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Modeling matter across large length scales and timescales using molecular dynamics simulations poses
significant challenges. These challenges are typically addressed through the use of precomputed pair
potentials that depend on thermodynamic properties like temperature and density; however, many scenarios
of interest involve spatiotemporal variations in these properties, and such variations can violate
assumptions made in constructing these potentials, thus precluding their use. In particular, when a system
is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not
apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics
(OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for
variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on
the order of micron length scales and 10’s of picosecond timescales, which exceeds current OFDFT-MD
simulations by many orders of magnitude. This new capability is then used to study the heterogeneous,
nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule
containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales,
fundamental assumptions of continuum models are explored; features such as the separation of the
momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are
observed, which had previously not been seen in hydrodynamic simulations.
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I. INTRODUCTION

For a wide range of problems in science and technology,
essential descriptive information can be found over multiple
timescales and/or length scales [1,2]. In contrast, computa-
tional methods typically take advantage of limited ranges of
scales; for example, molecular dynamics (MD) is used to
study systems at the microscopic scale, and hydrodynamics,
at the macroscopic scale. Information from other scales can
be included in such methods in a variety of ways. Typical
hydrodynamic codes incorporate subgridmicroscopic infor-
mation through precomputed, near-equilibrium equations of
state and transport coefficients. When this is not possible,
frameworks such as the heterogeneous multiscale method
[3] couple scales by linking disparate models, usually
with MD providing closure information to an incomplete

macroscale model. Conversely, a brute-force strategy is to
rely on the development of ever-faster algorithms and
hardware that allow MD to natively reach relevant scales
[4,5]. However, obtaining MD forces through an on-the-fly
electronic structure calculation remains relatively expensive
[6,7], considerably limiting achievable timescales and
length scales.
High-energy-density (HED) physics is an important

example of a field of research for which computational
tools are essential: HED experiments are both very expen-
sive and relatively poorly diagnosed, so computational
methods play a crucial role in our understanding of HED
environments. For example, facilities such as the Linac
Coherent Light Source [8], the National Ignition Facility
[9,10], and the Omega Laser Facility [11] regularly produce
highly transient and heterogeneous HED matter into which
modeling codes provide critical insights. Traditionally,
such modeling codes use hydrodynamic models [12]
coupled to precomputed equations of state [13,14].
At the same time, the past decade has seen enormous

progress in the development of MD methods for the study
of HED physics. MD codes based on Kohn-Sham-Mermin
density functional theory (DFT) can reach scales of about
10 Å, at the price of severely limiting the method to uniform
properties of matter, and the method also becomes more
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expensive at higher temperatures. Thus, orbital-free DFT
(OFDFT) methods have been developed [15–23] to over-
come some of these limitations. For zero-temperature
systems with fixed nuclei, finite element methods have
been successful in scaling OFDFT calculations to very
large systems [24]; however, coupling this approach to the
MD equations of motion would require an adaptive mesh
generation routine to be run at each time step for each
configuration of nuclear coordinates, which could intro-
duce a significant bottleneck to the simulation. OFDFT
methods are particularly well suited to HED matter because
higher temperatures generate enough disorder to decrease
the importance of subtler quantum effects (e.g., band
structure, bonding, etc.). Furthermore, many OFDFT mod-
els become increasingly accurate at the higher densities
encountered in HED systems. However, even the simplest
OFDFT models are expensive enough to prohibit reaching
length scales and timescales relevant for important non-
equilibrium processes in heterogeneous experiments. As a
result, large-scale MD simulations of HED matter tend to
employ simplified potentials [25].
Here, we are interested in new methods that permit MD

simulations of nonequilibrium, heterogeneous HED physics
environments using OFDFT-based techniques. We develop
a multiscale model that computes interatomic forces on the
fly, without assuming a precomputed pair potential (e.g., of
the Yukawa form), while also including a fast electronic-
structure calculation that allows us to explore hydrodynamic
phenomena in moderately to strongly collisional systems.
This paper is organized as follows. In Sec. II, we present
equations of motion for a system of interacting ions and
electrons. We then develop the multiscale model in its most
general form in Sec. III, with some details given in the
appendixes. A specific application of the model is presented
in Sec. IV; atomic mixing at an interface typical of those
found in the ablator-fuel region of an inertial-confinement-
fusion (ICF) capsule is used as the system of study. Finally,
general conclusions and a discussion of the results are given
in Sec. V. Throughout this work, the equations will be
presented in Gaussian-cgs units (i.e., the Coulomb constant
is unity) unless otherwise stated, with temperature being
expressed in units of energy, where the Boltzmann constant
kB has been absorbed into the temperature.

II. EQUATIONS OF MOTION

At the core of our model is a collection of nuclei, with
coordinates friðtÞg and velocities fviðtÞg, surrounded by a
distribution of electrons neðr; tÞ, the details of which are
discussed in the next section. The classical equation of
motion for the ith nucleus of mass mi is given by

mi
dvi
dt

¼ Fi½ne; r1; r2;…� ¼ Fnuc
i þ Felec

i ; ð1Þ

where the force Fi has been decomposed, without loss of
generality, into its nuclear and electronic components,

respectively. In general, these components will each still
depend on both the nuclear and electronic degrees of
freedom. Because of the large difference in mass between
nuclei and electrons, the Born-Oppenheimer approxima-
tion, in which the electrons are assumed to evolve implic-
itly with the nuclei, is often invoked to drastically reduce
the computational cost of simulations. We have partially
relaxed this approximation [26] by allowing the forces
resulting from the electrons to be decomposed into “fast”
and “slow” components as

Felec
i ¼ Fslow

i þ Ffast
i : ð2Þ

The slow component can be calculated in the limit of
me=mi → 0, where me and mi are the electron and ion
masses, respectively. In this approximation, the electron
density responds instantaneously to the motion of the
nuclei; the calculation of this term will be discussed in
detail in Sec. III. The fluctuations about this density are
then captured in the remaining fast component, and we treat
this term using a simple Langevin model:

Ffast
i ≈ −miγievi þ ξ: ð3Þ

As with most Langevin models, this form is purely
dissipative [27], meaning that it does not add or subtract
any systematic forces. This can be seen by noting that if the
ions were in a frozen configuration and the average force
were computed, hFfast

i iwould be zero. It is in this sense that
we place the electrostatic forces associated with the
electronic structure into the slow portion of the force
and assume that the two contributions are “orthogonal.”
The Langevin parameter γie is chosen subject to the
constraint that a nucleus will slow down because of electron
drag, in accordance with an appropriate theoretical model
[28,29]. The noise term in Eq. (3) has zero mean
[hξðtÞi ¼ 0], and its correlation properties are determined
by the fluctuation-dissipation theorem to ensure that the
nuclei tend toward the electron-bath temperature Te,
resulting in hξiðtÞξjðt0Þi ¼ ð2γeiTe=meÞδijδðt − t0Þ, where
δij is the Kronecker delta and δðtÞ is the Dirac delta
function. Dai and co-workers [30,31] have discussed
Langevin models of this form; however, we use a different
approach to determine the Langevin parameters.
To study the fast portion of the force and obtain the

parameter γei, consider a single nucleus traveling through
the electron gas with no nucleus-nucleus interactions. For
an ensemble of such nuclei (averaged over the noise), we
can find the mean velocity hvii and the mean kinetic energy
Ei ¼ ðmi=2Þhvii2. Using Eq. (3) in Eq. (1) and setting the
slow component to zero, the rate of change of the kinetic
energy can be found from the average of the solution of
Eq. (1), to yield a stopping power (energy loss per unit
distance) of the form
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dEi

dx
¼ −γiemihvii; ð4Þ

thereby connecting the frequency γie to the low-velocity
stopping power [32,33]. While we could similarly apply a
low-velocity stopping power formulation, such as the model
of Nagy et al. [34], we desire a model that both applies to a
wide range of plasma conditions and can be computed
extremely rapidly. For this reason, we have employed the
model of Skupsky [35]. Comparing the Langevin prediction
(4) with Skupsky’s model [35], we find

γie ¼
4Z2

i e
4m2

e lnΛeff

3πℏ3mið1þ e−ηÞ ; ð5Þ

where η ¼ μ=Te, μ is the chemical potential, Zi is the charge
of the ith nucleus, e is the elementary charge,ℏ is the reduced
Planck constant, and the effective Coulomb logarithm is
given by [36]

lnΛeff ¼
Z

∞

0

dkk3ð1þ e−ηÞ
ðeλ2Tk2=ð16πÞ−η þ 1Þðk2 þ k2TFÞ2

: ð6Þ

TheCoulomb logarithm (6) is naturally convergent as a result
of long-wave (k → 0) screening characterized by the
Thomas-Fermi (TF) length scale k−1TF andof a purely quantum
short-wave (k → ∞) cutoff on the scale of the thermal de
Broglie wavelength λT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=ðmeTeÞ

p
. The frequency

γie is valid for all degeneracies, and thevalues of η and lnΛeff
can be computed using the relations

I1=2ðηÞ ¼
2

3
Θ−3=2 ¼ 2π2ℏ3ne

ð2meTeÞ3=2
; ð7Þ

k2TF ¼
2mee2

πℏ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meTe

p
I−1=2ðηÞ; ð8Þ

where the pth-order Fermi integral is defined here as
IpðηÞ ¼

R∞
0 dxxp=ð1þ ex−ηÞ. We have also introduced

the degeneracy parameter, which is defined in terms of the
electron temperature and Fermi energy as Θ ¼ Te=EF,
where EF ¼ ℏ2k2F=2me, with kF ¼ ð3π2neÞ1=3. Accurate
and efficient fits to these integrals and their inverses can
be found inRefs. [37–39]. To avoid the integration in Eq. (6),
a simple interpolation formula is also presented in Ref. [35],
which approximates the effective Coulomb logarithm as

lnΛeff ≈
1

2
½ln ð1þ Λ2

0Þ − 1�; ð9Þ

Λ2
0 ¼

12meT2
e

4πℏ2e2ne

�
0.37þ 4

9
η2
�
: ð10Þ

Note that the variables neðr; tÞ, ηðr; tÞ, and TeðtÞ vary
throughout the simulation discussed in Sec. IV, so the nuclei

experience energy transfer to and from the electrons
consistent with local conditions. In other words, we convert
all local, uniformmodels, such as the stopping-power model
and the internal-energy model given below, to their
local-density approximations; this is a potential source of
error but one that is difficult to quantify because of a lack
of stopping models that incorporate macroscopic gradi-
ents in input quantities such as the dielectric response
function [40].
The Langevin forces on the nuclei are associated

with momentum and energy transfer between the electronic
and nuclear subsystems, subject to energy and momentum
conservation [41–43]. For example, fast nuclei will
experience electronic stopping, which in turn causes
electron heating. The electron-bath temperature therefore
evolves as

dTe

dt
¼ Ω−1

X
i

Te − Ti

τie
þ SeðtÞ ð11Þ

¼ nj
X
j

Te − Tj

τje
þ SeðtÞ; ð12Þ

where Ω is the volume of the simulation cell,
τie ¼ Ce=ð3γieÞ, and Ti ¼ 1

3
mihv2i i. In the second line,

the sum over each nucleus i is replaced with a sum over the
species j. The electronic heat capacity Ce ¼ ∂ue=∂Te can
be computed using an equation of state given by an ideal
Fermi gas with specific internal energy

ueðTe; ηÞ ¼
12Teffiffiffi
π

p
λ3T

Z
∞

0

dx x2 ln ð1þ eη−x
2Þ: ð13Þ

Finally, the term SeðtÞ is the power delivered to the
electrons by an external source (e.g., particles and/or
radiation). In Sec. IV, we employ this model to examine
the heating of an interface; however, we use a reduced form
of the model in which we inject energy into the electrons
only through a prescribed TeðtÞ, and there is no back-
reaction from the nuclei.

III. MULTISCALE OFDFT MD METHOD

The principal challenge in evolving Eq. (1) is the
evaluation of the forces Fi on each nucleus. In particular,
calculations of the screened forces arising from the combi-
nation of the nuclei and the “slow” component of the
electrons, which we denote as Fscr

i ¼ Fnuc
i þ Fslow

i , are the
most computationally demanding because of the many-
body and potentially long-range nature of these forces. In
the absence of magnetic fields, these forces result from the
electrostatic interactions between the charge distributions
and can thus be expressed in terms of an electrostatic
potential and the corresponding Poisson equation as

Fscr
i ¼ −Zie∇ΦðrÞjr¼ri ; ð14Þ
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−
1

4π
∇2ΦðrÞ ¼

X
i

Zieδðr − riÞ − eneðrÞ: ð15Þ

The electronic density neðrÞ then remains to be determined.
The choice of an electronic structure is needed before

proceeding; we compromise between the computational
cost and physics fidelity. For computational reasons, it is
desirable to exploit the lower computational costs of
OFDFTs. Within that class of methods, we must choose
the forms of the kinetic-energy and exchange-correlation
functionals. First, our model must accurately predict the
ionization level for a high-fidelity separation of the micro-
scale from the macroscale. Both Fromy et al. [44] and
Murillo et al. [45] have shown that the ionization level
predicted from various models is insensitive to the model
choice above approximately 10 eV. Similarly, Fromy et al.
[44] show that the pressure is also insensitive, which is
important for obtaining accurate effective ion-ion forces.
Yonei, Ozaki, and Tomishima [46] have found similar
results for the exchange-correlation potential, showing that
the exchange and correlation free energies decrease rapidly
at higher temperatures and that the most important correc-
tion to the basic TF model is the gradient correction,
consistent with the observations of Fromy et al. [44]. In
comparison with Kohn-Sham DFT, Danel, Kazangjian, and
Zerah [47,48] have shown that the Thomas-Fermi-
Weizsacker method converges to the Kohn-Sham result
rapidly above approximately 10 g=cc for boron. For hot,
dense plasmas, the functionally similar Thomas-Fermi-
Kirzhnits (TFK) model has been found to be accurate
[49,50], as the gradient expansion is derived in the long-
wavelength limit. Thus, from a physics-fidelity point of
view, we begin with the TFK formulation, which is among
the least computationally expensive approaches; more
details are given below. While this choice may not be
justifiable in other applications, such as those at lower
temperatures [51], our numerical study will elucidate the
relative costs of each portion of the multiscale method.
We now turn to a complete description of our OFDFT

model, which is formulated from the variational minimi-
zation of an approximate free-energy functional. Consider
the grand potential [52] for the electrons in the presence of
an external potential produced by the nuclear cores:

Ω½ne� ¼ F ½ne� − μ

Z
drneðrÞ; ð16Þ

F ½ne� ¼ F e½ne� þ
e2

2

ZZ
dr0dr

neðrÞneðr0Þ
jr − r0j

þ
Z

drvextðrÞneðrÞ þ F xc½ne�; ð17Þ

where F ½ne� is the Helmholtz free energy, and μ is the
chemical potential, which ensures conservation of particle
number. Within the total free energy (17), F e½ne� is the free

energy of noninteracting electrons, the second term is the
Hartree electron-electron interaction, vextðrÞ is the external
potential arising from the nuclear cores, and F xc½ne� is the
remaining exchange-correlation contribution. The elec-
tronic structure is then obtained through the variational
minimization

δΩ
δne

½ne� ¼ 0; ð18Þ

which yields the Euler-Lagrange (EL) equation

μ ¼ δF e

δne
þ δF xc

δne
þ
Z

dr0
e2neðr0Þ
jr − r0j þ vextðrÞ: ð19Þ

Once a particular form of the free energy (17) is prescribed,
OFDFT can be used to determine the electronic density at a
particular time step, together with standard MD (i.e.,
without the Langevin terms) to evolve the nuclear coor-
dinates; this combined method is called the “OFDFT
molecular dynamics” (OFDFT-MD, or sometimes just
OF-MD) method [15,53–55]. The OFDFT-MD formulation
is preferred here over the more commonly employed
orbital-based approaches because of the computational
advantage it offers with little loss of accuracy at high
temperature; however, aspects of our model can be modi-
fied to include orbitals (e.g., in the average-atom calcu-
lation) for lower-temperature applications. Note that this
notation is consistent with the commonly used convention
of describing the electronic method before the dash and the
ionic method after the dash.
To illustrate our multiscale method, we choose a specific

macroscale model relevant to HED matter; however, the
method is generic to an arbitrary choice in the functional.
For HED environments, the random-phase approximation,
in which exchange and correlation effects are ignored
(F xc ≈ 0), can often be invoked, as these contributions
become increasingly negligible in the high-temperature
limit [46]. A reasonable starting point to model the
remaining free energy of the noninteracting electrons,
F e, is the TF functional

FTF ¼ ð2meTeÞ3=2
π2ℏ3

Z
dr

�
ηI1=2ðηÞ −

2

3
I3=2ðηÞ

�
; ð20Þ

with neðrÞ ¼
ð2meTeÞ3=2

2π2ℏ3
I1=2(ηðrÞ): ð21Þ

This functional is exact in the (nonrelativistic) dense and/or
hot limit, where the electron distribution becomes increas-
ingly uniform. Equation (19) thus reduces to

μ ¼ TeηðrÞ þ
Z

dr0
e2neðr0Þ
jr − r0j þ vextðrÞ: ð22Þ

Alternatively, Eq. (22) can bewritten in differential form as
the Poisson-Thomas-Fermi equation
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−
1

4π
∇2Φ ¼ ρnuc −

eð2meTeÞ3=2
2π2ℏ3

I1=2(βðeΦþ μÞ); ð23Þ

ρnuc ¼
X
i

Zieδðr − riÞ; ð24Þ

where β ¼ 1=Te is the inverse thermal energy of the
electrons. An advantage of the DFT formalism is that one
can systematically improve upon the model by adding new
contributions to Eq. (16). For example, as the TF functional
assumes a uniform electron density, we can explore the
effects of gradient corrections to the free energy,

F e½ncge � ≈ FTF½ne� þ FK½ne�; ð25Þ

where the finite-temperature Kirzhnits correction [49] to the
kinetic energy functional is given by

FK½ne� ¼
Z

drhλðηÞ
j∇neðrÞj2
neðrÞ

; ð26Þ

hλðηÞ ¼
3ℏ2λ

4me

�I 0
−1=2ðηÞI1=2ðηÞ
I2
−1=2ðηÞ

�
: ð27Þ

The prime in Eq. (27) denotes differentiation with respect to
η, and the parameter λ allows the model to span both the true
gradient-corrected TF limit (λ ¼ 1=9) and the traditional
Weizsäcker correction atTe ¼ 0 (λ ¼ 1). The functionhλðηÞ,
in turn, ranges from ℏ2λ=ð8meÞ in the strongly degenerate
limit (Θ ≪ 1) to 3ℏ2λ=ð8meÞ in the weakly degenerate limit
(Θ ≫ 1). An accurate fit to hλðηÞ for the λ ¼ 1=9 case
(denoted simply as h) can be found in Ref. [49], and further
gradient corrections can be found in Ref. [17]. In differential
form, the EL equation corresponding to the TFK model
becomes

μ ¼ Teηþ
Z

dr0
e2neðr0Þ
jr − r0j −

2hλ
ne

∇2ne

þ
�
hλ
n2e

−
1

ne

∂η
∂ne

∂hλ
∂η

�
j∇nej2 þ vextðrÞ; ð28Þ

where
∂η
∂ne ¼

4π2ℏ3

ð2meTeÞ3=2I−1=2ðηÞ
: ð29Þ

Both the TF and TFKmodels offer multiple advantages; they
become exact in the dense limit, are valid over all finite
temperatures, and yield simpler calculations than their
orbital-based counterparts. Furthermore, they are sufficiently
accurate over large regions of the HEDparameter space [50].
It is important to note that even with the simpler TF

model, the evolution of the OFDFT-MD equations can still
be computationally challenging, as the calculations of the
electron density and resulting forces are typically nonlinear
and nonlocal and involve a variety of length scales. Current

attempts at a direct solution of the OFDFT-MD system,
which require empirical modifications to the equations to
circumvent numerical instabilities arising from singular
electron densities near nuclear cores [56], are still limited to
thousands of nuclei and hundreds of femtoseconds [57]. We
attempt to solve these same equations but mitigate some
complexities of the calculations by separating the model
into components occurring on three length scales: intra-
atomic, interatomic, and continuum. At the intra-atomic
(micro) scale, atomic physics, in which complex inter-
actions occur between bound (core) electronic states and
free (valence) states, dominates. At the interatomic (meso)
scale, the dynamics is governed by ionic collisions and
many-body phenomena. Finally, at the continuum (macro)
scale, large-scale variations in the bulk parameters can
naturally be described. The remainder of this section is
devoted to calculations at these three scales and ultimately
to recombining the calculations. For brevity, we refer to this
Multiscale OF-DFT MD approach as “MOD-MD” within
the remainder of this paper.

A. Microscale: Ionization states

At the smallest length scale in our model, we can greatly
simplify our calculations by treating bound (core) and free
(valence) electrons of a given atom separately. Once
determined, the free states of the electrons can be distrib-
uted throughout the system, and the remaining bound states
are treated as point particles suppressed to the nucleus,
giving the resulting ion an effective charge of Z�

i e. As this
ionization state might not be known a priori and could
depend on the local density and temperature for the
particle’s position, we present a model to approximate
Z�
i e for each particle. It should be noted that we use the

notation Z� to refer to the mean ionization state (MIS) in
general, rather than a specific theoretical definition [45].
We begin by introducing a fixed, coarse-grained mesh

with grid spacings that are large compared to the mean free
paths of the ions, as illustrated in Fig. 1. It is then assumed
that the electrons in each cell between mesh points are in
local thermodynamic equilibrium, and thus the local temper-
ature and mean ionic density within the cell are used to
calculate electronic properties. A multispecies ionization
model that can be used to rapidly compute the finite-
temperature and finite-density atomic physics is required.
If a precomputed table of values is not readily available, then
several options for computing the ionization states on the fly
are available. Saha models, which are accurate in the low-
density limit, are derived from a chemical picture in which
experimentally measured ionization energies are combined
with Boltzmann transition probabilities and known degen-
eracies for each state [58,59]. Density effects can be
included in a limited sense through accurate continuum-
loweringmodels. Alternatively, average-atom (AA)models,
which are accurate in the high-density limit, can be used to
calculate the spherically symmetric electronic structure
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about a nucleus of charge Ze within a cavity embedded in
a jellium background. The simplified geometries used in
AA models allow the rapid calculation of various thermo-
dynamic quantities, such as the ionization state.
For our own calculations, we use the well-studied TF

average-atom (TF-AA) model [60], for which accurate fits
are available [61]; this model has also often been shown to
agree well with more sophisticated models, and it becomes
increasingly accurate for hot, dense systems [45]. In this
model, the electrons are approximated by minimizing the
TF functional (20) in a spherical volume chosen to have
the ion-sphere radius ai ¼ ð4πnion=3Þ−1=3, where nion is the
mean ionic number density of the coarse-grained cell. On
the sphere, the electric field is assumed to be zero, and the
electrons are assumed to be free beyond the sphere. The
approximate ionization state is thus calculated as

Z�
i ¼

�
4πa3i
3

�
neðaiÞ: ð30Þ

The TF-AA model can easily be generalized to mixtures
of multiple atomic species, as well, by iteratively converg-
ing on a self-consistent chemical potential within the
numerical cell; the numerical scheme for this generalization
is described in detail in Appendix A. Decomposing the
density as a superposition of average atoms at the micro-
scale step has the distinct advantage that the MOD-MD
steps begin with a finite-temperature, finite-density, all-
electron calculation that does not employ a pseudopotential
nor require careful treatment of a grid near the nuclei.
Alternatively, because we ultimately obtain a set of fZ�

i g
for the species from this step, the average-atom step can
also be viewed as including the pseudopotential calculation
in line, where it is computed on the fly as local conditions

change in space and time. Once the ionization state is
calculated for a given particle, the free and bound states are
separated, and the bound states are taken to be point
charges located at the nucleus. This allows ionization states
to be assigned to ions and the total number of free electrons
to be determined, as well. More importantly, the macroscale
calculation need only be applied to the free electrons, as we
discuss next in Sec. III B. Note that this will also alter the
damping rate (5) in the Langevin process, so it will now be
expressed in terms of the ionic charge number as

γie ¼
4Z�2

i e4m2
e lnΛeff

3πℏ3mið1þ e−ηÞ : ð31Þ

B. Macroscale: Coarse-grained fields

Once an ionic charge is assigned to each nucleus in the
above calculation, a coarse-grained (CG) ionic charge
density ρcgionðrÞ can be constructed on the grid points
associated with the CG mesh. Using this quantity, we
can then calculate the corresponding CG free-electron
density ncge ðrÞ and electrostatic potential ΦcgðrÞ self-
consistently using the corresponding OFDFT model
[Eqs. (16)–(19)] at the CG level. As with the full model,
we use the grand potential for the CG free electrons in the
presence of an external potential produced by the CG ionic
charge density:

Ω½ncge � ¼ F e½ncge � þ
e2

2

ZZ
dr0dr

ncge ðrÞncge ðr0Þ
jr − r0j

þ
Z

dr½vcgextðrÞ − μ�ncge ðrÞ þ F xc½ncge �: ð32Þ

Using this potential, we obtain the following EL and
Poisson equations to be solved on the CG mesh:

eΦcgðrÞ þ μcg ¼
δF e

δncge
þ δF xc

δncge
; ð33Þ

−
1

4π
∇2ΦcgðrÞ ¼ ρcgionðrÞ − encge ðrÞ: ð34Þ

There are two advantages to this approach. First, the
coarse-grained electronic density is smoother than the total
density, greatly relaxing the conditions on the grid spacing
relative to what would be needed for the bound electrons
near the nuclei. Second, the macroscale density is allowed
to have a different symmetry than the total density. For
example, a planar interface can be approximated as one
dimensional, as in the application discussed in Sec. IV. In
that simulation, we construct the CG mesh by dividing the
numerical domain at that scale into bins parallel to the
interface, with enough resolution to capture the gradient of
the free-electron density near the interface. Capitalizing on
both the smoothness and the higher symmetry in the

FIG. 1. Coarse-grained mesh. Illustration of point ions and
coarse-grained mesh used to find the local ionization levels of the
mixtures in each cell. Note that, in practice, the mesh and ion
coordinates are in three dimensions, and the mesh spacings need
not be equal in each direction.

STANTON, GLOSLI, and MURILLO PHYS. REV. X 8, 021044 (2018)

021044-6



macroscale electronic structure calculation considerably
reduces the computational cost. We would like to empha-
size several points that highlight the multiscale aspect of the
MOD-MD model. The grid is chosen to match the macro-
scale variations in the free-electron density, which allows
the grid to be in fewer than three dimensions and to have a
spacing that resolves only free-electron variations. For
example, for problems such as planar interfaces and simple
shocks, this allows the use of a 1D grid that is fine in a
subregion near the largest inhomogeneities and very coarse
in other regions. This approach stands in stark contrast to
other DFT methods that enforce full self-consistency by
using a grid that resolves all scales associated with all of the
electrons.
Within each spatial zone, we begin each time step by

computing the atomic-physics properties for the new
composition, temperature, and number densities for that
time step. These calculations are necessary when studying
HED matter because the ionization of the time-evolving
mixtures is not known a priori before the simulation.

C. Mesoscale: Effective pair interactions

Decomposing the electron density into free states dis-
tributed throughout the system and bound states suppressed
to their respective nuclei, we can approximate Eq. (15) as

−
1

4π
∇2ΦðrÞ ¼

X
i

Zieδðr − riÞ − eneðrÞ ð35Þ

≈
X
i

Z�
i eδðr − riÞ − enfðrÞ; ð36Þ

where nfðrÞ denotes the free electrons. By introducing the

free-electron-density fluctuation ΔneðrÞ¼ nfðrÞ−nðeÞ0 and
electrostatic potential fluctuation ΔΦðrÞ ¼ ΦðrÞ −Φ0,

where nðeÞ0 is the mean free-electron density, which acts
as a uniform neutralizing background, and Φ0 is the mean
electrostatic potential, we can then rewrite the above
expression in the form

−
1

4π
½∇2 −K2ðrÞ�ΔΦðrÞ ¼

X
i

Z�
i eδðr − riÞ − enðeÞ0 ;

where K2ðrÞ≡ 4πe
ΔneðrÞ
ΔΦðrÞ : ð37Þ

Here, KðrÞ can be thought of as a generalized screening
function; note that this function becomes constant to the
value of the inverse screening length in the Debye-Hückel–
Yukawa limit. We exploit this fact by assuming that KðrÞ is
itself a slowly varying function in space, even if its
constituent functions (Δne and ΔΦ) are not; this approxi-
mation is the central assumption of this multiscale model.
In this slowly varying limit, we thus approximate KðrÞ
using the CG fields as

K2ðrÞ ≈ 4πe
Δncge ðrÞ
ΔΦcgðrÞ : ð38Þ

Once the function KðrÞ is known from the CG calculation,
Eq. (37) is used to calculate the resulting electrostatic
potential, and the particle positions can be numerically
updated from Eq. (1); the entire process is then repeated.
Figure 2 shows a schematic of the concurrent steps used
during each time step of MOD-MD to evolve the particle
positions, and we show how the various length scales enter
into solving Eq. (37).
Deeper insight into approximation (38) is gained by

examining the limits of the CG mesh size. In the extreme
limit of an infinitely resolved 3D mesh, the CG ionic charge
distribution simply recovers the bare charge distribution of
discrete point nuclei, and thus the calculation of Eq. (37)
recovers the full all-electron equations of OFDFT.
Conversely, the opposite limit of an infinitely coarse mesh
yields a constant function K calculated from the mean free
electron density, which is identical to a system described by
screened Coulomb (or Yukawa) interactions. Using an
example system of mixing at an interface, which will be
explored in great detail in Sec. IV, we can demonstrate the
convergence of K on the CG mesh. In this example, the
interface is planar, so a 1D mesh can be used to approxi-
mate the full system, where the direction normal to the
interface is denoted by the z axis (note that this 1D
approximation will break down as the mesh becomes
infinitely resolved). Calculations of the screening function
KðzÞ for various bin sizes are shown in Fig. 3. Both early
time (upper left) and late time (upper right) cases are
examined to demonstrate sharp and diffuse interfaces, and

FIG. 2. MOD-MD algorithm. Schematic showing the concur-
rent steps at each length scale during each time step within the
MOD-MD method.
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an interpolation scheme is used to make KðzÞ continuous
throughout the system. As the number of bins within the
fixed domain increases, the solution converges fairly
rapidly. This convergence can be quantified using the
relative error

Ec ¼
kK −Kck
kKck

; kfðzÞk≡
Z
R
dzjfðzÞj2; ð39Þ

where Kc is the converged function, which is plotted in the
bottom row of Fig. 3. As expected, the smoother case at the
later time converges more rapidly (by roughly an order of
magnitude).
For the general problem, calculating KðrÞ separately at

the macroscale simplifies Eq. (37) to a (quasi)linear
equation at a particular time step, and this simplification
allows us to decompose the many-body problem into a
superposition of one-body problems as

ΦðrÞ ¼
X
i

ϕðiÞðr − riÞ; ð40Þ

−
1

4π
½∇2 −K2ðrþ riÞ�ϕðiÞðrÞ ¼ Z�

i eδðrÞ: ð41Þ

As solving Eq. (41) for each particle could still be
computationally expensive, we also exploit the slow
variations in the function KðrÞ and derive perturbative
solutions in this limit; see Appendix B for details of these
calculations. At the lowest-order approximation, where
variations in KðrÞ can be considered locally negligible,

the Oð1Þ asymptotic solution to the one-body problem in
Eq. (41) is given by

ϕðiÞðrÞ ∼ Z�
i e
r

e−κir; κi ¼ KðriÞ: ð42Þ

Note that this solution is equivalent to the standard Yukawa
model with a locally defined screening length at each
particle’s position. We can easily improve upon Eq. (42) by
including the next-order corrections to obtain

ϕðiÞðrÞ∼Z�
i e
r

e−κir
�
1−

r
2
bi · r

�
; bi ¼∇KðriÞ: ð43Þ

We can now calculate the screened force (14) on the ith
particle (i.e., the combination of the nuclear and slow-
electronic contributions), modified by the macroscopic
variations in the system. Using Eq. (42), the Oð1Þ force
is asymptotic to

Fscr
i ¼ −Z�

i e∇
X
j≠i

ϕðjÞðr − rjÞ
				
r¼ri

¼
X
j≠i

Z�
i Z

�
je

2

r3ij
e−κjrijð1þ κjrijÞrij; ð44Þ

where rij ¼ ri − rj and rij ¼ jrijj. In Eq. (44), we find that
the so-called “self-energy” terms vanish; however, at the
next order, the anisotropy of the screening cloud due to the
heterogeneous background induces a dipole contribution to
the force.

FIG. 3. Convergence ofK. Convergence of the screening functionKðzÞ with increasing number of bins. Profiles ofKðzÞ are shown in
the top row, while convergence of the solution is presented in the bottom row in terms of the relative error Ec ¼ kK −Kck=kKck, where
Kc is the converged function, and kfðzÞk≡ R

R dzjfðzÞj2. An example system of a planar interface is explored (see Sec. IV for more
details), where the left column is the initial (t ¼ 0 ps) sharp interface and the right column is a late-time (t ¼ 15 ps) diffuse interface.
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To understand the validity of expanding in terms of slow
variations in the screening function KðrÞ, which is calcu-
lated using a CG mesh, we again employ the example of a
planar interface used to calculate Eq. (39). For this expan-
sion to be valid, the magnitude of the expansion terms must
be successively smaller, and thus the first-order correction
ðr=2Þr ·∇KðriÞ from Eq. (43) needs to be small compared
to unity. On the 1D CG mesh under consideration, this
correction will be largest along the z direction and must be
small for a given bin width. Evaluating these correction
magnitudes over the entire domain, we thus require

Cmax ¼ max
z∈R


				 12L2
dK
dz

ðzÞ
				
�

≪ 1; ð45Þ

where L is the bin size. As expected, these maximal
corrections occur near the large gradients induced by the
interface, and we show Cmax as a function of the number of
bins N in Fig. 4. The two cases of a sharp and a diffuse
interface are again examined, where it can be seen that over a
thousand bins are needed to keep these corrections small for
the initial interface, while only several hundred bins are
needed for later times in the simulation. This correction
appears to roughly scale asN−2 for largeN, which is expected
to break down once individual particles are being resolved
and the 1Dapproximation is no longer valid. However, at that
point, the CG calculation will begin to recover the full
OFDFT solution, making the expansion obsolete.
Using Eq. (43) instead, the next-order correction to the

force yields the improved form

Fscr
i ¼ 1

2
ðZ�

i eÞ2bi þ
X
j≠i

fijðrijÞ; ð46Þ

fij ¼
Z�
i Z

�
je

2

r3ij
e−κjrij

�
1þ κjrij −

1

2
κjr2ijbj · rij

�
rij

þ 1

2
Z�
i Z

�
je

2e−κjrijbj: ð47Þ

Higher-order corrections to both the electrostatic potential
and the corresponding force are presented in Appendix C.
To understand the source of the dipole term in Eq. (46),

we examine a screening cloud of electrons around a given
ion; this screening can be calculated from

nðiÞe ðrÞ ¼ 1

4πe
∇2ϕðiÞðrÞ þ Z�

i δðrÞ: ð48Þ

At Oð1Þ, we have the traditional Yukawa form nðiÞe ðrÞ ¼
Z�
i κ

2
i e

−κir=ð4πrÞ, which is clearly spherically symmetric.
The dipole appears at the next order, where we have

nðiÞe ðrÞ ¼ Z�
i

4πr

�
κ2i þ 2κi

�
1 −

κir
4

�
bi · r

�
e−κir: ð49Þ

While nðiÞe ðrÞ can be negative in this approximation, recall
that this quantity is the deviation in the density with respect
to themean. In general, the nth-order asymptotic expansions
in Eqs. (B5) and (B6) will produce the screening cloud

nðiÞe ðrÞ ¼ 1

4π
K2ðrÞϕðiÞðrÞ þOðεnþ1Þ; ð50Þ

where ε is the expansion parameter associated with gradients
in K2ðrÞ; see Appendix B. We present plots of these
corrections to the electron density in Fig. 5. Here, we have
used κi ¼ 1, h1 ¼ 1=2, and h2 ¼ 1=4 in arbitrary units,
whereh1;2 are coefficients defined in the expansion (B6), and
we have assumed an electric field directed solely in the
negative-z direction. The top rowof the figure shows the first-
order correction corresponding to Eq. (49), and the bottom
row shows the next-order correction corresponding to
Eq. (C17). Within each row, the left panel shows rneðrÞ
as a color map in the (x, z) plane, while the right panel shows
a cross section of the same quantity along the z axis, with the
unperturbed density plotted (dashed line) for comparison.
The electric field can be seen to cause the electron cloud to
shift to the right, which in turn weakens the force on the ion,
and the next-order correction appears to enhance this
polarization.
In summary, the MOD-MD method separates the system

into two timescales (fast and slow) and three length scales
(atomic, interionic, and continuum) as shown in Fig. 2. The
microscale is used to resolve atomic physics, while the
macroscale captures variations in the bulk parameters.
These scales are then combined to inform the screened
interactions between ions at the mesoscale. Finally, the
nuclear positions are updated using these screened forces,
along with the electronic fluctuations associated with the

FIG. 4. Maximal correction. Maximum magnitude of the first-
order correction in Eq. (43) evaluated across a bin given by the
expression (45) as a function of number of bins. The two cases
shown are for an initial sharp interface at t ¼ 0 ps (red curve,
circles) and a later diffuse interface at t ¼ 15 ps (green curve,
triangles). The curveN−2 is also plotted to show the rough scaling
of the convergence.
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faster scale in accordance with Eq. (1). The models that
encompass MOD-MD are summarized in Table I. While we
have argued that good modeling choices that balance
physics fidelity and computational cost have been made,
we also show a column with obvious improvements that
could bemade.Which improvements are needed depends, of
course, on the specific problem, and the computational costs
are currently mostly unknown. However, the important

aspect of this multiscale approach is that its main approxi-
mation is breaking with perfect self-consistency, which
allows improvements to various model inputs without
necessarily impacting the others. Next, we apply this model
to a specific application for which we can examine the
relative computational costs.

IV. INTERFACIAL MIXING IN HIGH
ENERGY-DENSITY MATTER

We now illustrate the use of the MOD-MD method for
studies of mixing at interfaces. Several specific aspects of
such systems can be studied using this approach, including
microscale mixing rates computed at MD fidelity (i.e.,
across coupling regimes), the nature of transport (e.g., the
role of electric fields), and nonhydrodynamic features (e.g.,
anisotropic velocity distributions). While MD has been
used previously to examine electric fields near metal-
aqueous interfaces [62], our interest is in HED environ-
ments. In particular, targets in ICF experiments typically
have a central deuterium-tritium (DT) fuel surrounded by
higher-Z elements that form pusher-ablator layers; mixing
of the higher-Z elements into the fuel can produce an
undesirable energy loss (through enhanced bremsstrahlung
emission). In some cases, the fuel is initially separated into
an interior gas volume surrounded by a solid (ice) fuel
layer, both composed of a DT mixture. The targets are
compressed by shocks produced in the ablator layers, and
these shocks can potentially cause mixing (or unmixing) at
the interface. We examine the preshock conditions at the
ice-ablator interface, which is preheated before the arrival
of the shock resulting from radiation and fast electrons. Of
particular interest are the transport processes [63] at the
heated interface as a function of the heating rate and how
these processes impact the material properties and interface
structure that the shock will experience.
The simulations were set up as follows. Because trans-

port processes scale as T3=2 in the high-temperature limit,

FIG. 5. Polarized screening clouds. Comparisons between the
perturbed and unperturbed electron densities. On the left, we plot
a color map of rneðrÞ in the (x, z) plane, where Eq. (49) is used for
the top row and Eq. (C17) is shown in the bottom row. On the
right, we have plotted these same quantities as cross sections
along the z axis, with the perturbed density shown as a dashed
curve for comparison. In each case, we have set Z�

i ¼ 1, κi ¼ 1,
h1 ¼ 1=2, and h2 ¼ 1=4 in arbitrary units, where the coefficients
h1;2 are defined in Eq. (B6).

TABLE I. A summary of the various inputs to the MOD-MD model is given, along with improvements we feel are the next obvious
step. Because of the multiscale nature of MOD-MD, most models can be improved independently; however, improvements are also
possible by enforcing higher degrees of self-consistency among the models.

Input summary for the MOD-MD model

Scale Model Choice Improvement (future)

Micro Average atom (AA) Thomas-Fermi, extract hZi AA variants (e.g., gradient corrections, relativity, KS);
Saha-based models; extracted pseudopotential

Meso Ion-ion interaction Dipole correction More multipoles
Electron-ion coupling Stopping power (Skupsky) Improved model, closer connection to average atom;

memory and colored noise
Electronic EOS Ideal Fermi gas Correlations

Macro 1D grid Parallel to interface 2D and 3D gridding, adaptive gridding
Free electronic structure Thomas-Fermi Improved OFDFT variants; dynamic electrons
Electronic heat conduction None Thermal conductivity model
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their dominant contributions will occur at the highest
temperature of the simulation (50 eV). As such, we focus
on the relevant physics at that temperature scale and thus
use the basic Thomas-Fermi formulation of OFDFT for
both the microscale and macroscale components of the
model as detailed in Table I [44–48]. Periodic boundary
conditions were used in all Cartesian directions, which
results in two interfaces; in most of the plots below, we
average the two macroscopically equivalent portions of the
simulation cell to improve statistics. To accommodate the
spatial scale needed to examine micron-scale mixing at
the many-picosecond timescale, an aspect ratio of
about 3:3:400 was used (17 nm × 17 nm × 2.3 μm); the
simulation domain at three different scales is shown in
Fig. 6. Thus, the simulations are quasi-1D, while still
allowing for fully 3D collisions and correlations at the
microscale, where the transverse (to the interface) length
scale is roughly 75 interparticle spacings. To mimic
separate, cold materials before the heating pulse, the
plastic (CHO) ablator had a mass density of 1.05 g=cm3

and consisted of 42.3% C (15,764,054 particles) and
57.2% H (21,293,565 particles), with a small dopant of
0.5% O (187,981 particles). The fuel consisted of
approximately 50% D (10,166,786 particles) and
50% T (10,187,614 particles), with a mass density of
0.25 g=cm3. Thus, a total of 57.6 million particles were
used in the entire simulation. These conditions were chosen
to be consistent with typical ICF capsules [64]. Each region
was initialized as separate body-centered cubic (BCC)
lattices that were brought together into the main simulation
domain. While real DT ice and CHO plastic are not truly
distributed in BCC lattices, our current electronic-structure

method is not robust enough to describe the molecular or
polymer states of these materials; however, the matter in
these simulations heats very quickly away from this
initial state.
The nuclear equations of motion in Eq. (1) are evolved

using MD, given the total force on each nucleus, which
arises from the three contributions of other nuclei, the slow
electronic structure, and the fast Langevin forces. This is
the dominant contribution to the computational cost of
simulating the MOD-MD model. Because of the typical
screening lengths of the system of interest, a neighbor-table
algorithm was used to truncate the (infinite but convergent)
force contributions from the nuclei. The time discretization
used a standard velocity-Verlet integrator modified for a
Langevin process [65], with a time step ofΔt ¼ 0.01 fs. All
simulations were carried out for 10–15 ps (106–1.5 × 106

time steps) using 216 MPI ranks (4 MPI ranks per core,
16 cores per node, 1024 nodes).
Some specific features of the MOD-MD model made the

simulations far more efficient than previous models that
directly solve for the total electronic density with a single
3D grid that must resolve both macroscopic gradients and
atomic-scale gradients. Because interface problems (and
others, such as planar shocks) are one dimensional at the
macroscale, we solve for the macroscale electronic struc-
ture on a one-dimensional grid perpendicular to the initial
interface. The time associated with the electronic structure
solution with 2000 grid points was negligible compared
with that required by the MD integrator, as was the on-the-
fly determination of the ionic charge states. For this reason,
we did not explore nonuniform grids, which the interface
geometry lends itself to. To explore different heating

FIG. 6. Simulation setup. Several views of the simulation cell are shown at different scales. Note that the taper that appears in the
images results from the viewing perspective; the main cell is cuboid. The periodic cell contains 57.6 million particles total in a cell with
an aspect ratio of 3:3:400, as seen in the lower image; approximately half of the total cell is shown, and the cross denotes the center of the
cell. Atomic-scale mixing at the plastic-fuel interface is readily seen in the upper-right image, which is shown at 300 fs for the slow-
heating case. A color code for each species is shown in the legend.
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profiles, we did not use the electron-temperature equations
in the form (11); rather, we prescribed the electron temper-
ature to emulate an external source of energy. Both charged
particles and photons primarily deposit their energy into
electrons, and we model that process through two pre-
scribed TeðtÞ profiles: instantaneous heating to 50 eVand a
linear ramp-up to 50 eVover 10 ps. The purpose of having
two heating rates is to understand how kinetic effects are
impacted by the timescale of the heating process. Through
the Langevin model, the ions heat on a delayed time scale
corresponding to γ−1ei , as described in Sec. II. The results of
the macroscale electronic structure calculation are shown in
Fig. 7, where the ionic, electronic, and total charge
densities are shown for two different times and for both
heating rates. The specific parameters of the simulation are
listed in Table II.
Ablator-fuel mixing was simulated to 10 ps, at which

time the periodic boundary conditions interfered with the
reality of the model. The results for the two heating rates at
early and late times are shown in Fig. 8. In this figure, and
the ones that follow, a mild filter [66] was applied to the
data to reduce large fluctuations in cells with very small
particle numbers. The location of the initial interface at
z ¼ 0 is shown as the gray, vertical line. We see that the
pressure in the CHO plastic exceeds that of the DT fuel, and

the interface moves toward the DT, creating a density pulse
that propagates into the fuel. As expected, this phenomenon
is more pronounced when the heating is faster, as seen in
the lower row in the figure. Interestingly, the penetration of
plastic species into the fuel region is sensitive to the heating
rate. With the lower heating rate (top row), the C species
precedes the H and the O species into the fuel; conversely,
for instantaneous heating, the H greatly precedes the C
and O species, which penetrate at roughly the same rate.
However, at late times, the lighter H from the plastic region
has penetrated deepest into the fuel. In the case of rapid
heating, the H jets into the fuel to distances that greatly
exceed those for the other species. This hydrogen jetting
will be explored further below. Species separation of this
kind must be modeled through a mixture-transport model
[63] that is applicable to warm dense matter conditions.
Note that the D and T densities remain mostly locked to
each other.
The MOD-MD approach enables simulations at the

hydrodynamic scale, allowing us to explore the validity
of approximations made within specific hydrodynamic
models. For example, the mixing profiles in Fig. 8 show
the importance of using an extended hydrodynamics model
for modeling interfaces in ICF targets. While multispecies
transport can be handled in terms of multiple continuity

tot

FIG. 7. Charge densities. The ionic (upper, blue line), electronic (lower, green line), and total (middle, red line) charge densities are
shown, denoted as qi ≡ Zieni, qe ≡ −ene, and the sum qtot, respectively. The electronic charge density results from the macroscale
solver and is used to construct the mesoscale interaction potentials. The full (unfolded) cell is shown with both interfaces; the locations
of the original interfaces are denoted by vertical grey lines. The DT fuel is in the center region between the grey lines, whereas the plastic
ablator material is in the left and right regions that adjoin the boundaries. The top and bottom rows correspond to slow and rapid heating,
respectively, and the left and right columns show early and late (300 fs and 10 ps) times, respectively. Strong quasineutrality is
seen in all cases.
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FIG. 8. Mixing. Interfacial mixing (as species density fields) is shown for the two different heating rates (slow, top row; instantaneous,
bottom row) at early (first column) and late (second column) times. The gray vertical line denotes the original location of the interface
(plastic on the left; fuel on the right), and the O density has been multiplied by 50 in each panel to make it visible. Note that the D and T
densities remain locked together, whereas the C and H densities separate, with strong “jetting” of the H into the DT fuel region.

TABLE II. A summary of the computational choices made for simulating interfacial mixing.

Interface mixing computational parameters

Total particle number Ntot ¼ 57 600 000

Ablator particle number NC ¼ 15 764 054, NH ¼ 21 293 565 and NO ¼ 187 981
initially distributed on a 60 × 60 × 10 346 lattice

Fuel particle number ND ¼ 10 166 786 and NT ¼ 10 187 614
initially distributed on a 60 × 60 × 5654 lattice

Computational box Volume ¼ 17.178 × 17.178 × 2290.4 nm3

Coarse-grained grid 1D grid in z direction with 2000 grid points and
smoothing with a 3-point B-spline stencil

Analysis grid A grid for analysis used twice as many points than the solver in
order to resolve finer ionic structure.

Initial conditions Ablator volume ¼ fuel volume ¼ 1=2 computational domain with
sharp interface and T ¼ 0 for the ions

Time stepping
Case 1: 106 steps, Δt ¼ 0.01 fs
Case 2: 1.5 × 106 steps, Δt ¼ 0.01 fs

Electron heating
Case 1: Step function at t ¼ 0 (0 → 50 eV)
Case 2: Ramp from 0 eV at t ¼ 0 to 50 eV at t ¼ 10 ps
Constant of 50 eV after t ¼ 10 ps

Ion heating Ions “thermostated” by coupling with electrons using a Langevin algorithm.
The ion-electron coupling γei was determined using a Skupsky model and
varied spatially as a function of electron temperature, local electron density,
ion charge, and mass. For these simulations, γei was in the range 0.3–1 ps−1.

Force cutoff radius 5.5× local screening length, which varies spatially
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equations [63], the need for multiple momentum equations
is less clear. To explore whether multiple species-separated
momentum equations are needed, we show vzðzÞ, the z
component of the velocity, for all five species in Fig. 9. In
this variable, the hydrogen jetting is very pronounced,
especially in the case of instantaneous electron heating. As
with the density profiles, the D and T velocity fields are
locked together. However, all three of the plastic species
have separate velocity profiles, suggesting the need for
separate momentum equations for each species. In practice,
this situation is extremely problematic because one does
not typically have access to species-resolved mixture
equations of state. The velocity profile of the H shows
steady acceleration into the fuel, followed by a stopping
region in which the fast H deposits its energy into the other
ions (directly through the MD forces) and the electrons
(through the Langevin model [67]). The accelerated ions, in
turn, convert their kinetic energy into thermal energy, as
shown in Fig. 10, generating local species temperatures that
greatly exceed the prescribed electron temperature.
The velocity fields in Fig. 9 show strong segregation by

mass: The peaks of the velocity fields tend to appear in the
order H, C, and then O. It should be noted that the “noise”
in the curves is due to the sparsity of particles at the leading
edge of the front. In other words, the fluctuations show the
presence of only a few particles in a numerical cell. We
explore this result further in Fig. 11; in this figure, we show
the H temperatures, now separated into parallel and
perpendicular (to the initial interface) components, and

the total electric field (in red). An extremely small amount
of anisotropy is observed in the H temperature, mostly in
the leading edge of the temperature profile in the rapidly
heated case, suggesting a very mild kinetic effect. Because
the warm dense matter is very collisional, we do not expect
strong anisotropies in such quantities; however, at much
higher temperatures, temperature isotropy is not likely to
occur. Strong electric fields are observed near the interface;
these are responsible for the acceleration of the plastic
species into the fuel region, and this acceleration leads to the
heating seen in Fig. 10. The early-time peak electric field is
twice as strong for the instantly heated case (note the change
of scale). The electric field peak is located on the fuel side of
the interface, consistent with the rapid movement of the
interface because of the balance of pressure between the
plastic and the fuel. Note that a small secondary peak
appears to the right of the main peak at early times, and
comparing with the profiles in Fig. 8, we see that this peak is
associated with the density pulse driven into the fuel by
pressure equilibration.
Finally, we can use MOD-MD to examine deviations

from Maxwellian distributions, which precludes a key
assumption of most hydrodynamic (i.e., Navier-Stokes-
type) models. Near equilibrium, the normalized distribution
of each velocity component for a given species will be of
the form

fðvÞ ¼
ffiffiffiffiffiffiffiffiffi
m
2πT

r
exp

�
−

m
2T

v̄2
�
; v̄ ¼ v − hvi: ð51Þ

P P

FIG. 9. Velocity fields. The z component of the velocity field of each species is shown. Hydrogen jetting is reflected in the large values
of vzðzÞ for that species, relative to the others; the jetting is obviously more extreme with instantaneous heating. (In the lower-left panel,
the H velocity field has been scaled by a factor of 0.5.)
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FIG. 10. Ion temperatures. Ion temperature profiles are shown for four cases, as in the previous figures. The hydrogen species attains
temperatures that exceed the prescribed electron temperature by more than a factor of 2, which leads to slight heating of the DT fuel
species away from the interface. This heating results from stopping the fast plastic species in the fuel region.

FIG. 11. Hydrogen temperatures and electric field. The electric field (red), which has been multiplied by a factor of 500 in each panel,
and the parallel (blue) and perpendicular (green) temperatures are shown. A strong electric field is present near the location of the
interface, which is slightly shifted from its original location (see Fig. 8). We see that the field begins to diminish by 10 ps. However,
before that happens, the hydrogen is accelerated, as seen in Fig. (9), and begins to deposit its kinetic energy in the fuel, heating the fuel
above the target temperature of 50 eV. Note that there are subtle, but insignificant, differences in the parallel and perpendicular
temperatures, suggesting rapid thermal equilibration.
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The associated central moments can then be readily
calculated as

hv̄ni ¼

8><
>:

0 n odd�
T
m

�
n=2

ðn − 1Þ!! n even:
ð52Þ

This pattern reveals that the moments of a Gaussian are
connected and that specific ratios of powers of the moments
are constant; these findings yield a metric for quantifying
how “kinetic” a system is [68]. For example, one can define
the quantity

Gk ≡ hv̄2ki
ð2k − 1Þ!!hv̄2ik : ð53Þ

If the system is near equilibrium, then we have Gk ¼ 1 for
any integer k. Therefore, deviations from unity in Gk reveal
non-Maxwellian behavior. We have shownG2 in Fig. 12 for
H using the vz velocity component. Despite the high
collisionality at these temperatures and densities, G2

exhibits clear deviation from unity, with an overall trend
below unity in the tail region in which the H is accelerated
and eventually stopped. Recent results using a kinetic
model [69] show stronger kinetic effects for interfaces at
much higher temperatures.

V. CONCLUSIONS

We have developed a multiscale computational method
for heterogeneous charged systems (MOD-MD). Our

method works by separating the length scales associated
with atomic core electrons, interparticle forces, and global
density fluctuations; the method is based on the observation
that the Poisson equation can be separated into smoothly
and rapidly varying contributions that can be handled with
separate physics modules. This method differs from other
types of multiscale models because it employs a single
computational method (MD) but addresses different scales
within the electronic structure calculation. Ions are treated
directly through MD, with forces computed from this rapid
electronic structure calculation, as well as from a Langevin
prescription used to treat fluctuations in the electron
density. Through the use of finite-temperature OFDFT,
we are able to include quantum mechanics at all temper-
atures and densities in our method. This multiscale decom-
position offers several advantages, including that it allows
different symmetries and gridding at various scales, pro-
vides a modular treatment of the physics at each scale, and
permits a more dynamic interaction with the electronic
bath. What is potentially interesting about this idea generi-
cally is that it allows people to think about bottlenecks
caused by dominant symmetries at different scales. Here,
we have shown that by making the electronic structure
multiscale, we can use the appropriate coordinate systems
at three different length scales.
We have used our model to explore interspecies mixing

at a heated interface relevant to ICF experiments. In this
demonstration, we employed several specific modeling
choices, including a TF ionization model for mixtures

FIG. 12. Non-Maxwellian distributions. The central moment ratio G2 ¼ hv̄4i=ð3hv̄2i2Þ is shown for H, where v̄ ¼ v − hvi. Large
fluctuations in G2 are apparent, with a trend toward values less than unity. Also shown is a very hard collision in the lower right panel
(indicated by the arrow); this feature appears only in the v4z data.
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(see Appendix A), a macroscale TF model, and a dipole
expansion at the mesoscale, to examine atomic mixing near
a rapidly heated interface. These choices have permitted
simulations with 57.6 million particles, allowing for
micron-scale (in one direction) and tens-of-picoseconds
scale simulations. We have performed simulations using
two choices of electronic heating rates for an interface
between DT ice and CHO plastic. Because of the high
collisionality of matter in this system (small mean-free
path), the simulations take place near the hydrodynamic
regime (small Knudsen number), allowing our model to
examine deviations from various forms of hydrodynamics
(e.g., Euler, Navier-Stokes, Burnett).
From our results, we are able to explore hydrodynamic

and kinetic phenomena. In our hydrodynamic studies, we
extract the lowest-order hydrodynamic moments (density,
velocity, and temperature), as well as transient electric
fields in the interface region. While we observe very strong
electric fields, which can potentially greatly enhance ionic
transport and therefore mixing, the fields decay rapidly
(over tens of femtoseconds), typically faster than any
reasonable heating rate (tens of picoseconds). However,
steady electric fields are observed when the heating rate is
large enough to produce a shock moving away from the
interface. Kinetics were examined through the two metrics
of temperature anisotropy and the moments of the ionic
velocity distribution; we find mild kinetic effects with these
metrics, which is expected for matter of this collisionality.
At higher temperatures (e.g., postshock), conditions are
likely to experience more significant kinetic effects.
Our implementation of the MOD-MD model can be

improved and applied to other applications in many ways.
Perhaps the most important improvement would be better
internal consistency, without breaking the multiscale
method. For example, improvements in the mesoscale
OFDFT model could be used to improve the Langevin
model, including an improved (e.g., nonuniform) stopping
power model and electronic heat capacity Ce. A natural
extension of the application presented here is to the kinetics
of shocked plasmas [68,70]. Because our multiscale model
is modular, parts of the model can be adapted to different
applications. For example, a Saha ionization approach
[71] could be preferable to the TF model used here for
lower-density plasmas that involve molecular species.
Alternatively, the TF-AA result could be replaced with a
higher-fidelity AA model [45]. Because our choice of TF
allowed us to exploit an existing fit, more work is warranted
on rapid, high-fidelity, atomic-physics solvers. The most
obvious extension is the development of a rapid, higher-
fidelity average atom, on-the-fly extraction of an improved
pseudopotential from that model, and the use of an
improved mesoscale model, such as a Perrot-like kinetic
energy functional and a finite-temperature exchange-
correlation functional, for the valence electrons that surround
those pseudo-ions. Such improvements would provide a

better electronic equation of state in the cool-to-warm dense
matter regime; it would also obviate the Teller nonbinding
theorem. Similarly, different geometries would suggest
different symmetries at the macroscale, perhaps different
from those observed with the slab geometry used for our
interface application. For some applications, an important
weakness of the current model is its lack of electronic heat
conduction, which can occur in mesoscale heterogeneous
systems. An extension to include the electronic energy
equation of the form used in the “two-temperature model”
[33,41–43] would allow the electronic bath to conduct heat
across the simulation domain without the need for the
continuity and momentum equations.
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APPENDIX A: MULTISPECIES TF-AA
IONIZATION SOLVER

The microscopic portion of our multiscale method han-
dles the most tightly bound electronic states using a fast
atomic physics module that yields the charge states of the
ionic mixture and the associated total free-electron density
used in the macroscale solver. The general scheme is that the
simulation domain is divided into cells that resolve gradients
in the species densities, and the atomic physics module
yields the atomic physics information for each cell, assum-
ing uniform conditions. The choice of the atomic physics
module is problem dependent [45,71]; we use a TF-AA
approach appropriate for dense plasma conditions.
The core of our TF-AA ionization approach is a Z� fit to

an AA solution for arbitrary density and temperature; this
basic scheme is described elsewhere [63] and is generalized
here to mixtures withNα particles of species α. The number
density of each species is denoted by nα ¼ Nα=V, where
V ¼ P

αNαvα. In summary, the physical picture is a (cell)
volume composed of many smaller (atomic) subvolumes
each containing individual ions. Each subvolume vα con-
taining species α contains a nucleus with charge Zα; we
approximate the subvolumes as spheres with ion-sphere
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radii aα ¼ ð4πnα=3Þ−1=3. The mean ionization in each
sphere is given functionally by

Z�
α ¼ Z̄ðZα; vα; TeÞ; ðA1Þ

where Te is the local electron temperature. The function
Z̄ðxÞ is the single-species mean-ionization function for
given plasma conditions x [63]. Note that Zα and Te are
given, and there is one equation of type (A1) for each
species; however, we do not yet know the subvolumes vα
(or, equivalently, the ion-sphere radii aα).

Next, we note that each species must self-consistently
produce the same free-electron number density. Put another
way, each atomic subvolume places pressure on the other
subvolumes until the pressures equilibrate among the
species. In the TF-AA model, the electronic pressure at
the cell boundary is obtained from the electronic density at
that boundary, and two cells are considered to be in pressure
equilibrium if they have the same electronic density at the
cell boundary. This is shown schematically in Fig. 13 and
can be expressed mathematically as the two conditions

Z�
α ¼ vαne; ðA2Þ

ne ¼
X
α

nαZ�
α; ðA3Þ

which can be combined to give the volumetric constraintX
α

nαvα ¼ 1: ðA4Þ

It is important to note that the first condition (A2) corre-
sponds to an ionizationmodel in which the free electrons are
assumed to be uniformly distributed throughout the atomic
subvolume [45]; otherwise, the relation between Z�

α and the
subvolume vα would require a separate calculation.
These nonlinear, algebraic equations are readily solved

using any robust root solver with a reasonable initial guess.
One simple approach to solving Eqs. (A1) and (A4) is to
use a multidimensional Newton solver. The Jacobian for
this set of equations is diagonal with the exception of the
last row; thus, it can be inverted analytically. Hence, the
multidimensional Newton iteration can be written as

vkþ1
α ¼ vkα

�
1þ Z�

α − nevkα
Z�
α −

∂Z�
α∂vα v

k
α

�
; ðA5Þ

nkþ1
e ¼ nke þ

X
α

nkαvkþ1
α − 1: ðA6Þ

FIG. 13. Multispecies average-atom algorithm. Once an initial
guess is chosen, Eqs. (A1) and (A4) are solved iteratively. Here,
each atomic subvolume places pressure on the other subvolumes
until the pressure equilibrates among the species. In the TF
model, the pressure is obtained from the electronic density at the
cell boundary, and pressure equilibrium is equivalent to exhibit-
ing the same electronic density at the cell boundary.

FIG. 14. Mixture mean ionization states. The MIS algorithm is illustrated for two cases. In the left panel, HDTCO mixtures with
densities ð1; 1; 1; 5; 0.5Þ × 1022=cm3 are shown. Because the hydrogen isotopes are electronically equivalent, their MISs are identical
(overlapping lower curves). In the right panel, the MISs for a mixture of elements from Z ¼ 1 to Z ¼ 10, each with the number density
1023=cc, are shown.
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We find that the initial guess (corresponding to equal ion-
sphere volumes for each species)

v0α ¼
�X

α0
nα0

�
−1 ðA7Þ

is very reliable. It is worth noting that this atomic physics
scheme can be built into other computational models, such
as hydrodynamic and kinetic models [69]. Figure 14 shows
an example of this multispecies atomic physics module
[72]. For a CHODT mixture with a fixed density, the mean
ionization state is shown versus temperature. As expected,
all species are partially ionized at low temperature, as a
result of pressure ionization (captured through the finite cell
volumes), and they tend toward their respective nuclear
charges at very high temperature.

APPENDIX B: ASYMPTOTIC ANALYSIS

To find asymptotic solutions to the one-body problem
(41), we first introduce the following transformations:

ϕðiÞðrÞ ¼ Z�
i e
r

e−κiruðrÞ; ðB1Þ

K2ðrþ riÞ ¼ κ2i þ hðrÞ; ðB2Þ

where κ2i ¼ K2ðriÞ and uð0Þ ¼ 1 for charge conservation.
These transformations result in the following system to be
solved:

Lu≡∇2u − 2

�
κi þ

1

r

� ∂u
∂r ¼ hu; ðB3Þ

where r is the radius in spherical coordinates. Given the
slow variations in hðrÞ, we can find asymptotically exact
solutions by taking into account only the direction in which
hðrÞ varies the most, which will be along the vector
∇K2ðr ¼ riÞ. Without loss of generality, the one-body
problem (B3) can then be rotated such that the z axis is
collinear with this gradient, which transforms the operator
L expressed here in spherical coordinates as follows:

Lu ¼ ∂2u
∂r2 − 2κi

∂u
∂r þ

1

r2

�∂2u
∂θ2 þ cotðθÞ ∂u∂θ

�
; ðB4Þ

where θ is the inclination angle from the z axis. Obviously,
this rotation will have to be inverted when the full many-
body solution is constructed. To approximate solutions of
Eq. (B4), we expand uðr; θÞ and hðr; θÞ as

uðr; θÞ ∼ u0ðr; θÞ þ εu1ðr; θÞ þ ε2u2ðr; θÞ þ � � � ; ðB5Þ

hðr; θÞ ∼ εh1r cosðθÞ þ ε2h2r2cos2ðθÞ þ � � � ; ðB6Þ

where ε is assumed to be small in the limit of length-
scale disparities between interparticle spacings and

variations in K2ðzÞ, and the coefficients hn are known
from a Taylor expansion of K2ðzÞ about zi given by
hn ¼ ðdn=dznÞK2ðziÞ=n!. At the lowest order (ε → 0),
we have the system

∂2u0
∂r2 − 2κi

∂u0
∂r þ 1

r2

�∂2u0
∂θ2 þ cotðθÞ ∂u0∂θ

�
¼ 0: ðB7Þ

The only bounded, isotropic solution that satisfies the
appropriate boundary conditions is u0 ¼ 1, which in turn
yields the Oð1Þ solution around a given ion:

ϕðiÞðrÞ ∼ Zi

r
e−κir: ðB8Þ

Using the definition of L in Eq. (B4), we can gather higher
powers of ε to obtain the hierarchy of equations

Lun ¼
Xn
k¼1

hkrkcoskðθÞun−k; n ≥ 1: ðB9Þ

At this point, we can no longer assume isotropy, and it is
useful to express our solutions in terms of Legendre
polynomials, which have the defined properties

PnðxÞ≡ 1

2nn!
dn

dxn
ðx2 − 1Þn; ðB10Þ

hPnjPmi≡
Z

1

−1
dxPnPm ¼ 2δnm

2nþ 1
: ðB11Þ

For example, the first three Legendre polynomials are
P0ðxÞ¼1, P1ðxÞ¼x, and P2ðxÞ¼ð3x2−1Þ=2. Furthermore,
a solution of the form uðr; θÞ ¼ RðrÞPn( cosðθÞ) is an
eigenfunction in θ under the operator L given by the
relation

LRPn ¼
�
R00 − 2κiR0 −

1

r2
nðnþ 1ÞR

�
Pn; ðB12Þ

where the primes denote differentiation with respect to r.
Before proceeding, we must examine the homogeneous
solutions RHðrÞ to the above operator; these solutions are
of the form

RHðrÞ ¼
ffiffiffi
r

p
eκr½c1Inþ1=2ðκirÞ þ c2Knþ1=2ðκirÞ�; ðB13Þ

where c1;2 are arbitrary constants, and Iν andKν aremodified
Bessel functions of the first and second kind. The perturba-
tions unðr; θÞ, for n ≥ 1, must have the properties

lim
r→0

unðr; θÞ ¼ 0; lim
r→∞

Zi

r
e−κirunðr; θÞ ¼ 0 ðB14Þ

to satisfy the boundary conditions of the original problem.
As the modified Bessel function of the second kind has
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small-argument behavior
ffiffiffi
r

p
eκirKnþ1=2ðκirÞ ∼ r−n, wemust

then have c2 ≡ 0 for alln ≥ 1. Similarly, themodifiedBessel
function of the first kind has large-argument behaviorffiffiffi
r

p
eκirInþ1=2ðκrÞ ∼ e2κir, so we must also have c1 ≡ 0 for

all n ≥ 1. Therefore, only the trivial homogeneous solution
RH ≡ 0 is allowed; hence, we need to calculate only
particular solutions of Eq. (B9). At OðεÞ, we have

Lu1 ¼ h1r cosðθÞ ¼ h1rP1( cosðθÞ): ðB15Þ

Seeking a solution of the form u1ðr; θÞ ¼ R1ðrÞP1( cosðθÞ)
yields the differential equation

r2R00
1 − 2κir2R0

1 − 2R1 ¼ h1r3; ðB16Þ

which has the particular solution R1ðrÞ ¼ −h1r2=4κi.
Combinedwith theOð1Þ solution,wenowhave the corrected
electrostatic potential

ϕðiÞðrÞ ∼ Z�
i e
r

e−κir
�
1 −

h1
4κi

rz
�
: ðB17Þ

We have set ε to unity, as it was only being used to track
orders. Note that the correction induces a small well in the
potential at large r for h1z > 0; this effect is spurious and
results from the truncation of the asymptotic series. As this
attraction will occur only for roughly r≳ ð4κi=h1Þ1=2, it will
be negligible because the force decays exponentially and
because h1 is a small quantity. For example, if κi ¼ 1 and
h1 ¼ 0.1, then e−κir=r2 < 4.5 × 10−5 in this range. Of
course, this artificial attraction can potentially yield mis-
leading results as the assumptions of the expansions break
down. To recover the general result, we rotate the coordinates
back to the original reference frame through the trans-
formations

z →
∇K2ðriÞ
j∇K2ðriÞj

· r; h1 → j∇K2ðriÞj ðB18Þ

to obtain the solution

ϕðiÞðrÞ ∼ Z�
i e
r

e−κir
�
1 −

r
4κi

∇K2ðriÞ · r
�
: ðB19Þ

A similar result for a polarized pair interaction can be found
in Ref. [73].

APPENDIX C: HIGHER-ORDER CORRECTIONS

To calculate the next-order correction to Eq. (43), we
examine the Oðε2Þ problem,

Lu2 ¼ h2z2u0 þ h1zu1 ðC1Þ

¼
�
h2r2 −

1

4κi
h21r

3

��
1

3
P0 þ

2

3
P2

�
: ðC2Þ

We write u2ðr; θÞ ¼ R0ðrÞP0( cosðθÞ)þ R2ðrÞP2( cosðθÞ)
and obtain the system of ordinary differential equations

R00
0 − 2κiR0

0 ¼
1

3
h2r2 −

1

12κi
h21r

3; ðC3Þ

r2R00
2 − 2κir2R0

2 − 6R2 ¼
2

3
h2r4 −

1

6κi
h21r

5; ðC4Þ

which have the particular solutions

R0ðrÞ ¼
h21
96κ2i

�
r4 þ 2

κi
r3 þ 3

κ2i
r2 þ 3

κ3i
r

�

−
h2
18κi

�
r3 þ 3

2κi
r2 þ 3

2κ2i
r

�
; ðC5Þ

R2ðrÞ ¼
h21
48κ2i

�
r4 þ 1

κi
r3
�
−

h2
9κi

r3: ðC6Þ

Combining the above results yields the second-order
perturbation

u2ðr; θÞ ¼
h21r
32κ5i

�
1

3
κ2i r

2 þ ð1þ κirÞð1þ κ2i z
2Þ
�

ðC7Þ

−
h2r
12κ3i

ð1þ κirþ 2κ2i z
2Þ; ðC8Þ

which, in turn, can be combined with Eq. (B17) to obtain
the following next-order correction to the potential:

ϕðiÞðrÞ ∼ Z�
i e
r

e−κir


1 −

h1
4κi

rz −
h2r
12κ3i

ð1þ κirþ 2κ2i z
2Þ

þ h21r
32κ5i

�
1

3
κ2i r

2 þ ð1þ κirÞð1þ κ2i z
2Þ
��

: ðC9Þ

Using Eq. (C9), the force on the ith ion that is correct to
Oðε2Þ is

Fi ¼ ðZ�
i eÞ2

hðiÞ1
4κi

k̂ − Z�
i e∇

X
j≠i

ϕðjÞðr − rjÞjr¼ri ðC10Þ

¼ ðZ�
i eÞ2

hðiÞ1
4κi

k̂þ
X
j≠i

fijðrijÞ; ðC11Þ

where k̂ is the unit vector along the z axis, and hðiÞ1;2 denote
the particular expansion coefficients about r ¼ ri. The
many-body contributions to the force Fi can be expressed
in terms of the transformed variables in Eq. (B1) as

fij ¼
Z�
i Z

�
je

2

r3ij
e−κjrij

�
ð1þ κjrijÞuðrijÞ − rij

∂u
∂r ðrijÞ

�
rij

−
Z�
i Z

�
je

2

rij
e−κjrij

∂u
∂z ðrijÞk̂; ðC12Þ
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where uðrijÞ and its derivatives are given by

uðrijÞ ¼ 1 −
hðjÞ1

4κj
rijzij −

hðjÞ2

12κ3j
ð1þ κjrij þ 2κ2jz

2
ijÞrij

þ hðjÞ1

2

32κ5j

�
1

3
κ2jr

2
ij þ ð1þ κjrijÞð1þ κ2jz

2
ijÞ
�
rij;

ðC13Þ

∂u
∂r ðrijÞ¼−

hðjÞ1

4κj
zij−

hðjÞ2

12κ3j
ð1þ2κjrijþ2κ2jz

2
ijÞ

þhðjÞ1

2

32κ5j
½κ2jr2ijþð1þ2κjrijÞð1þ κ2jz

2
ijÞ�; ðC14Þ

∂u
∂z ðrijÞ ¼ −

hðjÞ1

4κj
rij −

hðjÞ2

3κj
rijzij þ

hðjÞ1

2

16κ3j
ð1þ κjrijÞrijzij;

ðC15Þ

with zij ¼ zi − zj. The first term in Eq. (C12) can be
somewhat simplified by writing

fij ¼
Z�
i Z

�
je

2

r3ij
e−κjrijAijrij −

Z�
i Z

�
je

2

rij
e−κjrij

∂u
∂z ðrijÞk̂;

Aij ¼ 1þ κjrij −
hðjÞ1

4
r2ijzij −

hðjÞ2

12κj
ðrij þ 2κjz2ijÞ

þ hðjÞ1

2

32κ3j

�
κ2jz

2
ij þ

1

3
ð1þ κjrijÞ

�
r3ij: ðC16Þ

Lastly, the screening cloud corrected to Oðε2Þ is given by

nðiÞe ðrÞ ¼ Z�
i

4πr
e−κir½κ2i þ g1ðr; zÞ þ g2ðr; zÞ�; ðC17Þ

where the functions g1;2ðr; zÞ are defined as

g1ðr; zÞ ¼
�
1 −

1

4
κir

�
h1z; ðC18Þ

g2ðr; zÞ ¼
�
1

3
κ2i r

2 − 8κ2i z
2 þ ð1þ κirÞð1þ κ2i z

2Þ
�
h21r
32κ3i

þ
�
1 −

1

6
κir

�
f2z2 − ð1þ κirÞ

h2r
12κi

: ðC19Þ

As before, the general solution in the original reference
frame can be recovered using the transformations (B18),
as well as

hðiÞ2 →
1

2j∇K2j2
X3
n¼1

X3
m¼1

∂K2

∂xn
∂K2

∂xm
∂2K2

∂xn∂xm
				
r¼ri

; ðC20Þ

where fxig are the various components of r.
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