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We design a logical qubit consisting of a linear array of quantum dots, we analyze error correction for
this linear architecture, and we propose a sequence of experiments to demonstrate components of the
logical qubit on near-term devices. To avoid the difficulty of fully controlling a two-dimensional array of
dots, we adapt spin control and error correction to a one-dimensional line of silicon quantum dots. Control
speed and efficiency are maintained via a scheme in which electron spin states are controlled globally using
broadband microwave pulses for magnetic resonance, while two-qubit gates are provided by local electrical
control of the exchange interaction between neighboring dots. Error correction with two-, three-, and four-
qubit codes is adapted to a linear chain of qubits with nearest-neighbor gates. We estimate an error
correction threshold of 10−4. Furthermore, we describe a sequence of experiments to validate the methods
on near-term devices starting from four coupled dots.
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I. INTRODUCTION

Proposals for quantum-computing hardware and quantum
error correction present compelling visions for quantum-
information processors [1–13]. State-of-the-art experiments
now involve operations on two to nine coherently control-
lable qubits [14–30], but an extensible logical qubit has not
yet been demonstrated. This paper proposes an experimen-
tally realizable logical qubit in quantum dots using recently
demonstrated control of single-electron spins. Rather than
focusing on the scaling issues for a full-scale quantum
processor, we instead study in detail how a single logical
qubit could work with the limitations of a quantum-dot
device having nearest-neighbor gates in a linear array [31].
The proposal culminates in an “experimental path”
of demonstrations that build in complexity and reach a
quantum-dot logical qubit.
This logical-qubit proposal mirrors work in other

quantum-information platforms. Experiments with multiple
coupled qubits have demonstrated proof-of-principle
computations and preliminary steps towards a logical qubit.
The field of quantum-processing technology includes

photons [17,22], trapped ions [14,15,23], superconducting
qubits [18,19,25,28–30], and spins in diamond [24,26],
gallium arsenide [20,32–38], and silicon [27,39–47].
However, there are unique advantages to a silicon quantum
processor, and the potential for high-fidelity control of long-
lived spin qubits motivates this proposal. We specifically
focus here on quantum dots formed in silicon metal-oxide-
semiconductor (SiMOS) structures, but we also address
issues relevant to an implementation of the scheme using
quantum dots formed in silicon-germanium and gallium-
arsenide heterostructures.
Single electron spins in isotopically enriched silicon

can have coherence times much greater than a milli-
second [40,43,45,48], and electrically controlled spin-spin
exchange operations can be performed in tens of nano-
seconds [27,32–34,36,39,45,49,50]. Electron spins can
also be controlled using microwave magnetic resonance,
for which high-fidelity gates have been demonstrated
[40,51,52]. Quantum dots have a promising path for exten-
sibility since they are compatible with techniques for semi-
conductor fabrication and integration thatwere developed for
classical computing, though the small feature sizes posenear-
term challenges. Here, we design a logical qubit in a linear
array of exchange-coupled dots, which is perhaps the most
accessible design for current fabrication technology.
The proposed quantum-dot logical qubit is within reach

of near-term experiments, but it also has the potential
for extending to multiple logical qubits. The hardware
platform is a linear array of silicon quantum dots where
control operations are restricted to the electrically controlled
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exchange interaction between neighboring dots and global
magnetic-resonance pulses that target all electron spins
(details in Sec. II). The simplicity of the control scheme is
favorable for producing multiple-dot devices, and we show
how to adapt simple error correction such as repetition
codes to this hardware. This adaptation is a significant
result because there are only a handful of schemes for
error correction in geometries as constrained as ours. The
components of the error correction scheme can be dem-
onstrated in intermediate proof-of-concept experiments, as
has been done in other qubit technologies [15,18,21,23,
24,26,28–30].
We assert that a logical qubit must have four character-

istics to be extensible, in addition to the DiVincenzo criteria
for a quantum computer [53]. Though the requirements
might seem obvious, the sequence of experiments in
Sec. IV is designed to specifically demonstrate each of
these capabilities in silicon quantum dots. The logical-qubit
characteristics are as follows:
(1) Error threshold.—The systemmust be able to run an

error-detection procedure that is capable of yielding
an encoded error rate lower than the error rates of
physical components (i.e., there exists an error
threshold) [54,55]. For stabilizer codes, this error
detection is stabilizer measurement [56–58].

(2) Fault tolerance.—Any single fault is detectable,
meaning that the logical qubit must be able to detect
errors on its constituent physical qubits in all single-
qubit Pauli bases [59].

(3) Parallel measurements.—The logical qubit must
have the ability to perform error-detection measure-
ments at multiple locations simultaneously, where an
extensible system has a number of measurement
apparatuses proportional to the number of physical
qubits [60]. Otherwise, error detection will not keep
pace with error generation as the system extends.

(4) Extensible encoding.—The logical qubit must have
an encoding strategy that is capable of extending to
correct any number of errors [54,55,58,60–62].
For stabilizer codes, this means code distance can
increase without compromising any of the preceding
criteria.

The logical qubit proposed here is designed to satisfy all of
these criteria.
The scope of this paper is a proposal to design and test the

simplest logical qubit in a linear array of silicon quantum
dots. We choose this scope because it allows us to consider
important near-term challenges for error correction using
quantum dots; moreover, there are several proposals that
provide good coverage of large-scale silicon-qubit designs in
the longer term [1,2,5,63–66]. Based on recent results in
SiMOS dots [27,40,67], we design spin-control protocols
and error-correction instruction sequences. The hardware
instructions and error correction are co-adapted to each
other, as device fabrication favors simplicity while error
correction favors more control of the qubits. Finding a viable

experiment path to satisfy these competing design challenges
is the central result of this paper. Our error correction
schemes are simple two-, three-, and four-qubit quantum
codes that have been mapped to the linear array of qubits
[68–70] because alternatives like the surface code [8,71–73]
and Bacon-Shor code [74–76] are not effective in a linear
geometry [77–79]. Our logical qubit is supported with
simulations of error correction that can be compared with
other proposals [13,58,69–71,73,75,76,80–87]. Finally, we
are careful to note that a purely linear architecture is not
extensible to an arbitrary number of qubits, for the simple
reason that a single defective qubit anywhere results in two
noninteracting arrays. Our present scope is limited to a
logical qubit requiring at most 20 dots, so we do not examine
this matter in detail. However, to show that the proposal
can scale in the future, we comment briefly in Sec. V on
strategies for handling imperfect dot yield using linear
segments of dots that form a 2D grid pattern.
This paper is structured to show how the capabilities of

the quantum-dot hardware and the instruction scheduling
for error correction are closely integrated. The control
operations in Sec. II are designed to be minimal, support-
ing extensibility, yet sufficient for the error correction in
Sec. III. The proposed quantum-dot platform limits the set
of control instructions to favor simplicity in the hardware,
but the error correction must adapt to this restrictive
control. The building blocks of error correction in Sec. III
form a natural sequence of experiments, described in
Sec. IV, for culminating in a logical qubit. The informa-
tion gained from each experiment is directly related to the
role of the QEC building blocks in the ultimate logical
qubit. This experimental path provides milestones towards
a logical qubit, and the measured performance of the
building blocks can be used to predict performance of a
logical qubit.

II. CONTROLLING SPINS IN A LINEAR ARRAY

This section describes the hardware platform for the
proposed logical qubit, with an emphasis on reducing
device complexity as much as possible while still support-
ing error correction. Figure 1 depicts a device architecture
for a line of exchange-coupled quantum dots, similar to the
devices demonstrated in Refs. [27,31] and employing a
microwave electron-spin resonance (ESR) antenna as in
Ref. [88]. In this section, we first present the chosen
methods for spin initialization, control, and measurement
supported by this architecture. Second, we perform numeri-
cal simulations to estimate performance and identify areas
of emphasis in characterizing and mitigating noise. Finally,
we show how the sequencing of control operations, which
we call “tick-tock control,” implements an instruction set
that is sufficient for quantum error correction. This tran-
sition to a logical-qubit encoding is specifically adapted to
this SiMOS proposal to work around limitations in the
available spin-control operations.
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A. Fundamental control operations

The set of spin-control operations is designed to be as
simple as possible to support a logical qubit. Furthermore, all
control operations needed for the logical qubit have been
demonstrated in silicon quantum dots. These include ESR
[40,42,48,52], electrically controllable exchange interaction
between spins in neighboring dots [27,32–34,39,45,49], and
electrically controllable preparation and measurement of
two spins in the singlet-triplet basis using Pauli blockade
[39,45,92–94].
To favor extensibility, the logical qubit implements

global ESR addressing of all spins (as in an ensemble
experiment) [48,64,95], instead of selective ESR address-
ing of single spins [40,42,52]. Single-spin addressing is, in
principle, possible with narrow-band microwave pulses, but
this approach becomes increasingly difficult as the number
of spins in the device increases, due to “frequency crowd-
ing” [28,96]. The spin-resonance frequencies will lie within

a fixed frequency band, and with many spins, it becomes
hard or impossible to implement selective control without
unwanted cross talk. Addressing all spins simultaneously
with broadband ESR avoids frequency crowding and the
associated cross-talk errors, though this approach clearly
limits what control is possible.
Global ESR is also beneficial for dynamical decoupling

[97]. Dynamical decoupling is needed for two reasons in
our proposal. First, the combination of an external applied
magnetic field and an inevitable distribution in electron g
factors leads to an inhomogeneous distribution of Zeeman
energies. By applying echo pulses simultaneously to all
spins, as practiced routinely in bulk magnetic resonance in
inhomogeneous magnetic fields [48,98], one can coher-
ently control many spins with broadband pulses without
requiring a reference oscillator for each spin. (We note,
however, that when the number of spins is low enough, the
capability of selective ESR addressing of single spins is
useful for testing and calibration.)
A second reason for dynamical decoupling is to correct for

dynamic phases that occur during two-qubit operations in
our proposal, which employ electrically gated exchange
interactions in the presence of large and controllable g-factor
differences. As we discuss in the next section and as has been
demonstrated experimentally [27], these combined phenom-
ena enable two-qubit controlled-phase (CZ) or controlled-
NOT (CNOT) gates. As elaborated in Ref. [99] in the context
of donors in silicon, these gates employ some robustness to
high-frequency noise due to their use of adiabatic modula-
tion of energy gaps, but they do incur dynamic phases during
the adiabatic ramping. While such phases could be tracked,
in principle, they are also subject to low-frequency noise
sources, so it is preferred to refocus these phases entirely
using dynamical decoupling.
The device schematic shown in Fig. 1 is configured with

one gate electrode per quantum dot. The insulating oxide
(such as AlOx) between the metal gates produces a natural
tunnel barrier between adjacent dots, as has been observed
in experiments on SiMOS two-qubit devices [27]. The
exchange coupling between adjacent qubits Qi and Qiþ1 is
achieved by applying a differential voltage between gates
Gi and Giþ1 to “detune” the electric potentials of the two
dots. It is also possible to configure devices with an
additional “exchange” gate between each pair of qubit
control gates (labeled Gi here), and such an approach has
been used in Si=SiGe quantum-dot devices [31,45,50,100].
As we discuss later, this approach can reduce sensitivity to
charge noise, but it increases device complexity.
If no exchange gate is used, then it will be necessary to

adjust all gates simultaneously, via a self-consistent algo-
rithm, to correct for the effect of cross talk between gates
when an exchange operation is applied between a specific
pair of qubits, or pairs of qubits. Without electrical control
of the tunnel coupling, the exchange energy J between
each pair of spins is controlled by detuning their relative

(a)

(b)

(c)

FIG. 1. Device schematic for a linear array of quantum dots.
(a) Cross-section view of the device stack, with dots forming
under metal gates. (b) Top view of the device where dispersive
readout is implemented through the gate electrodes [89–91].
(c) Alternative top view where readout is implemented using
single-electron transistors (SETs) located near the dots [27,40].
This example has 14 dots, which corresponds to a logical-qubit
demonstration described in Sec. IV.
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electrochemical potential; turning on J for one pair will
require similarly shifting the electrochemical potentials of
dots to the left and to the right to prevent unintended
exchange with neighboring spins. A potential solution to
applying exchange between any nonoverlapping spin pairs
simultaneously is to set the potential at each dot to one of
two values, Vð0Þ and Vð1Þ. Starting from one end of the line
of dots, assign potentials (0) or (1) such that neighboring
dots have the same potential to turn off exchange and
different potentials to “detune” and activate exchange.
Since J is an exponential function of voltage, inhomoge-
neity in tunnel coupling can be handled by shifting voltages
as needed only slightly from this simplistic model; thus,
small detunings will still have negligible exchange, while
large detunings will be designed to match the tunnel
coupling of any dot pair and implement a uniform exchange
operation in constant time for all dots. Similarly, we can use
voltage pulses that cause small detunings to employ a Stark
shift to the g factor of individual spins [27,40,101], which
shifts the Zeeman energy and introduces a Z-axis rotation
on the spin state. This operation will be discussed in more
detail below.
In addition to global ESR for single-spin control and

dynamical decoupling, as well as the exchange interactions
for two-qubit gates, our fundamental control operations
include singlet preparation for ancilla qubits. A spin singlet
jSi ¼ ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p

is simple to prepare in a small dot
since it is the two-electron ground state. When a second
electron tunnels into a quantum dot from a thermal bath, a
rapid equilibration generates the singlet ground state as long
as the electron temperature and the electron Zeeman energy
are substantially less than orbital or valley energies; temper-
atures around 100 mK and fields on the order of a tesla
are easily sufficient for high-fidelity singlet preparation in
SiMOS, where singlet-triplet splittings often exceed 1 meV
[102]. This process may also be reversed for projective
singlet-triplet measurement; if a double quantum dot is
electrostatically biased into a regime where a two-electron
state in a single dot is the ground state, the singlet will
occupy this ground state, while any symmetric spin triplet
will occupy an excited state across both dots due to Pauli
blockade [103]. The distinguishable charge signature of the
excited state enables distinguishing between the spin singlet
and triplet via charge sensing. Recently, singlet preparation
and measurement in the SiMOS system has been demon-
strated [104,105]; see also Refs. [32,39,45,102] for more
discussion. The next section examines the performance of
these control operations, and Sec. II C describes how to
implement all of the gates needed for error correction.

B. Experimental state of the art and simulated
performance in SiMOS qubits

All of the spin-control techniques in preceding sections
have been demonstrated experimentally in silicon quantum
dots. To support a logical qubit, important measures of

performance for each operation are speed and fidelity, in an
extensible platform. Most of the control operations have
been rigorously benchmarked, and here the results are
already approaching the low error rates required for a
logical qubit: high-fidelity singlet preparation, measure-
ment in the singlet-triplet basis, ESR control of individual
spins, and memory lifetimes exceeding a millisecond. An
exchange-based CZ gate was recently demonstrated [27],
and as we discuss below, this gate could have a fidelity
sufficient to support QEC for a reasonable level of charge
noise. This section analyzes the recent experimental dem-
onstrations and applies numerical simulations to predict the
performance of control operations in a logical qubit.
The Hamiltonian describing qubit control in this section

concerns the spins of two singly occupied dots, a and b, with
spin operators Sj and total z-spin projection m ¼ ma þmb.
This Hamiltonian may be written

HðtÞ ¼ ḡ½VðtÞ�μBB0ðSza þ SzbÞ þ Δg½VðtÞ�μBB0

Sza − Szb
2

þ J½VðtÞ�Sa · Sb þΩðtÞðSxa þ SxbÞ; ð1Þ

where ḡ½VðtÞ� is the average of andΔg½VðtÞ� the difference of
g factors for the two dots; these are both functions of the time-
dependent applied detuning voltage VðtÞ. These g-factor
differences cause differences in the Zeeman energy between
dot pairs, which we notate as ΔEZ ¼ Δg½VðtÞ�μBB0. The
exchange interaction energy J½VðtÞ� is also a function of
VðtÞ. ESR-based spin manipulations are implemented via
transverse microwave magnetic fields with modulated Rabi
frequency ΩðtÞ=2. Note that external field B0 points in the ẑ
direction, and the oscillating field ΩðtÞ points in the x̂
direction.
Concerning decoherence processes, it has long been

expected, as well as observed in ensemble studies, that
electron spins in isotopically enriched silicon have long
coherence times [2,48,106–109]. Recent experimental
demonstrations on single-spin qubits have validated this
expectation. The relaxation time T1 is greater than 1 s
[101], so coherence time is limited by spin dephasing due
to fluctuations in the magnetic environment. With a
concentration of 800 ppm 29Si, a dephasing time T�

2 as
long as 120 μs has been demonstrated [40]. Recent inves-
tigations have examined the extent to which T�

2 is limited by
low-frequency magnetic noise [43,51], which can be sup-
pressed with dynamical decoupling schemes. The coher-
ence time with decoupling has been extended to 1.2 ms
with one pulse and 28 ms with multiple pulses [27,40].
A donor-bound spin in enriched silicon achieved an even
longer coherence time [43], showing that there is further
opportunity for improvement. Spin-control operations have
been experimentally implemented in 1 μs or less [27,40],
which is 4 orders of magnitude shorter than the decoupled
coherence time. In the remainder of this section, we will not
include these sources of dephasing; rather, we focus on
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control errors, as these are likely to dominate performance
in silicon logical qubits.
Preparation and readout in the singlet-triplet basis

utilizes spin-to-charge conversion via Pauli blockade [5].
The method has recently been demonstrated in both
enriched Si=SiGe devices [45] and SiMOS devices [105]
with a readout visibility of 98%, where loss of visibility
includes both preparation and measurement errors. These
experiments were performed at low magnetic field. At
higher magnetic fields, two effects alter the use of Pauli
blockade for initialization. First, at substantial magnetic
fields, the g-factor variations lead to substantial differences
in the Zeeman energy, ΔEZ, between a dot pair.
Considering Eq. (1), as one ramps from the spin-singlet
ground state ðj↑↓i − j↓↑iÞ= ffiffiffi

2
p

at high J to a lower value
of J, eventually one reaches a regime where ΔEZ > J, at
which point singlet and m ¼ 0 triplet states begin to
coherently mix. If intending a fully singlet initialization,
one must either ramp quickly enough to avoid this mixing,
refocus this mixing with a calibrated pulse sequence, or
choose to instead prepare the j↑↓i state by adiabatic ramp
down in J as in Refs. [32,39]. The latter choice is likely the
most robust and was recently considered for a large-scale
architecture in Ref. [65]. An increased magnetic field may
also reduce singlet (or j↑↓i) fidelity when the energy
splitting between the m ¼ 0 states and the excited m ¼ 1
state (i.e., jT−i ¼ j↓↓i) decreases with the B field. As
outlined below, the operation of the SiMOS device at
higher field strengths (up to 1.5 T) is beneficial for faster CZ
operation times. The large valley splitting in the SiMOS
devices, measured to be 0.3–0.8 meV [101] and substan-
tially larger than observed values in Si=SiGe devices [45],
permits the use of higher fields before degradation of the
Pauli blockade process. For example, with valley splittings
this large, fields of order 1.5 T, and electron temperature
around 100 mK, the probability of initializing into a
thermal excited state is less than 10−6 in principle. In
practice, initialization and readout fidelity are limited by
noise in control and readout electronics.
Preparation time depends on two steps: (1) loading two

electrons into the singlet ground state of a single dot, and
(2) moving one of the electrons to a second unoccupied dot.
The first step is limited by tunnel coupling to the bath and
the energy gap to excited states, as mentioned above. The
second step needs to be adiabatic with respect to excited
states for singlet preparation or adiabatic with respect to
ΔEZ for the flip-flop ancilla (if ΔEZ=ℏ ¼ 10 MHz, then
1 μs traversal should satisfy adiabaticity, similar to the
analysis of the CZ gate in Fig. 4). Preparation times in recent
experiments were of order microseconds or tens of micro-
seconds, which is comparable to the speed of other
operations like ESR control [45,50,105].
Controlled-phase entangling gates based on exchange

have been analyzed and experimentally demonstrated
extensively in the literature [27,110,111]. The example

realized in SiMOS [27] is performed via an adiabatic pulse
on the electrostatic detuning towards the (0,2) charge-
state anticrossing. If JðVÞ is the dominant term of this
Hamiltonian, the exchange operation would implement
SWAP rotations. However, the combination of a nonzero
B field and a g-factor difference ΔgðVÞ ¼ gaðVÞ − gbðVÞ
splits the energy levels of the spin states j↑a↓bi and j↓a↑bi,
and the nonlinearity in the eigenvalue spectrum near the
avoided crossing introduced by JðVÞ allows a controllable
phase shift, which has produced controlled-Z and CNOT

two-qubit gates between SiMOS quantum dots [27].
As the duration and fidelity of the CZ gate depends in part

on g-factor differences between dots, it is important to
characterize what values of Δg are achievable. Disorder
perturbations at the Si=SiO2 interface lead to a stochastic
and bias-dependent variation in g factors. Figure 2 illus-
trates a randomly generated distribution of electron
g factors for a linear chain of 20 qubits, as well as the
g-factor tuning range, based on statistics from measure-
ments on SiMOS devices [27]. When two neighboring dots
have small Δg at zero electrostatic detuning, the difference
can be increased with Stark shifting by choosing whether to
detune the dots towards the (2,0) or (0,2) charge configu-
ration [27,40,101], noting that this would yield a favorable
configuration for detuning potentials (0) and (1) along the
chain as discussed in the previous section. In a recent
experiment, the minimum energy splitting at B0 ¼ 1.4 T
was ΔEZ ¼ ΔgμBB0 ¼ 20 MHz × h, with 10 MHz tuna-
bility in each electron spin [27].
From preliminary estimates, simple square pulsing of the

CZ operation with observed values of ΔEZ can achieve a
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FIG. 2. Randomly generated sample of spread in g factors for a
linear chain of 20 quantum dots. The underlying distribution of g
factors is based on the measured variance in g factors observed in
devices like the one in Ref. [27]. Each data point shows the range
of g-factor tuning possible with Stark shifting [27,40,101],
corresponding to 10 MHz at B ¼ 1.5 T. Dots 5 and 6 are colored
red to indicate that they have small Δg splitting and require the g
factors for those dots to be tuned apart for the CZ gate, as
described in the text.
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two-qubit gate fidelity above 99%, but substantially
higher fidelity is accessible through pulse shaping. In
particular, adiabatic pulsing [99] has several advantages,
principle among them being a resilience to some noise
processes. In the adiabatic limit, pulsing into the avoided
crossing and back realizes a combination of Zeeman phase
shifts and a nonlinear phase shift due to JðVÞ. The
nonlinear phase shift is given entirely by the time integral
of JðVÞ, which we notate here as ξ ¼ R

J½VðtÞ�dt=ℏ. The
integral is over a sufficient time to fully capture a voltage
pulse VðtÞ, which brings JðVÞ to and from a negligibly
small value. The total adiabatic unitary evolution for the
two spins is then given by

UðξÞ ¼ exp

�
−iξSzaSzb − i

Z �
ω0½VðtÞ� þ

1

2
Ω½VðtÞ�

�
dtSza

− i
Z �

ω0½VðtÞ� −
1

2
Ω½VðtÞ�

�
dtSzb

�
; ð2Þ

where ℏω0ðVÞ ¼ ḡμBBz and

ℏΩðVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2

ZðVÞ þ J2ðVÞ
q

: ð3Þ
In practice, the adiabatic limit is maintained by assuring
that the frequency bandwidth of a J½VðtÞ� pulse lies well
beneath the minimum value of ΔEZ½VðtÞ�=ℏ. If the total
nonlinear phase shift satisfies ξ ¼ π, one achieves a
maximally entangled CZ gate in addition to local sin-
gle-spin phase shifts. These single-spin phase shifts are
substantial, however, and subject to magnetic and charge
noise, the latter due to the electric-field dependence of gj.
Rather than attempting to compensate for these phases and
accept errors due to low-frequency magnetic or charge
noise, we instead employ an approach where we decouple
these phases, as in Ref. [99] and illustrated in Fig. 3.
Denote by Xj a π pulse for spin j, and break our JðVÞ
pulse into two halves, each satisfying ξ ¼ π=2. Then,
under perfectly adiabatic conditions,

Uðπ=2ÞX1X2Uðπ=2Þ ¼ e−iπ=2S1S2UCZX1X2; ð4Þ
where UCZ is a controlled-phase gate and Sj ¼

ffiffiffiffiffi
Zj

p
is a

single-qubit S gate. It is important that the S gates are
corrected by selective Stark shift of the two spins to
implement a CZ operation. No extraneous magnetic phases
need to be tracked in this decoupled CZ gate.
Two sources of error are expected to limit the fidelity of

this CZ gate, and these are considered in simulations
indicated by Fig. 4. These simulations use a standard
detuning model for JðVÞ and a linear model for ΔgðVÞ,
both informed by Ref. [27] and indicated in Fig. 4(a). In the
JðVÞ model, the tunnel coupling tc between dots is
assumed to decrease for very small V, but it saturates to
a constant at large detuning V, where JðVÞ ∼ t2c=ðV0 − VÞ
[39]. The chosen value and bias dependence of ΔgðVÞ for

this simulation are typical values from measurements of
devices similar to the one in Ref. [27]. Simulations use two
Gaussian voltage pulses that satisfy ξ ¼ π=2, interspersed
with ideal single-spin π pulses as in Fig. 3. The simulation
integrates the evolution due to these Gaussian pulses from
−5σt to 5σt, where σt is the root-mean-square temporal
pulse width.
As indicated in Fig. 4(b), Gaussian pulses in VðtÞ lead to

sharply peaked pulses in J½VðtÞ� for short σt and to
smoother, broader pulses for long σt. These shapes are
especially critical for the influence of charge noise, which is
introduced as a randomly sampled noisy voltage δVðtÞ.
Ensembles of δVðtÞ functions are filtered from Gaussian
white noise to produce the noise spectral density
SVðfÞ ¼ A2=f, including a low-frequency cutoff corre-
sponding to a 1-hour calibration timescale. This 1=f
voltage noise mimics the expected influence of electric
field noise from a variety of possible sources in a real
device by modeling it as a single noisy voltage. A clear
noise enhancement at the peak value of J½VðtÞ� is visible in
Fig. 4(b), especially for the shorter pulse (lighter blue line);
this is because the noise insensitivity I ¼ J=jdJ=dVj
rapidly decreases at high J for the detuning mode of
operation [50]. The result of integrating the Schrödinger
equation for these chosen pulse shapes is shown in Fig. 4(c),
in which infidelity is given by the normalized trace distance
between the simulated, imperfect unitary and the ideal
unitary of Eq. (4) under perfect adiabatic and noise-free
conditions. Figure 4(c) uses the particular gate-referred
charge noise amplitude A ¼ 5 μV, a value comparable but
somewhat improved relative to observed charge noise either
deduced from CZ oscillation decay in Ref. [27] or measured
in similar MOS devices in Ref. [112].
The red curve of Fig. 4(c) shows the infidelity due to

nonadiabatic behavior, which dominates at short pulse
widths σt but then falls rapidly with increasing σt. The
cyan curve indicates infidelity due to randomly sampled 1=f
charge noise. This contribution to gate error may be
decomposed into two sources. In the long-pulse limit, the
limiting noise comes from charge-noise-induced fluctuations
in the g factor since this error increases with pulse length

FIG. 3. Quantum circuit illustration of the dynamical decou-
pling scheme for the adiabatic controlled-phase gate; the
controlled-

ffiffiffiffi
Z

p
pulses on two qubits in two dots are implemented

via adiabatic pulsing of exchange. The resulting operation
includes single-qubit Z rotations; these are decoupled by the
intervening single-qubit π pulses about X, which may be
implemented via a global ESR pulse.
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following a trend proportional to
R jΔg½VðtÞ�j2dt, as indi-

cated by the green line in Fig. 4(c). At the minimum of
infidelity relative to root-mean-square pulse width σt, the
dominant noise source is an imperfect nonlinear phase from
the integral over a noisy J½VðtÞ�, which is dominated by

charge noise at the peak of the exchange pulse. This noise
source is therefore proportional to ðA=IpeakÞ2, where Ipeak is
the insensitivity at the peak of the exchange pulse. This
contribution decreases for longer pulses which have a lower
peak value of J, as indicated by the blue line. This error
source could be reduced with symmetric exchange pulsing if
an additional gate were available to modulate the tunnel
barrier between dots [36,50]. There are important trade-offs
to consider between the additional electrostatic tunability
offered by exchange gates and the increased device complex-
ity from doubling the number of gates, but we defer this
matter to other investigations in the literature [27,36,
50,113,114]. The minimum total infidelity occurs around
σt ≈ 300 ns for these parameters, at which, over a broad
range of A, the minimum infidelity scales as A2. Of course,
the pulse width providing this minimum varies approxi-
mately linearly with the constant and voltage-dependent
g-factor differences, which vary from dot pair to dot pair, but
the dependence on these parameters of the minimum fidelity
reached at the optimum pulse length is sublinear, allowing a
substantial range of g-factor variation with infidelity com-
parable to the simulation shown in Fig. 4.
Our simulation of CZ infidelity has not included imper-

fections in single-qubit operations, namely, the decoupling
π pulses and the Hadamard rotations. However, existing
experimental implementations of cryogenic ESR give
strong encouragement that these pulses can be achieved
with high fidelity. Through the use of an on-chip trans-
mission line [88], ESR control of single electron spins in
SiMOS devices has been demonstrated with benchmarked
control fidelity of as high as 99.6% [40,51]; another
experiment with a micromagnet in Si=SiGe dots realized
99% fidelity [52]. However, as the number of electron spins
in the device increases, frequency crowding becomes a
notable issue, so the global ESR scheme introduced in the
previous section would have all spins controlled simulta-
neously by a common ESR transmission line. High-fidelity
control of spin ensembles has been demonstrated in
magnetic resonance [98], where composite pulse sequences
such as BroadBand 1 (BB1), compensation for off-
resonance with a pulse sequence (CORPSE), and combina-
tions thereof are used to correct for systematic over-rotation
or under-rotation errors in broad inhomogeneous distribu-
tions [115–119]. In practice, the highest fidelity broadband
pulsing scheme will likely use numerically calibrated pulses
designed for the particular g-factor distribution of a given
device, using numerically efficient methods such as gradient
ascent pulse engineering (GRAPE) [120].
The ability to electrically Stark-shift the electron g factor

provides another resource for maintaining high-fidelity
control using only global ESR pulses [27,101]. If a voltage
pulse is applied to a single dot j before a global (ESR)
decoupling gate, but not after, then the Stark shift will
introduce a Zj-axis rotation. The duration of such a pulse
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FIG. 4. Implementing a controlled-phase gate using exchange
and g-factor differences. (a) The modeled functions of g-factor
difference ΔgðVÞ exchange rate JðVÞ versus detuning voltage,
employing typical parameters, similar to those demonstrated in
Ref. [27]. (b) Pulse shapes for Δg½VðtÞ� and J½VðtÞ�, plotted on
the same scale as panel (a), for a Gaussian detuning voltage pulse
VðtÞ ∝ expð−t2=2σ2t Þ for two different values of σt, including
added voltage noise δVðtÞ with spectral noise density SVðtÞ ¼
A2=f. These sample traces use a rather high value of A ∼ 30 μV
to allow the noise to be visible on this scale. (c) Simulated
infidelity of the adiabatic CZ gate. The red line results from
simulating with no charge noise but examining infidelity due to
nonadiabatic behavior. The cyan line considers strictly adiabatic
evolution but adds charge noise by Monte Carlo integration using
sampled voltage noise as in (a), in this example, with A ¼ 5 μV.
The charge-noise-induced infidelity (cyan line) decreases due
to exchange noise, for which the primary trend indicated by the
blue line follows 10ðA=IpeakÞ2, where Ipeak ¼ J=jdJ=dVj is the
insensitivity [50] at peak J. For longer pulses the charge-noise-
induced infidelity increases due to noise on the g factor; the green
trend plot is

R jΔg½VðtÞ�j2dt=ð500 Grad=secÞ. The thick gray line
is the total infidelity, estimated as the sum of the diabaticity (red)
and charge-noise (cyan) contributions.
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could be estimated as follows. A recent experiment demon-
strated a Stark shift of 19 MHz=V [27,40,101]. The pulse
cannot be too large in magnitude, or it would also introduce
unintended exchange with neighboring dots; the strategy is
to exploit the fact that the Stark shift is approximately linear
in voltage, whereas exchange is exponential. For example, a
10-mV pulse would cause a rotation rate of about 200 kHz,
enabling a π=2 S gate in 1.25 μs, while 10-mV detuning is
outside the left margin of Fig. 4(a), where exchange is small.
If additional metal gates are introduced between dots to
modulate tunnel coupling, this could further suppress
unwanted exchange.
We finally note that several optimizations of the CZ gate

discussed here are available and may be analyzed in future
work. The Gaussian pulse shape for VðtÞ chosen in our
analysis was not an optimized choice; shaped pulse sequen-
ces for exchange [121] and adiabatic CZ [122,123] gates have
been employed in other contexts, and they allow for some
optimization of fidelity. Furthermore, the simple single-pulse
dynamical decoupling routine we have employed could be
extended tomultipulse sequences to further suppress g-factor
noise, which ultimately limits fidelity for very long pulses.
Optimization of dynamical decoupling, especially in con-
junction with the identification of bias regions of high
insensitivity, can lead to drastic improvements in fidelity
in the presence of charge noise [99].

C. Tick-tock protocol

All of the necessary gates for a logical qubit can be
produced by deliberate sequencing of the following spin-
control operations: preparation of the spin singlet, global
ESR, and the exchange-driven CZ gate. We call our scheme
for controlling quantum-dot spin qubits “tick-tock” control
because control pulses are sequenced into two alternating
time intervals, called simply tick and tock. The transitions
between tick and tock are defined by applying global
Hadamard gates using ESR [48,64,95]. The Hadamard
gates must be timed in relation to the dynamical decoupling
pulses that refocus the different phases that accrue due to
inhomogeneous g factors; the Hadamard gates occur at
the refocus time, so they are truly global for all spins.
Consequently, there is a decoupling pulse in the middle of
each tick or tock interval. Exchange-driven CZ gates are
selectively implemented within tick or tock intervals [27],
employing the decoupled-CZ protocol illustrated in Fig. 3.
Finally, two-spin singlets are prepared, coupled to data by
CZ gates, and measured in the singlet-triplet basis, as
explained below.
The tick-tock protocol can implement any CNOT between

neighboring spins by appropriate timing of the exchange
pulse. The Hadamard gates that transition between tick and
tock intervals transform each CZ gate [27] into a CNOT gate,
using the feature of the Hadamard gate that it interchanges
X and Z operators [64]. Figure 5 shows a circuit diagram
[62] that illustrates how any CNOT between neighboring

qubits can be implemented by selectively performing a CZ

gate in the appropriate tick or tock interval and merging
with neighboring Hadamard gates. Unlike CZ, CNOT is not a
symmetric gate, so the orientation depends on which qubits
participate in the gate and whether it occurs in a tick or
tock interval. The convention here is that the control qubit
is odd numbered in a tick interval and even numbered in a
tock interval. The unmatched Hadamard gates in Fig. 5(b),
which only occur at the beginning or end of the experiment,
can be ignored since the single-spin data qubits are in an
arbitrary state at the beginning and end of the computation.
As explained below, the data spins are initialized using the
aid of two-spin ancillas for measurement, after the tick-tock
protocol has started.
There are two types of qubits in tick-tock control. Data

qubits that hold logical information will be single spins,
and measurement uses two-spin “ancilla” qubits that span
either the singlet-triplet or “flip-flop” (j↑↓i=j↓↑i) basis.
Within tick-tock control, this ancilla has the additional
feature that it can be used in a “measurement gadget” to
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FIG. 5. Example of using tick-tock control to apply CNOTs to
four spins, labeled Q1–Q4. (a) Original control sequence con-
sisting of global Hadamard gates that demarcate transitions
between tick and tock intervals, as well as selectively addressed
CZ gates within a tick or tock interval. (b) Equivalent circuit
diagram where two Hadamard gates and a CZ are merged to form
a CNOT, with grouping shown by dashed boxes. The convention is
that CNOT will have its control on an odd qubit in tick intervals
(Op1, Op2, and Op5) and on an even qubit in tock intervals
(Op3). When there is no intervening CZ gate, Hadamards pair to
identity (Op4 and Op6). As explained in the text, the unmatched
Hadamard gates at the beginning and end of computation are not
a concern.
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projectively measure a data spin in either the X or Z basis,
determined by timing of exchange pulses. Throughout this
section, we refer to the ancilla as being in the singlet-triplet
basis, although as noted in the previous section, higher
initialization fidelity may lead to preferring the flip-flop
basis, j↑↓i=j↓↑i, which is initialized adiabatically. An
adiabatic initialization procedure can be adapted to the tick-
tock protocol by performing the traversal in a tick interval
when the CZ coupling gates are performed in a tock interval,
or vice versa. For either basis, when combined with the
CNOTs from tick-tock control, we can use this ancilla to
make all of the measurements required for error correction.
The measurement gadget is a tool for measuring data

spins in the X or Z basis. In addition to measuring a single
data spin, the gadget can be extended to projectively
measure a multiqubit X- or Z-basis operator, such as X ⊗ X
or Z ⊗ Z. Herein, we only consider measuring operators
that are purely X or Z type, as this is sufficient for an
encoding family known as Calderbank-Shor-Steane (CSS)
error correction [62,124,125]. The measurement gadget
works by applying a CNOT to one of the ancilla spins (either
works because of symmetry) and a data spin. To measure in
the X basis, we use timing in the tick-tock protocol to put
the control qubit of the CNOT on the ancilla spin [Fig. 6(a)].
Using subscript “d” for data and “a” for ancilla, the CNOT

transformation is

ðαjþidþβj−idÞ⊗ jSia→
CNOT

αjþid⊗ jSiaþβj−id⊗ZjSia;
ð5Þ

where jSi ¼ ðj01i − j10iÞ= ffiffiffi
2

p
is a singlet, ZjSi ¼ ðj01i þ

j10iÞ= ffiffiffi
2

p
is one of the triplets (apply Pauli Z to either one

of the spins in the singlet), and jþi and j−i are the
eigenstates of X. Likewise, to measure in the Z basis,

we put the target qubit on the ancilla spin [Fig. 6(b)]. In this
case, the CNOT transformation is

ðαj0idþβj1idÞ⊗ jSia→
CNOT

αj0id ⊗ jSiaþβj1id ⊗XjSia;
ð6Þ

where XjSi ¼ ðj00i − j11iÞ= ffiffiffi
2

p
is another triplet (apply

Pauli X to either one of the spins in the singlet). In other
words, the singlet is converted to a triplet if the data spin is
j1i, the −1 eigenstate of Z. For Eqs. (5) and (6), measuring
the ancilla as a singlet or a triplet performs a projective
measurement in the X or Z basis (respectively) on the data
spin. Note that the same protocol can work with the flip-
flop qubit if one were to adiabatically prepare j↑↓i. In this
case, the preparation must be done in the tick or tock
interval before the CNOT gate. For example, the analogue of
Eq. (6) for the j↑↓i ancilla is

ðαj0id þ βj1idÞ ⊗ j↑↓ia
→
CNOT

αj0id ⊗ j↑↓ia þ βj1id ⊗ j↓↓ia: ð7Þ
Measurement is performed by reversing the adiabatic ramp
of preparation, and a state j↓↓i will be blockaded since it
maps to a triplet, allowing detection by charge sensing as
before with the singlet-triplet ancilla [105].
The gadget expands to projectively measure any multi-

qubit X or Z operators by applying a CNOTwith orientation
specified above between the ancilla and each data spin
covered by the operator. For example, when measuring
Z ⊗ Z on two data spins, the ancilla will flip between jSi
and XjSi for each data spin in the j1i state, and likewise
between jSi and ZjSi for the X-basis measurement.
Measurement of a two-qubit operator X ⊗ X [Fig. 6(c)]
or Z ⊗ Z [Fig. 6(d)] is the fundamental operation in
“parity-measurement” experiments that have been demon-
strated in other qubit technologies [15,18,21,23,24,26,
28–30]. Figure 7 shows how to implement the parity-
measurement gadget in a device with four quantum dots.
This parity-measurement gadget is the first demonstration
in the experimental path described in Sec. IV. Moreover, all
of the experiments use the parity measurement gadget as a
subroutine in codes for a logical qubit, so they are
extensions of the procedure depicted in Fig. 7.
In addition to measuring parity, the measurement gadget

can also be used to initialize data spins. The data spins are
loaded into dots in an arbitrary mixed state. Then, the tick-
tock protocol of periodic Hadamard gates is initiated, and
measurement gadgets are used to prepare each data spin in
either the X or Z basis as needed for the computation. An
extensible logical qubit will require readout apparatuses
that are regularly spaced in the array of dots, so this
initialization procedure can be performed in constant time.
An alternative initialization technique is to prepare two data
spins as a singlet, which is a valid encoded state for some
error-correcting codes. Alternatively, if adiabatic prepara-
tion of flip-flop states is employed, one can directly prepare

(a) (b)

(c) (d)

FIG. 6. Measurement gadgets using singlet preparation and
measurement in the singlet-triplet basis, as follows: (a) X-basis
measurement, (b) Z-basis measurement, (c) parity measurement
of X ⊗ X on two data spins, and (d) parity measurement of
Z ⊗ Z on two data spins. The gadget extends to measuring a X or
Z operator of any size by adding CNOT gates.
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qubits in the X or Z basis by performing the preparation in
tick or tock intervals.
The final operation needed for universality is magic-state

injection. We leave the details of magic-state distillation
for future work, as the complexity required is well beyond
the scope of the size of qubit arrays we consider here.
Nonetheless, some discussion of whether sufficient qubit-
level control universality exists in our tick-tock protocol is
worthwhile. The preparation of a single spin in a magic state
may be accomplished via the preparation of a jþi state and a
j↑i state, which may employ the X- and Z-measurement
gadgets as discussed above with appropriate feedback.
Alternatively, adiabatically sweeping an initialized singlet
into a j↑↓i state as discussed in Sec. II B allows the
preparation of a particular spin state for one of the spins,
which may be timed into the appropriate tick or tock interval.
Finally, a voltage pulse can selectively apply a Stark-shift
phase gate to this spin for π=4 rotation about the Z axis. This
routine prepares the magic state for a T gate, which can be
distilled with other available gates, as studied in the literature
[63,71,126].

III. LOGICAL QUBIT IN ONE DIMENSION

Implementing a logical qubit requires detailed instruc-
tion sequences to perform encoding, decoding, and logical

gates that incorporate error detection. The tick-tock scheme
in Sec. II places significant constraints on which gates are
available, though it is still sufficient to implement error
correction. In short, the main challenge for the proposed
logical qubit is that any encoding scheme requires two-
qubit gates between qubits that cannot all be local in a
linear arrangement. The nonlocal interactions must be
mediated by SWAP gates, and we discuss the significant
prior work in this area below. This section describes the
instruction sequences for two- and three-qubit repetition
codes, as well as a four-qubit error detection code. By
convention, the codes are identified by the number of data
qubits, though ancillas for error detection are also required.
These codes are all closely related to the error-correction
proposal by Shor [59], and they appear to be the simplest
codes that can be implemented in a linear array. The codes
also provide a sequence of experiments that demonstrate
the essential features of a logical qubit, which are described
in Sec. IV.
We briefly describe the notation used in this section. The

Pauli operators will be denoted as X or Z, and for multi-
qubit operators, the tensor product will be implicit, such as
XX. When needed, subscripts will index which qubit a
Pauli operator acts on, and missing subscripts implicitly
mean the identity; for example, X1X3 is a tensor product
with an identity operator on the second qubit and any others
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Sec. III. This representation is convenient because it is compact, but an experiment must unpack each instruction into a sequence of ESR
and exchange operations. (c) Tick-tock control sequence showing how the two-qubit gates in panel (b) are decomposed into CZ
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in the system. The þ1 eigenstate of the X operator is
denoted jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. Encoded operators and
states for a quantum code are denoted with a bar, such
as X̄ or j0̄i. Diagrams in this section use the quantum-circuit
representation for its compactness, and these diagrams can
be expanded to implement the tick-tock protocol as shown
previously in Fig. 7. The “weight” of a Pauli operator is the
number of nonidentity terms in its tensor-product expan-
sion into single-qubit Pauli operators [62]; for example,
weightðX1X3Þ ¼ 2.

A. Background on error correction in
constrained geometries

For many qubit technologies, including quantum dots,
long-range coupling is challenging. Several investigations
into quantum error correction attempted to address this
problem by studying codes that require only local inter-
actions for qubits on a lattice in a finite number of
dimensions. The toric code introduced by Kitaev [127]
was specifically designed to have local stabilizer measure-
ments in two dimensions (albeit the surface of a torus). The
surface code and cluster-state computation emerged as
variants of the toric code, preserving the important local-
stabilizer feature while introducing boundaries for planar
embedding or otherwise modifying the code to suit a
particular architecture [8,63,71,72,83,128,129]. Another
code family with similar properties are the color codes
[87,130–137], which also have local stabilizers. Surface
and color codes are prominent examples of topological
codes, which are codes that have local stabilizers and
increase code distance by extending the size of the code
[79]. A code with similar properties is the Bacon-Shor code
[74,75], which is a subsystem code with local “gauge”
operators in two dimensions. However, it is not topological
because its stabilizers are not local.
Topological codes are not suitable for a linear nearest-

neighbor (LNN) architecture because they cannot have a
threshold in one dimension [77–79]. Nevertheless, these
codes provide instructive lessons. Many topological codes
have good thresholds [71,73,83–85,87,138], and this seems
to result from the local stabilizers [73,87]. Specifically,
local stabilizers can be measured with short sequences of
gates, limiting the potential for error propagation. Although
the codes in this proposal are not topological, the stabilizer-
measurement circuits are similarly compact; they use one-
or two-qubit ancillas for low-weight measurements, as in
surface codes [8,71,83,85,128,129,139] and Bacon-Shor
codes [74–76].
As we stated in the Introduction, a logical qubit must have

the ability to increase code distance. The main alternative to
topological codes is code concatenation, where codes are
nested inside of codes [62], which is the approach taken in
this proposal. There have been encouraging results in
thresholds with concatenation [6,55,76,140], as well as
investigations into two-dimensional and LNN architectures

[68–70,75,81,82,138,141]. Knill demonstrated that small
quantum codes (such as the four-qubit code studied here)
can be effective when concatenated [6]. Although the
thresholds calculated in that proposal are very high (3%
or greater), the model for qubits assumes arbitrary con-
nectivity that cannot be realized with only nearest-neighbor
interactions. Subsequently, Stephens and Evans developed
an implementation of the subsystem four-qubit code in a
LNN geometry [70]. Our four-qubit encoding adapts these
methods to the operations that are available when using tick-
tock control. We also apply the same SWAP patterns
[68,70,81] and syndrome measurement to construct two-
and three-qubit repetition codes as intermediate demonstra-
tions towards a logical qubit.

B. Linear nearest-neighbor error correction:
Instruction set and design rules

Many quantum codes do not adapt well to a linear
geometry; for example, topological codes cannot have a
threshold in one dimension [77–79]. Fortunately, past work
has established methods for error correction in a linear
or bilinear array of qubits by concatenating small codes
[68–70,81,142], and we apply these methods to our logical-
qubit proposal. Our adaptation makes some adjustments for
the quantum-dot system we envision, and in the next
section, we introduce the tile formalism, which is a
conceptual tool to aid the design and analysis of concat-
enated codes. The tile formalism is a strategy for building a
logical qubit using nearest-neighbor gates in a linear array
of qubits, and it is based on a set of design rules that prevent
some of the pathological errors that can occur in LNN
circuits.
We restrict the instructions used for error correction to

a small set, which we call the standard set for a LNN
architecture, or “standard-LNN,” shown in Fig. 8. This set
of instructions is closely related to CSS codes [124,125], as
standard-LNN instructions are sufficient to encode, decode,
and detect errors for any CSS code [62,76]. Moreover, any
standard-LNN encoded gate can be constructed solely from
standard-LNN instructions, making this set a natural choice
when using code concatenation. The standard-LNN set
consists of free, idle, preparation and measurement in both
X and Z bases, all combinations of CNOT on two qubits
(including SWAP and CNOT followed by SWAP), and magic-
state injection. The instruction “free” is used to designate a
qubit that does not hold data during that instruction cycle;
by construction, it always follows measurement. In con-
trast, “idle” applies to a qubit that does hold data but is not
changed in that instruction cycle. We include the magic-
state injection instruction since it is needed for universality
[6,126]. We note that magic-state distillation protocols
based on CSS codes can be implemented by the standard-
LNN set [63,126], and we provide a rough estimate of the
complexity of such a protocol in Sec. V. Notably absent
from this set are other Clifford gates, such as Hadamard and
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the S ¼ ffiffiffiffi
Z

p
phase gate. However, they are not transversal

in all CSS codes, nor are they needed for our encoding
schemes.
The Hadamard gate is frequently included in instruction

sets, so we comment briefly on how an instruction set that
lacks a Hadamard gate can still effectively implement
quantum logic. There are two common uses for a
Hadamard gate for which alternative constructions with
the standard-LNN are equally efficient (or more so). The
first is to interchange X and Z bases after preparation or
before measurement, such as in syndrome measurement
circuits [62]. Since preparation and measurement in both
bases are in the standard-LNN set, this case is already
handled. The second common application of the Hadamard
gate is in H=T sequences for approximating arbitrary
single-qubit gates [143–146]. The Hadamard gates can
be removed by merging two consecutive Hadamard gates
and the intervening Z-axis rotation, and then replacing
the composite gate sequence with an X-axis rotation:
He−iθZH ¼ e−iθX. For example, θ ¼ π=8 for the T gate.
The X-axis rotation can be generated by a magic state
having a distillation protocol that is complementary to that
for the Z-rotation magic state by converting Z stabilizers to
X and vice versa; this is equivalent to applying a transversal
Hadamard gate to the original code, which is another
CSS code that can be implemented using standard-LNN

instructions. A single remaining Hadamard gate at the
beginning or end of the sequence can be implemented with
magic states [71].
To make our analysis of error correction tractable, we

adopt the following circuit design rules that will restrict the
possible error events that can occur:
(1) Use only standard-LNN instructions at level L − 1 to

encode all standard-LNN instructions at level L,
beginning with tick-tock control at level 0.

(2) Never perform a two-qubit gate, including SWAP,
between two data qubits in the same code block.
Allowable pairs for two-qubit gates are data qubit
and ancilla, two data qubits from different blocks,
and, in some cases, two qubits in the process
of encoding or decoding a block (examples are
discussed in the next section).

(3) For codes with weight-two stabilizers, use a single
ancilla qubit to measure stabilizers, such that a single
failure causes at most one data error.

We have already motivated the first rule by noting that
the standard-LNN set is directly related to concatenation of
CSS codes. The second rule prevents a single gate failure
from introducing a weight-two error into a single code
block. The final rule similarly ensures that a single failure
in the syndrome extraction circuit will introduce at most
one error into a data block. When a CSS stabilizer is
measured with a single ancilla, a single failure can
introduce at most a number of data errors that is half the
weight of the stabilizer, rounded down [56]. In the next
section, we describe encoding circuits for small codes using
these design rules, which will simplify analysis of error
propagation.

C. Encoding schemes

We consider three closely related encoding schemes for a
LNN architecture, namely, the two- and three-qubit rep-
etition codes [59,62] and the four-qubit subsystem code
[6,70,74]. These are small and simple codes that satisfy our
design rules, but they can be concatenated to increase code
distance. All three codes implement the standard-LNN
instruction set, making them interchangeable layers in
concatenation, and they provide intermediate experiments
towards a logical qubit, as described in Sec. IV.
The encoded logic gates are grouped into blocks of

instructions called “tiles,” which provide a simple scheme
for scheduling instructions to operate a logical qubit. We can
view the instructions for a LNN architecture in a two-
dimensional quantum circuit diagram, where the vertical
dimension spans qubits and the horizontal spans time
flowing to the right [62]. An efficient implementation of
instruction parallelism will densely fill this diagram, so we
introduce interlocking tiles as a simple but effective con-
ceptual tool for instruction scheduling. Each tile is a
subcircuit consisting of nearest-neighbor gates on a small
set of adjacent data qubits and syndrome ancillas. We specify

0Mz

Mx +
Idle

Free

Measure 
X-basis

Measure 
Z-basis

Prepare
X-basis

Prepare
Z-basis

Prepare
magic 
state

CNOT
gates

SWAP

FIG. 8. Standard-LNN instructions and their circuit-diagram
symbols. All of the instructions are available at the hardware level
using tick-tock control, and they are native encoded operations
for all CSS codes, including the codes in this proposal (note that
magic-state preparation is not fault tolerant and is a subroutine
for distillation using other standard-LNN instructions [126]).
The five two-qubit gates are all combinations of CNOT gates [62].
The instruction “free” differs from “idle” in that a free qubit
(temporarily) has an undefined state and carries no information,
whereas an idle qubit carries information. At the hardware level,
the distinction may only be a labeling, but the instructions will
have different encoded representations after code concatenation.

CODY JONES et al. PHYS. REV. X 8, 021058 (2018)

021058-12



a tile to encode each standard-LNN instruction in each of the
three codes considered here. Note that tiles manipulate
encoded states, so they only align with other tiles from the
same code.
The tile formalism ensures proper logical-qubit con-

struction, as we now explain. The tiles naturally implement
code concatenation by recursively building tiles at level L
from tiles at level L − 1, where the hardware instructions
are level 0. The tiles fit together perfectly in space and time,
so they provide a simple method to efficiently construct
concatenated LNN circuits. Each tile satisfies the LNN
design rules, ensuring that circuits composed exclusively of
tiles satisfy these constraints also. The tiles bring syndrome
ancillas into contact with all data qubits for error detection.
Finally, each tile moves the ancilla qubit(s) across a code
block, leaving the other side open for an interleaved two-
qubit gate (described below). Tiles provide all these
features while also making instruction scheduling very
simple. Each tile has a guarantee of logical correctness,
which makes it easy to verify any circuit composed of tiles.
The most complex circuit for an encoded standard-LNN

instruction is for a two-qubit gate, so this sets the tile size
for a given code. The CNOT tile for the two-qubit, bit-flip
code is shown in Fig. 9. The tiles for bit-flip and phase-flip

repetition codes are very similar, so we show one version of
each tile and describe the small modification for its
complement in the other code. The tile for a two-qubit
gate consists of a “SWAP diamond” [70,81] followed by
error detection. These are CSS codes, so encoded CNOT can
be implemented transversally [62,124,125]. As shown in
Fig. 9, data qubits from two code blocks are interleaved
using SWAP gates; then, a transversal CNOT is applied;
finally, SWAP gates separate the data qubits back into their
blocks. These three steps form a diamond-shaped circuit
that gives all tiles their diamond shape. Note also that a
nearly identical tile can implement any combination of
encoded CNOT gates on the two code blocks (there are five
such combinations), including SWAP and CNOT followed by
SWAP, by modifying just the transversal operations in the
middle of the SWAP diamond (shaded yellow).
Error detection is essential for a logical qubit and will be

placed at the end (i.e., right side) of every tile. Error
detection is mediated by ancillas for syndrome detection
[56,58,62,147], but these operations can potentially inter-
fere with transversal two-qubit gates, which require inter-
leaved data qubits. The SWAP-diamond primitive works best
when the data blocks are adjacent, and any interspersed
syndrome ancillas must be skipped over [70,142], increas-
ing the size of the tile. Instead, syndrome ancillas sweep
through each data block in a diagonal, “staircase” circuit as
in Fig. 9. This sweeping action shuffles the syndrome
ancilla to the other side of the block, while the data qubits
move outward from the two-qubit gate just implemented.
This rearrangement is desirable because the blocks that just
interacted are now positioned to interact with different
neighboring blocks. The tile in Fig. 9 is compact, with no
qubits being idle at any time. Note also that the error-
detection subcircuit in Fig. 9 is for the bit-flip code. The tile
for CNOT in the two-qubit phase-flip code has the same
interleave, transversal CNOT, and separate, but the error
detection subcircuit is different and is shown in a sub-
sequent diagram.
In the tile formalism, a qubit is measured and prepared in

the same time as allotted for a two-qubit gate. Since the
measure-and-prepare joint instruction acts on one encoded
block, it occupies a half tile, as shown in Fig. 10 for the
two-qubit bit-flip code. This design choice is entirely
motivated by the use of code concatenation. Although
preparation and measurement may take much longer to
execute than a two-qubit gate at the hardware level, an
encoded two-qubit gate will be the largest tile, as it is
composed of preparation, measurement, and two-qubit
gates at a lower level. After a measurement quarter tile,
the constituent qubits are free, meaning they contain no
quantum data and their state is temporarily unimportant
(and unencoded at all lower layers). Similarly, preparation
begins with a free input line. This can be seen in the input
and output interface of the CNOT tile (Fig. 9); every tile for
the same code implements the same interface. In Fig. 10(a),

FIG. 9. Tile for encoded CNOT in the two-qubit bit-flip code.
The CNOT symbol in the upper left is a visual guide, and we use
bit-flip or phase-flip to clarify when necessary. Input and output
lines are labeled for convenience. Two code blocks A and B have
their data qubits labeled with numeric subscripts. A core “SWAP

diamond” of interleave, transversal CNOT, and separate operations
are shown with distinct colored backgrounds. Error detection
using ancillas follows in a diagonal pass through the blocks.
These ancillas begin and end on “free” lines that are not encoded
at the lower layer, which are at different positions before and after
the tile.
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constituent qubits are free for some number of instruction
cycles since we delay preparation until required, to min-
imize accumulation of error.
Each half-tile instruction must be matched with another

half tile to form a complete diamond-shaped tile, which
also determines if this mate is the code block above or
below (or there is no block if at the edge of the linear array).
Each half tile shown in Fig. 10 is the top of a diamond, and
the corresponding bottom half tile is the mirror image about
a horizontal line (not shown). Enforcing diamond-shaped
tiles enables simple scheduling without erroneous overlap
of instructions. Recall that each two-qubit gate tile has a
diamond shape (Fig. 9); the other instruction tiles conform
to this pattern. While Fig. 10 only shows measurement and
preparation in the same basis, one could also measure in the
X basis and prepare in the Z basis (or vice versa) by
combining the appropriate operations. The other half tiles
are state injection (Fig. 11) and idle (Fig. 12). Figure 12
also shows the error-detection subcircuit for the phase-flip
code, which can be substituted into Fig. 9 to get the CNOT

tile in the phase-flip code. Using combinations described

above, this provides all of the standard-LNN encoded
instructions for the two-qubit bit-flip and phase-flip codes.
To see the advantages of using tiles for scheduling

instructions, consider the circuit in Fig. 13 for concatenat-
ing a phase-flip code on top of a bit-flip code. We start with
a phase-flip encoded idle from Fig. 12 and then replace
each instruction with its appropriate tile in the bit-flip code,
such as a variant of Fig. 9 for any two-qubit gate. In this
example, we have visually separated the tiles for clarity, but
they actually fit together perfectly.

(a)

(b)

FIG. 10. Half tiles for encoded measurement and preparation in
the bit-flip code. (a) Half tile for measurement and preparation in
the Z basis. (b) Half tile for measurement and preparation in the
X basis, which requires the CNOT for encoding a jþi state. In both
cases, dashed lines denote a qubit that is free, meaning its state is
unimportant (and unencoded at lower layers). Equivalent oper-
ations in the phase-flip code are complementary, with encoded
jþ̄i preparation being separable into two jþi preparations and j0̄i
requiring the same quarter tile as the right-hand side of panel (b).
Measurement operations are the same in the phase-flip code (i.e.,
implemented transversally).

(a)

(b)

FIG. 11. Half tiles for state injection in the two-qubit codes,
(a) bit-flip and (b) phase-flip. The preceding measurement is
shown to complete the half tile, and the basis could be changed
following Fig. 10. Importantly, this tile alone is not fault tolerant
because the CNOT can emit an undetected weight-two error. This
is acceptable because the injection tile is used for magic states
that must be distilled.

FIG. 12. Half tile for idle in the phase-flip code. This shows the
error-detection subcircuit for the phase-flip code.
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Every complete tile has sufficient syndrome informa-
tion to realize the full distance of the code. For the two-
qubit repetition codes and the four-qubit subsystem
code (described below), this means that any single error
within the tile is detected. Correcting errors with these
codes requires concatenation and syndrome processing
using message passing [6,70,140,148,149]. The Appendix
describes the syndrome processing that is used in
Sec. III D to estimate the break-even performance of
the two-qubit code.

The three-qubit repetition code is an extension of the
two-qubit code, and it can detect either one Z error (bit-
flip encoding) or one X error (phase-flip encoding).
Concatenating a bit-flip code with a phase-flip code
produces Shor’s nine-qubit code [59,62], which can detect
a single error of any type. To identify errors with enough
confidence for error correction, additional syndrome mea-
surements are required. This can be seen in the idle half tile
in Fig. 14, where a total of four measurements are needed,
two for each stabilizer generator of the code. The redun-
dancy in error-detection circuits is needed for a tile to
reliably measure the error syndrome, avoiding a scenario
where a single gate failure could cause a logical error by
misreading the syndrome [56,58]. The width of the tile in
time must match the CNOT tile described below, so there
are several periods of free or idle instructions on the left
side of the idle tile. To save space in Fig. 14 and subsequent
figures, this waiting time is represented by a white slash
across the tile.
The encoded two-qubit gate for the distance-three code,

shown in Fig. 15, requires additional error detection. Some
weight-two errors produced by a single faulty SWAP gate in
the interleave stage can propagate through a transversal
CNOT to a weight-three error event across both blocks,
which would not be correctable unless it was detected
earlier. An additional error-detection subcircuit is inserted
after interleave and before separate (shown in colored
regions as before) to catch this error, though doing so
displaces other operations. This additional syndrome meas-
urement is inserted into the block fromwhich a logical error
can propagate to the other block during the transversal
operation; for the bit-flip code (shown in Fig. 15), this is the
control block of the encoded CNOT, whereas for the phase-
flip code, this block is the target. The remaining tiles for
measurement, preparation, and injection are shown in
Fig. 16. As with the two-qubit code, measurement and
preparation can be arranged in any combination.
The four-qubit code that we consider is effectively

the same as the smallest (i.e., distance-two) Bacon-Shor
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FIG. 13. Concatenation of distance-two repetition codes with
tiles. A phase-flip idle tile (upper left) is encoded using the logical
qubits of bit-flip codes. The operations in the half tile in the upper
left are divided into tile instructions with dashed lines and
numbered to correspond to the bit-flip tiles on the right.

FIG. 14. Idle half tile for the three-qubit repetition code with
phase-flip error detection. The figure is compressed laterally to
save space, as denoted by the curved white slash. The left side of
the tile has either idle or free segments that pad the width to match
the CNOT tile.

FIG. 15. Encoded CNOT for the three-qubit bit-flip code. The transversal CNOT gates (yellow background) and SWAP gates to separate
the blocks (green background) are broken up by an additional error-detection circuit that is inserted after the first round of SWAP gates to
catch an otherwise uncorrectable error.
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code [70,74,75], making it closely related to concatenated
repetition codes. This code has weight-four stabilizers, so
syndrome measurement requires special attention to avoid
introducing undetectable errors. Before describing syn-
drome measurement, we specify which four-qubit code we
are using. It is a variant of the [4,2,2] code studied by Knill
[6], but only one of the logical qubits is used. The reason
for this is that designing circuits for intrablock operations
between the two logical qubits and handling correlated
logical errors on them are challenging problems that we
leave for future work. In keeping with the nomenclature
for Bacon-Shor codes, we call the unused logical qubit a
“gauge qubit” [74,75]. The logical qubit has encoded
operators X̄L ¼ X1X2 and Z̄L ¼ Z1Z3, and the gauge qubit
has operators X̄G ¼ X1X3 and Z̄G ¼ Z1Z2.
The four-qubit code has two stabilizers, X1X2X3X4 and

Z1Z2Z3Z4. Measuring a weight-four stabilizer has a poten-
tial problem, where an error in the middle of the syndrome

circuit could introduce a weight-two error that is logical
and undetectable (X3X4 ¼ X̄L). To solve this problem, we
use a two-qubit ancilla jΦþi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

to mea-
sure both stabilizers, as shown in the idle tile in Fig. 17. In
addition to providing the value of both stabilizers in a
Bell-state measurement, this circuit also detects the intro-
duction of an X̄L error from a fault in the syndrome circuit.
Preparation and measurement in the Bell basis could be
implemented using separate tiles for jþi and j0i prepara-
tion followed by CNOT, but a more efficient construction is
shown in Fig. 18; at the physical layer, Bell preparation and
measurement will need to be decomposed into available
hardware instructions. The CNOT tile in Fig. 19 employs
the same syndrome circuit in both blocks and the SWAP-
diamond shape as in previous codes.
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FIG. 16. Half tiles for the three-qubit code, showing measure-
ment and preparation in (a) the Z basis and (b) the X basis, as well
as state injection for (c) the bit-flip code and (d) the phase-flip
code. In the phase-flip code, preparing jþ̄i is transversal, while
j0̄i uses the state injection in panel (d) with jψi ¼ j0i.

FIG. 17. Idle tile for four-qubit code. A Bell state jΦþi ¼
ðj00i þ j11iÞ= ffiffiffi

2
p

is used to measure the syndrome because it can
also detect weight-two errors introduced by the error-detection
circuit. The two-qubit ancilla is measured in the Bell basis (lower
right, denoted “B”) to detect X and Z errors simultaneously.

FIG. 18. Tile for measurement and preparation in Bell basis.
The two operations can be implemented individually by replacing
one with “free” instructions. The construction produces a pair of
entangled logical qubits jΦ̄þi ¼ ðj0̄ 0̄i þ j1̄ 1̄iÞ= ffiffiffi

2
p

and requires
modified syndrome processing, described in the Appendix.
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The half tiles in Fig. 20 are also designed to prevent an
undetected logical error resulting from a single fault. The
encoded measurements are transversal and automatically
fault tolerant, so we focus on the preparation circuits. In
particular, the circuits have the property that a single error
from any CNOT will either be detectable or affect only the
gauge qubit, just like the error-detection circuits of
Figs. 17 and 19. Preparing jþ̄i in Fig. 20(a) is simpler
than preparing j0̄i in Fig. 20(b) because the only weight-
two errors emitted by the CNOTs in panel (a) are X̄L and Z̄G,
both of which act trivially on jþ̄i. However, any LNN CNOT

between data qubits can emit an X̄L or X̄GX̄L error, so
preparing j0̄i requires the use of an ancilla. The circuit in
Fig. 20(b) prepares j0̄i in a faulty way and then measures
Z̄L with an ancilla to detect an X̄L error that could be
generated by one of the CNOTs. Consider also the injection
tile in Fig. 20(c). The CNOTs here can emit logical errors, as
described above, but this is acceptable since state injection
is never fault tolerant and the magic state would need to be
distilled anyway. Finally, the idle tile in Fig. 20(d) is just
idle operations on the code block followed by syndrome
measurement.
We have organized our encoded instructions into tiles

because each tile is self-contained for error correction. Each
tile has sufficient syndrome information to process errors
within the tile, up to the capabilities of that code. The details
of processing the syndrome are analyzed in the Appendix,
and the performance of the encoding schemes under standard
error models is simulated in the next section.

D. Simulations of logical-qubit performance

The performance of a logical qubit depends on the
likelihood of errors and how effectively they are corrected.

In this section, we simulate some of the LNN encoding
schemes of the previous section to provide performance
targets for control operations. The simulations use a
simplified error model consisting of independent Pauli
errors applied after every operation (including idle), fol-
lowing a common convention in the literature [6,55,71,
73,75,76,80,83,87]. When an error occurs in a two-qubit
gate, the gate is followed by one of the 15 nonidentity Pauli
errors with equal probability. Although such a simplified
error model cannot represent all quantum error processes,
the simulations still provide guidance as to which spin-
control operations require further improvement in fidelity.
As has been observed in past work, the threshold for error
correction requires simulating a logical error rate for several
different code distances [6,55,70,71,73,75,76,83,87,148,149].
Moreover, concatenation is necessary for distance-two codes
like the two-qubit and four-qubit codes, as they can only detect
errors in a single layer of encoding [6,148,149].
We simulate encoding a logical CNOT “extended rectan-

gle” [80] for the two-qubit and four-qubit codes. The three-
qubit code is not shown because the matter of handling

FIG. 19. CNOT tile for the four-qubit subsystem code. As with
the other codes, any combination of encoded CNOTs between the
two blocks can also be implemented by modifying the gate in the
center of the SWAP diamond.

FIG. 20. Half tiles for measurement and preparation in the four-
qubit code, in (a) the X basis and (b) the Z basis, as well as
(c) state injection. As before, the measurement and preparation
bases can be different by combining the appropriate subcircuits.
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inconsistent syndrome measurements complicates both
syndrome processing and how one defines an extended
rectangle; to keep our scope contained, we leave a detailed
analysis of this code to future work. Each simulation inserts
randomly generated Pauli errors into the circuit for an
encoded CNOT at one to four layers of concatenation
(two-qubit code) and one to two layers (four-qubit code),
which makes use of the Gottesman-Knill theorem [62] for
efficiently simulating Clifford circuits. The error model is
depolarizing noise following every gate (or randomly
negating a measurement), similar to other works in the
literature [6,55,71,73,75,76,80,83,87].
The results of Monte Carlo error simulations for the two-

qubit code are shown in Fig. 21. In this simulation, a logical
CNOT gate is encoded in one to four layers of concatenation
that alternates between bit-flip and phase-flip encoding. Two
methods of estimating the logical failure rate are employed:
Monte Carlo sampling and malignant-set sampling [70,76].
In Monte Carlo sampling, we generate errors independently
for each gate according to a physical error parameter
and count the number of logical failures. In malignant-
set sampling, we create configurations of k errors and count

the fraction of configurations that lead to logical failure. The
logical failure rate is then given by

PrðfailÞ ¼
XN
k¼1

Prðfailjk errorsÞ Prðk errorsÞ; ð8Þ

where N is the number of gates. Since each gate has an error
with the same probability p, the second term is simply the
Bernoulli distribution,

Prðk errorsÞ ¼
�
N
k

�
pkð1 − pÞN−k: ð9Þ

The first term on the rhs of Eq. (8) is estimated by sampling
from k-error events and determining the fraction that lead to
failure, incorporating the appropriate weighting factors for
the different error channels on one- and two-qubit gates, and
preparation and measurement. We explicitly verify that no
single error will lead to failure in the level-four concatenated
two-qubit codes. We also truncate the sum when additional
terms have no discernible effect on the plot in Fig. 21; for
example, kmax is 6 for level one and 25 for level four.
These simulations suggest a threshold for the two-qubit

code around 10−4. The crossing of the level-one and level-
four logical error rates occurs at p ¼ 9.5 × 10−5, while the
crossing of level-two and level-four curves occurs at
p ¼ 3.1 × 10−4. Being more precise about the threshold
would require computationally intensive simulations at
higher levels of concatenation, but for now, the 10−4
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FIG. 21. Simulated logical error rates for the two-qubit rep-
etition code using concatenation. For all traces, the sequence
of concatenation alternates bit-flip, phase-flip, etc. starting
from lowest level. Two methods of simulation are employed:
Monte Carlo error generation and malignant-set counting. The
dots are Monte Carlo generation of errors at the specified physical
error rate, using the error model described in the text. Error bars
are 90% confidence intervals estimated from the data. The solid
curves are produced by malignant-set counting or sampling, as
described in the text; the logical error rate is given by Eq. (8),
after the coefficients are estimated. The correspondence between
the two methods is a consistency check. We explicitly verify that
the level-four encoding corrects any single fault.
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FIG. 22. Simulated logical error rates for the four-qubit code
using concatenation. As in Fig. 21, both Monte Carlo error
generation and malignant-set counting are employed; the dots are
Monte Carlo with error bars showing 90% confidence intervals,
and the solid curves are malignant-set sampling. We explicitly
verify that the level-two encoding corrects any single fault.
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estimate provides a useful reference point for a LNN
architecture.
We also simulate the four-qubit code, as shown in

Fig. 22. The crossing of the logical-error-rate curves for
layers one and two of concatenation is sometimes referred
to as a “pseudothreshold,” which here is 3.8 × 10−4. It has
been observed before [70] that the threshold for further
concatenation of the four-qubit code in a LNN array is
slightly lower than this pseudothreshold. Although we
leave detailed threshold simulations to future work, the
results are consistent with Fig. 21 in suggesting that a
logical qubit in a LNN architecture would require error
rates around 10−4.
We make a few comments on the resources for the

encoded CNOT. Whereas the two-qubit code requires four
layers of concatenation to correct a single fault, the three-
and four-qubit codes only require two layers. Consider
comparing the two- and three-qubit codes. The tiles of the
three-qubit code are larger (such as Fig. 15), but fewer
layers of concatenation means that a distance-three encoded
CNOT has about 70% the gate count of the level-four CNOT
for the two-qubit code. With fewer error locations, we are
optimistic that the three-qubit-code threshold would be
similar to the two-qubit code, and perhaps the former is
slightly higher. Similarly, the CNOT in the concatenated
four-qubit code requires only 20% the number of gates as
the comparable CNOT in the concatenated two-qubit code,
while the pseudothreshold in Fig. 22 is very similar to that
of the two-qubit code.
The experiments in Sec. IV make use of the two-qubit

and four-qubit codes for intermediate demonstrations
toward a logical qubit, and the simulations here provide
control fidelity targets for experiments to demonstrate a
“signature” of error correction, as explained in Sec. IV. This
signature is the characteristic quadratic dependence of the
logical error rate on the physical rate when any single error
is correctable, so failure requires two independent error
events. Figures 21 and 22 show that this signature can be
seen even at error rates above threshold, up to 10−3 or
higher, which allows an experiment to demonstrate the
functionality of error correction by synthetically inserting
error, even if the physical error rate is above threshold
[15,18,21,23,24,26,28].

IV. EXPERIMENTAL PATH TO A LOGICAL
QUBIT IN QUANTUM DOTS

This section proposes a sequence of experiments for
developing a logical qubit in quantum dots, summarized in
Fig. 23. The experimental path demonstrates all of the
requirements for an extensible logical qubit from the
Introduction. We describe the complexity of the device
needed for each experiment and how the results inform the
next step towards a logical qubit. The incremental sequence
of demonstrations provides numerous opportunities to

improve the device design using feedback from meaningful
experiments.

A. Parity measurement and signature
of error correction

The parity experiment implements the two-qubit code
where an ancilla detects either one bit-flip or one phase-
flip error (depending on the choice of encoding), such as
the half tiles shown in Figs. 10 and 12. This important
experiment demonstrates the first criterion for a logical
qubit, as parity measurement with an ancilla is a component
of fault-tolerant error correction [24–26,29,30]. There are
two single-spin data qubits and one two-spin ancilla,
requiring four dots in total. If ancilla measurement is only
available in one location in the dot array, then the ancilla
will have to be swapped back to that position. Since this
device is relatively simple, it could take advantage of
additional spin-control techniques that may not be exten-
sible, such as single-spin addressed ESR and single-spin
initialization [40].
The parity-measurement experiment was depicted in

Fig. 7, with a prospective device layout of four dots and
a charge sensor for readout. To show that the parity-
measurement process is working, one can inject errors
into the qubits, as has been done in trapped ions [15,23],
photons [21], superconducting qubits [18,28], and diamond
NV centers [24,26]. The first indication that parity meas-
urement works correctly is that injected errors should
predictably increase the frequency of parity-value flips.
Second, the results of measuring the individual data spins
should be correlated with the parity measurements [30].
Finally, if the data spins are initialized as j00i (for bit-flip
code), then the probability of observing j11i at the end of
the experiment should be substantially suppressed when no
parity flips are detected, as such an event would require two
independent bit flips [15,18,24,26,28,30]. This signature of
error correction by postselecting on not observing a parity
flip can be observed in experiments that cannot demon-
strate a complete logical qubit, as discussed in Sec. III D.
By initializing states that are sensitive to errors of one type
(e.g., bit flip), the signature can be seen in small codes that
only correct that type of error, as in several experiments
below. Similar recent theoretical work has considered
experiments to show that error correction is working for
small surface codes with error rates near or above threshold
[150,151].

B. Correcting one error type

The parity experiment can be extended by one dot (now
five dots in total) to implement the three-qubit repetition
code, such as the instruction sequence in Fig. 14. This device
can both detect and correct either one bit-flip or one
phase-flip error because the two parity measurements for
the three-qubit code can uniquely locate one such error.
Several recent experiments have demonstrated this encoding
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(or an extension of it) with an ancilla in diamond NV centers
[24,26] and superconducting qubits [28,30].
The three-qubit-code experiment increases complexity

by incorporating the parity measurement as a subroutine;
there are now two stabilizers to measure, and each stabilizer
must be measured twice. The control sequence for the
three-qubit repetition code is shown in Fig. 24. This
encoding can demonstrate a logical qubit that suppresses
one type of error below that of its physical qubits [30].
Furthermore, it is a precursor to the final logical-qubit
experiment below, which concatenates the three-qubit bit-
flip and phase-flip repetition codes.

C. Detecting any single-qubit error

The smallest demonstration of detecting any single-qubit
data error is the four-qubit code with just one ancilla (note
that the construction in Sec. III uses two ancillas). This
implementation requires six dots, but the resulting tiles are
larger because they need to reuse the single ancilla to
measure two stabilizer generators. The new capability
demonstrated by this experiment is to detect a single error
of any type. Similar recent demonstrations include stabiliz-
ing a Bell state with ancillas [29] and the detection of errors
in an encoded state (without ancillas, however) [16,23].
The next improvement to the four-qubit code is to have

two measurement ancillas. This requires eight dots, and it
demonstrates both measurement parallelism and the detec-
tion of any single-qubit error. This realizes the four-qubit
code as presented in Sec. III, such as the tiles in Fig. 17.
Using 12 dots, one can concatenate the distance-two bit-

flip and phase-flip codes, as shown in Fig. 13. The control
sequence for the concatenated error detection is shown in
Fig. 25. Using concatenation, this experiment is essentially
three copies of the parity-experiment (Fig. 7) setup integrated

together. The 12-dot experiment demonstrates two criteria
for extensibility: concatenation and measurement parallel-
ism. The code can detect at least one error of any type, which
could realize error correction if the code were concatenated
again to distance four, though this experiment is outside of
our scope.

FIG. 23. Summary of the experiments in this proposal. The names of the experiments on the left are grouped according to the
subsections below. The middle columns show which of the criteria for an extensible logical qubit (see Introduction) are demonstrated by
the experiment, denoted with green squares. In this context, the “error threshold” criterion means that one can demonstrate that error
correction is functioning by purposefully inserting errors, as described in the text; the “fault tolerance” criterion means that any single
bit-flip and/or phase-flip error is detectable. The diagrams on the right are simplified device layouts showing how many coupled dots are
needed for the experiment, where data spins are shown in blue and ancilla spin pairs are shown in red and grouped.
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FIG. 24. Device schematic and control sequence to detect one
type of error, such as a bit flip. (a) The five-dot device has one spin-
pair ancilla (Q1 and Q2) and three data spins (Q3–Q5). (b) Control
sequence to measure the bit parity of Q4 and Q5 (ZZ parity). A
complete implementation of the three-qubit code, as in Fig. 14,
would require repeating this parity-detection circuit for this pair
(Q4 and Q5) and the other pair of data spins (Q3 and Q4). Each of
the SWAPandCNOToperations aredecomposedby tick-tock control,
as shown in Fig. 7 and described in Sec. II C. This experiment is
similar to recent demonstrations in Refs. [24,26,28,30].
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These intermediate experiments on the path to a logical
qubit demonstrate several of the extensibility criteria listed
in the Introduction, in increasing levels of device complex-
ity. The smallest four-qubit code shows the ability to detect
both bit and phase errors, as well as the signature of error
correction from before. Moving to two measurement
ancillas enables us to detect both error types in parallel.
Finally, the concatenated two-qubit code demonstrates an
extensible encoding procedure, such as encoded gates and
measurements (see the tiles in Fig. 13). Collectively, the
experiments up to this point demonstrate all of the essential
features for a logical qubit.

D. Logical-qubit demonstrations

The logical-qubit demonstrations are based on the nine-
qubit code introduced by Shor [59,62], which is the
concatenation of the three-qubit bit-flip and phase-flip
codes. The first implementation is a minimal design that
is compressed into 14 dots, comprised of nine data spins,
three auxiliary data spins for an encoded block to measure
the second-level syndrome, and one two-spin ancilla to
measure the first-level syndrome in all four blocks. The
number of physical qubits (13) is the same as the smallest

surface code [72,139,150]. The additional idle time and
SWAP operations to move this single ancilla around will
penalize code performance, but the signature of error
detection can be seen in the syndrome measurements even
above the error-correction threshold [15,18,23,24,26,28].
This demonstrates many features of a logical qubit:
syndrome measurement with an ancilla, code concatena-
tion, and the ability to detect one error of any type.
The final experiment incorporates measurement paral-

lelism, demonstrating all criteria for an extensible logical
qubit. It is another implementation of the nine-qubit Shor
code using 20 dots. Whereas the minimal logical qubit in
the previous section had a single measurement ancilla
shared among all data qubits in four blocks, this design is
the standard implementation of code concatenation where
each block has a measurement ancilla, exactly as described
in the encoding tiles of Figs. 14–16. This is four copies of
the five-dot experiment (detecting one error type) inte-
grated together. The distinguishing features of this experi-
ment compared to the 14-dot implementation are that it
implements the tile formalism without modification and
that measurement parallelism is employed, which is crucial
for extensible error correction.
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FIG. 25. Experimental setup to demonstrate concatenation of bit-flip and phase-flip error-detecting codes. (a) Linear array of 12
quantum dots. (b) Diagram for code concatenation with tiles, with spins from panel (a) labeled on the left side. For generality, the tiles in
Sec. III represent measurable qubits with just one line, but in tick-tock control, the ancillas for measurement require spin pairs. These
spin pairs begin as (Q3,Q4), (Q7,Q8), and (Q11,Q12), and they move during the experiment following this diagram. The spins could be
initialized using techniques in Sec. II C to test error detection, and the experiment can be extended to more rounds by adding more tiles.

LOGICAL QUBIT IN A LINEAR ARRAY OF … PHYS. REV. X 8, 021058 (2018)

021058-21



V. DISCUSSION

We have presented a proposal that addresses all of the
essential requirements for a logical qubit in silicon quantum
dots. To keep our scope contained, there are of course
technology considerations that we have not analyzed in
detail, which we discuss briefly here to acknowledge their
importance. We believe that current quantum-dot technol-
ogy is ready to begin developing a single logical qubit and
that further improvements in materials and fabrication, such
as the work cited below, will occur alongside the exper-
imental demonstrations of Sec. IV.
The tick-tock protocol implements ESR control address-

ing all spins simultaneously. The microwave power neces-
sary to perform the global ESR control with high fidelity is
dictated chiefly by the necessity to address spins that need
to have different g factors in order to perform fast CZ

operations. This requires the ESR pulses to be “nonselec-
tive” despite the significant spread in resonance frequency
of the individual qubits. However, once the g-factor spread
has been characterized and, if needed, tuned, adding more
spins does not require additional power. Heating due to
ESR pulses can be mitigated by using cavities to confine
the microwave modes [98,152,153], but this presents other
challenges for bringing metal electrodes to the dots.
Ongoing work in superconducting qubits for combining
complex electromagnetic environments with sub-Kelvin
temperatures makes us optimistic that engineering solu-
tions are possible here as well [12,88,154,155].
The prospect for scaling our proposal—and, in particu-

lar, handling the possibility of defective quantum dots—is
an important consideration for extensibility, so we make a
few comments on this topic. As we noted before, a single
defective dot can disable a logical qubit when using LNN
error correction. For the purposes of this proposal, we
believe that current technology has sufficient yield (prob-
ability of successful dot fabrication) to reach 20 coupled
dots in the near term. Beyond this scale, the LNN logical
qubit could be a building block for a larger system.
Schemes to handle imperfect qubit yield or qubit loss
have been studied in error-correcting codes [156,157],
qubit device designs [158–163], and quantum networks
[164–166]. Similarly, ion-trap proposals have studied how
to effectively combine linear trapping regions with junc-
tions to overcome the limitations of a strictly linear trap
[4,9,167–170]. In light of these methods, we expect that it
is possible to arrange short linear segments of dots that
meet in three- or four-way junctions, such as in Ref. [171],
enabling enough connectivity to route information around
defective dots and tolerate imperfect yield. For example,
linear segments of dots could be arranged in a grid pattern
[172], enabling 2D connectivity at this scale for avoiding
defects or implementing codes that are tolerant of defects
[156,157]. However, developing such a scheme is outside
our present scope.

A fully fledged quantum processor would need to
implement universal logic, and magic-state distillation is
one of the prominent approaches to complete universality
[6,63,126]. However, this procedure would require a
quantum-dot array that is significantly beyond the scope
of this paper. For example, the distillation circuit in
Ref. [173] would use 34 logical CNOT gates on 16 logical
qubits. Clearly, this task is a step beyond developing a
single logical qubit, and we leave detailed analysis of this
matter to future work.
We have focused our proposal on the SiMOS system,

but it may certainly be adapted to other semiconductor
quantum-dot systems. Confining the quantum dots in a
Si=SiGe heterostructure rather than against a Si=SiO2 inter-
face may reduce the effects of disorder and charge noise, at
the expense of introducing smaller valley splittings which
may impair singlet initialization and measurement [42,45,
52,174]. The controllable g-factor shifts in SiGe might be
substantially smaller than what is observed in SiMOS dots,
so the proposal might require the introduction of induced
magnetic field gradients [42,52,175,176]. Our scheme may
also be feasible using a heterostructure based on III-V
semiconductors, which have no valley degeneracy and may
be engineered to have high Stark-tunable g-factor shifts
[177]. There are inevitably large numbers of nuclear spins in
III-V systems, requiring more reliance on dynamical
decoupling. Encouragingly, dynamically decoupled coher-
ence times approaching milliseconds appear to be feasible
[37], although a fully hyperfine-compensatingmodification
to our control scheme would require additional design in
this case. Finally, our scheme could be adapted to the
problem of substitutional donors coupled to SiMOS-like
dots or spin-shuttling channels, in which case, its imple-
mentation would resemble the schemes indicated in
Refs. [99,178].

VI. CONCLUSIONS

We have presented a comprehensive proposal to develop
a logical qubit in silicon quantum dots. The tick-tock
scheme in Sec. II C is an extensible way to control electron
spins in quantum dots, and all of the constituent operations
have recently been demonstrated with fidelity approaching
the requirements of a logical qubit. Recognizing that a
linear array of exchanged-coupled dots is the most realiz-
able device design in the near term, we have adapted simple
error-correcting codes to a linear, nearest-neighbor system.
Using Monte Carlo simulations, we have estimated an
error threshold of 2 × 10−4. Finally, we have described a
sequence of experiments to demonstrate components of
error correction and integrate those components into a
complete logical qubit. The final logical-qubit demonstra-
tion is a linear encoding of Shor’s original quantum code,
and a successful demonstration here would be a compelling
argument for viability of quantum-dot logical qubits.
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APPENDIX: SYNDROME PROCESSING FOR
LNN ERROR CORRECTION

This appendix describes the syndrome-processing
algorithm used in the simulations of Sec. III D, where
information from syndrome measurements is used to
estimate the most likely configuration of errors. The error
model is a stochastic distribution of Pauli errors inserted
after every control operation, idle period, preparation, and
measurement [6,55]. Syndrome processing attempts to
locate and correct errors by making the most probable
assignment of error conditioned on knowing the syndrome
measurements. The encoding tiles are self-contained for
syndrome processing, meaning they do not share syndrome
information or store it for later use. Instead, they calculate
maximum-likelihood error by searching over all error
events and selecting the one with maximum probability.
Tiles are self-contained.—To implement error correc-

tion, we first ensure that every tile can effectively detect
errors up to the distance of the code [61,62]. We say that
such tiles are self-contained since they do not require
syndrome information from any preceding tiles. The two-
qubit and four-qubit codes are distance-two error detecting
codes, so it is only necessary that any single error is
detected by the next syndrome measurement on the block.
We now list the cases to consider. The tiles in Figs. 9 and 12
are able to detect a single bit-flip or phase-flip error event,
depending on the choice of encoding. In the case of the
two-qubit tile, the two blocks jointly detect errors in SWAP

gates that propagate to both. The tiles in Figs. 10 and 11
have measurements that detect a single bit-flip or phase-flip
error. The circuits in Fig. 10 for preparation of j0̄i and jþ̄i
have the property that any single error is detectable by the
next tile. The state injection in Fig. 11 is not fault tolerant,
which is allowable since it is used to inject magic states.
The tiles in Figs. 19 and 20 have all of the same properties,
with the ability to detect any single error event.
The distance-three repetition code has two additional

matters to consider. First, each stabilizer generator is
measured twice, and a measurement error could cause
these results to disagree. When the stabilizer measurements
are inconsistent, error correction is deferred until the next
round, and no corrective action is taken in that tile. If there
is an error in the data qubits, it will propagate to the next tile
on that block. Every tile can handle one incoming error on
each block, so it would be the responsibility of the next tile
to correct any error left uncorrected due to an ambiguous

syndrome. Second, the possibility of two errors emitted by
a SWAP gate is the reason for one additional syndrome
measurement before the transversal CNOT in Fig. 15. If the
syndrome is consistent for both blocks and the control
block for bit-flip encoding detects error (target block for
phase-flip code), then there is the possibility of an unde-
tected error in the other block. This can occur when a SWAP

gate emits two errors, one of which propagates through a
transversal CNOT. The additional syndrome measurement is
needed to catch this event.
Pauli channels and message passing.—The error model

where Pauli errors occur stochastically is known as a Pauli
channel [6]. In this model, a random Pauli error can follow
every standard-LNN instruction; additionally, each meas-
urement has a probability of reporting an incorrect result.
Pauli channels are convenient because they combine to
form other Pauli channels, they propagate through Clifford
circuits to other Pauli channels, and the conditional error
channel for a stabilizer code given syndrome information is
also a Pauli channel. After correcting the syndrome, there is
also a Pauli channel for the logical subspace, so there is a
logical Pauli channel for every encoded standard-LNN
instruction. Hence, just as we use standard-LNN instruc-
tions to encode that same instruction set at a higher level,
there is also a Pauli channel associated with that encoded
instruction. The parameters of this encoded Pauli channel
are a function of the error channels for the constituent gates
and the syndrome measurement outcomes. As a result,
every standard-LNN instruction has an associated Pauli
channel at all levels of encoding, which is an implementa-
tion of message passing [140].
Message passing (MP) is a natural extension of syndrome

processing in concatenated codes. Note that in some con-
texts, MP is known as belief propagation [140,179,180], and
it is a standard tool for decoding some families of classical
codes [181]. In the original formulations of code concat-
enation [58,62], each layer of encoding would perform
maximum-likelihood correction of errors based on syndrome
measurements. For the encoded operation, there is (at least
implicitly) an error model in which an encoded error
occurred. Without MP, each layer commits to a correction,
which has an implicit failure probability.WithMP, each layer
will still perform an assignment of error, but it also passes
upwards to the next layer a measure of confidence (the
message) that it made the right assignment. This confidence
measure, which could be flags for weights of errors
[6,70,148,149,182,183] or a Pauli channel [140], is based
on the observed syndrome and messages from lower layers.
Consequently, the next layer above is better informed by
having the message and can make a better assignment of
error. Reference [182] discusses how this procedure realizes
the full distance of a concatenated code. Some form ofMP is
necessary for distance-two codes because they cannot assign
errors in a single encoding layer [6], and Refs. [140,182]
show that MP improves the performance of distance-three
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codes. For these reasons, we employ MP in our syndrome
decoding.
Updating error likelihood using the syndrome.—The

gates within a syndrome-measurement circuit generate
errors, and it is necessary to distinguish errors that
propagate to measurement from those that do not. By
exploiting the stabilizer structure of the codes studied here,
any two-qubit Pauli channel following a CNOT gate can be
approximated by single-qubit Pauli channels before and
after the gate, as shown in Fig. 27(a).
To calculate error likelihood, all instructions in an

encoding tile are associated with a Pauli channel. At level 1,
each Pauli channel is the assumed error model in the
hardware for that instruction [6]. At higher levels of
concatenation, each Pauli channel comes as a message from
syndromeprocessing of the tile in a lower layer.Within a tile,
syndrome processing is accomplished by searching all error
events and reweighting their probability according to the
observed syndrome, as follows. Every measurement has a
probability of being faulty, which is also given by the
hardware errormodel at level 1 or amessage at higher levels.

For each error event in the search, there is an anticipated
syndrome result. Depending on the observed syndrome, the
probability of this error having happened is reweighted by
Bayes’ theorem from elementary probability. This proba-
bility-update procedure can be seen as a variant of theViterbi
algorithm [184].
After reweighting all error events, the maximum-

likelihood event is selected to update the Pauli frame
[6,63]. The probabilities of other error events that would
cause logical errors are combined into a logical Pauli
channel that is passed as a message to the next level of
encoding [6,70,140,148,149,182,183], as depicted in
Fig. 26. Searching over all error events is computationally
intensive in the general case, but it is tractable for these
small tiles with a finite number of error locations. A few
errors are not detectable in this tile. As shown in Fig. 27(b),
these are passed as “residual” error channels to the next tile
on the same block for processing. Finally, after processing a
two-qubit-instruction tile, the residual error channels for
top and bottom blocks are correlated, and tracking such
correlations would lead to an exponentially growing run-
away in simulation memory; to prevent this, the distribu-
tions are “split” by calculating marginal distributions for
the separate blocks and using this as an approximation for
the closest uncorrelated joint-block distribution.
Bell-basis measurement and preparation in four-qubit

code.—The Bell-basis measurement/preparation tile in
Fig. 18 requires some special processing of measurements.
First, note that the “transversal” measurement/preparation
operations do not follow the familiar pattern from CNOT

tiles, but rather, there is a mirroring in data qubits: (A4,B1),
(A3,B2), etc. This exploits a mirror symmetry in the code
where XL ¼ X1X2 ¼ X3X4 and so forth. The reason for
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FIG. 26. Message passing between layers of encoding [6,140],
where layer L is phase-flip encoded and layer Lþ 1 is bit-flip
encoded. After each tile in layer L processes its syndrome, it
passes a message containing information on logical errors to layer
Lþ 1. In this example, the first five tiles in layer L have
completed execution and syndrome processing; the extracted
logical error channels are passed to layer Lþ 1, denoted as ε1 to
ε5. The remaining instructions from layer Lþ 1 have not been
executed, so the corresponding error channels are shown in grey
with dashed borders. When all 12 error channels are available, the
tile at layer Lþ 1 will process its syndrome and pass an error
message to the next layer above.

FIG. 27. Error information used for syndrome processing in a
tile. (a) Substitution to convert a two-qubit error channel to
single-qubit channels, separating errors that are detected by the
syndrome from undetected errors. (b) Location of error channels
after substitution in a tile that is ready for syndrome processing.
At the end (i.e., right side) of the tile, a few errors occur after
syndrome processing, and they are not detected. These are passed
as “residual” errors to the next tile, just as residual errors are
passed into this tile from the left.
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this change is that it prevents correlated SWAP errors from
introducing a logical measurement error. If one were to
follow the typical interleave-transversal-separate pattern
and replace the CNOTs in Fig. 19 with Bell-state measure-
ment/preparation instructions, the tile would be logically
correct but not fault tolerant since a single SWAP failure
could corrupt the encoded measurement. The tile in Fig. 18
is transversal in a sense, and one can construct the logical
operators XA

LX
B
L and ZA

LZ
B
L from combinations of the Bell-

basis measurement on data qubits (note that superscripts “A”
and “B” denote blocks). The joint-block stabilizers SAXS

B
X ¼

ðXA
1X

A
2X

A
3X

A
4 ÞðXB

1X
B
2X

B
3X

B
4 Þ and SAZS

B
Z ¼ ðZA

1Z
A
2Z

A
3Z

A
4 Þ

ðZB
1Z

B
2Z

B
3Z

B
4 Þ are also available for error detection.

The preparation circuit also merits some explanation.
The mirrored transversal preparation of jΦþi in the data
qubits creates a state that is close to the desired jΦþi. It is a
stabilizer state with the following stabilizer generators:

XA
LX

B
L; ZA

LZ
B
L entangled logical qubits;

XA
GX

B
G; ZA

GZ
B
G entangled gauge qubits;

SAXS
B
X; SAZS

B
Z joint-block stabilizers: ðA1Þ

The missing generators for jΦþi are SAX and SAZ individu-
ally, which would also imply SBX and SBZ through a
combination with the existing joint-block stabilizers. The
syndrome-measurement circuits in Fig. 18 will project into
a state with the same set of stabilizer operators as jΦþi but
possibly different parity values. The correction procedure
is simple: If a stabilizer for a block is flipped, apply a
corrective operation to a single data qubit, which will
just be qubit 1 without loss of generality. For example, if
the measured syndrome shows SAX ¼ −ðXA

1X
A
2X

A
3X

A
4 Þ and

SAZ ¼ ðZA
1Z

A
2Z

A
3Z

A
4 Þ, then we apply a corrective ZA

1 (in the
Pauli frame [6,63]). Since the syndrome measurements
commute with the operators in Eq. (A1), these operators are
preserved. In particular, the joint-block stabilizers provide
error detection, so we expect SAX and SBX to have even parity,
and likewise for Z stabilizers. If odd parity is observed, then
a fault in the preparation circuit has occurred, but it is
detected. Any single fault can be detected in this way,
except for “residual errors” from the syndrome circuits,
as in Fig. 27. These events can generate at most one
undetected data error per block, which can be detected by
the subsequent tile.
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