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One of the distinctive features of hole-doped cuprate superconductors is the onset of a “pseudogap”
below a temperature T�. Recent experiments suggest that there may be a connection between the existence
of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-
dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists
when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant
with a Fermi-surface topology change from electronlike to holelike. We identify a common link between
these observations: The polelike feature of the electronic self-energy associated with the formation of the
pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface
topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating
antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1)
topological order provides an explanation of this polelike feature and a good description of our numerical
results. We discuss the relevance of our results to experiments on cuprates.
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I. INTRODUCTION

A very debated topic in the physics of high-temperature
superconductors is the nature of the “pseudogap” [1,2] in
their phase diagram. Below a temperature T�ðpÞ, which is a
decreasing function of the hole-doping level p, a pseudo-
gap develops, corresponding to a suppression of low-
energy excitations apparent in many experimental probes.
Extrapolated to zero temperature, T�ðpÞ defines a critical
hole doping p� above which the pseudogap disappears as
doping is increased. Another important critical value of the
doping, denoted here pFS, is that at which the Fermi-surface
topology changes from holelike to electronlike, corre-
sponding to a Lifshitz transition. Recent experiments on
Bi2Sr2CaCu2O8þδ (Bi2212) have suggested that the pseu-
dogap may be very sensitive to the Fermi-surface (FS)

topology and that p� ≃ pFS in this compound [3,4]. In a
simultaneous and independent manner from the present
theoretical work, Doiron-Leyraud et al. [5] recently per-
formed a systematic experimental study using hydrostatic
pressure as a control parameter in the La1.6−xNd0.4SrxCuO4

(Nd-LSCO) system, and an unambiguous connection
between FS topology and the pseudogap was found.
In this work, we investigate this interplay by studying the

two-dimensional Hubbard model. In the weak-coupling
scenarios of pseudogap physics, there is a natural con-
nection between the FS topology and the coherence of low-
energy quasiparticles. Indeed, for a holelike Fermi surface,
coherence is suppressed at the “hot spots,” where the Fermi
surface intersects the antiferromagnetic zone boundary.
When the Fermi surface turns electronlike, increased quasi-
particle coherence is restored all along the Fermi surface (see
Appendix E for a more detailed analysis) [6–11]. At stronger
coupling, several methods [9,12–28] have established that
the Hubbard model displays a pseudogap that originates
from antiferromagnetic correlations. These correlations
become short range as the coupling strength or doping level
is increased, as found in experiments [29]. The FS topology,
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on the other hand, is an issue that has to do with low-energy,
long-distance physics. Hence, it is an intriguing and funda-
mentally important question to understand how the short-
range correlations responsible for the pseudogap can be
sensitive to Fermi surface changes.
Here, we study the Hubbard model for a broad range of

parameters, and we analyze the pseudogap, FS topology,
and their interplay. We show that, at strong coupling,
interactions can strongly modify the Fermi surface, making
it more holelike as compared to its noninteracting shape
[16,30–33]. We find that a pseudogap only exists when the
Fermi surface is holelike, so that p� ≤ pFS. We identify an
extended parameter regime in which these two critical
doping levels are very close to one another: p� ≃ pFS, so
that the Fermi surface turns electronlike only when the
pseudogap collapses. Moreover we show that, when con-
sidering the relation between the pseudogap and FS top-
ology, hole-doped cuprates can be separated into two
families: materials for which p� ≃ pFS and materials which
have p� < pFS. These two families differ mostly by the
relative magnitude of the next nearest-neighbor hopping.
These findings are shown to be consistent with a large body
of experiments on cuprates.
We reveal that a common link between these observa-

tions is the polelike feature [22,23,30,32,34–36] displayed
by the electronic self-energy at the antinodal point,
k ¼ ðπ; 0Þ. The large imaginary part of the antinodal
self-energy associated with this pole is responsible for
the pseudogap, while the large particle-hole asymmetry
associated with its real part controls the interaction-induced
deformation of the Fermi surface and the location of the
Fermi-surface topology transition. We investigate the
evolution of this particle-hole asymmetry as a function
of doping and nearest-neighbor hopping t0, and we show
that the line in ðp-t0Þ space where particle-hole symmetry is
approximately obeyed at low energy is pushed, at strong
coupling, to very low values of p and very negative values
of t0. This is in stark contrast to the results of weak-coupling
theories where this line is close to the Lifshitz transition of
the noninteracting system. This also explains why inter-
actions drive the Fermi surface more holelike for hole
doping.
In order to understand these results from a more analytic

standpoint, we consider a recently developed SU(2) gauge
theory of fluctuating antiferromagnetic order [37,38]; addi-
tional results on the SU(2) gauge theory appear in a
companion paper, Ref. [39]. We focus on a metallic phase
of this theory, characterized by U(1) topological order,
which does not break spin or translational symmetries. We
show that a mean-field treatment of this gauge theory
provides a good description of our numerical results. In
particular, the self-energy of the charge-carrying field
(chargon) in this theory displays a pole that provides an
explanation for the quasipole of the physical electron self-
energy. The latter is calculated and compares well to our

numerical results, as do the trends in the evolution of the
pseudogap and particle-hole asymmetry as a function of p
and t0.
This paper is organized as follows. In Sec. II, we briefly

introduce the model and the numerical methods used in this
article. In Sec. III, we study the interplay between the
pseudogap and FS topology and analyze the mechanisms
controlling this interplay. The comparison and interpreta-
tion of our results in terms of the SU(2) gauge theory is
presented at the end of this section. In Sec. IV, we discuss
the relevance of our results to experiments on hole-doped
cuprates. Section V provides a conclusion and outlook.
Finally, details about the employed methods and various
supporting materials can be found in the appendixes.

II. MODEL AND METHOD

We consider the Hubbard model defined by the
Hamiltonian

H ¼ −
X
ij;σ

tijc
†
i;σcj;σ þU

X
i

ni↑ni↓ − μ
X
i;σ

niσ; ð1Þ

where U is the on-site Coulomb repulsion and μ the
chemical potential. The hopping amplitudes tij’s are chosen
to be nonzero between nearest-neighbor sites (tij ¼ t)
and next-nearest-neighbor ones (tij ¼ t0). These hopping
amplitudes define a noninteracting dispersion relation
ϵk ¼ −2tðcos kx þ cos kyÞ − 4t0 cos kx cos ky. In the fol-
lowing, t ¼ 1 will be our unit of energy. We solve this
model using two distinct methods: the dynamical cluster
approximation (DCA) [15] and determinant quantum
Monte Carlo (DQMC) [40]; see the Appendix A for details.
Cluster extensions of dynamical mean-field theory (DMFT)
have shown that the Hubbard model is able to capture
many features of cuprate superconductors, such as the
superconducting dome and the pseudogap [9,14–18,
20–23,26,32,41–43]. They have also established that the
pseudogap originates from antiferromagnetic correlations,
which become short-range as the coupling strength or
doping level are increased. This was also recently cor-
roborated by exact diagrammatic Monte Carlo simulations
[28]. While cluster extensions of DMFT have shown that
hole doping can drive a Lifshitz transition [30–32], no
general relationship between the pseudogap and FS top-
ology has been established. We therefore carry out a
systematic study for a broad range of parameters in order
to investigate this issue.

III. RESULTS

A. Pseudogap and FS topology

In Fig. 1, we display the pseudogap onset temperature
T�ðpÞ and the temperature TFSðpÞ, at which the Fermi
surface changes its topology, as a function of doping level
p, for several values of the next-nearest-neighbor hopping
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t0. T� is identified as follows: We calculate the zero-
frequency extrapolated value of the spectral function at
the antinodal point ðπ; 0Þ; we find that its temperature
dependence displays a maximum, which we identify as T�.
Below this scale, the antinodal spectral intensity decreases,
signaling the opening of a pseudogap. TFS is identified as
the temperature where the Fermi surface crosses the ðπ; 0Þ
point and turns from holelike to electronlike as temperature
decreases (see below). Note that our definition of a Fermi
surface is a pragmatic one: strictly speaking a Fermi surface
only exists at zero temperature. At finite temperatures, we
define the Fermi surface as the surface in momentum space
corresponding to the maximum of the spectral intensity as it
would be observed, e.g., in an angle-resolved photoemis-
sion (ARPES) experiment [44].
When extrapolated to zero temperature, these data define

two critical doping levels: p� such that the pseudogap
disappears for p > p�, and pFS that marks the transition
from a holelike FS (p < pFS) to an electronlike FS
(p > pFS). Strikingly, the two curves in Fig. 1 suggest
that the pseudogap can only exist when the Fermi surface is
holelike, i.e., that p� ≤ pFS. It appears that, for values
of t0 ≥ −0.1, both transitions happen at the same doping
p� ¼ pFS within our error bars. For more negative values of
t0, the Fermi surface first becomes holelike as p is reduced,
and the pseudogap opens at a lower doping, i.e., p� < pFS.
We never observe a pseudogap with an electronlike Fermi
surface, which would correspond to p� > pFS.
This can be documented further by repeating this

analysis for several doping levels’ p and t0 values. The
resulting map in the ðp-t0Þ parameter space is displayed in
Fig. 2. A first observation is that the topological transition
of the FS (blue line) that separates the regions with holelike
and electronlike Fermi surfaces is strongly renormalized
with respect to its noninteracting (U ¼ 0) location (dashed
line in Fig. 2 and arrows in Fig. 1). The black line defines
the onset of the pseudogap. These lines define three
regions: At large doping above the blue line, the Fermi

surface is electronlike and no pseudogap is present. In the
intermediate region between the two lines, the Fermi
surface is holelike but without a pseudogap. The topologi-
cal transition and pseudogap opening coincide for a range
of t0, while, for more negative t0, the two lines split apart
and, as doping is reduced, the pseudogap only opens after
the Fermi surface has already turned holelike at higher
doping level (p� < pFS). The pseudogap and FS topology
transition lines are dependent on the value ofU. As detailed
in the Appendix B, a larger value of U yields a more

(c)(b)(a)

FIG. 1. Pseudogap and Lifshitz transition temperatures. Evolution of the pseudogap onset temperature T� (black) and the Lifshitz
transition temperature TFS (blue) as a function of the hole doping p, for several values of t0 andU ¼ 7. The finite temperature data points
are extrapolated to zero temperature and yield two critical dopings p� and pFS. It is apparent that p� ≃ pFS for t0 ¼ 0 and t0 ¼ −0.1,
while p� < pFS for t0 ¼ −0.2. The solid lines are linear (for T�) and quadratic (for TFS) least-squares fits to the data points, except the
TFS line of t0 ¼ 0, where TFS collapses to zero close to p�. Error bars estimate all uncertainties in finding T� and TFS with DCA (see also
Appendix B). Note that the change of topology of the Fermi surface for the interacting system occurs at a larger doping than that of the
noninteracting system (indicated by a light blue arrow).

FIG. 2. Zero-temperature Fermi-surface topology and pseudo-
gap in the p-t0 plane. The black line separates a region with no
pseudogap (no PG) from a region where a pseudogap exists (PG).
The blue line indicates where the interacting Fermi surface changes
its topology fromelectronlike (e-FS) to holelike (h-FS). Thedashed
blue line signals the same transition in the noninteracting case. The
red curve locates the change in particle-hole asymmetry at the
antinode: above the red line the real part of the self-energymodifies
the Fermi surface towards a more holelike shape. On the red line,
the self-energy pole crosses zero energy and approximate particle-
hole symmetry is restored, corresponding also to amaximumof the
low-energy scattering rate as t0 is varied for fixed p. Points A–D
label a set of parameters that are discussed further in Fig. 4.
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extended regime of parameters for which p� ≃ pFS, with
the “branching point” where the two lines merge moving
towards more negative values of t0 and a larger doping
level. This observation is important when comparing to
experimental observations (see below).

B. Change of Fermi-surface topology due
to correlation effects

The Fermi-surface topology at the antinode is controlled
by the renormalized quasiparticle energy,

ϵ̃ðπ;0Þ ¼ ϵðπ;0Þ − μþ ReΣðπ;0Þðω ¼ 0Þ
¼ 4t0 − μþ ReΣðπ;0Þðω ¼ 0Þ: ð2Þ

For negative values of ϵ̃ðπ;0Þ, the Fermi surface is holelike,
while it is electronlike for ϵ̃ðπ;0Þ > 0. In order to gain insight
into the mechanisms driving the Lifshitz transition,
Fig. 3 displays ϵ̃ðπ;0Þ as a function of temperature for
various doping levels, with arrows indicating T� and TFS.
Interestingly, even at the highest temperature T ¼ 0.2
displayed there, ϵ̃ðπ;0Þ is negative for all doping levels,
yielding a holelike Fermi surface, while the noninteracting
Fermi surface would be electronlike for p≳ 9%. This
temperature is above the pseudogap temperature T� and,
hence, the renormalization of the Fermi surface would be
visible on a full Fermi surface in an ARPES experiment. In
this high-temperature range, only local correlations are
responsible for this effect, as already captured in a single-
site DMFT calculation (see Fig. 12 in the Appendix C). As
the temperature is decreased, ϵ̃ðπ;0Þ first increases slightly
but then suddenly drops to very negative values, pushing
the Fermi surface to be very holelike at low temperatures.
This starts happening just above the pseudogap temper-
ature, and both effects can be traced back to nonlocal

electronic correlations. For this value of t0 ¼ −0.1, the
connection between the disappearance of the pseudogap
and the recovery of an electronlike surface is clear. Indeed,
when no pseudogap is present as, e.g., for p ¼ 0.15, ϵ̃ðπ;0Þ
keeps on increasing and crosses zero, and an electronlike
Fermi surface is recovered at low T.

C. Particle-hole asymmetry and polelike
structure in the self-energy

From the definition of ϵ̃ðπ;0Þ, it is clear that it is the real
part of the self-energy at the antinode that drives the
renormalization of the Fermi surface. In Fig. 4(a), we
consider a fixed doping level p ¼ 5% and display

ReΣð2Þ
ðπ;0Þðω ¼ 0Þ as a function of t0, in which Σð2Þ ≡ Σ −

Up=2 is the self-energy from which the Hartree (infinite
frequency) contribution has been subtracted out. It is seen

that ReΣð2Þ
ðπ;0Þðω ¼ 0Þ changes sign around t0 ≃ −0.2 and

becomes negative and fairly large for larger values of t0.
This pushes the Fermi-surface topology transition to higher
values of t0: For 5% doping, it remains holelike up to
t0 ≃þ0.2, whereas the Lifshitz transition of the noninter-
acting system occurs at t0 ≃ −0.05 (see also Fig. 2).
The real part of the self-energy is related to its imaginary

part through the Kramers-Kronig relation,

ReΣð2Þ
k ðω¼ 0Þ ¼ 1

π

Z
∞

0þ

ImΣkðω0Þ− ImΣkð−ω0Þ
ω0 dω0: ð3Þ

It is, therefore, instructive to analyze the behavior
of ImΣðπ;0ÞðωÞ [Fig. 4(b)] for several values of t0 (as
indicated by the points A, B, C, and D in Fig. 2),
corresponding to positive, vanishing, and negative values

of ReΣð2Þ
ðπ;0Þðω ¼ 0Þ. In all four cases, the imaginary part of

the self-energy displays a prominent peak, corresponding to
a polelike feature of the self-energy. For t0 ¼ −0.2 (point
B), this peak is centered at ω ¼ 0. Because it is particle-
hole symmetric, it leads to a vanishing real part of the self-
energy [see Fig. 4(a)]. For values of t0 just below and above
−0.2 (points A and C), the peak in ImΣðπ;0ÞðωÞ shifts to
negative (positive) values of ω. It has become particle-hole
asymmetric and induces a positive (negative) real part of
the self-energy. There is, therefore, a direct connection
between the existence of a large particle-hole asymmetric
peak in the imaginary part of the self-energy and the
renormalization of the Fermi surface to a more holelike
topology. Note that the largest value of the low-frequency
scattering rate as t0 is varied is found when ImΣðπ;0ÞðωÞ is
particle-hole symmetric (e.g., point B in Fig. 4): This
defines the location of the red line in Fig. 2 (see also the
Appendix B). Anywhere above this line, the self-energy is
particle-hole asymmetric and drives the Fermi-surface
topology transition to larger doping p, as compared to
the noninteracting case. Note that the system becomes very

(a) (b)

FIG. 3. Antinodal quasiparticle dispersion and Fermi-surface
topology. (a) Antinodal quasiparticle energy ϵ̃ðπ;0Þ for different
doping levels, as a function of temperature. The pseudogap onset
temperature T� and the Lifshitz transition temperature TFS are
indicated by arrows. Below the pseudogap temperature, ϵ̃ðπ;0Þ
rapidly becomes very negative, driving the Fermi surface holelike.
Only when no pseudogap is present (here, for p > 0.12) does ϵ̃ðπ;0Þ
increase at low temperature, and it eventually becomes positive to
yield an electronlike Fermi surface. (b) Illustration of the relation
between the sign of ϵ̃ðπ;0Þ and the Fermi-surface topology.
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incoherent below the red line, at more negative values of t0
and small doping. The precise nature of the Fermi surface
in this region, and its possible reconstruction, is difficult to
assess with the methods employed here.
This polelike feature in the self-energy is also respon-

sible for opening the pseudogap, as clearly seen from the
inset of Fig. 4(b), which displays the antinodal spectral
function: The minimum of the spectral intensity is found to
coincide with the frequency of the quasipole, where
ImΣðπ;0ÞðωÞ is largest.

D. Fermi-surface topology: Numerically
exact DQMC results

These results have been obtained using the DCA approxi-
mation with an eight-site cluster (see Appendix A). We also
cross-checked these results with a different and independent
method: numerically exact DQMC [40] at T ¼ 1=3. The
result is displayed in Fig. 5 (left panel) and clearly shows that
the antinodal self-energy drives the Fermi surface holelike

over a broad region of the ðp; t0Þ plane, in agreement with our
DCA calculations. One can again observe a line where

ReΣð2Þ
ðπ;0ÞðωÞ vanishes, mapped out for several values ofU in

the right panel. This line compares with the red line of
Fig. 2. It moves closer to half-filling as U is increased (see
also Fig. 11) and towards the noninteracting Lifshitz tran-
sition line as U is reduced.

E. SU(2) gauge theory

Recent numerical work, using a “fluctuation diagnos-
tics” analysis of the contributions to the electronic self-
energy in both the DCA [26] and lattice diagrammatic
Monte Carlo [28] approaches have established that the
pseudogap is associated with the onset of short-range
antiferromagnetic (AF) correlations. On the analytical side,
an SU(2) gauge theory approach has been introduced
[37–39] to deal with states in which AF long-range order
is destroyed by orientational fluctuations of the order

(a) (b)

FIG. 4. Evolution of the antinodal self-energy at fixed doping p ¼ 0.05, as a function of t0. (a) Real (Hartree subtracted; see text) and
imaginary parts of the antinodal self-energy at ω ¼ 0. The real part vanishes where the imaginary part is maximum, corresponding to a
particle-hole symmetric low-energy ImΣðπ;0ÞðωÞ. (b) Real-frequency scattering rate ImΣðπ;0ÞðωÞ obtained from the maximum entropy
method for different values of t0. It displays a polelike feature that crosses zero at t0 ≃ −0.2 (point B) where the low-energy scattering is
maximum. When the pole is on the positive energy side, it induces a negative real part of the self-energy (through the Kramers-Kronig
relation) that drives the Fermi surface more holelike. Inset: Antinodal spectral function at point D at T ¼ 1=30. See Fig. 2 for the
locations of points A–D in the ðp-t0Þ plane.

(2)

= 0(2)
(a) (b)

FIG. 5. Particle-hole asymmetry from determinant quantum Monte Carlo (see Appendix A). (a) Real part of the self-energy in the p-t0

plane for U ¼ 5. For a broad region (indicated in red), ReΣð2Þ
ðπ;0Þ is negative, hence driving the Fermi surface more holelike, in agreement

with our DCA results. (b) The line where ReΣð2Þ
ðπ;0Þ ¼ 0 and where the antinodal scattering rate is largest is indicated for different values

of U (to be compared to the red line in Fig. 2). As U is increased, the region where the Fermi surface is driven holelike becomes larger.
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parameter. It is, thus, very natural to attempt to interpret our
numerical results in this framework and compare them to a
mean-field treatment of this gauge theory.
This approach is based on the following representation of

the physical electron fields on each lattice site i:

�
ci↑
ci↓

�
¼ Ri

�
ψ iþ
ψ i−

�
: ð4Þ

In this expression, ψ� are “chargons,” fermions that
carry charge but no spin quantum numbers, and Ri’s
are 2 × 2 unitary matrix fields, the bosonic spinons
(RiR

†
i ¼ R†

i Ri ¼ 1). The Ri matrix can be thought of as
defining the local reference frame associated with the local
AF order (for early work promoting the local reference
frame to a dynamical variable, see Refs. [45–47]). This
representation has a local gauge invariance corresponding
to Ri → RiV

†
i , ψ i → Viψ i, with Vi an SU(2) matrix. The

Hubbard interaction can be decoupled using a vector field
Φi conjugate to the local spin-density c†iασαβciβ=2, and a
vector “Higgs field” is introduced such that

σ ·Hi ¼ R†
i σRi ·Φi: ð5Þ

This identifies the Higgs field Hi as the local antiferro-
magnetic moment in the rotated reference frame. Note that
Hi, which transforms under the adjoint of the gauge SU(2),
does not carry any spin, since it is invariant under a global
spin rotation.
We can now consider Higgs phases in which hHii ≠ 0

but hRii ¼ 0. Because of the latter, such phases do not
display long-range AF order, which has been destroyed by
orientational fluctuations. However, hHii ≠ 0 signals that
the local order has a nonzero amplitude. A nonzero hHii
also implies that such a phase has topological order,
corresponding to different possible residual gauge groups
once the SU(2) gauge symmetry has been spontaneously
broken by the Higgs condensate [48–51]. There are differ-
ent possible mean-field solutions for the Higgs condensate,
corresponding to different topological orders and different
broken discrete symmetries [38]. Here, we shall focus on
the simplest one with U(1) topological order that preserves
all space group, time-reversal, and spin rotations sym-
metries; this corresponds to the following configuration of
the Higgs field (which resembles AF order):

hHii ¼ ð0; 0; H0eiQ·RiÞ; ð6Þ

in which H0 is the Higgs field amplitude and Q ¼ ðπ; πÞ.
Solving the gauge theory at the mean-field level, the

Green’s function and self-energy of the chargon field is
easily calculated. Because the chargon field “sees”
an antiferromagnetic environment, it is identical to the
expression obtained for an antiferromagnetic spin-density
wave [39]. It thus has a matrix form that involves both

components that are diagonal in momentum and off-
diagonal components coupling k to kþ Q:

Gψ ðω; kÞ−1 ¼
�
ω − ξψk H0

H0 ω − ξψkþQ

�
: ð7Þ

Its momentum diagonal component reads

Gψ ðω; kÞ ¼ ½ω − ξψk − Σψðω; kÞ�−1

Σψ ðω; kÞ ¼
H2

0

ω − ξψkþQ þ i0þ
: ð8Þ

In this expression, ξψk ¼ −2Zttðcos kx þ cos kyÞ −
4Zt0 t0 cos kx cos ky − μ is the renormalized dispersion of
the chargons. A quantitative calculation of the renormal-
ization factors Zt and Zt0 requires a full solution of the
mean-field equations. We found typical values Zt ∼ 0.3 and
Zt0 ∼ 0.2, weakly dependent on the doping level p, since
the chemical potential mainly affects the chargon
dispersion but not the spinon dispersion. Importantly, the
self-energy [Eq. (8)] of the chargons has a pole at
ωk ¼ ξψkþQ. Hence, the mean-field chargon Green’s func-
tion has zeros: These zeros are located at zero energy on the
Brillouin zone contour defined by ξψkþQ ¼ 0, corresponding
to a chargon “Luttinger surface.” There are two bands of
chargon excitations, corresponding to the solutions of
ðω − ξψk Þðω − ξψkþQÞ −H2

0 ¼ 0. To summarize, a crucial
aspect of this SU(2) gauge theory description is to have
chargons whose dispersions are identical (at the mean-field
level) to the excitations of a spin-density wave states,
despite the theory having no long-range order or broken
symmetries (i.e., the symmetry is restored by the fluctua-
tions of the spinon fields).
At the mean-field level, in the phase associated with the

configuration of the Higgs field considered here, the spinon
excitations are gapped. In order to obtain the physical
electron Green’s function, a convolution of the chargon and
spinon Green’s function over frequency and momentum
must be performed, Gc ¼ GR⋆Gψ , and the physical elec-
tron self-energy can then be obtained from Σ ¼ ωþ μ −
ϵk − G−1

c (with ϵk the bare dispersion defined above). For
the purpose of the present paper, a detailed discussion of
the spinon dispersion and Green’s function is not essential;
see Appendix F and Ref. [39] for details. It is sufficient here
to emphasize the two following points. (i) The convolution
mainly broadens the pole structure of Gψ , but the locations
in momentum and frequency of the most singular structures
of the physical self-energy are still those encoded in the
chargon self-energy given by Eq. (8). (ii) The convolution
does bring an important effect, however: In contrast to the
imaginary part of the chargon self-energy, which is constant
all along the Luttinger surface ξψkþQ ¼ 0, the imaginary
part of the physical electron self-energy obtained from the
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convolution of Green’s functions has an imaginary part that
is larger close to the antinodes than close to the nodes;
see Fig. 15 in Appendix F. Hence, the gauge theory
manages to capture qualitative aspects of the nodal-
antinodal dichotomy found in our DCA calculations.
The figure also shows that the peak frequency ωp shifts

from negative to positive frequency as t0 is increased. The
inset of this figure displays the corresponding spectral
function at the antinode, which has a pseudogap caused
by the quasipole at ωp. Note that the pseudogap is particle-
hole asymmetric, as expected from the fact that it does not
originate from the particle-particle channel. These results are
in excellent qualitative agreement with theDCA calculations
above (Fig. 4). Note that, for the sake of comparison to the
finite-temperature DCA results, the gauge theory calcula-
tions presented here are performed at a finite temperature
larger than the spinon gap. How gapless nodal excitations
survive in the gauge theory description as temperature is
lowered below this gap (e.g., by having bound states of the
chargons and spinon as in a Fractionalized Fermi liquid
(FL*) state [52]) is an important question, which is, however,
beyond the scope of the present paper.
In Fig. 6(a), we summarize important aspects of the

mean-field analysis of the gauge theory [39] as a function
of doping level p and t0. As in Fig. 2, the blue line in this
figure is the location of the Lifshitz transition of the
physical electron Fermi surface from holelike to electron-
like [as defined by the change of sign of the renormalized
antinodal dispersion, Eq. (2)], and the red line indicates
where ωp ¼ 0 (i.e., where particle-hole symmetry is
approximately restored at low energy). In good qualitative
agreement with the DCA results displayed in Fig. 2, one
sees that the Lifshitz transition of the physical FS is pushed
to much larger doping in comparison to that of the non-
interacting system (dashed line), and that the location of the

red line where the pole is close to zero energy is pushed to
much smaller doping. The latter approximately coincides
with the Lifshitz transition of the chargon Luttinger surface,
given by 4Zt0 t0 ¼ μ. Because the chemical potential μ of the
interacting system takes more negative values than the
noninteracting one and also because Zt0 < 1, the red line is
shifted to lower doping as U increases, in agreement with
the result of Fig. 5. This clarifies why the pole is found at
positive energies for most values of ðp-t0Þ and why the
Fermi surface is driven holelike in a wide region of the
ðp-t0Þ plane. A striking consequence of the presence of
the pole is illustrated around the t0 ¼ 0, p ¼ 0 point,
corresponding to the half-filled Hubbard model with only
nearest-neighbor hopping, in which the antinodal scattering
must be particle-hole symmetric by symmetry. When the
system is very slightly hole-doped away from p ¼ 0, both
DCA and the mean-field gauge theory suggest that the
particle-hole symmetric point rapidly shifts to very negative
t0. This is in striking contrast to weak-coupling theories in
which approximate particle-hole symmetry at the antinode
would be restored at the noninteracting Lifshitz transition
(dashed line). We note that there are quantitative discrep-
ancies in the location of these two lines between the
numerical DCA results and the mean-field gauge theory
results, which are predominantly due to the assumptions
made on the renormalization parameters Zt and Zt0 entering
the chargon dispersion and on the Higgs field amplitudeH0.
Importantly, the mean-field analysis of the SU(2) gauge

theory provides a physical understanding of the origin of
the pseudogap and of the quasipole of the self-energy [see
Fig. 6(b)] as being due to short-range antiferromagnetic
correlations, long-range order being destroyed by orienta-
tional fluctuations. The quasipole is responsible for the
pseudogap in the physical electron Green’s function, while
the spinon (R) spectrum displays a gap. The chargons have

(a) (b)

FIG. 6. Pseudogap and FS topology within the SU(2) gauge theory at the mean-field level. Color coding is identical to Fig. 2 (DCA
results), to which this figure should be compared. (a) Solid blue line: Lifshitz transition of the interacting Fermi surface. Along the red
line, the self-energy pole is at zero energy and approximate particle-hole symmetry is restored. This also corresponds to the Lifshitz
transition of the chargons. (b) Electronic self-energy at the antinode for two different values of t0. The quasipole in the self-energy moves
from negative to positive frequency as t0 is increased; see Fig. 4. The inset displays the antinodal spectral function for t0 ¼ −0.15,
emphasizing that its minimum coincides with the position of the pole. Here we assumed H0 ¼ 0.3, a spinon gap Δ ¼ 0.01, and J ¼ 0.1
(the nearest-neighbor coupling of the spin-wave fluctuations; see Ref. [39]). A broadening factor η ¼ 0.04 is used to obtain smooth
spectral functions.
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a spectrum characteristic of an AF spin-density wave
despite the absence of AF long-range order, and their
self-energy has a sharp pole at the mean-field level. The
(red) line where the pole crosses zero energy, correspond-
ing to an approximate restoration of particle-hole symmetry
at low energy, can be interpreted [39] as the Lifshitz
transition of the chargon Luttinger surface.

IV. DISCUSSION AND EXPERIMENTAL
RELEVANCE

Our results establish that an asymmetric polelike feature
in the antinodal self-energy is responsible for both the
pseudogap and for the renormalization and topological
transition of the FS. We note that, in weak-coupling
approaches such as spin-fluctuation theories (see
Appendix E for a detailed discussion), the self-energy
becomes very large for ω ¼ ϵkþðπ;πÞ − μ, provided that the
antiferromagnetic correlation length ξ is large enough and
that vF=ξ < T. As a result, hot spots form on the Fermi
surface, at specific k-vectors defined by ϵk ¼ ϵkþðπ;πÞ ¼ μ,
corresponding to the intersection of the antiferromagnetic
Brillouin zone with the Fermi surface. Hence, in a weak-
coupling approach, the change of sign of the bare
dispersion ϵðπ;0Þ − μ ¼ 0 controls both the doping at which
the hot spots reach the antinode and that where the Lifshitz
transition occurs. As a result, the noninteracting Fermi
surface transition line (blue dashed line in Fig. 2) controls
at the same time the location of the Lifshitz transition,
the symmetry of the self-energy, and the suppression of
spectral weight along the Fermi surface. This is in stark
contrast to our strong-coupling results, where these phe-
nomena appear at distinct locations. In particular, we have
demonstrated that the line in ðp-t0Þ parameter space where
particle-hole symmetry is approximately obeyed at low
energy is pushed, at strong coupling, to very low values of
p and very negative values of t0; see Figs. 2 and 5 where this
line is displayed in red. This is crucial in explaining why
interactions drive the Fermi surface more holelike for a
wide range of ðp-t0Þ, where the noninteracting (or weak
coupling) FS would actually be electronlike, and why the
Lifshitz transition is pushed to larger values of p in
comparison to the noninteracting system.
In order to put our results into perspective, we note that

the relation between a polelike feature in the self-energy
and the pseudogap, as well as the implications of the
corresponding zeros of the Green’s function for the
reconstruction of the Fermi surface, has been previously
discussed in cluster extensions of dynamical mean-field
theory [22,23,30,32,34–36] and in phenomenological the-
ories such as Yang-Rice-Zhang (YRZ) theory [53] or other
approaches [54,55] (see Ref. [56] for a gauge-theory
perspective on the YRZ phenomenology). The existence
of a Lifshitz transition as the hole doping is increased
was also discussed in some previous cluster DMFT or
DCA studies [30–32]. However, the role played by the

particle-hole asymmetry associated with the self-energy
pole in determining the FS topology and the systematic
dependence of this asymmetry on ðp-t0Þwere not unraveled
and studied and, hence, the key interplay between FS
topology and the pseudogap was not previously revealed.
We now discuss the relevance of our results to experi-

ments on hole-doped cuprates. We first note that, indeed, a
pseudogap is not found when the Fermi surface is electron-
like and, hence, that the relation p� ≤ pFS is apparently
obeyed in all compounds. In the single-layer compound
La2−xSrxCuO4 (LSCO), with a small value [57] of jt0=tj,
the in-plane resistivity in high magnetic fields [58] suggests
that p� ≃ 0.18. Currently available ARPES experiments
[59–61] allow us to ascertain that 0.17 < pFS ≲ 0.20. In the
Nd-LSCO compound, high-field transport [62] finds
p� ≃ 0.23, while ARPES [63] has 0.20 < pFS < 0.24.
In another single-layer compound ðBi; PbÞ2ðSr;LaÞ2×

CuO6þδ (Bi2201) [64–67], it is found that p� ≃ pFS. An
ARPES experiment on the bilayer Bi2212 material [68] has
shown that the antibonding Fermi surface crosses the
antinode at pFS ≃ 0.22 and suggested that it may be
connected to the onset of the pseudogap. This was further
confirmed in a recent electronic Raman experiment [3,4]
that found the pseudogap end point at p� ≃ 0.22. Note that
the Raman response is believed to be predominantly
sensitive to the antibonding band since it is close to a
density of states singularity [3] and does not give infor-
mation about the possible existence of a pseudogap in
the bonding band (which remains holelike for all dopings).
In compounds with larger values [57] of jt0=tj, such as
YBa2Cu3O7−δ [69,70], Tl2Ba2CuO6þδ [71,72], or
HgBa2CuO4þδ [73], it is generally believed that pFS and
p� are distinct with p� < pFS. This is in qualitative
agreement with our finding that the FS and pseudogap
critical doping coincide for smaller values of jt0=tj and are
distinct for larger ones. Hence, we conclude on the basis of
our results and experimental observations that there are two
families of hole-doped cuprates: materials with smaller
values of jt0=tj, for which the collapse of the pseudogap and
change of FS topology coincide (p� ≃ pFS), and materials
with larger values of jt0=tj, for which these are distinct
phenomena (p� < pFS).
Finally, a very recent study on Nd-LSCO using hydro-

static pressure to tune the band structure found that both
pFS and p� decrease by the same amount [5]. This provides
a compelling experimental demonstration that p� cannot
exceed pFS.
We finally comment on the predicted renormalization

of the Fermi surface by strong correlations. In view of
Fig. 2, the materials for which this effect is expected to be
strongest are the ones with smaller values of jt0=tj; hence,
we turn to LSCO. We note that, in order to fit the ARPES
Fermi surface using a single-band tight binding model, the
effective parameter t0 has to be tuned systematically more
negative [corresponding to a more negative ϵ̃ðπ;0Þ] as doping
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is reduced, i.e., from t0=t ¼ −0.12 for p ¼ 0.3 to t0=t ¼
−0.2 for p ¼ 0.03 [60]. Moreover, electronic structure
calculations based on density functional theory-local-den-
sity approximations (LDA) yield pFS ≃ 0.15, while ARPES
finds 0.17 < pFS ≲ 0.20, as mentioned above. These two
observations suggest that correlation effects indeed gen-
erally drive the Fermi surface more holelike.

V. CONCLUSION AND OUTLOOK

To conclude, we have investigated the interplay between
the pseudogap and the Fermi-surface topology in the two-
dimensional Hubbard model. In the weak-coupling regime,
these issues are directly connected: hot spots can only form
when the Fermi surface is holelike and intersects the
antiferromagnetic zone boundary. At stronger coupling,
the antiferromagnetic correlations responsible for the pseu-
dogap become short ranged, and it becomes a fundamental
puzzle to understand whether there is any connection to FS
topology, which is in essence long-distance physics. We
provide an answer to this puzzle by showing that a common
polelike feature in the electronic self-energy controls both
issues. This pole induces a large low-energy scattering rate
responsible for the onset of the pseudogap, and its
asymmetry leads to significant modifications of the
Fermi surface with respect to its noninteracting shape
and controls the location of the Lifshitz transition. As a
consequence, we find that the pseudogap only appears on
holelike Fermi surfaces, i.e., p� ≤ pFS, and that p� ≃ pFS
for an extended range of doping levels and values of t0.
These findings are in good agreement with available
experimental data. We have also shown that our results
can be interpreted in the framework of an SU(2) gauge
theory of fluctuating antiferromagnetism with topological
order. This provides an explanation for the origin of the
pole in the self-energy and establishes the connection
between the pseudogap and the Fermi-surface topology
through the chargon Luttinger surface. This effort to bridge
the gap between numerical results obtained within cluster
extensions of DMFTand low-energy effective field theories
is pursued and detailed in a companion publication [39].
Let us emphasize that in most of the parameter range

relevant to hole-doped cuprates, the self-energy pole is
found at a positive energy. Hence, the strongest suppression
of the antinodal spectral weight is predicted to occur at
energies above the Fermi level, which is not directly
accessible to ARPES experiments. While a strong par-
ticle-hole asymmetry is indeed observed by scanning
tunneling microscopy (STM) [74,75], this emphasizes
again [76] the importance of developing momentum-
resolved spectroscopies able to probe the “dark side” of
the Fermi surface. Finally, an outstanding question is to
explore whether the topological order, associated with the
pseudogap regime in the gauge theory description, can be
revealed more directly in numerical studies of Hubbard-like
models.
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APPENDIX A: METHODS

Our results for the two-dimensional Hubbard model are
obtained using two methods: unbiased DQMC [40] and the
DCA [15,77], a cluster extension of DMFT [78] that
captures the physics of short-range spatial correlations.
We perform DQMC on a 16 × 16 lattice with periodic
boundary conditions at a temperature T ¼ 1=3. Since the
inverse temperature β ¼ T−1 ¼ 3 is significantly smaller
than the linear size of the lattice L ¼ 16, the finite size
effects are negligible in the DQMC calculation. The
imaginary time step was set to Δτ ¼ 3=64, which is small
enough to avoid artifacts due to the discretization errors.
We use 5.12 × 105 Monte Carlo sweeps to collect the data
after 1000 warmup sweeps.
The DCA calculation is performed with an eight-site

cluster. In the DCA approach, the lattice self-energy is
approximated by a patchwise-constant self-energy ΣK in
the Brillouin zone. We solved the DCA equations with an
eight-site auxiliary quantum impurity cluster. In the geom-
etry we used, the Brillouin zone is divided into eight sectors
where the self-energy is constant, as shown in Fig. 7. Note
that there are clearly distinct patches for the antinodal and
the nodal regions of the Brillouin zone.
We use both the Hirsch-Fye [77] and the continuous-

time quantum Monte Carlo [79] method to solve the
auxiliary cluster impurity problem. A comparison of both
methods shows that the imaginary-time step Δτ ¼ 1=21
used in the Hirsch-Fye solver is small enough, as shown in
Appendix B. We use 50 DMFT iterations to get a converged
result and use ð2–10Þ × 106 Monte Carlo sweeps at each
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iteration. In order to have better statistics, the results are
averaged over the last few converged iterations. The typical
statistical error in the real part of the self-energy and the
spectral intensity at zero frequency is approximately 1%.
We identify the pseudogap temperature T� as the maxi-

mum of the temperature dependent spectral weight
Aðπ;0Þðω¼ 0Þ≡−ð1=πÞImGðπ;0Þðω¼ 0Þ. It is obtained from
a linear extrapolation to zero frequency of −ImGðπ;0ÞðiωnÞ
at the first two Matsubara frequencies. We find TFS from
the zero of the effective dispersion at the antinode ϵ̃ðπ;0Þ.
Finally, the real-frequency spectral function AkðωÞ and

the self-energy ΣkðωÞ are found with the maximum entropy
analysis [80,81] on the Green’s function GkðiωnÞ and the
self-energy ΣkðiωnÞ. We use two independent maximum
entropy codes [80,81] to make sure that their results agree.

APPENDIX B: SUPPORTING MATERIAL FOR
THE RESULTS SHOWN IN THE MAIN TEXT

1. Pseudogap onset temperature T� and Fermi-surface
topology transition temperature TFS

We identify the pseudogap onset temperature T� as the
temperature where the spectral function at the antinodal
point Aðπ;0Þðω ¼ 0Þ reaches a maximum as temperature is
lowered; see Fig. 8. The zero-frequency value of the
spectral function Aðπ;0Þðω¼ 0Þ¼−ð1=πÞImGðπ;0Þðω¼ 0Þ,
which is obtained by a linear extrapolation of the value
of ImGðπ;0ÞðiωnÞ (the result of the numerical calculation)
at its first two Matsubara frequencies. We found that
different approximations of the spectral function, such as
Aðπ;0Þðω ¼ 0Þ ≃ βGðπ;0Þ½τ ¼ ðβ=2Þ� [82], yield the same
values of T�. Also, we have used different imaginary time
discretization steps Δτ in the Hirsch-Fye algorithm and
observe that the results are the same for all values of
Δτ ≤ 0.1. We have used Δτ¼ 0.0476 throughout our work.
When the Fermi surface crosses k ¼ ðπ; 0Þ, it undergoes

a Lifshitz transition and changes from holelike to electron-
like. We define the Fermi surface at finite temperature by
the location of the maximum spectral intensity at zero
energy (as seen in an ARPES experiment). This maximum
goes through ðπ; 0Þ when the quasiparticle effective

dispersion at the antinode ϵ̃ðπ;0Þ ¼ 0, as discussed in the
main text [see Eq. (1)]. We can, therefore, find the Fermi-
surface topology transition temperature TFS by finding the
zero of ϵ̃ðπ;0Þ as a function of temperature, as shown in
Fig. 9. We also display the results as obtained using two

FIG. 7. The patches in momentum space of the eight-site DCA
method. The self-energy is constant over each patch.

FIG. 8. −ImGðπ;0Þðω ¼ 0Þ as a function of temperature T. The
maximum is identified as the pseudogap onset temperature T�.
Upper panel: For t0 ¼ −0.1 and different doping levels. Lower
panel: For t0 ¼ −0.2, p ¼ 0.1 and different discrete time steps Δτ
of the Hirsch-Fye impurity solver. We can see that T� is already
converged for Δτ ¼ 0.1.

FIG. 9. The effective quasiparticle dispersion at the antinode
ϵ̃ðπ;0Þ as a function of temperature T for two doping levels. At the
Fermi-surface topology transition temperature TFS, we have
ϵ̃ðπ;0Þ ¼ 0. We show results using both a continuous-time
QMC [79] and a Hirsch-Fye [77] impurity solver (the latter with
a finite imaginary-time step Δτ ¼ 0.0476).
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different impurity solvers and show that they give identical
results.

2. Maximum low-energy scattering
line and particle-hole asymmetry

As we have shown in the main text, there is a curve in the
p-t0 diagram that separates a region where the polelike
feature in the imaginary part of the antinodal self-energy is
on the negative energy side from a region where it is on the
positive energy side. When the pole is on the positive
energy side, the real part of the self-energy (with the

Hartree term removed) ReΣð2Þ
ðπ;0Þðω ¼ 0Þ is negative, while it

is positive when the pole is on the negative side. We can,
therefore, locate the curve by finding, at fixed t0, the value
of the doping pc at which the zero-temperature extrapo-

lation of ReΣð2Þ
ðπ;0Þðω ¼ 0Þ changes sign; see Fig. 10.

3. U dependence of the connection between p� and pFS
In the main text, all calculations have used U ¼ 7. For

this value, we have shown that p� ≃ pFS for values of t0
greater than ≃ − 0.1. For more negative values of t0, the p�
and pFS lines split apart. When U is larger, this branching
point goes to lower values of t0. This is shown in Fig. 11,

where we compute T� and TFS for both U ¼ 7 and
U ¼ 7.5. It is clear from the figure that, for U ¼ 7.5, p�
and pFS are much closer than for U ¼ 7. This can be
understood because a larger value of U extends the
pseudogap region to larger dopings, while the Fermi-
surface topology is not influenced much by correlations
before we actually have a pseudogap and hence p� ≃ pFS.

APPENDIX C: TEMPERATURE EVOLUTION OF
ϵ̃k AND ROLE OF NONLOCAL CORRELATIONS

In Fig. 12, we investigate the role of nonlocal correla-
tions by comparing the results obtained by DCA, as in the
main text, and by single-site DMFT that only accounts for
local correlations. The black line shows ϵ̃ðπ;0Þ as computed
by DMFT for t0 ¼ −0.1 and p ¼ 0.1. For these parameters,
the noninteracting Fermi surface is electronlike. It is seen
that, at low temperature, the DMFT results also predict an
electronlike Fermi surface. This is not surprising as DMFT
preserves the Luttinger theorem and the interacting Fermi
surface is the same as the noninteracting one when T → 0.
However, as temperature is increased, ϵ̃ðπ;0Þ decreases
significantly and becomes negative. This yields a holelike
interacting Fermi surface at high temperature that breaks

FIG. 10. The real part of the antinodal self-energy as a function of temperature for different dopings p and t0. Note that the constant
Hartree shift has been removed. Left panel: For U ¼ 7, t0 ¼ −0.1, at p ¼ 0, ReΣð2Þ

ðπ;0Þðω ¼ 0Þ is positive at low temperatures, while at

p ¼ 0.01, it is negative, suggesting that pc is between 0 and 0.01. Central panel: For U ¼ 7, t0 ¼ −0.2, we have 0.04 < pc < 0.06.
Right panel: ForU ¼ 7.5, t0 ¼ −0.2, we find−0.01 < pc < 0.01. Therefore, for fixed t0, increasingU drives pc closer to 0 (half-filling).

FIG. 11. T� and TFS as a function of doping p at t0 ¼ −0.2,
U ¼ 7 (dashed lines), and U ¼ 7.5 (solid lines). Note that here
the imaginary-time discretization step is Δτ ¼ 1=2U.

FIG. 12. Temperature dependence of ϵ̃k as obtained by DCA
and DMFT at 10% hole doping and t0 ¼ −0.1.
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Luttinger’s theorem [83,84] with a volume larger than in
the noninteracting case.
The red and blue lines show ϵ̃ðπ;0Þ and ϵ̃½ðπ=2Þ;ðπ=2Þ�,

respectively, as obtained by DCA. ϵ̃½ðπ=2Þ;ðπ=2Þ� has been
shifted by a constant 4t0 ¼ −0.4 that corresponds to the
energy difference of the noninteracting dispersion at ðπ; 0Þ
and ½ðπ=2Þ; ðπ=2Þ�. At high temperatures, all curves yield
the same value, compatible with a self-energy that is
essentially local. As temperature is decreased, the nodal
ϵ̃½ðπ=2Þ;ðπ=2Þ� behaves like the DMFT solution, indicating that
the Fermi surface at the node is very close to its non-
interacting shape. The DCA ϵ̃ðπ;0Þ has a different behavior.
As temperature is lowered, it quickly departs from
ϵ̃½ðπ=2Þ;ðπ=2Þ�, showing the onset of nodal-antinodal differ-
entiation. At a temperature slightly above T�, nonlocal
correlations become large and induce a very negative ϵ̃ðπ;0Þ
as discussed in the main text.

APPENDIX D: PSEUDOGAP AND
FERMI-SURFACE TOPOLOGY TRANSITION

AS A FUNCTION OF U

Our results for U ¼ 7 show that, for a broad range of
parameters, the pseudogap disappears at the same critical
doping where the Fermi surface undergoes a Lifshitz
transition. In Fig. 13, we investigate how our results depend
on the correlation strength U. It is shown that, for values of
U ≲ 5, correlations have little effect on the Fermi-surface
topology and the low-energy scattering rate ImΣðπ;0Þ is very
small. Above U ≃ 5, correlation effects set in quickly, as
shown by a fast increase in the value of ImΣðπ;0Þ. This
induces a pseudogap at U ¼ 5.6. At the same time, the
effective quasiparticle dispersion ϵ̃ðπ;0Þ crosses zero and
becomes very negative for larger values of U. This sudden
increase of the correlation effects for U > 5 might explain

why the pseudogap and the Fermi-surface topology happen
at the same time.

APPENDIX E: COMPARISON WITH
WEAK-COUPLING APPROACHES

Let us investigate how our results differ from weak-
coupling approaches, such as spin-fluctuation theory or the
two-particle self-consistent approach (TPSC) of Vilk and
Tremblay [85]. The latter has been shown to be quite
accurate in the weak to intermediate coupling regime of the
two-dimensional Hubbard model, and this appendix closely
follows the analysis in Ref. [85].
In those approaches, the self-energy is obtained as

Σðk; iωnÞ¼ g2T
X
p

1

VBZ

X
q

G0ðkþq; iωnþ iνpÞχðq; iνpÞ;

ðE1Þ

where G0 is the noninteracting Green’s function, χ is the
spin susceptibility, and g is a coupling constant with the
dimension of energy. When the magnetic correlation length
ξ is large, χ can be approximated by [86]

χðq; iνpÞ ∝
1

ðq −QÞ2 þ ξ−2νp=ωsp þ ξ−2
; ðE2Þ

with Q ¼ ðπ; πÞ the antiferromagnetic wave vector. The
self-energy thus reads

Σðk; iωnÞ ∝ T
X
p

1

VBZ

X
q

1

iωn þ iνp þ μ − ϵkþq

×
1

ðq −QÞ2 þ ξ−2νp=ωsp þ ξ−2
: ðE3Þ

In the regime of interest here (large enough ξ, renormalized
classical regime), the above sum is dominated by the
smallest Matsubara frequency (note that ωsp ∼ ξ−2) and
one obtains the imaginary part of the retarded real-
frequency self-energy in the form

−
1

π
ImΣretðk;ωÞ ∝ T

Z
d2qδðω − ξkþqÞ

1

ðq −QÞ2 þ ξ−2
:

ðE4Þ

The important point is that, in two dimensions, this integral
diverges as the correlation length becomes large, which
leads to the formation of hot spots at which a pseudogap
opens. This integral can actually be performed analytically,
and one finally obtains

−
1

π
ImΣretðk;ωÞ¼ g̃

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω−ξkþQÞ2þðvF=ξÞ2

q þreg; ðE5Þ

FIG. 13. Correlation effects shown as a function of U for three
quantities: the quasiparticle effective dispersion ϵ̃ðπ;0Þ, the imagi-
nary part of the antinodal self-energy at zero energy
ImΣðπ;0Þðω ¼ 0Þ, and the difference in spectral intensity at the
Fermi level for the two lowest calculated temperatures, indicating
whether a pseudogap has formed.
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where “reg.” denotes a nonsingular contribution. The
physics associated with a weak-coupling description of
spin fluctuations can be entirely described on the basis of
this expression [85]. Let us focus first on the Fermi surface
properties, corresponding to ω ¼ 0 and momenta such that
ξk ¼ 0. As is clear from Eq. (E5), the self-energy is regular
on the Fermi surface except at the hot spots satisfying also
ξkþQ ¼ 0, corresponding to the intersection of the Fermi
surface with the antiferromagnetic Brillouin zone. At these
hot spots, the self-energy is singular: its imaginary part is
of order

−
1

π
ImΣjhot ∝

Tξ
vF

: ðE6Þ

This is large only when the correlation length is large:
ξ > vF=T. In this regime, spectral weight is strongly
depleted at the hot spots, corresponding to the weak-
coupling description of the pseudogap. When the correla-
tion length remains finite as temperature is lowered
(short-range order), the hot spots and corresponding pseu-
dogap disappear for T < vF=ξ and conventional Fermi
liquid behavior is recovered at low temperature.
Let us emphasize the crucial differences that exist

between the weak-coupling expression of the self-energy
[Eq. (E5)] and both the self-energy that we obtain from
DCA at strong coupling and the self-energy obtained from
the SU(2) gauge theory. As is clear from Eq. (E5), the
imaginary part of the weak-coupling self-energy does
display a peak, but (i) the height of this peak is proportional
to TξðTÞ and, thus, eventually the peak and the hot spots
disappear at low T if ξ remains finite; (ii) the width of this
peak is proportional to vF=ξ < T, which in the regime
where the peak exists is smaller than temperature. In
contrast, in the strong-coupling DCA calculations, the
peak is not suppressed as T is reduced, and its width is
larger than T. Furthermore, the correlation length that we
can estimate in our DCA results from the static staggered
susceptibility χAF ∝ ξ2 is quite small at strong coupling.
We find, for example, ξ=a ≃ 2.7 for U ¼ 7, t0 ¼ −0.2,
p ¼ 0.1 at T ¼ 1=30. The weak-coupling expression also
has a different structure than the singular delta-function
form of the chargon self-energy in the SU(2) gauge theory:
The latter, importantly, does not involve the correlation
length (set by the spinons) and is similar to that of a spin
density wave (SDW) in the ordered phase.
The real part of the self-energy corresponding to Eq. (E5)

can be obtained using Kramers-Kronig relations as

ReΣretðk;ωÞ∝
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
kþðvF=ξÞ2

q ln

������
Ωkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

kþðvF=ξÞ2
q

Ωk−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

kþðvF=ξÞ2
q

������;

ðE7Þ
in which we have used the short-hand notation
Ωk ≡ ω − ξkþQ. In the temperature regime where hot spots

are present, T > vF=ξ, one can distinguish two regimes
of frequencies. For Ωk > vF=ξ, ReΣ is of order
ðT=ΩkÞ lnðΩkξ=vFÞ, while at low frequencies, Ωk<vF=ξ,
the self-energy is regular, ReΣ ∝ TΩkðξ=vFÞ2. Hence, the
self-energy is regular at low frequency even close to the hot
spots when ξ remains finite. As a result, hot spots exist at
the intersection between the Fermi surface and the anti-
ferromagnetic Brillouin zone for T > vF=ξ, but there is no
reconstruction of the Fermi surface otherwise. Hence, for a
doping value larger than the value corresponding to the
noninteracting Lifshitz transition, there are no hot spots and
the Fermi surface is weakly renormalized and electronlike.
Hence, in weak coupling, the noninteracting Lifshitz
transition controls both the location of the self-energy
singularities and the topological transition of the Fermi
surface. This is very different from our results in the strong-
coupling regime U ¼ 7, where these phenomena are
controlled by three different lines.
By varying U, one can observe how the transition from

weak to strong coupling happens. Figure 14 shows the
DQMC results for several values of U. The lines show
where the real part of the self-energy vanishes. It separates a
region where the pole in the self-energy is at negative
energies and one where it is on the positive side. It is seen
that, as U becomes smaller, the lines slowly approach the
noninteracting Lifshitz transition, as expected in weak
coupling.

APPENDIX F: COMPARISON OF THE CHARGON
AND ELECTRON SELF-ENERGY IN

THE SU(2) GAUGE THEORY

Here, we illustrate in more detail the role of the
convolution that allows us to recover the electronic

FIG. 14. The lines in the t0-p plane show where the low-energy
imaginary part of the antinodal self-energy ImΣðπ;0ÞðωÞ has its
polelike feature centered around ω ¼ 0 and an essentially
particle-hole symmetric low-energy spectrum. On these curves,
ReΣðπ;0Þðω ¼ 0Þ vanishes. The solid lines are obtained by DQMC
for different values of U, while the dashed line is the result from
the SDW weak-coupling approach. The dashed line coincides
with the noninteracting Lifshitz transition.
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Green’s function in the SU(2) theory. As we have discussed
above (see, e.g., Fig. 6), the location in momentum and
frequency of the most singular structures of the physical
self-energy is not affected by the convolution and they are
already encoded in the chargon self-energy given by
Eq. (8). The convolution mainly smearsGψ and the electron
self-energy is a broadened counterpart of the chargon
self-energy. A more detailed inspection shows that the
convolution also redistributes spectral weight over the
Brillouin zone. As a result, the physical electron self-
energy displays nodal/antinodal differentiation, which is
absent in the chargon self-energy. This is illustrated in
Fig. 15 where it is clearly seen that the imaginary part of the
electronic self-energy is larger close to the antinode than at
the node. This differentiation is not present in the chargon
self-energy.
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