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Spin-orbit-coupled cold-atom systems, governed by Hamiltonians that contain quadratic kinetic energy
terms typical for a particle’s motion in the usual Schrödinger equation and linear kinetic energy terms
typical for a particle’s motion in the usual Dirac equation, have attracted a great deal of attention recently
since they provide an alternative route for realizing fractional quantum Hall physics, topological insulators,
and spintronics physics. The present work focuses on the three-boson system in the presence of 1D spin-
orbit coupling, which is most relevant to ongoing cold-atom experiments. In the absence of spin-orbit-
coupling terms, the three-boson system exhibits the Efimov effect: the entire energy spectrum is uniquely
determined by the s-wave scattering length and a single three-body parameter; i.e., using one of the energy
levels as input, the other energy levels can be obtained via Efimov’s radial scaling law, which is intimately
tied to a discrete scaling symmetry. It is demonstrated that the discrete scaling symmetry persists in the
presence of 1D spin-orbit coupling, implying the validity of a generalized radial scaling law in five-
dimensional space. The dependence of the energy levels on the scattering length, spin-orbit-coupling
parameters, and center-of-mass momentum is discussed. It is conjectured that three-body systems with
other types of spin-orbit-coupling terms are also governed by generalized radial scaling laws, provided the
system exhibits the Efimov effect in the absence of spin-orbit coupling.
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I. INTRODUCTION

Under which conditions do two, three, or more particles
form weakly bound states, i.e., bound states that are larger
than the range of the two-, three-, and higher-body forces
that bind the particles together? And under which con-
ditions are the characteristics of these few-body bound
states governed by underlying symmetries? These ques-
tions are of utmost importance across physics. For example,
the existence of bound tetraquark systems [1], first pro-
posed in 1964 by Gell-Mann [2], has been challenging our
understanding of QCD. The existence of the extremely
weakly bound triton has a profound effect on the nuclear
chart, including the existence of larger exotic halo nuclei
[3,4]. Historically, the triton has played an important role in
the context of the Thomas collapse [5] and the Efimov
effect [6,7], which is intimately tied to a discrete scaling
symmetry of the three-body Schrödinger equation.
The three-boson system with two-body short-range

interactions is considered the holy grail of few-body

physics. It has captured physicists’ attention since
Efimov’s bizarre and counterintuitive predictions in the
early 1970s [6,7] and has spurred a flurry of theoretical and
experimental works from nuclear to atomic to condensed
matter to particle physics [8–21]. The unique scaling laws
exhibited by Efimov trimers can be traced back to the
existence of just one large length scale in the problem,
namely the two-body s-wave scattering length. The main
focus of the present work is on investigating what happens
to the three-boson Efimov states in the presence of 1D spin-
orbit coupling. Similar to few-body systems on the lattice
[22], the 1D spin-orbit coupling introduces a parametric
dependence of the relative Hamiltonian on the center-of-
mass momentum. This center-of-mass momentum depend-
ence leads, as we show, to a modification of the lowest
break-up threshold and has a profound effect on the binding
energy. Despite this dependence on the center-of-mass
momentum and despite the fact that the spin-orbit-coupling
terms depend on three additional parameters (namely, kso,
Ω and δ; see below), it is argued that the three-boson system
in the presence of 1D spin-orbit coupling possesses, in the
zero-range limit, a discrete scaling symmetry and it is
shown that the energy spectrum is described by a gener-
alized radial scaling law.
The 1D spin-orbit-coupling terms, which break the

rotational symmetry, introduce an unusual single-particle

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 021057 (2018)

2160-3308=18=8(2)=021057(18) 021057-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.021057&domain=pdf&date_stamp=2018-06-01
https://doi.org/10.1103/PhysRevX.8.021057
https://doi.org/10.1103/PhysRevX.8.021057
https://doi.org/10.1103/PhysRevX.8.021057
https://doi.org/10.1103/PhysRevX.8.021057
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


dispersion. The Hamiltonian Ĥj of the jth particle with
mass m and momentum operator ˆp⃗j (with components

p̂j;x, p̂j;y, and p̂j;z) is not simply given by ˆp⃗2
j=ð2mÞ but

includes a term that emulates a spin-1=2 particle interacting
with a momentum-dependent “magnetic field” of infinite
range [23–27]:

Ĥj ¼
ˆp⃗2
j

2m
Ij þ ˆB⃗ðp̂j;zÞ · ˆσ⃗j: ð1Þ

Here, Ij denotes the 2 × 2 identity matrix that spans the

spin degrees of freedom of the jth particle, the vector ˆσ⃗j
contains the three Pauli matrices σ̂j;x, σ̂j;y, and σ̂j;z of the jth

particle, and ˆB⃗ represents the effective magnetic field,
ˆB⃗ ¼ ðΩ=2; 0;ℏksop̂j;z=mþ δ=2Þ, felt by the jth particle.
The Raman coupling Ω, detuning δ, and spin-orbit-
coupling strength kso, which characterize the two-photon
Raman transition that couples (effectively) two hyperfine
states of an ultracold atom, describe the deviations from the
“normal” quadratic single-particle dispersion curves,

Ej;� ¼ p⃗2
j

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ℏksopj;z

m
þ δ

2

�
2

þ Ω2

4

s
; ð2Þ

where p⃗j and pj;z (both without “hat”) are expectation
values of the corresponding operators. For large jp⃗jj, the
dispersion curves Ej;� approach p⃗2

j=ð2mÞ. For small jp⃗jj,
in contrast, the Ej;� curves deviate appreciably from
p⃗2
j=ð2mÞ. The momenta p⃗j are generalized momenta

(sometimes also referred to as quasimomenta) and not
mechanical momenta (sometimes also referred to as kinetic
momenta) [28]. Throughout this article, we frequently drop
the prefix “generalized” and refer to p⃗j as momentum
vector of the jth atom. The Hamiltonian given in Eq. (1)
can also be realized by lattice shaking techniques as well as
in photonic crystals and mechanical setups [27,29–31].
If two-body short-range interactions are added, the

modified single-particle dispersion curves can significantly
alter the properties of weakly bound two- and three-body
states. This has been demonstrated extensively for two
identical fermions for 1D, 2D, and 3D spin-orbit coupling
[32–41] and for two identical bosons for 2D and 3D spin-
orbit coupling [41–45] but not for the 1D spin-orbit
coupling considered in this work. The present work
presents the first study of how the experimentally most
frequently realized 1D spin-orbit-coupling terms modify
the three-boson energy spectrum. We note, however, that
several three-body studies for bosonic and fermionic
systems with other types of spin-orbit coupling exist
[46–49]. All of these earlier studies limited themselves
to vanishing center-of-mass momentum. Our work, in
contrast, allows for finite center-of-mass momenta.

The key objective of the present work is to show that the
three-boson system in the presence of 1D spin-orbit
coupling obeys a generalized radial scaling law, which
reflects the existence of a discrete scaling symmetry in the
limit of zero-range interactions. The scaling parameter λ0,
λ0 ≈ 22.694, is the same as in the absence of the spin-orbit-
coupling terms. The generalized radial scaling law relates
the energy for a given 1=as, kso,Ω, and δ̃ [δ̃ is a generalized
detuning that is defined in terms of the detuning δ and the z
component of the center-of-mass momentum; see Eq. (21)]
to the energy for a scaled set of parameters, namely λ0=as,
λ0kso, ðλ0Þ2Ω, and ðλ0Þ2δ̃. Correspondingly, the term
“radial” does not refer to the radius in a two-dimensional
space as in the usual Efimov scenario but to the radius in a
five-dimensional space. The fact that the discrete scaling
symmetry “survives” when the spin-orbit-coupling terms
are added to the three-boson Hamiltonian with zero-range
interactions can be intuitively understood from the obser-
vation that kso, Ω, and δ̃ can be thought of as introducing
finite length scales into the system. In the standard Efimov
scenario, as introduces a finite length scale and the radial
scaling law holds regardless of whether jasj is larger or
smaller than the size of the trimer, provided jasj is much
larger than the intrinsic scales of the underlying two- and
three-body interactions. In the generalized Efimov scenario
considered here, the parameters as, kso, Ω, and δ̃ each
introduce a finite length scale. Correspondingly, the gen-
eralized radial scaling law holds regardless of whether these
length scales are larger or smaller than the size of the trimer,
provided the length scales are much larger than the intrinsic
scales of the underlying two- and three-body interactions.
Our findings for the experimentally most frequently

realized 1D spin-orbit coupling are consistent with
Ref. [48]. References [46,48] considered an impurity with
3D spin-orbit coupling that interacts with two identical
fermions that do not feel any spin-orbit-coupling terms and
interact with the impurity through short-range two-body
potentials. Restricting themselves to vanishing center-of-
mass momenta, Ref. [46] stated that the trimers for mass
ratio ≳13.6 “no longer obey the discrete scaling symmetry
even at resonance” because the spin-orbit coupling “intro-
duces an additional length scale.” In Ref. [48], the same
authors arrive at a seemingly different conclusion, namely,
“in the presence of SO [spin-orbit] coupling, the system
exhibits a discrete scaling behavior” and “the scaling ratio
is identical to that without SO [spin-orbit] coupling.” The
two statements can be reconciled by noting that the discrete
scaling symmetry requires an enlarged parameter space, an
aspect that was recognized in Ref. [48] but not in Ref. [46].
We conjecture that the discrete scaling symmetry holds for
any type of spin-obit coupling and all center-of-mass
momenta. Depending on the type of the spin-orbit cou-
pling, the generalized Efimov plot is four or five dimen-
sional and the generalized radial scaling law applies to the
entire low-energy spectrum. The dependence of the energy
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levels on the system parameters has to be calculated
explicitly once for each type of spin-obit coupling.
The remainder of this article is organized as follows. To

set the stage, Sec. II reviews the standard Efimov scenario
for three identical bosons. Section III introduces the system
Hamiltonian in the presence of 1D spin-orbit coupling and
discusses the associated continuous and discrete scaling
symmetries. The generalized radial scaling law for the
three-boson system in the presence of 1D spin-orbit
coupling is confirmed numerically in Sec. IV. Section V
highlights the role of the center-of-mass momentum and
discusses possible experimental signatures of this depend-
ence. Finally, Sec. VI presents an outlook. Technical details
are relegated to several appendixes.

II. REVIEW OF STANDARD EFIMOV SCENARIO

The relative Hamiltonian for two identical bosons
of mass m interacting through the zero-range contact
interaction V2b;zrðr⃗Þ,

V2b;zrðr⃗Þ ¼
4πℏ2as

m
δð3Þðr⃗Þ ∂

∂r r; ð3Þ

where as denotes the two-body s-wave scattering length
and r⃗ the internuclear distance vector (r ¼ jr⃗j), possesses a
continuous scaling symmetry [8]. Performing the trans-
formation

as → λas; r⃗ → λr⃗ and t → λ2t; ð4Þ

where t denotes the time and λ a real number (scaling
parameter), the relative two-body time-dependent
Schrödinger equation remains unchanged.
Importantly, the continuous scaling symmetry extends

to three identical mass m bosons with position vectors r⃗j
that interact through pairwise s-wave zero-range inter-
actions V2b;zrðr⃗jkÞ [8]. To see this, we consider the time-
dependent Schrödinger equation for the relative three-body
Hamiltonian Ĥrel,

Ĥrel ¼
X
j¼1;2

−
ℏ2

2μj
∇2

ρ⃗j
þ
X2
j¼1

X3
k¼jþ1

V2b;zrðr⃗jkÞ þ V3b;zrðRÞ;

ð5Þ

where ρ⃗j denotes the jth relative Jacobi vector and μj the
associated Jacobi mass.We use a “K tree” (see Appendix A)
in which μ1 for the two-body system is given bym=2 and μ1
andμ2 for the three-body system are givenbym=2 and2m=3.
The zero-range three-body potential V3b;zrðRÞ,

V3b;zrðRÞ ¼ g3
ℏ2

m
δð6ÞðRÞ; ð6Þ

is written in terms of a six-dimensional delta function in the
three-body hyperradius R, R2 ¼ r212 þ r213 þ r223. Since the
coupling constant g3 has units of length4, it can be rewritten
as g3 ¼ Cκ−4� , where C is a real constant and κ� the three-
body binding momentum of one of the three-boson bound
states at unitarity (infinite as). While V3b;zrðRÞ has to be
regularized in practice, the explicit regularization is irrelevant
for our purpose. Performing the transformation

as→ λas; r⃗jk → λr⃗jk; t→ λ2t; and κ�→ λ−1κ�; ð7Þ

the Schrödinger equation for the relative Hamiltonian given
in Eq. (5) remains unchanged; i.e., the three-body system
possesses a continuous scaling symmetry.
Intriguingly, the three-body system with zero-range

interactions additionally exhibits an exact discrete scaling
symmetry [8]. The discrete transformation is given by

as→ ðλ0Þnas; r⃗jk→ ðλ0Þnr⃗jk; t→ ðλ0Þ2nt; and κ�→ κ�;

ð8Þ

where n ¼ �1;�2;…;�∞ and λ0 ≈ 22.694. The discrete
scaling transformation, which underlies the three-body
Efimov effect, is illustrated in Fig. 1(a). Fixing the
three-body parameter κ� [see Eq. (8)], the Efimov plot
depicts K as a function of 1=as, where

K ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjEj=ℏ2

q
; ð9Þ

and E denotes the eigenenergy of the Hamiltonian Ĥrel
given in Eq. (5). The thick solid line in Fig. 1(a) shows K
for one of the three-body eigenenergies. The thick solid line
merges with the three-atom threshold on the negative as
side and with the atom-dimer threshold (dashed line) on the
positive as side. The thick solid line is obtained by solving
the time-independent Schrödinger equation for the three-
body Hamiltonian Ĥrel. Provided the thick solid line is
known (a parametrization can be found in Refs. [8,11]),
the thin solid lines—which correspond to other three-
body eigenenergies—can be obtained using the discrete
scaling symmetry without having to explicitly solve the
Schrödinger equation again. For the construction, it is
convenient to switch from the vector y⃗ ¼ ð1=as; KÞT to a
radius y ¼ jy⃗j and an angle ξ,

K ¼ −y sin ξ; ð10Þ

and

ðasÞ−1 ¼ y cos ξ; ð11Þ

where ξ goes from π=4 to π. The limits π=4 and π are set by
the atom-dimer and three-atom thresholds, respectively. To
obtain the thin solid lines in Fig. 1(a) from the thick solid
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line, one fixes the angle ξ and reads off the values of the pair
ð1=as; KÞ corresponding to the solid line. Using

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðasÞ−2 þ K2

q
; ð12Þ

it can be seen that the discrete scaling transformation
as → ðλ0Þnas and E → ðλ0Þ−2nE implies y → ðλ0Þ−ny.
Thus, dividing the radius y of the thick solid line by
ðλ0Þ�1; ðλ0Þ�2;… and using the scaled value of y in
Eqs. (10) and (11), one obtains the values of the vectors
y⃗ ¼ ð1=as; KÞT corresponding to the thin solid lines. This
construction, referred to as Efimov’s radial scaling law, is a
direct consequence of the discrete scaling symmetry. If the

three-boson system is characterized by κnew� instead of κ�,
the entire energy spectrum is scaled; i.e., if y⃗ ¼ ð1=as; KÞT
describes a point on the Efimov plot for κ�, then ðκnew� =κ�Þy⃗
describes a point on the Efimov plot for κnew� .

III. SYMMETRIES IN THE PRESENCE
OF 1D SPIN-ORBIT COUPLING

This section generalizes the symmetry discussion pre-
sented in the previous section to the two- and three-boson
systems in the presence of 1D spin-obit coupling. As a first
step, we derive the relative two- and three-body
Hamiltonian with zero-range interactions in the presence
of 1D spin-orbit coupling. In a second step, we show that
these systems possess a continuous scaling symmetry. In a
third step, we argue that the three-boson system addition-
ally exhibits a discrete scaling symmetry, suggesting the
existence of a generalized radial scaling law. Numerical
evidence that supports our claim that the three-boson
system with 1D spin-orbit coupling is governed by a
generalized radial scaling law is presented in Sec. IV.
We start with the first step. The N-boson Hamiltonian in

the presence of 1D spin-orbit coupling reads

Ĥ ¼ Ĥni þ V̂ int; ð13Þ

where the noninteracting and interacting pieces are
given by

Ĥni ¼
XN
j¼1

ˆp⃗2
j

2m
I1;…;N

þ
XN
j¼1

�
ℏkso
m

p̂j;z þ
δ

2

�
I1;…;j−1σ̂j;zIjþ1;…;N

þ
XN
j¼1

Ω
2
I1;…;j−1σ̂j;xIjþ1;…;N ð14Þ

and

V̂ int¼
� XN

j¼1;j<k

V2bðrjkÞþ
XN

j¼1;j<k<l

V3bðrjklÞ
�
I1;…;N: ð15Þ

Here, Ij;…;k with j < k spans the spin degrees of freedom of
particles j through k, Ij;…;k ¼ Ij ⊗ … ⊗ Ik. For N ¼ 2,
only V2b contributes. For N ¼ 3, rjkl is equal to the three-
body hyperradius R. The interaction model considered
throughout this work assumes that the interactions are the
same in all spin channels.
It is, just as in the case without spin-orbit coupling,

convenient to use Jacobi coordinates ρ⃗j and associated
momentum operators ˆq⃗j instead of the single-particle

quantities r⃗j and ˆp⃗j. Importantly, the Nth Jacobi

-0.2 -0.1 0 0.1 0.2

sgn(a
s
)|r

0
/a

s
|
1/2

-0.2

-0.1

0

-|E
/E

sr
|1/

4

1/a
s

K

ξ

λ

λ

0

0

(a)

(b)

(0,0)

FIG. 1. Radial scaling law for the standard Efimov scenario.
(a) The solid lines show the quantity K as a function of 1=as for
the zero-range three-boson Hamiltonian. To make this plot, λ0 has
been artificially set to 2 instead of 22.694. The dashed line shows
the atom-dimer threshold. The thin radially outgoing solid lines
and arrows illustrate the scaling law. Circles and squares mark the
critical scattering lengths a− at which the trimer energy is
degenerate with the three-atom threshold and the critical scatter-
ing lengths a� at which the trimer energy is degenerate with the
atom-dimer threshold, respectively. (b) Collapse of neighboring
energy levels for the finite-range interaction model [Ĥrel in
Eq. (5) with V2b;zr and V3b;zr replaced by V2b;G and V3b;G,
respectively; R0 ¼

ffiffiffi
8

p
r0 and ðκ�Þ−1 ≈ 66.05r0]. The solid line

shows the fourth root of the energy of the lowest three-boson state
as a function of the square root of the inverse of the s-wave
scattering length. The dashed line shows the associated atom-
dimer threshold. The dots show the energy of the second-lowest
three-boson state, with the radial scaling law applied in reverse so
as to collapse the second-lowest level (dots) onto the lowest level
(solid line). For clarity, the scaled atom-dimer threshold for the
second-lowest three-boson state is not shown.
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“quantities” ρ⃗N and ˆq⃗N correspond to the center-of-mass
vector and center-of-mass momentum operator. It can be
shown straightforwardly that the Hamiltonian Ĥ commutes
with the center-of-mass momentum operator ˆq⃗N [50]; i.e.,
the Schrödinger equation ĤΨ ¼ EΨ can be solved for each
fixed q⃗N . Using this and Jacobi coordinates, the non-

interacting fixed-q⃗N Hamiltonian, denoted by ˆ̄Hni, reads

ˆ̄Hni ¼ ˆ̄Hni;rel þ
q⃗2N
2μN

I1;…;N; ð16Þ

where

ˆ̄Hni;rel ¼
XN−1

j¼1

ˆq⃗2j
2μj

I1;…;N þ
XN−1

j¼1

ℏkso
m

q̂j;zΣ̂j;z

þ
XN
j¼1

Ω
2
I1;…;j−1σ̂j;xIjþ1;…;N þ

�
ℏkso
μN

qN;z þ
δ

2

�

×

�XN
j¼1

I1;…;j−1 ⊗ σ̂j;z ⊗ Ijþ1;…;N

�
: ð17Þ

The explicit form of the operators Σ̂j;z with j¼ 1;…;N−1

is given in Appendix A. Note that the first and second terms
on the right hand side of Eq. (17) contain momentum
operators while the fourth term on the right hand side of
Eq. (17) and the second term on the right-hand side of
Eq. (16) contain expectation values of the center-of-mass
momentum operators (and not operators). As “usual,” the
interaction V̂ int depends on ρ⃗1;…; ρ⃗N−1 but not on the
center-of-mass vector ρ⃗N. This implies that the eigenstates
Ψ can be written as

Ψ ¼ Φc:m:Φrel; ð18Þ
where [51]

Φc:m: ¼ exp

�
{q⃗N · ρ⃗N

ℏ

�
ð19Þ

and where the Φrel, which are eigenstates of ˆ̄Hrel,

ˆ̄Hrel ¼ ˆ̄Hni;rel þ V̂ int; ð20Þ

depend on the Jacobi vectors ρ⃗1;…; ρ⃗N−1 and the spin
degrees of freedom.
Equation (17) shows that the eigenenergies of Ĥ depend

on the generalized detuning δ̃,

δ̃

2
¼ ℏkso

μN
qN;z þ

δ

2
; ð21Þ

i.e., qN;z and δ enter as a combination and not as
independent parameters. This observation suggests that

the center-of-mass momentum may play a decisive role
in determining the characteristics of the weakly bound
two- and three-body states (see also Refs. [35,37]). The

parametric dependence of the Hamiltonian ˆ̄Hrel on the z
component qN;z of the center-of-mass momentum is a direct
consequence of the fact that the presence of the spin-orbit
coupling breaks the Galilean invariance [26]. One imme-
diate consequence of the broken Galilean invariance is that
knowing the energy of an eigenstate with qN;z ¼ 0 does
not, in general, suffice for predicting the energy of an
eigenstate with qN;z ≠ 0. Importantly, the eigenstates Ψ
depend, in general, explicitly on qN;z and δ and not just
on δ̃.
We are now ready to address the second step.

Parametrizing the two-body interactions V2b by the zero-
range potential V2b;zr, the N ¼ 2 relative Hamiltonian
depends on four parameters, namely, as, kso, Ω, and δ̃. It
can be readily checked that the corresponding time-
dependent Schrödinger equation is invariant under the
transformation

as→ λas; kso→ λ−1kso; Ω→ λ−2Ω;

δ̃→ λ−2δ̃; r⃗→ λr⃗; and t→ λ2t; ð22Þ

i.e., the N ¼ 2 system with zero-range interactions pos-
sesses a continuous scaling symmetry. The continuous
scaling symmetry extends to the three-boson system with
zero-range interactions [V2b ¼ V2b;zr and V3b ¼ V3b;zr in
Eq. (15)] in the presence of spin-orbit coupling since the
corresponding time-dependent N ¼ 3 Schrödinger equa-
tion is invariant under the transformation

as → λas; kso → λ−1kso; Ω→ λ−2Ω; δ̃→ λ−2δ̃;

r⃗→ λr⃗; t→ λ2t; and κ� → λ−1κ�: ð23Þ

Equations (22) and (23) generalize Eqs. (4) and (7)
from Sec. II.
Paralleling the discussion of Sec. II, step 3 poses the

question of whether or not the three-boson system in the
presence of spin-orbit coupling additionally possesses a
discrete scaling symmetry in the zero-range interaction
limit. Our claim is that it does and that the discrete
transformation is given by

as→ ðλ0Þnas; kso→ ðλ0Þ−nkso; Ω→ ðλ0Þ−2nΩ;
δ̃→ ðλ0Þ−2nδ̃; r⃗→ ðλ0Þnr⃗; t→ ðλ0Þ2nt; and κ�→ κ�;

ð24Þ

where λ0 is identical to the scaling factor of the standard
Efimov scenario, i.e., λ0 ≈ 22.694. Since no general ana-
lytical solutions exist to the three-boson Schrödinger
equation in the presence of spin-orbit coupling, we rely
on numerics to support our claim. The claim that the
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discrete scaling symmetry survives in the presence of the
spin-orbit-coupling terms can be understood intuitively by
realizing that the spin-orbit-coupling terms modify the low-
but not the high-energy portions of the single-particle
dispersion curves. To set the stage for the numerical
calculations presented in the next section, we discuss a
number of consequences of the discrete scaling symmetry.
The discrete scaling symmetry suggests a generalized

radial scaling law for the three-boson system in the
presence of 1D spin-orbit coupling in which the Efimov
plot for y⃗ ¼ ð1=as; KÞT discussed in the previous section is
replaced by a generalized Efimov plot for

y⃗ ¼
h
1=as; kso; sgnðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjΩj=ℏ2

q
; sgnðδ̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjδ̃j=ℏ2

q
; K

i
T
:

ð25Þ

In the limit that the second, third, and fourth parameters
vanish, each of the usual Efimov energies is fourfold
degenerate due to the fact that the spin degrees of freedom
enlarge the three-boson Hilbert space by a factor of 4 (from
the 23 ¼ 8 independent spin configurations, one can con-
struct four fully symmetric spin functions). For nonvanish-
ing kso, Ω, and δ̃, we expect that the three-boson system
supports four “unique” energy levels. Each of the four
energies, collectively referred to as a manifold, is charac-
terized by a vector y⃗. Knowing the dependence of each of
these energy curves on 1=as, kso, sgnðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjΩj=ℏ2

p
, and

sgnðδ̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjδ̃j=ℏ2

q
, there should exist other energy mani-

folds for the same κ� that can be obtained from the manifold
that has been mapped out without explicitly solving the
three-boson Schrödinger equation again.
To see how, we switch from the five parameters given in

Eq. (25) to the length y ¼ jy⃗j and four angles ξ1;…; ξ4 for
each of the four energy levels in the “reference manifold”:

K ¼ −y sin ξ1 sin ξ2 sin ξ3 sin ξ4; ð26Þ

sgnðδ̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjδ̃j=ℏ2

q
¼ y cos ξ1 sin ξ2 sin ξ3 sin ξ4; ð27Þ

sgnðΩÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjΩj=ℏ2

q
¼ y cos ξ2 sin ξ3 sin ξ4; ð28Þ

kso ¼ y cos ξ3 sin ξ4; ð29Þ

and

1=as ¼ y cos ξ4: ð30Þ

The full range of possible as, kso, Ω, and δ̃ is covered if ξ1,
ξ2, ξ3, ξ4 ∈ ½0; π�. The range of the angles is further
constrained by the energy surfaces of the three-atom and
atom-dimer thresholds (see Secs. IV and V). To obtain the
K for other manifolds, one chooses a direction of the vector

y⃗ by fixing the angles ξ1 to ξ4 and reads off the values of the
components of y⃗ for each of the four known energy levels.
Using

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðasÞ−2 þ ðksoÞ2 þ

mjΩj
ℏ2

þmjδ̃j
ℏ2

þ K2

s
; ð31Þ

it can be seen that the discrete transformation as → ðλ0Þnas,
kso→ðλ0Þ−nkso,Ω→ðλ0Þ−2nΩ, δ̃→ðλ0Þ−2nδ̃, E → ðλ0Þ−2nE
implies y → ðλ0Þ−ny. Thus, dividing the “hyperradius” y
corresponding to the jth energy in the reference manifold
by ðλ0Þ�1; ðλ0Þ�2;… and using the scaled value of y in
Eqs. (26)–(30), one obtains the values of the components of
y⃗ for the jth energy level in the other manifolds. The
generalized scaling law is tested in the next section by
considering two neighboring energy manifolds and con-
firming that the energy manifolds collapse onto each other
if the discrete scaling transformation is applied to the
energy levels in the more weakly bound manifold.

IV. NUMERICAL TEST OF THE GENERALIZED
RADIAL SCALING LAW

To facilitate the numerical calculations, we replace
the two-body zero-range potential V2b;zr by an attractive
Gaussian V2b;G with range r0 and depth v0,

V2b;GðrjkÞ ¼ v0 exp
�
−
r2jk
2r20

�
; ð32Þ

where v0 is negative and adjusted such that V2b;GðrjkÞ
supports at most one two-body s-wave bound state. To
reduce finite-range effects, we aim to work in the regime
where the absolute value of the free-space s-wave scattering
length as is notably larger than r0. Parameter combinations
where the absolute value of the free-space p-wave scatter-
ing volume is large are excluded. The three-body zero-
range potential V3b;zr is replaced by a repulsive Gaussian
V3b;G with range R0 and height V0:

VV3b;G
ðrjklÞ ¼ V0 exp

�
−
r2jkl
2R2

0

�
: ð33Þ

In our numerical calculations, R0 is fixed at
ffiffiffi
8

p
r0 and V0

(V0 ≥ 0) is varied to dial in the desired three-body parameter
κ�. Specifically, we define κ� to be the bindingmomentumof
the energetically lowest-lying universal three-body state at
unitarity (infinite as) for kso ¼ Ω ¼ δ̃ ¼ 0. Without the
repulsive three-body potential, the lowest three-body state
is not universal [52]. The repulsive three-body potential
pushes the lowest three-body energy up andwe adjustV0, for
fixed v0 (infinite as), such that the energy of the lowest three-
body state for finite V0 is identical to the energy of the first
excited three-body state for V0 ¼ 0. This corresponds to
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ðκ�Þ−1 ≈ 66.05r0; i.e., the trimer is much larger than the
intrinsic scales of the two- and three-body interactions. With
the repulsive three-body potential turned on, the radial
scaling law can be tested using the two lowest-lying energy
manifolds.
We start the discussion of our numerical results by

looking at the three-body spectrum for the standard Efimov
scenario (kso ¼ Ω ¼ δ̃ ¼ 0). The reason for discussing this
“reference system” is twofold: it illustrates how to check
the validity of the radial scaling law for a case where it is
known to hold and it gives us a sense for the finite-range
corrections expected in the presence of spin-orbit coupling.
The solid line in Fig. 1(b) shows the relative three-body
energy of the energetically lowest-lying state as a function
of the inverse of the s-wave scattering length for the
Hamiltonian given in Eq. (5) with V2b;zr and V3b;zr replaced
by V2b;G and V3b;G, respectively. To “compress” the data,
the horizontal and vertical axes employ a square-root and
fourth-root representation. The scattering length is scaled
by r0 and the energy by Esr:

Esr ¼
ℏ2

mr20
: ð34Þ

The trimer energy merges with the three-atom threshold on
the negative scattering length side at r0=jasj ≈ 0.01.
To get a feeling for the finite-range effects, we assume

that the radial scaling law holds and apply it “in reverse.”
Specifically, using numerically determined pairs ð1=as; KÞ
corresponding to the excited state, the dots in Fig. 1(b)
show the points ðλ0r0=as; λ0r0KÞ, using—as for the lowest
state—the square-root and fourth-root depiction. In the
zero-range limit (r0 → 0 and R0 → 0), the dots would lie on
top of the solid line. The nearly perfect agreement between
the solid line and the dots in Fig. 1(b) indicates that the
finite-range effects are negligibly small for the parameter
combinations considered.
To test the generalized radial scaling law proposed in

Sec. III, we calculate the eigenenergies of states in the
lowest and second-lowest manifolds of ˆ̄Hrel (there are at
most four states in each manifold) and scale the energies in
the second-lowest manifold assuming that the generalized
radial scaling law holds. If the energy curves collapse, the
generalized radial scaling law is validated.
In the presence of the 1D spin-orbit coupling, the

generalized Efimov plot has five axes. Clearly, visualizing
energy surfaces that depend on four parameters is impos-
sible and fully mapping out these high-dimensional
dependences is computationally demanding. Thus, we
consider selected cuts in the five-dimensional space. Our
first cut uses ðksoÞ−1 ¼ 50r0, Ω ¼ 2Eso ¼ 0.04Esr, where

Eso ¼
ðℏksoÞ2
2m

ð35Þ

and δ̃ ¼ 0. For these parameters, we calculate the relative
energy E of the states in the lowest energy manifold.
The solid lines in Fig. 2(a) show the quantity −jðE − Eaaa

th Þ=
Esrj1=4 as a function of sgnðasÞjr0=asj1=2, where Eaaa

th
denotes the energy of the lowest three-atom threshold
whose wave function has the same total momentum q3;z
along the z axis as the three-body system. The determi-
nation of Eaaa

th is discussed in Appendix C. The energy Eaaa
th

is independent of κ� and referencing E relative to the lowest
three-atom threshold does not alter the generalized radial
scaling law. Figure 2(a) shows that the lowest energy
manifold consists of, depending on the value of r0=as, zero,
one, or two energy levels [the second and third excited
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FIG. 2. Testing the generalized radial scaling law in the
presence of 1D spin-orbit coupling. Panels (a)–(c) demonstrate
the collapse of two neighboring energy manifolds for the finite-
range interaction model [ ˆ̄Hrel in Eq. (20) with V2b ¼ V2b;G and
V3b ¼ V3b;G; R0 ¼

ffiffiffi
8

p
r0 and ðκ�Þ−1 ≈ 66.05r0]. The energies of

states in the lowest manifold (solid lines) are obtained for
Ω ¼ 2Eso, δ̃ ¼ 0, and (a) ðksoÞ−1 ¼ 50r0, (b) ðksoÞ−1 ¼ 25r0,
and (c) ðksoÞ−1 ¼ 100r0. In all three panels, the dashed lines show
the atom-dimer threshold. The dots show the energies of states in
the second-lowest manifold, with the generalized radial scaling
law applied in reverse so as to collapse the three-body energies of
states in the second-lowest manifold (dots) onto the three-body
energies of the states in the lowest manifold (solid lines). For
clarity, the scaled atom-dimer thresholds for the second-lowest
energy manifold are not shown in any of the panels.
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states of the lowest manifold exist at larger r0=as than those
shown in Fig. 2(a)].
The lowest three-body energy merges with the three-

atom threshold on the negative s-wave scattering length
side and with the atom-dimer threshold [dashed line in
Fig. 2(a)] on the positive scattering length side. The
determination of the atom-dimer threshold energy Ead

th is
discussed in Appendix D. Just as the three-atom threshold,
the atom-dimer threshold is independent of κ� and deter-
mined such that the momentum q3;z of the atom-dimer
system is the same as that of the three-body system. The
second-lowest state does not merge with the three-atom
threshold on the negative as side but with the atom-dimer
threshold on the positive as side.
Having determined the energies of the states in the

lowest energy manifold, the next step is to calculate the
energies of the states in the second-lowest energy manifold.
To map the energies of the states in the second-lowest
manifold onto the energies of the states in the lowest energy
manifold, we use the same r0, R0, and κ� and calculate the
energies of the states in the second-lowest energy manifold
for a kso that is λ0 times smaller than the kso used to
calculate the energies of the states in the lowest energy
manifold [i.e., for ðksoÞ−1 ≈ 1; 135r0], for a Ω that is ðλ0Þ2
times smaller than the Ω used to calculate the energies in
the lowest energy manifold (i.e., for Ω ≈ 7.77 × 10−7Esr),
and for δ̃ ¼ 0 (the scaling does not change zero) as a
function of r0=as. Having calculated the energies of the
states in the second-lowest manifold for the scaled kso, Ω,
and δ̃, the pairs ð1=as; E − Eaaa

th Þ are scaled (note that Eaaa
th

for the excited state manifold is calculated using the scaled
kso, Ω, and δ̃ values). The dots in Fig. 2(a) show the scaled
pairs ½λ0r0=as;−ðλ0Þ2jE − Eaaa

th j=Esr�, using—as for the
lowest energy manifold—the square-root and fourth-root
depiction. It can be seen that the solid lines and dots agree
very well. Note that the atom-dimer threshold for the
second-lowest energy manifold also needs to be recalcu-
lated using the scaled kso, Ω, and δ̃ [the resulting energies
lie essentially on top of the dashed line and are not
shown in Fig. 2(a)]. The deviation between the solid line
and dots is 0.025% for ðr0=asÞ1=2 ¼ 0 and 0.80% for
ðr0=asÞ1=2¼0.19. These deviations are comparable to those
between the corresponding atom-dimer thresholds [in this
case, the deviations are 0.023% for ðr0=asÞ1=2 ¼ 0 and
0.82% for ðr0=asÞ1=2 ¼ 0.19]. We conclude that our
numerical results are consistent with the generalized radial
scaling law.
We emphasize that the scaling law has to be applied to all

five axes of the generalized Efimov plot; i.e., to obtain the
dots in Fig. 2(a) it is imperative to not only scale the two
axes depicted but also the parameters corresponding to the
three axes that are not depicted. The ratio of the lowest
energy in neighboring manifolds at unitarity, e.g., is only
equal to 22.6942 if the direction of ŷ is the same for the two
energy levels under consideration.

The energy scales Eso, jΩj, and jδ̃j are much smaller than
jE − Eaaa

th j for a large portion of Fig. 2(a). The region close
to the three-atom threshold is an exception. As such, it
might be argued that the spin-orbit-coupling terms are too
weak to notably influence the energy spectrum, possibly
suggesting that the applicability of the generalized radial
scaling law is trivial. One fact that speaks against this
argumentation is that the shape of the energy levels is
notably influenced by the spin-orbit-coupling terms. This
is, e.g., reflected by the fact that the energy levels in a given
energy manifold are not degenerate. To more explicitly
demonstrate that the generalized radial scaling law holds
when one or more of the energy scales associated with the
spin-orbit-coupling terms are larger than the binding
energy, we repeat the calculations for larger kso than those
used in Fig. 2(a). Specifically, to determine the energy of
the lowest state in the lowest energy manifold [solid line in
Fig. 2(b)], we use ðksoÞ−1 ¼ 25r0 while keeping r0, R0, κ�,
and δ̃ unchanged. The Raman coupling strength Ω is set to
be equal to 2Eso. To demonstrate the collapse of the
energies of the lowest states in the second-lowest and
lowest manifolds, we apply the generalized radial scaling
law in the same way as in Fig. 2(a). The energy of the
lowest state in the second-lowest manifold is shown by dots
in Fig. 2(b). The agreement with the solid line is excellent,
supporting our claim that the generalized radial scaling law
is not limited to the case where the energy scales associated
with the spin-orbit coupling are smaller than the binding
energy of the trimer, provided these energies are notably
smaller than Esr.
To show the characteristics of the excited states in the

lowest manifold in more detail, we consider a smaller kso,
ðksoÞ−1 ¼ 100r0, and as before δ̃ ¼ 0 and Ω ¼ 2Eso. The
use of a smaller kso [solid lines in Fig. 2(c)] moves the
merging points of the three-body energies corresponding to
the excited states with the atom-dimer threshold to the left
compared to Fig. 2(a). Again, scaling the parameters
appropriately, the dots in Fig. 2(c) show the energies of
the states in the second-lowest energy manifold. The dots
agree nearly perfectly with the solid lines not only for the
lowest state in the two manifolds but also for the excited
states in the two manifolds, lending strong numerical
support for the validity of the generalized radial scaling
law and hence for the existence of the discrete scaling
symmetry in the presence of 1D spin-orbit-coupling terms
in the zero-range limit.
As already mentioned, the three-body parameter κ� for

V0 ¼ 0, defined using the energy of the first excited state at
unitarity in the absence of spin-orbit coupling, is identical
to the κ� for the three-body interaction with finite V0 used
throughout this section. Turning on the spin-orbit coupling,
we checked that the energies of states in the second-lowest
manifold for V0 ¼ 0 agree well with the energies of states
in the lowest manifold for the finite V0. This provides
evidence that the generalized radial scaling law is, just as
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the standard radial scaling law, independent of the details
of the underlying microscopic interaction model. To con-
firm the continuous scaling symmetry of the three-body
Hamiltonian in the presence of 1D spin-orbit coupling, we
checked that the energies for different κ� can be mapped
onto each other: If y⃗ describes a point on the Efimov plot
for κ�, then ðκnew� =κ�Þy⃗ describes a point on the Efimov plot
for the new κnew� .

V. EXPERIMENTAL IMPLICATIONS: ROLE
OF CENTER-OF-MASS MOMENTUM

Measuring signatures associated with two consecutive
trimer energy levels is challenging, especially for equal-
mass bosons, due to the relatively large discrete scaling
factor of 22.694. The reason is that the absolute value of the
scattering length should, on the one hand, be notably larger
than the van der Waals length rvdW and, on the other hand,
be smaller than the de Broglie wave length λdB [8,11].
Despite these challenges, the discrete scaling symmetry
underlying the standard Efimov scenario has been con-
firmed experimentally by monitoring the atom losses of
an ultracold thermal gas of Cs atoms as a function of the
s-wave scattering length [20] (for unequal mass mixtures,
see Refs. [53,54]). When the trimer energy is degenerate
with the three-atom threshold [dots in Fig. 1(a); the
corresponding critical scattering lengths are denoted by
aðnÞ− ] or with the atom-dimer threshold [squares in Fig. 1(a);
the corresponding critical scattering lengths are denoted by

aðnÞ� ], the losses are enhanced. Since the critical scattering
lengths for consecutive trimer states are related to the
scaling factor λ0, these atom-loss measurements provide a
direct confirmation of the discrete scaling symmetry. In
addition, other characteristics of the standard Efimov
scenario have been measured [8,11–13]. For example,

the critical scattering lengths aðnÞ− and aðnÞ� for a given
trimer level n are related to each other by a universal
number. Correspondingly, the experimentally determined

ratio aðnÞ− =aðnÞ� can be viewed as a test of the functional form
of the energy levels shown in Fig. 1(a). Other experimental
tests of the standard Efimov scenario include the determi-
nation of the binding energy of an Efimov trimer via radio
frequency spectroscopy [17,18], the imaging of the quan-
tum mechanical density of the helium Efimov trimer via
Coulomb explosion [21], and the observation of four- and
five-body loss features that are universally linked to the
critical scattering lengths of the Efimov trimer [55–58].
Directly measuring the discrete scaling symmetry in the

presence of spin-orbit coupling requires varying the inverse
of the s-wave scattering length by the scaling factor λ0, as in
the standard Efimov scenario, as well as varying the spin-
orbit-coupling parameters Ω, Eso, and δ̃ by ðλ0Þ2. Covering
such a wide range of parameters is expected to be very
challenging experimentally. In what follows we instead
focus on the situation where the spin-orbit-coupling

parameters kso and Ω are held fixed while the s-wave
scattering length as and generalized detuning δ̃ are varied.
An analogous study for the standard Efimov scenario
would look at the three-boson system for a fixed finite
s-wave scattering length. In this case, the energy spacing
would not be ðλ0Þ2; however, the energies of neighboring
states would still be uniquely related to each other.
For concreteness, we consider the 133Cs system [59], for

which the three-atom resonances in the absence of spin-
orbit coupling occur at the critical scattering lengths að0Þ− ≈
−936a0 and að1Þ− ≈ −20, 190a0 [20]. Here, a0 denotes the
Bohr radius and the superscripts “(0)” and “(1)” indicate
that these critical scattering lengths are for the ground and
first excited Efimov trimers, respectively. Applying our
numerical result κ�a− ¼ −1.505 to the first excited state,
the Cs system is characterized by ðκ�Þ−1 ≈ 13, 416a0.
Figure 3 shows the negative of the binding energy of the

lowest state in the first excited manifold for kso=κ� ≈ 1.32
and Ω ¼ 2Eso as functions of the inverse of the s-wave
scattering length and the generalized detuning δ̃ using, as in
the previous sections, that the scattering lengths are the same
for all spin channels. Using Cs’s að1Þ− , these parameters
correspond to ðksoÞ−1 ≈ 10, 156a0, Eso=h ≈ 0.132 kHz, and
Ω=h ≈ 0.264 kHz. Comparison with the 87Rb experiment at
NIST [28], which uses ðksoÞ−1 ≈ 3; 410a0 (corresponding to
Eso=h ≈ 1.786 kHz) andΩ=h values ranging from0 to about
10 kHz, suggests that the parameter regime covered in Fig. 3
is reasonable. Figure 3 shows that the three-boson binding
energy for a fixed scattering length is largest for δ̃ ¼ 0 (this is
where the three-atom threshold has a degeneracy of six; see
Appendix C). In addition, there exists an enhancement of the

FIG. 3. The contours show the negative of the three-boson
binding energy, in kHz, of the lowest state in the second-lowest
manifold as functions of ðasÞ−1 and δ̃ for kso=κ� ≈ 1.32 and
Ω ¼ 2Eso, where κ� denotes the binding momentum of the first
excited Efimov trimer at unitarity in the absence of spin-orbit
coupling. The conversion to a0 and kHz is done using the
experimentally determined value of að1Þ− for Cs (see text).

The calculations are performed for ˆ̄Hrel with V2b ¼ V2b;G and
V3b ¼ 0 [ðκ�Þ−1 ≈ 66.05r0].
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binding for δ̃=h ≈ 0.301 kHz (this is where the three-atom
threshold has a degeneracy of four; see Appendix C). As δ̃
goes to infinity, the trimer in the presence of the 1D spin-orbit
coupling becomes unbound at the same scattering length as
the corresponding trimer in the absence of spin-orbit cou-
pling (i.e., at as ≈ −20, 190a0).
The three-boson binding energy shown in Fig. 3 is

calculated by enforcing that the three-boson threshold has
the same center-of-mass momentum as the trimers (see
Appendixes C–E). If the detuning δ is equal to zero, the
generalized detuning δ̃ is directly proportional to the z
component q3;z of the center-of-mass momentum [see
Eq. (21)]. In this case, the trimer is bound maximally
for q3;z ¼ 0. However, for finite detuning δ, the most
strongly bound trimer has a finite center-of-mass
momentum. A similar dependence on the center-of-mass
momentum was pointed out in Refs. [35,37,61] for the two-
fermion system.
The dependence of ˆ̄Hrel on qN¼3;z is a key characteristic

of systems with 1D spin-orbit coupling. A similar depend-
ence exists for three-body systems in the presence of 2D or
3D spin-orbit coupling (in these cases, the relative
Hamiltonian depends on two or all three components of
q⃗N¼3) and for three-body systems on a lattice (in this case,
q⃗N¼3 is a lattice or quasimomentum vector). In all works
known to us [16,46–48], the assumption q⃗N¼3 ¼ 0 is made
prior to obtaining concrete results. Table I contrasts studies
for systems, which possess a center-of-mass momentum
dependence, with the “standard” three-boson Efimov sys-
tem (first row), for which the relative Hamiltonian is
independent of q⃗N¼3. In the standard Efimov case, the
lowest atom-dimer threshold of the relative Hamiltonian is
given by the energy Ea of an atom with vanishing atom
momentum vector q⃗a (Ea is equal to zero) plus the energy
Edðq⃗d ¼ 0Þ of a dimer with vanishing dimer momentum
vector q⃗d. When the relative Hamiltonian depends on q⃗N¼3,
the atom-dimer threshold needs to be determined carefully,
since the trimer with fixed q⃗N¼3 can break up into an atom
with finite momentum and into a dimer with finite
momentum in such a way that the generalized three-body
center-of-mass momentum is conserved. Of the many

break-up configurations that conserve the three-body
center-of-mass momentum, the one with the lowest energy
defines the atom-dimer threshold. Table I shows that the
definition of the lowest atom-dimer threshold of the relative
Hamiltonian varies in the literature. The definitions
employed in Refs. [16,47] disagree with the definition
used in the present work (last row of Table I). While the
definition of Ref. [47] may be meaningful in a many-body
context (see also Ref. [61]), we fail to see how the
definition of Ref. [16] can, in general, be correct.
It is proposed that the center-of-mass momentum

dependence can be observed experimentally by performing
atom-loss measurements for fixed kso, Ω, and δ on a cold
thermal atomic gas. Tuning the s-wave scattering length,
one expects—just as in the case where the spin-orbit
coupling is absent—enhanced losses when the trimer
energy is degenerate with the three-atom threshold.
However, in contrast to the standard Efimov scenario, such
a degeneracy exists for a range of scattering lengths
provided the trimers embedded in the thermal gas have
different three-body center-of-mass momenta (the exact
distribution of center-of-mass momenta is set by the
temperature of the gas sample). Figure 3 shows that the
critical scattering length að1Þ− changes, for the Cs example,
from −20 190a0 for large δ̃ to −7791a0 for δ̃ ¼ 0. Provided
the three-body center-of-mass momenta are spread over the
range covered on the vertical axis in Fig. 3, one expects
enhanced losses over the entire scattering length window.
The difference between the losses in the presence and
absence of the spin-orbit-coupling terms can be interpreted
as a few-body probe of the breaking of the Galilean
invariance in the presence of spin-orbit coupling.
An important question is whether the changes of the loss

features related to the lowest state in the second-lowest
manifold will be washed out by finite temperature effects.
A comprehensive answer to this question will require
performing three-body recombination calculations, which
include thermal averaging, in the presence of spin-orbit
coupling. Such calculations are beyond the scope of this
work. Given that the energy scales associated with the spin-
orbit coupling are, for the example considered in Fig. 3,

TABLE I. Summary of three-particle studies. The standard Efimov scenario (first row) is contrasted with three-particle systems for

which the relative Hamiltonian ˆ̄Hrel depends parametrically on the generalized three-body center-of-mass momentum vector q⃗N¼3.
The last column lists the atom-dimer threshold of the relative Hamiltonian. The symbols Ed, Ea, q⃗d, and q⃗a denote the energy of the
dimer, energy of the atom, generalized momentum of the dimer, and generalized momentum of the atom, respectively. SOC, spin-orbit
coupling; F, fermion; X, a particle different from F; B, boson.

System ˆ̄Hrel ¼ ˆ̄Hrelðq⃗N¼3Þ? Restriction? Atom-dimer threshold (rel. Ham.)

Three spinless bosons; “standard” Efimov scenario [6] no no Edðq⃗d ¼ 0Þ þ Eaðq⃗a ¼ 0Þ
FFX; X feels 2D SOC; Borromean binding [47] yes q⃗N¼3 ¼ 0 minq⃗d Edðq⃗dÞ þminq⃗a Eaðq⃗aÞ
FFX; X feels 3D SOC; universal or Efimov trimers [46,48] yes q⃗N¼3 ¼ 0 minq⃗dþq⃗a¼q⃗N¼3

½Edðq⃗dÞ þ Eaðq⃗aÞ�
BBB quasiparticles on lattice; Efimov trimers [16] yes q⃗N¼3 ¼ 0 Edðq⃗d ¼ 0Þ þ Eaðq⃗a ¼ 0Þ
BBB; B’s feel 1D SOC (this work) yes no minq⃗dþq⃗a¼q⃗N¼3

½Edðq⃗dÞ þ Eaðq⃗aÞ�
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comparable to ℏ2κ2�=m and that the binding energy of the
trimer near the three-atom threshold is much smaller than
ℏ2κ2�=m, we are hopeful that the temperatures realized in
previous Cs experiments (T ≥ 7.7 nK) [20] are low enough
to observe the impact of the spin-orbit-coupling terms on
the loss features. For example, without spin-orbit coupling,
the loss coefficient L3 is maximal around −20 000a0 and
reaches about half of its maximum value at around
−10 000a0 [see Fig. 1(a) of Ref. [20]]. In the presence
of spin-orbit coupling, the loss feature is expected to be
centered over the range −20 190a0 to −7790a0, leading to
an observable modification of the shoulder on the less
negative scattering length side. The shape of the shoulder is
expected to carry a signature of the nonmonotonic depend-
ence of the critical scattering length að1Þ− on the center-of-
mass momentum. For example, three different δ̃ correspond
to the same að1Þ− for að1Þ− ∈ ½−10 330a0;−9160a0�, but
each δ̃ corresponds to a unique að1Þ− for að1Þ− ∈
½−20 190a0;−10 330a0� and að1Þ− ∈ ½−9160a0;−7790a0�.
For the same spin-orbit-coupling parameters, the critical

scattering length að0Þ− , associated with the lowest state in the
lowest manifold, displays essentially no dependence on δ̃;
i.e., the associated three-atom loss feature should only be
minimally affected by the spin-orbit-coupling terms.
Intuitively, this can be understood by realizing that the
energy scales associated with the spin-orbit-coupling
parameters are much smaller than the binding energy of
the lowest-lying trimer state. The fact that the loss features
for the lowest state in the lowest and second-lowest
manifolds are expected to be very different can also be
understood from the generalized radial scaling law. Fixing
the spin-orbit-coupling parameters corresponds to looking
at particular cuts in the five-dimensional parameter space as
opposed to looking along a specific radial direction. As a
consequence, the loss features for the two manifolds can be
very different even if the scattering lengths at which the loss
features occur are, roughly, spaced by λ0.

VI. CONCLUDING REMARKS

This work analyzes what happens to the three-boson
Efimov spectrum if 1D spin-orbit-coupling terms, realiz-
able in cold atoms as well as in photonic crystals and
mechanical setups, are added to the Hamiltonian. The spin-
orbit-coupling terms introduce a parametric dependence of
the relative Hamiltonian on the center-of-mass momentum
vector. A similar center-of-mass momentum vector depend-
ence exists for few-body systems with short-range inter-
actions on a lattice. The present work maps out, for the first
time, the three-boson spectrum as a function of the center-
of-mass momentum vector. It is found that the three-boson
system in the presence of 1D spin-orbit coupling obeys a
generalized radial scaling law in a five-dimensional param-
eter space, which is associated with a discrete scaling
symmetry. Within the framework of effective field theory,

the existence of the discrete scaling symmetry can be
rationalized by scale separation: The discrete scaling
symmetry of the standard Efimov scenario “survives”
provided the additional length scales are much larger than
the ranges of the intrinsic interactions. While our work
focuses on 1D spin-orbit coupling, the discrete scaling
symmetry should persist for other types of spin-obit-
coupling schemes as well.
The spin degrees of freedom lead—for the type of spin-

orbit coupling considered in this work—to a quadrupling of
each Efimov trimer (manifold of four states). The three-
body states in a given manifold are tied to one of the three
two-boson states [62]. The point ð1=as; kso;Ω; δ̃Þ ¼
ð0; 0; 0; 0Þ serves as an accumulation point for all four
states of the manifold; i.e., in its vicinity, there exist
infinitely many three-body bound states. The rich structure
of two- and three-boson states should be amenable to
experimental verification. Because of the dependence of the
trimers on the center-of-mass momentum, the scattering
length at which the lowest trimer in the second-lowest
manifold merges with the atom-atom-atom threshold is, in
fact, a scattering length window. Similar scattering length
windows exist for the excited states in the second-lowest
manifold. It was argued that these scattering length win-
dows should be observable in cold-atom loss experiments,
providing a direct few-body signature of the breaking of the
Galilean invariance of systems with spin-orbit coupling.
If one considers a cut in the generalized five-dimensional

Efimov plot, energy levels are not spaced by the scaling
factor ðλ0Þ2. Let us consider the situation where as is
infinitely large and where kso, Ω, and δ̃ are finite. In this
case, the low-energy scales associated with the 1D spin-
orbit-coupling terms lead to a cutoff of the hyperradial
−1=R2 Efimov potential curve (R denotes the three-body
hyperradius). As a consequence, the number of three-body
bound states at unitarity is not infinitely large. Albeit due to
a different mechanism, this is similar in spirit to the
disappearance of Efimov states if an Efimov trimer is
placed into a gas of bosons or fermions [63,64]. This is also
similar in spirit to a rather different system, namely the H−

ion. Taking only Coulomb interactions into account, one
obtains a −1=r2 attraction [65], where r is the distance
between the extra electron and the atom. Relativistic effects
introduce an additional length scale, which renders the
number of bound states finite [65].
The calculations in this work are performed assuming

that the interactions between the different spin channels are
all equal. If one of the scattering lengths is large and tunable
while the others are close to zero, the discrete scaling
symmetry should still hold (approximately). To find the
functional form of the energies for this scenario, the
spectrum has to be recalculated.
The study we present should be viewed as a first step

toward uncovering the rich three- and higher-body physics
that emerges as a consequence of the unique coupling
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between the relative and center-of-mass degrees of freedom
in cold-atom systems in the presence of artificial gauge
fields. While somewhat different in nature, the coupling of
these degrees of freedom in the relativistic Klein-Gordon
and Dirac equations and quantum field theories has
captured physicists’ imagination for many decades.
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APPENDIX A: JACOBI COORDINATES

The single-particle and Jacobi coordinates employed in
this work are related through the matrix U [66],

ðρ⃗1;…; ρ⃗NÞT ¼ Uðr⃗1;…; r⃗NÞT; ðA1Þ

where

U ¼
�

1 −1
1=2 1=2

�
ðA2Þ

for the equal-mass two-particle system and

U ¼

0
B@

1 −1 0

1=2 1=2 −1
1=3 1=3 1=3

1
CA ðA3Þ

for the equal-mass three-particle system. The transfor-
mation matrix U also defines the matrices Σ̂j;z

(j ¼ 1;…; N − 1). For the two-body system, we have

Σ̂1;z ¼ σ̂1;z ⊗ I2 − I1 ⊗ σ̂2;z: ðA4Þ

For the three-body system, we have

Σ̂1;z ¼ σ̂1;z ⊗ I2 ⊗ I3 − I1 ⊗ σ̂2;z ⊗ I3 ðA5Þ

and

Σ̂2;z ¼
1

2
ðσ̂1;z ⊗ I2 ⊗ I3 þ I1 ⊗ σ̂2;z ⊗ I3Þ

− I1 ⊗ I2 ⊗ σ̂3;z: ðA6Þ

APPENDIX B: EXPLICITLY CORRELATED
BASIS SET EXPANSION APPROACH

This appendix discusses our approach to solving the few-
particle time-independent Schrödinger equation using a
basis set expansion in terms of explicitly correlated
Gaussian basis functions, which contain nonlinear varia-
tional parameters that are optimized semistochastically.
As we discuss in the main text, we are interested in

bound states, i.e., eigenstates that approach zero at large
interparticle distances. To solve the time-independent
Schrödinger equation, we expand the relative portion
Φrel of the eigenstate Ψ sought in terms of a set of
nonorthogonal eigenfunctions ψ j [66,67]:

Φrel ¼
XNb

j¼1

cjψ j: ðB1Þ

The basis functions ψ j depend on the relative spatial and
the spin degrees of freedom,

ψ j ¼ Ŝ(ϕjðρ⃗1;…; ρ⃗N−1Þχj); ðB2Þ

where χj denotes an N-particle spin function that is chosen
from the complete set of 2N possible spin functions.
The spatial parts ϕj are written in terms of a total of

ðN − 1ÞðN=2þ 3Þ nonlinear variational parameters dðjÞkl

and s⃗ðjÞk :

ϕj ¼ exp

�
−
XN
k<l

r2kl
2dðjÞkl

þ
XN−1

k¼1

{s⃗ðjÞk · ρ⃗k

�
: ðB3Þ

Here, the superscript “(j)” serves to remind us that each
basis function is characterized by a set of nonlinear
variational parameters. The nonlinear variational parame-

ters dðjÞkl determine the widths of the Gaussian factors of the
basis functions. These widths are governed, roughly, by the
two-body interaction terms in the Hamiltonian. The non-

linear parameters s⃗ðjÞk determine the spatial oscillations due
to the kso-dependent one-body terms. We do find that the

values of s⃗ðjÞk can depend quite strongly on the spin basis

function considered. This shows that the parameters s⃗ðjÞk
govern, to leading order, the interplay between the spatial
and spin degrees of freedom. Of course, strictly speaking,
the influence of the single-particle and two-particle inter-
action terms in the Hamiltonian on the eigenstates cannot
be separated; rather, the eigenstates are the result of the
relative importance of each of these terms and the kinetic

energy terms. The NðN − 1Þ=2 nonlinear parameters dðjÞkl

and the 3ðN − 1Þ nonlinear parameters contained in s⃗ðjÞk are
optimized semistochastically; i.e., the basis set is con-
structed so as to minimize the energy of the eigenstate
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under study. The symmetrizer Ŝ in Eq. (B2) ensures that the
basis functions, and hence the eigenstate sought, are fully
symmetrized. For the two-boson system, e.g., the symmetr-
izer reads Ŝ ¼ ð1þ P̂12Þ=

ffiffiffi
2

p
, where P̂12 exchanges the

spatial and spin degrees of freedom of particles 1 and 2. For
N identical particles, the symmetrizer contains N! terms.
The linear parameters cj are determined by solving the

generalized eigenvalue problem that depends on the
Hamiltonian matrix and, due to the nonorthogonality of
the basis functions, the overlap matrix [66]. The results
presented in this paper utilize basis sets consisting of up to
Nb ¼ 1800 basis functions. The key strengths of the
numerical approach employed are that the Hamiltonian
and overlap matrix elements have compact analytical
expressions and that the nonlinear variational parameters
can be adjusted so as to capture correlations that occur on
scales smaller than r0 and larger than ðksoÞ−1.
The energies for the N ¼ 2 system depend on the

parameters as, kso, Ω, and δ̃. For N ¼ 3, they additionally
depend on κ�. In practice, we set q⃗N ¼ 0 and scan Ω=Eso,
δ=Eso, and askso (for N ¼ 3, we fix κ�). To obtain the
relative eigenenergies E and eigenstates Φrel for finite qN;z,
we do not need to redo the numerical calculations. Instead,
we use the “conversion” implied by Eq. (21); i.e., the
relative eigenenergy and eigenstates are obtained by
changing from δ to δ̃. The full eigenstates Ψ are obtained
by multiplying the q⃗N ¼ 0 eigenstates by the center-of-
mass piece Φc:m:.
As in the case without spin-orbit coupling [68], it tends

to be more efficient to describe each relative eigenstate Φrel
by its own basis set as opposed to constructing one basis set
that describes multiple eigenstates well. We refer to the
eigenstate sought—this could be the ground state or one of
the excited states—as the target state. To construct the
basis, we add one basis function at a time. Let us assume
that we have a basis set of size Ninitial and that we want to
enlarge the basis set by one basis function. To do this, we
generate Ntrial trial basis functions (Ntrial is of the order of a
few hundred to a few thousand) and calculate the energy Ek
(k ¼ 1;…; Ntrial) of the target state for each of these
enlarged basis sets. Assuming that the generalized eigen-
value problem for the basis set of size Ninitial has been
solved, the trial energies can be calculated via a root-
finding procedure [66], which is, generally, computation-
ally significantly faster than solving the generalized
eigenvalue problem. The basis function to be added is
determined by which of the Ntrial trial energies is lowest,
i.e., by looking for the trial basis function that lowers the
energy of the target state the most. After the “best” trial
function has been added, the generalized eigenvalue
problem is solved for the basis set of size Ninitial þ 1
and the procedure is repeated to generate a basis set of size
Ninitial þ 2.
The convergence of the energy with increasing basis set

size can be improved significantly by choosing “good”

basis functions, i.e., by generating basis functions that
efficiently cover the entire Hilbert space. Conversely, if the
basis set is not constructed carefully, the energy may not
even converge. In our implementation, the parameters dðjÞkl

and s⃗ðjÞk that characterize the spatial part of the basis
functions are chosen from carefully adjusted parameter

windows. For example, the dðjÞkl are chosen so as to cover
length scales ranging from less than r0 to a few times the
length set by the binding energy of the target state. Since
the target energy is, in general, not known a priori, the
parameter windows are typically refined based on results
obtained in preliminary calculations. To choose parameter

windows for the x, y and z components of s⃗ðjÞk , we are
guided by the noninteracting two- and three-particle
dispersion curves. For example, if the noninteracting
two-particle dispersion along the z coordinate exhibits

two minima, we choose sðjÞ1;z uniformly from the windows
½−smax;z;−smin;z� and ½smin;z; smax;z�, with the windows
including the momenta at which the dispersion curve is

minimal. The parameters sðjÞ1;x and sðjÞ1;y are selected from
windows that include zero. The widths of the parameter
windows are adjusted through an educated trial and error
procedure. Among other things, we check if the parameters
selected by the code are clumped in a particular region of
the parameter space.

APPENDIX C: THREE-ATOM THRESHOLD

The three-atom system with center-of-mass momentum
q⃗N , N ¼ 3, is bound if its energy is lower than that of three
infinitely far separated atoms with the same center-of-mass
momentum and, if a two-body bound state exists, lower
than that of an infinitely far separated dimer and atom with
the same center-of-mass momentum. To determine the
lowest three-body scattering threshold, one thus needs to
know the lowest dimer binding energy for all two-body
center-of-mass momenta. As a consequence, the three-body
scattering threshold depends on δ̃=Eso andΩ=Eso as well as

on askso. We define the scattering threshold Eth using
ˆ̄Hrel

and denote the eigenenergies of ˆ̄Hrel by E.
We start by determining the lowest relative three-body

scattering threshold in the absence of two-body bound
states. In this case, the lowest relative scattering threshold is
determined by the minimum energy of the noninteracting
relative dispersion curves for fixed δ̃=Eso and Ω=Eso. The
dispersion curves depend on two relative momenta
(namely, q1;z and q2;z), and the total number of dispersion
curves is eight. Figures 4(a)–4(c) are for the uncoupled case
(Ω ¼ 0) and δ̃=Eso ¼ 0, 8=3, and 3.5, respectively. The
number of global minima changes from six for δ̃ ¼ 0 [see
Fig. 4(a)] to three for 0 < δ̃=Eso < 8=3 (not shown) to four
for δ̃=Eso ¼ 8=3 [see Fig. 4(b)] to one for δ̃=Eso > 8=3 [see
Fig. 4(c)]. A finite Raman coupling strength Ω introduces a
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coupling between the different spin channels. As an
example, Figs. 4(d)–4(f) show the lowest relative non-
interacting dispersion curves forΩ=Eso ¼ 2 and δ̃=Eso ¼ 0,
2.278, and 4, respectively. As for vanishing Raman
coupling, the number of global minima changes from six
to three (not shown) to four to one with increasing δ̃.
However, the critical generalized detuning δ̃ at which these
changes occur differs for Ω=Eso ¼ 2 and Ω ¼ 0.
The minimum of the noninteracting relative three-atom

dispersion curves defines, assuming two-body bound states
are absent, the lowest three-atom scattering threshold.
Figure 5 shows the lowest three-atom scattering threshold
energy Eaaa

th as functions of δ̃=Eso and Ω=Eso. The thick
open circles and thick dashed line indicate the parameter
combinations at which the number of global minima is six
and four, respectively. For parameter combinations above
the thick open circles and below the thick dashed line, the

number of global minima of the lowest noninteracting
relative dispersion curve is equal to three. Above the thick
dashed line the number of global minima is equal to one. If
we assume that the three-body binding energy is, approx-
imately, largest when the degeneracy of the lowest non-
interacting relative dispersion curve is largest, then Fig. 5
suggests that the three-body system on the negative
scattering length side, provided two-body bound states
are absent, is enhanced the most compared to the energy of
the system without spin-orbit coupling when δ̃ ¼ 0 or
q3;z ¼ −3mδ=ð2ℏksoÞ. The main text shows that this
reasoning provides an intuitive understanding for the
behavior of the lowest three-boson state in each manifold.
However, the situation for the excited states in a manifold is
more intricate [62].

APPENDIX D: ATOM-DIMER THRESHOLD

As already mentioned, the determination of the lowest
atom-dimer scattering threshold requires knowledge of the
dimer binding energy and the single-particle dispersion
curve. Since the z component of the center-of-mass momen-
tum q1;z of the dimer, formed by particles 1 and 2, can be
written as a linear combination of q2;z and q3;z, q1;z is not a
free parameter. As a consequence, the atom-dimer dispersion
curves depend only on q2;z but not on q1;z. Physically, this
makes sense since the three-body system breaks up into two
units (a dimer and an atom), with themomentumbetween the
two units determining the division of the three-bodymomen-
tum among the dimer and the atom.
To quantify this, we rewrite the Hamiltonian ˆ̄Hrel by

arbitrarily singling out the third atom and treating the
expectation value q2;z of q̂2;z as a parameter:

(a) (d)

(b) (e)

(c) (f)

FIG. 4. Lowest noninteracting relative three-atom dispersion
curve. The contours show the lowest noninteracting relative
three-atom dispersion curve, in units of Eso, as functions of
q1;z and q2;z. (a)–(c) Ω=Eso ¼ 0 and δ̃=Eso ¼ 0, 8=3, and 3.5,
respectively. (d)–(f) Ω=Eso ¼ 2 and δ̃=Eso ¼ 0, 2.278, and 4,
respectively.

FIG. 5. Lowest relative three-atom scattering threshold. The
contours show the energy Eaaa

th , in units of Eso, of the lowest three-
atom scattering threshold as functions of Ω=Eso and δ̃=Eso.
The thick open circles and thick dashed line indicate the
parameter combinations ðδ̃=Eso;Ω=EsoÞ at which the degeneracy
of the lowest three-atom scattering threshold is six and four,
respectively.
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ˆ̄Hreljhq̂2;zi¼q2;z ¼ Ĥ12ðq2;zÞ ⊗ I3

þ I1 ⊗ I2 ⊗ Ĥ3ðq2;zÞ
þ Vcoupling: ðD1Þ

Here, the “dimer Hamiltonian” Ĥ12ðq2;zÞ reads

Ĥ12ðq2;zÞ ¼
� ˆq⃗21
2μ1

þ V2bðr12Þ
�
I1 ⊗ I2

þ ℏksoq1;z
m

ðσ̂1;z ⊗ I2 − I1 ⊗ σ̂2;zÞ

þ
�
ℏksoq2;z
2m

þ δ̃

2

�
ðσ̂1;z ⊗ I2 þ I1 ⊗ σ̂2;zÞ

þ Ω
2
ðσ̂1;x ⊗ I2 þ I1 ⊗ σ̂2;xÞ: ðD2Þ

Identifying δ̃12;eff ,

δ̃12;eff
2

¼ ℏksoq2;z
2m

þ δ̃

2
; ðD3Þ

as a new effective dimer detuning, the eigenenergies
of Ĥ12ðq2;zÞ are the same as those of the two-body
Hamiltonian. The “atom Hamiltonian” Ĥ3ðq2;zÞ,

Ĥ3ðq2;zÞ ¼
q⃗22
2μ2

⊗ I3 þ
�
−
ℏksoq2;z

m
þ δ̃

2

�
σ̂3;z þ

Ω
2
σ̂3;x;

ðD4Þ

describes the Jacobi particle with mass μ2 and effective
atom detuning δ̃3;eff , where

δ̃3;eff
2

¼ −
ℏksoq2;z

m
þ δ̃

2
: ðD5Þ

Note that the effective dimer detuning δ̃12;eff and the
effective atom detuning δ̃3;eff depend on the “true detuning”
δ, which is fixed by the experimental setup, on the z
component q3;z of the three-body center-of-mass momen-
tum, which is a conserved quantity, and on q2;z, which is
treated as a parameter. Assuming that the distance between
the center of mass of the dimer and the atom is large
compared to the size of the dimer and compared to the
ranges r0 and R0 of the two- and three-body interactions,
the coupling term Vcoupling,

Vcoupling¼ ½V2bðr13ÞþV2bðr23ÞþV3bðr123Þ�I1⊗ I2⊗ I3;

ðD6Þ

can be set to zero. Thus, the q2;z-dependent relative
atom-dimer dispersion curves are obtained by adding the

eigenenergies of Ĥ12 and Ĥ3, which depend parametrically
on q2;z.
Equations (D1)–(D6) assume that the dimer is formed by

atoms 1 and 2. Alternatively, the dimer could be formed by
atoms 1 and 3 or by atoms 2 and 3. These alternative
divisions yield atom-dimer dispersion curves that depend
on the z component of the momentum that is associated
with the distance vector between particle 2 and the center of
mass of the 13 dimer and the z component of the
momentum that is associated with the distance vector
between particle 1 and the center of mass of the 23 dimer,
respectively. Since we are considering three identical
bosons, the three divisions are equivalent. In what follows,
we use qad;z to reflect that we could single out any of the
three atoms. The corresponding atom-dimer energy is
denoted by Ead

th .
Since there exist up to three two-boson bound states [62],

the three-boson system supports up to six atom-dimer
dispersion curves (there could be four or two). As an
example, Fig. 6 shows the energy Ead

th of the lowest relative
atom-dimer dispersion curve as a function of qad;z for
ðasksoÞ−1 ¼ 0.01128, Ω=Eso ¼ 2, and various δ̃, i.e.,
δ̃ ¼ 0, 2.287, and 3.5. The system supports, for this
Raman coupling strength and scattering length, one weakly
bound two-boson state for all two-body center-of-mass
momenta. For δ̃ ¼ 0 (solid line in Fig. 6), the atom-dimer
dispersion is symmetric with respect to qad;z ¼ 0 and
supports two global minima at finite qad;z. The breakup
into a dimer and an atom is energetically most favorable
when qad;z=ðℏksoÞ is equal to �0.76. This translates,
using Eqs. (D3) and (D5), into δ̃12;eff=Eso ¼ �1.52 and
δ̃3;eff=Eso ¼ �3.04. For δ̃ > 0 (the dashed and dotted lines
in Fig. 6 are for δ̃=Eso ¼ 2.287 and 3.5, respectively), the
atom-dimer dispersions are asymmetric with respect to
qad;z ¼ 0 and exhibit a global minimum at negative qad;z,
which approaches qad;z ¼ 0 in the δ̃ → ∞ limit. Intuitively,
the asymmetry can be understood by realizing that the atom
and the dimer already see a detuning. Thus, moving in the

-1.5 -1 -0.5 0 0.5 1 1.5
q

ad,z
/(h

_
k

so
)

-6

-5

-4

-3

E
ad th

/E
so

FIG. 6. Relative atom-dimer dispersion curves for ðasksoÞ−1 ¼
0.01128 andΩ=Eso ¼ 2. The solid, dashed, and dotted lines show
the energy Ead

th as a function of the z component qad;z of the atom-
dimer momentum for δ̃=Eso ¼ 0, 2.287, and 3.5, respectively.

THREE-BOSON SPECTRUM IN THE PRESENCE OF 1D … PHYS. REV. X 8, 021057 (2018)

021057-15



positive momentum direction is not equivalent to moving in
the negative momentum direction. The minimum of the
lowest relative atom-dimer dispersion curve decreases with
increasing δ̃.

APPENDIX E: THREE-BODY THRESHOLD

The three-boson threshold is given by the minimum of
the lowest three-atom threshold and the lowest atom-dimer
threshold. It depends on the values of Ω, kso, δ̃, and the
s-wave scattering length. Using kso and Eso as units, Fig. 7
shows a contour plot of the lowest relative three-boson
threshold as functions of the generalized detuning δ̃=Eso

and the inverse ðasksoÞ−1 of the s-wave scattering length for
Ω=Eso ¼ 2. As already discussed, the parameter regime in
which two-boson bound states exist depends on the value of
as. Correspondingly, the thick dotted line, which marks the

separation of the region in which the three-atom threshold
has the lowest energy (to the left of the thick dotted line)
and that in which the atom-dimer threshold has the lowest
energy (to the right of the thick dotted line), shows a
distinct dependence on the s-wave scattering length. For
large δ̃, the thick dotted line approaches the ðasksoÞ−1 ¼ 0

line. For a fixed δ̃, the energy Ead
th of the lowest atom-dimer

threshold decreases with increasing ðasksoÞ−1. This can be
traced back to the increase of the binding energy of the two-
boson ground state with increasing ðasksoÞ−1. The param-
eter combinations with the largest degeneracy of the
scattering threshold are shown by the thick open circles
(three-atom threshold; the degeneracy is six) and the thick
dash-dotted line (atom-dimer threshold; the degeneracy is
two). For all as, the largest degeneracy of the scattering
threshold is found for δ̃ ¼ 0. As we discuss in the main text,
our numerical three-boson calculations show that the
binding energy of the most strongly bound state in each
manifold, determined as functions of ðasksoÞ−1 and δ̃=Eso,
is largest for vanishing δ̃, i.e., where the degeneracy of the
lowest three-boson scattering threshold is maximal.
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