
comparison to the CI. To evaluate the ΔSsys term in the CI a
full system tomography is needed. In contrast, in Eq. (A2)
we measure one observable of the system B̂sys. Only the
diagonal elements of the density matrix in the basis of B̂sys

are needed. Moreover, we do not need to know explicitly
the diagonal elements of ρsys; hBsysi can be directly
measured without evaluating the probability distribution
in the Btot basis. Thus, in terms of utility for experiments,
Eq. (A2) is easier to check compared to the CI. That said,
the CI offers some insight on the relationship between
information (entropy) and energy that is absent in Eq. (A2).

APPENDIX B: OBSERVABLES
INSPIRED BY PASSIVITY

The ICCI Eq. (24) is given in terms of expectation values
that are determined by the initial density matrix. When the
initial density matrix is related to some observable, the ICCI
expectation values will also be related to this observable. For
example, in thermodynamics, the microbaths are determined
by their initial temperature and their Hamiltonian, soBbath or
Btot − Bsys can be related to the Hamiltonian. In this
appendix, we address the general case where there is no
prior knowledge about the operator associated with the setup
preparation. We limit our discussion to two initially corre-
lated parties. The extension to more parties is trivial.
Btot ¼ − ln ρtot0 is a positive Hermitian operator, and it

can be decomposed in the following way:

Btot ¼
"XLA

i¼1

rA;iZi ⊗
INB×NB

NB
þ
XLA

j¼1

rB;i
INA×NA

NA

⊗ Zj þ
XLA−1

i¼1

XLB−1

j¼1

tijZi ⊗ Zj

#
; ðB1Þ

where LAðBÞ ¼ N2
AðBÞ − NAðBÞ, and fZiðjÞgLAðBÞ−1

1 are
traceless orthonormal basis operators for NAðBÞ × NAðBÞ
Hermitian traceless matrices. ZLAðBÞ ¼ INAðBÞ×NAðBÞ are the
identity operators in each party. Finally, rA and rB deter-
mine the reduced density matrices:

trBBtot ¼
�X

rA;iZi

�
¼ BA: ðB2Þ

Decomposition (B1) suggests that Btot ¼ BA þ BBþ
Bint, where Bint has an interaction Hamiltonian form,
Bint ¼

P
ijtijZi ⊗ Zj. Now let A be the system and B

be the environment. We find that ICCI has the form:

ΔSsys þ ΔhBbathi þ ΔhBinti þ ΔhBsys − Bsys
eff i ≥ 0; ðB3Þ

where

Bbath ¼ trsysð− ln ρtotÞ; ðB4Þ

Bsys ¼ trenvð− ln ρtotÞ; ðB5Þ

Bsys
eff ¼ − ln½trenvðρtotÞ�: ðB6Þ

Thus, the dressing term originates from the noncommuta-
tivity of the partial trace operation and the − ln operation.
The two commute when ρtot0 is in a system-environment
product state.

APPENDIX C: ICCI FOR TWO SIMPLE
INTERACTIONS IN A COUPLED

THERMAL STATE

In this appendix, we evaluate the magnitude of the
system dressing term in the ICCI with an initially coupled
thermal state (see Sec. II E), βðHs −Heff

s Þ, for two inter-
esting cases. First, we make the simplifying assumption
that HI;0 conserves the sum of bare energy of the system
and the microbath (denoted by ‘b’ for brevity):

½HI;0; Hs þHμb� ¼ 0: ðC1Þ

Using this condition, we find

trhe−βðHsþHI;0þHbÞ ¼ e−βHs trh½e−βHbe−βHI;0 �
¼ e−βHs

X
Eb

e−βEbhEbje−βHI;0 jEbi; ðC2Þ

where in the last stage we have used the microbath energy
eigenstates to do the partial trace.
We consider two typical forms of HI;0: (1) ϵHs ⊗ Hb,

where ½Hb;Hb� ¼ ½Hs; Hs� ¼ 0, which often arises in
dephasing environments, e.g., σz ⊗ σz, and (2) a swaplike
interaction between the system and the microbath
ϵða†bÞ ⊗ as þ H:c:, where a is some transition operator
of the form jmihnj.
For case (1), simple dephasing, we find

trhe−βðHsþHhþϵHs⊗HbÞ ¼ e−βHs

X
n¼0

ð−βϵHsÞn ⊗ tr½e−βHbHn
b�

n!

¼ e−βHs

X
n¼0

ð−βϵHsÞn
n!

hHn
bi0Zb0;

ðC3Þ

where Zb0¼ tr½e−βHb � and hHn
bi0¼ trf½ðe−βHbÞ=ðZb0ÞHn

b�g.
We define the function fðxÞ ¼ P

n¼0½ðZb0hHn
bi0Þ=n!�xn, so

from Eqs. (28) and (C3) we get
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βΔðHsys
eff −HsÞ ¼ ln fð−βϵHsÞ

¼ ðβϵÞHshHbi0Zb0 þO½ðβϵÞ2�: ðC4Þ

SinceHs commute withHs, we conclude that ln fð−βϵHsÞ
is a “dressing effect” of the microbath on the system (this
term has the same eigenstates as Hs). In the ICCI Eq. (24),
the system appears primarily in ΔSsys, as in the CI.
However, in the ICCI the dephasing dressing effect
contributes a new expectation value term (in contrast to
information term) of the system Eq. (C4).
For case (2), the creation-annihilation swaplike inter-

action, we find

trbe−βðHsþHI;0þHbÞ ¼ e−βHs

X
Eb

e−βEbhEbje−βHI;0 jEbi

¼ e−βHs

X
Eb

e−βEbhEbjcoshðβHI;0ÞjEbi:

ðC5Þ
The cosh appears since all the odd powers of e−βHI;0 are
eliminated by the partial trace. From this we conclude that
the contribution of the swap term is O½ðβϵÞ2�. Therefore, if
there is a weak swap term at time zero, it will manifest in
the first order in the βΔhHI;0i term of the ICCI, and only in
second order in the system dressing term of the ICCI.

APPENDIX D: Bα HIERARCHY RELATIONS

In this appendix, we point out that there is a hierarchy
relation between inequalities Eq. (30) with different values
of α. The derivation is based on the fact that for any
q > p > 0, the function hðxÞ ¼ ðxp=pÞ − ðxq=qÞ is
monotonically increasing for x ∈ ½0; 1�. To apply this to
the operator B ¼ − ln ρtot0 , we define the operator
B̃ ¼ B=kBkop, where kBkop is the operator norm, which
is equal to the largest eigenvalue of B (B is Hermitian and
bounded). Based on this construction hðB̃Þ is passive with
respect to ρtot0 since we ensured that the spectrum of B̃ is in
[0, 1], where hðxÞ is an increasing function. Thus, from
passivity we get that ΔhðB̃Þ ≥ 0, which means that

ΔhBpi
pkBkpop ≥

ΔhBqi
qkBkqop ; ∀ p > q > 0: ðD1Þ

In particular, for integer p and q we get

ΔhBi
kBkop

≥
1

2

ΔhB2i
kBk2op

≥
1

3

ΔhB3i
kBk3op

≥ � � � ≥ 1

n
ΔhBni
kBknop

≥ 0: ðD2Þ

These relations can be useful for bounded setups (e.g.,
collection of spins) as long as the operator B is bounded
and not too large (e.g., when the setup includes a small
number of spins). For large kBkop the hierarchy relations
Eq. (D1) reduce to Eq. (30).
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