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Inspired by the success of Boltzmann machines based on classical Boltzmann distribution, we propose a
new machine-learning approach based on quantum Boltzmann distribution of a quantum Hamiltonian.
Because of the noncommutative nature of quantum mechanics, the training process of the quantum
Boltzmann machine (QBM) can become nontrivial. We circumvent the problem by introducing bounds on
the quantum probabilities. This allows us to train the QBM efficiently by sampling. We show examples of
QBM training with and without the bound, using exact diagonalization, and compare the results with
classical Boltzmann training. We also discuss the possibility of using quantum annealing processors for

QBM training and application.
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I. INTRODUCTION

Machine learning is a rapidly growing field in computer
science with applications in computer vision, voice recog-
nition, medical diagnosis, spam filtering, search engines, etc.
[1]. Machine-learning algorithms operate by constructing a
model with parameters that can be determined (learned) from
alarge amount of example inputs, called the training set. The
trained model can then make predictions about unseen data.
The ability to do so is called generalization. This could be,
for example, detecting an object, like a cat, in an image or
recognizing a command from a voice input. One approach to
machine learning is probabilistic modeling in which the
probability distribution of the data (P for a given state v) is
approximated based upon a finite set of samples. If the
process of training is successful, the learned distribution P,
has enough resemblance to the actual distribution of the data,
P such that it can make correct predictions about unseen
situations. Depending upon the details of the distributions
and the approximation technique, machine learning can be
used to perform classification, clustering, collaborative
filtering, compression, denoising, inpainting, or a variety
of other algorithmic tasks [2].

The possibility of using quantum mechanics for machine
learning has been considered theoretically [3—14]. With the
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development of quantum annealing processors [15], it has
become possible to test machine-learning ideas with an
actual quantum hardware [16-19]. In all of the above
works, however, the quantum processor is considered as a
means to provide fast solutions to an otherwise classical
problem. In other words, the model stays classical and
quantum mechanics is used only to facilitate the training. In
this work, we propose a quantum probabilistic model for
machine learning based on Boltzmann distribution of a
quantum Hamiltonian, therefore, a quantum Boltzmann
machine (QBM). In our approach, the quantum nature of
the processor is exploited both in the model and in the
training process, which to our knowledge is the first
example among the energy-based models.

The Boltzmann machine (BM) is a classic machine-
learning technique, and serves as the basis of powerful deep
learning models such as deep belief networks and deep
Boltzmann machines [20-22]. It comprises a probabilistic
network of binary units with a quadratic energy function. In
principle, one could consider more general energy func-
tions to bring in more flexibility [23-25], but training can
become impractical and generalization suffers as the
number of parameters grows. A BM commonly consists
of visible and hidden binary units, which we jointly denote
by z,a =1,...,N,where N is the total number of units. To
maintain consistency with the standard notation in quantum
mechanics, we use z, € {—1,+1}, rather than z, € {0, 1};
the corresponding probability distributions are identical up
to a linear transformation of their parameters. To distin-
guish the visible and hidden variables, we use the notation
Za = (2., 2;), with index v for visible variables and i for
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hidden variables. We also use vector notations v, h, and
z = (v,h) to represent states of visible, hidden, and
combined units, respectively. In physics language, the
quadratic energy function over binary units z, is referred
to as an Ising model with the energy function:

Ez = _Zbaza - Zwahzuzb' (1)
a ab

The dimensionless parameters b, and w,;, are tuned during
the training [26]. In equilibrium, the probability of observ-
ing a state v of the visible variables is given by the
Boltzmann distribution summed over the hidden variables:

Py=2"Y et =) e (2)
h 4

called marginal distribution. The goal of unsupervised
learning is to determine Hamiltonian parameters,
0 € {b,, W}, such that P, becomes as close as possible
to P3® defined by the training set. To achieve this, we need
to maximize the average log-likelihood, or equivalently
minimize the average negative log-likelihood defined by

L= —ZPSata log P,, (3)

v

which for the probability distribution Eq. (2) is

-E
_ dat: Zhe ’
L=— EV Pvaa log —Zz,e_Ez’ . (4)

The minimization can be done using the gradient decent
technique. In each iteration, the parameter 6 is changed by a
small step in the direction opposite to the gradient:

60 = —118(9[:, (5)

where the learning rate n controls the step sizes. An
important requirement for applicability of the gradient
decent technique is the ability to calculate the gradients
0pL efficiently. Using Eq. (4), we have

89£ = ZPgata Z:ha@EZe_EZ _ ZzaeEze_EZ
v >one " >o,e

= <86Ez>v - <89Ez>’ (6)

where (---) and (---), are Boltzmann averages with free
and fixed visible variables, respectively, and (---), =
SO Pty denotes double averaging. Fixing visible
variables to the data is usually called clamping. Using

Eq. (1) for E,, we obtain

ob, = 77(<Za>v - <Za>)7 (7)
Wap = ’7(<Zazb>v - <Zazb>)' (8)

The gradient steps are expressed in terms of differences
between the clamped (i.e., fixed v) and unclamped

averages. These two terms are sometimes called positive
and negative phases. Since the averages can be estimated
using sampling, the process of gradient estimation can be
done efficiently provided that we have an efficient way of
performing sampling. The machine-learning community
has developed tools to achieve this goal. A simplified
architecture of the Boltzmann machine, known as the
restricted Boltzmann machine, makes it possible to com-
pute analytically the averages in the clamped phase (more
discussion on this architecture are found in Sec. II B). As
for the estimation of the computationally intractable neg-
ative phase, an approximative sampling technique, called
contrastive divergence [27], has been proven successful in
practical applications.

II. QUANTUM BOLTZMANN MACHINE:
UNSUPERVISED LEARNING

One can replace the classical spins or bits in Eq. (1) with
quantum bits (qubits) (cf. Ref. [28]). The mathematics of
quantum mechanics is based on matrices (operators) with
dimensionality equal to the number of possible states (2V).
This is in contrast to vectors with dimensionality equal to
the number of variables (N) used in common machine-
learning techniques. For instance, instead of the energy
function Eq. (1), one considers a 2" x 2V diagonal matrix,
called the Hamiltonian:

H= —Zbaaf, - Zwabaéai. 9)
a a,b

This Hamiltonian is constructed in such a way that its
diagonal elements are energy values [Eq. (1)] correspond-
ing to all 2V binary states z ordered lexicographically. To
generate such a Hamiltonian, we replace z, in Eq. (1) with a
2N x 2N matrix,

a—1 N-a

i=1® I, T®---®1, (10)

where ® means tensor product (sometimes called the
Kronecker or outer product) and

00 (D 0)

Every element in Eq. (10) is an identity matrix (/) except
the ath element, which is a Pauli matrix (c,). Equation (1)
will therefore be replaced by the diagonal Hamiltonian
where b, and w,, are still scalars. Figure 1(a) shows an
example of such a model with visible and hidden qubits
depicted as blue and red circles, respectively. We represent
eigenstates of this Hamiltonian by |v, h), where again v and
h denote visible and hidden variables, respectively.

We can now define matrix exponentiation through Taylor
expansion, e~H =>"% (1/k!)(~H)*. For a diagonal
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FIG. 1. (a) An example of a quantum Boltzmann machine with

visible (blue) and hidden (red) qubits. (b) A semirestricted
quantum Boltzmann machine with no lateral connection between
the hidden variables. (c) Discriminative learning with QBM. The
(green) squares represent classical input x, which are not
necessarily binary numbers. The input applies energy biases to
the hidden and output qubits according to the coupling coef-
ficients represented by solid lines.

Hamiltonian, e~ is a diagonal matrix with its 2V diagonal

elements being e %+ corresponding to all the 2V states.
With the partition function given by Z = Tr[e7#]
[cf. Eq. (2)], we define the density matrix as

p=2"eH, (12)

The diagonal elements of p are therefore Boltzmann
probabilities of all the 2V states. For a given state |v) of
the visible variables, we can obtain the marginal Boltzmann
probability P, as

Py = TrA), (13)

where A, limits the trace only to diagonal terms that
correspond to the visible variables being in state v. Thus, A,
is a diagonal matrix with diagonal elements being either 1,
when the visible variables are in state v, or O otherwise. In
operator notation, we write

Ay = |V><V| ® Zp, (14)

where 7}, is the identity matrix acting on the hidden
variables, and

mot=T1(57) (15)

v

is a projection operator in the subspace of visible variables.
Equations (2) and (13) are equivalent when the
Hamiltonian and therefore the density matrix are diagonal,
but Eq. (13) also holds for nondiagonal matrices.

We can now introduce noncommutative effects of
quantum mechanics by adding off-diagonal terms to the
Hamiltonian. The simplest example is a transverse field to
the Ising Hamiltonian, which we consider here, but our
approach is applicable to any form of off-diagonal ele-
ments. Let us introduce nondiagonal matrices,

a—1 N-a

PR —_—— 01
=IQ QIR RIRQ--QI, ax:<1 O),

which represent transverse components of spin. The trans-
verse Ising Hamiltonian is written as

H==YT,05=> b,oi=> wyoio. (16)
a a a,b

Every eigenstate of H is now a superposition in the
computation basis made of the classical states ). As
the probabilistic model for the QBM, we use quantum
Boltzmann distribution with the density matrix Eq. (12),
which now has off-diagonal elements. In each measurement
the states of the qubits are read out in the o, basis and the
outcome will be a classical value 1. Because of the
statistical nature of quantum mechanics, after each meas-
urement a classical output v for the visible variables will
appear with the probability P, given by Eq. (13).

To train a QBM, we change the Hamiltonian parameters
6 such that the probability distributions P, becomes close
to P32 of the input data. This is achieved by minimizing
the negative log-likelihood, which from Egs. (3), (12),
and (13) is

Zpddml TrAve ]]. (17)

The gradient of £ is given by

T e [0~
OpL = ZP da[a<TTrAAa§ ]] TT[r?Z‘H]]) (18)

Once again, we hope to be able to estimate the gradients
efficiently using sampling. However, since H and 0yH
are now matrices that do not commute, we have
Ope ™M # —e19yH, and therefore we do not trivially
obtain expectations of 0JyH, as in the classical case.
Writing e = [e7%H]" where 67 = 1/n, we have
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Bt = =3 e H G Hore nmH | O(52)

m=1

1
—— — | dre ™9 He"VH, (19)

[n—)oo] 0

Tracing over both sides and using the permutation property
of the trace, we find

Tr[dge ] = ~Tr[e"HpH). (20)

which is the same as the classical relation. Plugging this
into the second term of Eq. (18) gives

Tr[0ge ]
% — _(9,H), 21
Tr[e_H] < (% > ( )
where (- --) = Tr[p...] denotes Boltzmann averaging. This
term can be estimated by sampling from the physical
distribution Eq. (12). However, the first term in Eq. (18),

Tr[AyOge™"] L Tr[Aye™HOpHe =1 =

Tr[Aye "] /0 Tr[Aye™] - (22)
corresponds to computation of operators propagated in
imaginary time. As such, it requires numerical estimation
using, e.g., exact diagonalization or stochastic techniques
such as the quantum Monte Carlo technique. Since a
separate computation is needed for each vector in a data
set; this renders the training of a QBM inefficient and
basically impractical for large data sets. A workaround for
this problem is to introduce a properly defined upper bound
for £ and minimize it, as we discuss below. We call this
approach bound-based QBM (bQBM). Minimizing a
bound on the negative log-likelihood is a common practice
in machine learning.

A. Bound-based QBM

One can define a lower bound for the probabilities using
the Golden-Thompson inequality [29,30]:

Tr[e?e®] > Tr[e? 5], (23)

which holds for any Hermitian matrices A and B. We can
therefore write

Tr[e—Heln(Aere)} > Tr[e—H+ln(Av+e)]’ (24)

where € is a small positive number. Taking € to zero gives
Tr[e~"+In(Ate)] - Tr[e~Hv], where

Hy = (v|H|v) (25)

is the clamped Hamiltonian because every visible qubit o7
is clamped to its corresponding classical data value v, due
to an infinite energy penalty from In(A, + ¢€).

We therefore can write

_ Tr[Aye ] _ Trle ]

= , 26
v Trle "] = Trle7¥] (26)
which leads to
- Tr[e=]
L<L=-) plaa] . 27
< zv: v log o (27)

Instead of minimizing £, we now minimize its upper bound
L using the gradient

- Trle ™ 0yH,| Tr[e™0,H]
_ data vi_
k= EV:PV ( Trle ] Trfe 7]

= ((OpHy)y — (0pH)), (28)

where

ce), = pdatag oy PdataLHv“' 29
9y = oy, = Sopee T 2 (ag)

v v

Taking 6 to be b,, w,;,, and using 60 = —;7892, we obtain

6b, = n({o%)y — (63)), (30)
Wap = n((0503)y — (050%))- (31)

Again the gradient steps are expressed in terms of
differences between the unclamped and clamped averages,
(---) and (- - -),, which can be obtained by sampling from a
Boltzmann distribution with Hamiltonians H and H,,
respectively. In Sec. IV, we give examples of training
QBM and compare the results of minimizing £ using
Eq. (18) and minimizing its upper bound L using Eq. (28).

One may also attempt to train I', using the upper bound
L. From Eq. (28) we obtain

oy = n((oa)y = (0a))- (32)

There are a few problems with using Eq. (32) to train I',,.
First of all, one cannot calculate (¢7) by sampling in the 6%,
basis. Therefore, measurement in the o7, basis is needed to
estimate (7). Moreover, the first term in Eq. (32) is always

zero for visible variables; i.e., (o7), = 0, ¥ v. Since (c7) >
0 for positive I, oI',, will always be negative, which means
I, — 0, VY v. This is inconsistent with what we obtain when
we train I', using the exact gradient Eq. (18). Therefore,
vanishing I') is an artifact of the upper-bound minimiza-
tion. In other words, we cannot learn the transverse field
using the upper bound. Instead, it should be treated as a
hyperparameter. One may still train the transverse field
using the exact log-likelihood, but it becomes quickly
intractable as the size of the QBM grows.

021050-4
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B. Restricted QBM

Thus far we have not imposed any restrictions on the
connectivity between visible and hidden qubits or lateral
connectivity among visible or hidden qubits. We note that
calculation of the first term in Eqgs. (30) and (31), some-
times called positive phase, requires sampling from dis-
tributions with clamped Hamiltonians [Eq. (25)]. This
sampling can become computationally expensive for a
large data set, because it has to be done for every input
data element. If we restrict our QBM to have no lateral
connectivity in the hidden layer (RQBM) [see Fig. 1(b)],
the hidden qubits become uncoupled in the positive phase
and the calculations can be carried out exactly. We can
write the clamped Hamiltonian Eq. (25) as

Hy ==Y [[o! + b (v)oi], (33)
where b¢(v) = b; + >, w;,v,. Expectations (c%), enter-
ing Eq. (30) can be computed exactly:

eff
(6%), = ﬁtanh D;, (34)
where D; = /I'7 + (b¢")2. Notice that for the restricted
type of a BM architecture known as RBM, Eq. (34) reduces
to the classical expression,

(6%), = tanh b, (35)

in the limit I'; — 0. We emphasize that unlike the classical
RBM, in which there are no lateral connections in both
hidden and visible layers (for contrastive divergence
techniques to work), RQBM requires only their absence
in the hidden layer, usually called a semirestricted
Boltzmann machine [31]. In Sec. IV, we give an example
of training RQBM and illustrate the importance of using
Eq. (34) instead of their classical limit Eq. (35).

III. SUPERVISED LEARNING

One important application of machine learning is clas-
sification in which a category (label) is assigned to each
data point. For example, in spam detection the goal is to
determine which of the two labels, “spam” or “not spam,”
should be assigned to a given text. The process of inferring
a functional relation between input and label from a set of
labeled data is called supervised learning. Denoting the
feature vector (input) by x and label (output) by y, the
problem is to infer a function g(x):x — y from the set of
labeled data (x;,y;). In probabilistic approaches to this
problem, which are our main interest here, the output y that
is most probable, subject to the input X, is chosen as the
label. Therefore, the function g(x) is determined by the
conditional probability Py, of output given input:

g(x) = arg myaxPy‘X. (36)

The end goal of training is to make P, as close as possible

ylx
to the conditional distribution of the data, P‘y‘f;a. Assuming

that the data come with a joint probability distribution Pﬂf‘;a,

data — data data data __ data ;
we can write: Pyt = PYy'/ P, where Py = 30 PYy'is

the marginal dlstrlbutlon

Two possible approaches to supervised learning are
discriminative and generative learning [32]. In the dis-
criminative approach, for each x we try to learn the
conditional distribution Pg‘a;‘"‘. If an input x appears in

the training set with probability P32, the loss function can
be written as

Laicer = —ZPdmZPdﬁm log Py

y
= —Zpdm log Py (37)

In the generative approach, on the other hand, we learn the
joint probability distribution without separating input from
output. The loss function is therefore

Loen = —ZPdm log Py
X,

= ﬁdiscr - ZPgata 1Og Py, (38)

X

where we use Pyy = Py, Py. Notice that the first term is
just L, while the second term measures the difference
between the probability distribution of the training set
inputs and the marginal distribution Py. This second term is
called cross entropy [it is equal to Kullback-Leibler (KL)
divergence defined in Eq. (54), up to a constant]. Now, we
explore the possibility of applying QBM to both cases.

A. Generative learning

Generative learning with loss Eq. (38) can be done with
the methods of Sec. II by treating input and output (X, y)
jointly as the visible data v = [x, y] in a QBM. At the end of
training, the QBM provides samples with a joint probability
Py, that is close to Pﬂ“;i Therefore, the conditional
probability

Tr[AAye ]
Pyy =22 = ———— 39
A N e (39)

should also match ng‘;a as desired for supervised training.
However, there is a problem when it comes to sampling
from this conditional for a given x. If the input x appears
with a very small probability (Py < 1), it would require a
large amount of samples from Py, and Py to reliably
calculate Py, using Eq. (39).

In a classical BM, one can sample from the conditional
distribution by clamping the input variables x to the data

021050-5
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and sampling the output y. Using the same tricks as in
Sec. II A, we can write

—H,
classical __ Tr[Aye ] _ pclamped (40)

ylx Trle ] — ¥k

where H, = (x|H|x). This means for any x, we can sample

Pclamped
ylx

way regardless of how small Py is. For quantum

Hamiltonians, when [H,A]#0, we know that
Age™H # e~Hx_ Therefore, P;l‘imp *d is not necessarily equal

from H, and that will give us Py in an efficient

to Py and there is no easy way to draw samples from Py, .

One might still hope that the clamped distribution is not
too far off from Eq. (39) and can be used as an approxi-
mation, PC]‘ampeGl ~ Pyjx. As we see in an example in Sec. [V
C, this is not true in general, and thus generative supervised

learning is not feasible within the above framework.

B. Discriminative learning

In discriminative learning one distinguishes input from
output during the training [2] and learns the conditional
probability distribution using Eq. (37). This can be done by
clamping the input x in both positive and negative phases.
Since the input is always clamped, its role is just to apply
biases to the other variables and therefore we do not need to
assign any qubits to the input [see Fig. 1(c)]. The
Hamiltonian of the system for a particular state of the
input x is given by

ot + bl (x Zwabo o, (41)

where indices a and b range over both hidden and visible
(output only) variables. Here, the input x provides a bias

b (x) = b, +Zwa,, X, (42)

to the ath qubit, where b, and w,, are tunable parameters.
Notice that x, does not need to be restricted to binary
numbers, which can bring more flexibility to the supervised
learning.

The probability of measuring an output state y once the
input is set to state x is given by

Tr[Aye ]

ey A =T® V(Y ®Zn,  (43)

where H, is given by Eq. (41) and Z, is an identity matrix
acting on the input variables. The negative log-likelihood is
given by Eq. (37). We can define a clamped Hamiltonian,

Hyy = (y|Hly), (44)

and show that

Tr[e ]
P —_—. 45
Yix ~ Tr[e=x] (45)
Again we introduce an upper bound L for the L:
- Hx\]
‘Cdiscr < ‘Cdiscr = ZPdata log (46)

R

The derivative of £ with respect to a Hamiltonian parameter
0 is given by

aaz = <89Hx.y>x,y - <89HX>X’ (47)

where

Z dam XA . (48)

A, =Y plaa Trle~"wA]

Xy

(49)

The gradient descent steps in the parameter space are
given by

aba = 7/](<0—tzl>x,y - @)’ (50)
5Wab = 7](<6§16§;>x,y - <6§16i>x)7 (51)
6W[lﬂ = n(<62xﬂ>x,y - <02xﬂ>x)' (52)

Notice that x is not only clamped in the positive phase (the
first expectations), but also is clamped in the negative phase
(the second expectations). The positive phase can be
computed analytically if we use RQBM [Fig. 1(c) with
no lateral connection among the hidden variables]. The
negative phase has to be computed by sampling for each
data point x. This can make the calculation of the gradient
steps prohibitively expensive for large data sets, unless a
very fast sampling method is available.

IV. EXAMPLES

In this section, we describe a few toy examples illustrat-
ing the ideas described in the previous sections. In all
examples studied, the training data were generated as a
mixture of M factorized distributions (modes), each peaked
around a random point. Every mode (k) is constructed by

randomly selecting a center point s* = [sf, s4, ..., s ], with
sk e {£1}, and wusing the Bernoulli distribution,

pV ‘d5(1 - p)df’, where p is the probability of qubit v being
aligned with s¥, and @* is the Hamming distance between v
and s*. The average probability distribution over M such
modes gives our data distribution:

021050-6



QUANTUM BOLTZMANN MACHINE

PHYS. REV. X 8, 021050 (2018)

1 ¥ :
PR == PR =), (53)
k=1

In all our examples, we choose p = 0.9. The modes’ center
points were randomly and independently generated for
each training set from a uniform distribution. Each data set
contained 1000 training examples.

To have a measure of the quality of learning, we subtract
from £ its minimum L, = =Y P%@log PY@  which
happens when P, = P%%@  The difference, commonly
called Kullback-Leibler divergence,

data

P
KL =L~ Ly, =) Pilog —1; : (54)

is a non-negative number measuring the difference between
the two distributions; KL = 0 if and only if the two
distributions are identical.

A. Fully visible model

We start with a fully visible example to compare BM
with QBM and evaluate the quality of the bound Eq. (27)
by training bQBM. We consider a fully connected model
with N = 10 qubits. In this case, the negative log-like-
lihood £ is a concave function of its parameters and,
therefore, has a unique global minimum. Classical BM has
N(N +1)/2 trainable parameters (b,,w,,). The
Hamiltonian of QBM has the form Eq. (16) where we
restrict all I, to be the same (= I'). In order to understand
the efficiency of QBM in representing the data, we train the
exact log-likelihood using Eq. (18) and treat b, w,,, and I"
as trainable parameters. This can be done using exact
diagonalization for small systems. We also perform training
of the bound £ using Eq. (28) treating (b, w,;,) as trainable
parameters but fixing I' to some ad hoc nonzero value
I' = 2. Comparing the training results of QBM with bQBM
will give us some idea of the efficiency of training the
bound L.

Since all expectations entering the gradients of log-
likelihood are computed exactly, we use the second-order
optimization routine BFGS [33]. The results of training
BM, QBM, and bQBM are given in Fig 2(a). The x axis in
the figure corresponds to iterations of BFGS. QBM is able
to learn the data noticeably better than BM, and bQBM
approaches the value close to the one for QBM.

In order to visualize the training process, we keep track
of the average values of classical and quantum parts of the
Hamiltonian during the training:

E, = —<Zba6§ + Zwab6§02>,
a ab
E, = —<Zraag>. (55)

—_— —
12' >p> BM QBM oo bQBM]
(a)
S | ]
M 08_ a -
.[’y’n 4
PPPsuppobbbBBBDDDBB BB DY
| PobofBepnggmpoooonood
oab— . -
0 10 20
Iteration
—— T @ 140
- bQBM 1
20\ / _
L (b) o |
! i 1.05
SEE| QBM s ' =
"k : i
.BM 04 1 4 070
L 0.0 . » A ]
oled 2 ad Hoss
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(©) 1 [@ ]
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0.02 | - = ]
e I ° n. :nnn ]
<1 g1 | o 1 L Og i
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FIG. 2. Training of a fully visible fully connected model with
N = 10 qubits on artificial data from Bernoulli mixture model
Eq. (53) with the noise parameter p = 0.9 and the number of
modes M = 8. Training is done using the second-order opti-
mization routine BFGS. (a) KL divergence Eq. (54) of BM,
QBM, bQBM models during training process. Both QBM and
bQBM learn to KL values that are lower than that for BM.
(b) Classical and quantum average energies Eq. (55) during
training process. The inset details the same data set on a finer
scale close to the classical regime. The bottom row of plots
shows the advantage in the learning ability per spin of a
quantum BM relative to the classical BM, (KL — KLgy)/N
with circles (squares) corresponding to a QBM (bQBM). This
advantage is considered (c) as function of the system size with
I' =2 and (d) as function of the transverse-field strength with
N = 10. For those plots, the number of modes in the Bernoulli
mixture data model was kept equal to the number of qubits
N = M while the noise parameter was always set to p = 0.9. In
order to collect the statistics, the training was done for 100
different data sets. The error bars correspond to 1 standard
deviation in the averages.
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Figure 2(b) shows the learning trajectories in the space
(|Eal.|Eq|). BM learns a model with average energy ~3.5,
and KL ~ 0.62. One can see that QBM, which starts off
with ' = 0.1, initially lowers I" and learns (b, w,,,) that are
close to the best classical result (see the inset). Soon after,
QBM increases I" and (b,, w,;,) until it converges to a point
with I' =2.5 and KL ~0.42, which is better than the
classical BM value. Having a fixed transverse field, [ = 2,
bQBM starts with a large £, and approaches the parameter
learned by QBM (although it does not reach the best value
at I' = 2.5 learned by QBM).

Since we cannot train the transverse field I', we have to
treat it as a hyperparameter. We perform a scan of values
of I and evaluate the KL advantage of QBM and bQBM
over BM based on 100 randomly generated data sets.
Figure 2(d) demonstrates weak dependence of this advan-
tage on the transverse field, which justifies treating it as a
hyperparameter.

We also study the dependence of the KL. advantage as a
function of the system size. Figure 2(c) shows that both
QBM and bQBM not only preserve their advantage over
the classical BM but are able to increase the gap in their
learning ability.

B. Semirestricted QBM

We now consider a semirestricted BM discussed in
Sec. II B. Our toy model has 8 visible units and 2 hidden
units. We allow full connectivity within the visible layer
and all-to-all connectivity between the layers. The data are
again generated using Eq. (53) for the visible variables,
with p = 0.9 and M = 8. We present the results of training
in Fig 3. Similarly to the fully visible model, QBM
outperforms BM, and bQBM represents a good proxy
for learning quantum distribution.

In order to illustrate the significance of consistent usage
of quantum distribution in evaluating the gradients
Egs. (30) and (31), we train bQBM using the classical
expression instead of Eq. (34) for expectations of hidden
units in the positive phase. The resulting machine learns
worse than purely classical BM because the two terms in
gradient expressions are evaluated inconsistently.

C. Generative supervised learning

We consider a supervised learning example with 8 inputs
and 3 outputs with full connectivity between all units.
For the training set we again used the multimodal distri-
bution Eq. (53) over x, with M =8 and p = 0.9, and set
the label y for each mode to be a 3-bit binary number from 0
to 7 [34]. Both BM and QBM are trained to learn the loss
function Eq. (38). As such there is no difference in the
training procedure as compared to the unsupervised case
and similar results for the joint distribution learning are
expected to apply. Our goal is to check whether

P;I‘imped ~ Pyx, when training QBM in this generative
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FIG. 3. Training of a RBM with 8 visible and 2 hidden units on

artificial data from Bernoulli mixture model Eq. (53) using
second-order optimization routine. (a) KL divergence Eq. (54)
of different models during training process. Again, QBM and
bQBM outperform BM. The inset shows the advantage in the
learning ability of the bQBM relative to the classical BM,
AKL = KL,gpm — KLy, as function of the transverse-field
strength. To collect the statistics, the training was done for
100 different data sets generated with the noise parameter p =
0.9 and number of modes M = 8. The error bars correspond to 1
standard deviation in the mean. (b) Classical and quantum
average energies Eq. (55) during training process. The inset
details the same data set on a finer scale close to the classical
regime.

setup. In Fig. 4, we plot the KL divergence based on the
discriminative log-likelihoods Eq. (37), evaluated with

conditional probabilities P, and clamped probabilities

ylx
P;l‘imped. One can see that although QBM is trained with the

joint probability distribution P, y, the conditional distribu-
tion Py is also learned better than BM. The clamped

;l‘imp °d on the other hand, starts

very close to the conditional distribution at the beginning of
the iterations, when QBM and BM are close to each other
(similarly to what was observed in Figs. 2 and 3). But as the
transverse field in QBM starts to grow, the clamped
distribution deviates from the conditional one and its KL
divergence grows to a value much worse than the classical
BM value. This confirms that even for such a small
example, the clamped distribution can be very different
from the true conditional distribution.

probability distribution P
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FIG. 4. Generative supervised learning using fully visible fully
connected model with N = 11 qubits divided into 8 inputs and 3
outputs based on (38). Training is done by minimizing (38) on
artificial data from Bernoulli mixture model (53) for inputs and 3-
bit binary labels (0 to 7) for outputs with the noise-parameter
p = 0.9 and the number of modes M = 8. We plot KL-diver-
gence of the conditional distribution (37) and the clamped
distribution (40) during the training process. The clamped
QBM distribution is very different from the conditional one
and gives much higher KL-divergence.

V. QBM WITH A QUANTUM
ANNEALING PROCESSOR

Recent developments in manufacturing quantum
annealing processors have made it possible to experimen-
tally test some of the quantum machine-learning ideas. Up
to now many experiments have confirmed the existence of
quantum phenomena in such processors [15,35-38], which
includes entanglement [39]. A quantum annealing proces-
sor implements the time-dependent Hamiltonian

H(s)= —A(S)ZGZ +B(s) [Zhiag + ZJabaf,ai] ., (56)

a

where s = t/1,, tis time, 7, is the annealing time, &; and J;
are tunable dimensionless parameters, and A(s) and B(s)
are monotonic functions, with units of energy, such that
A(0)> B(0) ~0 and B(1) > A(1) 0. As discussed in
Ref. [40], an open system quantum annealer having
quasistatic evolution follows equilibrium distribution,
p = Z 'e M) up to a point where the dynamics become
too slow to establish equilibrium. Here, g = (kzT)~!, with
T being the temperature and kp being the Boltzmann
constant. The system will then deviate from the equilibrium
distribution and soon after the dynamics will freeze [see
Fig. 2(c) in Ref. [40] and the related discussion].

In general, a quantum annealer with linear annealing
schedule s = t/t, does not return a Boltzmann distribution.
However, as argued in Ref. [40], if the dynamical slow-down
and freeze-out happen within a short period of time during
the annealing, then the final distribution will be close to
the quantum Boltzmann distribution of Eq. (56) at a single
point s*, called the freeze-out time. In such a case, the
quantum annealer with linear annealing schedule will pro-
vide approximate samples from the Boltzmann distribution

corresponding to the Hamiltonian H (s*). Moreover, if A(s*)
happens to be small enough such that the quantum eigen-
states at s* are close to the classical eigenstates, then the
resulting Boltzmann distribution will be close to the classical
Boltzmann distribution. In such a case, the quantum annealer
can be used as an approximate classical Boltzmann sampler
for training a BM, as was done in Refs. [16,17].
Unfortunately, not all problems have a narrow freeze-out
region and A(s*) is not always small. If the freeze-out does
not happen in a narrow region, then the final probability
distribution will depend on the history within this region and
will not correspond to a Boltzmann distribution at any
particular point. This would limit the applicability of using
a quantum annealer for Boltzmann sampling.

In principle, it is possible to controllably freeze the
evolution at a desired point, s*, in the middle of the
annealing and read out the qubits. One way to do this is
via a nonuniform s(z), which anneals slowly at the
beginning up to s* and then moves very fast (faster than
all dynamics) to the end of annealing, i.e., quenching. An
experimental demonstration of such controlled sampling
was done in Ref. [41] for a specially designed 16-qubit
problem. If s* lies in the region where the evolution is still
quasistatic, the quantum annealer will provide samples
from the Boltzmann distribution of the Hamiltonian
Eq. (16), with

I, =T = BA(s"), (57)
by = BB(s*)h,, (58)
Wap = PB(5*)] 4p- (59)

Since h, and J,;, are tunable parameters, by controlling the
freeze-out point s*, all the dimensionless parameters in
Eq. (16), i.e., I',b,, w,,, can be tuned and therefore the
quantum annealer can be used for training a QBM.

The applicability of the controlled sampling technique
used in Ref. [41] is limited by how fast the quench can be
done, which is ultimately determined by the bandwidth of
the filters that bring electrical signals to the chip. Because
of this, such a technique is applicable only to specially
designed problems that have very slow dynamics. With
some modifications to the current hardware design, how-
ever, such techniques can become possible for general
problems relevant to QBM in the near future.

VI. CONCLUSION

We examine the possibility of training a quantum
Boltzmann machine, in which the Hamiltonian has non-
diagonal elements. Motivated by the success of stochastic
gradient descent in training classical Boltzmann machines,
one may wish to use a similar technique to optimize the
log-likelihood of the QBM. However, unlike the classical
BM, for which the gradients of the log-likelihood can be
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estimated using sampling, the existence of the off-diagonal
elements makes the gradient estimation nontrivial. We
introduce a lower bound on the log-likelihood, for which
the gradient can be estimated using sampling. We show
examples of training QBMs with a transverse field Ising
Hamiltonian through maximizing both the log-likelihood
and its lower bound, using exact diagonalization, and
compare the results with classical BM training. Our small-
size examples demonstrate that QBM can learn the data
distribution better than classical BM. However, we expect
that the main advantage brought by QBM will be in the
access to fast sampling using a physical quantum hardware.
For stoquastic Hamiltonians [42], where all the off-diagonal
elements are nonpositive, quantum Monte Carlo algorithms
can potentially be used to generate samples, but it becomes
prohibitively slow and impractical beyond ~100 qubits. Our
scheme can also work with nonstoquastic Hamiltonians, for
which a quantum Monte Carlo algorithms is not applicable
because of the sign problem.

The bound-based QBM does not allow learning the
transverse-field parameter. In our experiments we found
that the dependence of the learned log-likelihood on the
transverse field is weak; therefore, in practice it should be
treated as a hyperparameter.

The similarity between BM and QBM training may not
hold in all situations. For example, as we show in Sec. III A,
sampling from a conditional distribution cannot be per-
formed by clamping in QBM, as it is done in classical BM.
The two models may also differ in other aspects; therefore,
careful examination is needed before replacing BM with
QBM in existing machine-learning techniques.

Finally, we discuss the possibility of using a quantum
annealer for QBM training. Although the current commer-
cial quantum annealers like D-Wave are not designed to
provide quantum Boltzmann samples, with minor modifi-
cations to the hardware design, such a feature can become
available. This would open new possibilities in both
quantum information processing and machine-learning
research areas.

Recently, Kieferova and Wiebe [43] proposed the rela-
tive entropy between the density matrix of the data and
that of the quantum system as an objective function for
training a QBM. Whereas the present paper focuses only on
learning classical probability distributions, Ref. [43] pro-
vides a strategy to also learn a quantum distribution,
including the ability to train the transverse field. In the
case of classical data sets, when the model is fully visible,
the objective function is exactly the same as the bound
introduced in this paper [44]. For classical data sets training
a model with hidden variables, the objective function of
Ref. [43] involves a computationally difficult trace, in
contrast to our bound [45]. Thus, the two approaches offer
complementary strategies for the unsupervised learning of
classical and quantum data distributions using quantum
Boltzmann machines.
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