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Some liquids, if cooled rapidly enough to avoid crystallization, can be frozen into a nonergodic glassy
state. The tendency for a material to form a glass when quenched is called “glass-forming ability,” and it is
of key significance both fundamentally and for materials science applications. Here, we consider liquids
with competing orderings, where an increase in the glass-forming ability is signaled by a depression of the
melting temperature towards its minimum at triple or eutectic points. With simulations of two model
systems where glass-forming ability can be tuned by an external parameter, we are able to interpolate
between crystal-forming and glass-forming behavior. We find that the enhancement of the glass-forming
ability is caused by an increase in the structural difference between liquid and crystal: stronger competition
in orderings towards the melting point minimum makes a liquid structure more disordered (more complex).
This increase in the liquid-crystal structure difference can be described by a single adimensional parameter,
i.e., the interface energy cost scaled by the thermal energy, which we call the “thermodynamic interface
penalty.” Our finding may provide a general physical principle for not only controlling the glass-forming
ability but also the emergence of glassy behavior of various systems with competing orderings, including
orderings of structural, magnetic, electronic, charge, and dipolar origin.
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I. INTRODUCTION

Glasses are formed from liquids when the transition to
the equilibrium crystalline phase is avoided and the
relaxation time of the disordered state drastically increases
upon cooling [1]. Revealing the physical origin of the glass-
forming ability is of fundamental significance for the
understanding of important materials such as organic
materials [2], silicon, water [3], oxides, metals [1,4],
semiconductors, and phase-change materials [5], which
are used in both crystalline and amorphous states. Previous
studies showed that glass formation is often linked to a
suppression of the local order that promotes crystal for-
mation [6–18]. Examples include hard-sphere-like systems,
where polydispersity increases the liquid-crystal interface
tension [19] by reducing the crystal-like structural order
and increasing icosahedral order in the supercooled liquid

state [7,20], enhancing the glass-forming ability and decreas-
ing the fragility of the liquid [7]; polymeric glass formers,
where the crystallization is controlled by stereoregularity
[7,21]; water-salt mixtures, where the salt suppresses the
tetrahedral ordering [22,23]; and bulk metallic glasses, such
as rare-earth-based multicomponent alloys [4,24], which
have competing components and interactions.
From a thermodynamic point of view, destabilization of

the crystal state is accompanied by a depression of the
melting temperature [7,9,25], as in the eutectic point of
metal alloys (which is due to the entropy of mixing
contribution). Perhaps the most interesting property of
eutectic points is that they usually denote regions of the
phase diagram where the system can be vitrified with ease,
providing a simple criterion to aid in the search for new
glassy states. The enhancement of the glass-forming ability
near the eutectic point is demonstrated, for example, by
metallic glasses, like the Cu-Zr binary alloy [26] and the
Zr-Ti-Cu ternary alloy [27]. Such enhancement of the
glass-forming ability can also be observed near triple
points, in which two different crystalline phases coexist
with the liquid [25], an idea that led Bhat et al. to
successfully vitrify germanium as a metallic amorphous
state, the first example of glass obtained from a mono-
atomic liquid [28]. The enhanced glass-forming ability near
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eutectic points is consistent with Turnbull’s criterion [29],
which classifies materials in terms of the reduced glass
transition temperature Trg ¼ Tg=Tm, where Tg is the glass
transition temperature and Tm the melting temperature. A
high value of Trg (around 2=3) is commonly found in glass
formers. At the eutectic point, Tm goes through a minimum,
and thus, Trg is expected to have a maximum signaling a
region of high glass-forming ability. At the same time,
glass-forming ability is often displaced from the eutectic
composition in binary mixtures [30], such as Ni-Nb [31]
and Cu-Zr [32] alloys, meaning that a melting point
depression alone cannot be used as a general criterion for
glass-forming ability. Such behavior may be observed when
there is additional competition from local ordering (such as
icosahedral ordering) taking place besides the competition
between the two crystal orderings at the eutectic point [7,33].
Turnbull’s criterion is a rule of thumb that encompasses

several distinct thermodynamic and dynamical effects into
a single quantity. The aim of this article is to study the
glass-forming ability of two simple systems, where we can
control glass-forming ability via an external control param-
eter. By studying these systems, we can exploit the fact that
the glass-forming ability has a nonmonotonic behavior as a
function of this control parameter and look for those factors
that also display analogous nonmonotonic behavior. In
order to encompass a broad family of glass formers, we
consider two very different model systems, which are
simple and yet general, targeting some important family
of glass formers: tetrahedral materials and multicomponent
mixtures. We reveal that the key physical factor controlling
the glass-forming ability is the structural difference
between a crystal and its melt, which can be quantified
by a single adimensional quantity, the interface energy
scaled by the thermal energy, which we call the “thermo-
dynamic interface penalty”.

II. RESULTS AND DISCUSSION

A. Systems studied

The first system we study is the Stillinger-Weber (SW)
model [34], which is a monoatomic model with two- and
three-body interactions (see Appendix A 1 for details). The
spherically symmetric two-body interaction favors dense
local arrangements and the three-body interactions favor
open local arrangements. This potential is characterized by
the parameter λ controlling the relative importance of the
three-body term [U3ðrÞ] over the two-body term [U2ðrÞ]
(see Appendix A 1), and it is a model for materials with
locally tetrahedral coordination such as silicon, germa-
nium, carbon, or water, which are characterized by different
values of λ. Molinero et al. [10] introduced the important
concept of tuning the relative strength of two-body and
three-body interactions in the SW potential in order to
control the glass-forming ability of the model. Importantly,
in Ref. [10], it was shown that the melting temperature
Tm reaches a minimum for λ ≃ 18.5, where the stable

thermodynamic phase changes from body-centred cubic
(bcc) (for λ < 18) to diamond cubic (dc) or diamond
hexagonal (dh) (for λ > 19). In this system, the glass-
forming ability is high in a specific region of the phase
diagram where two different crystalline structures compete,
and the fluid-to-crystal transition is driven by energy.
The second system we study is a two-dimensional binary

disk (BD) system, which is a mixture of large (L) and
small (S) hard disks with their diameters σL and σS chosen
such that σL=σS ¼ 1.4 (see Appendix A 1 for details). This
system has a eutectic phase diagram, with two competing
crystals that are hexagonal phases of large and small disks,
respectively. The parameter controlling the glass-forming
ability is the composition of the mixture cS¼NS=ðNLþNSÞ
[35], along which the system displays a eutectic point.
Here, glass-forming ability originates from atomic strains
that are due to size differences between the components,
and the fluid-to-solid transition is entirely driven by
entropy.
In the first system, crystallization is induced by lowering

temperature T, whereas in the second system by increasing
pressure at a fixed T. Thus, we may regard the former and
latter as thermal and athermal systems, respectively. These
different characters of the two systems provide a clue to
elucidate the physical factor controlling the glass-forming
ability, as will be discussed later.

B. Theoretical basis

To understand the physical origin of the glass-forming
ability of these systems, we need to isolate all the factors
that contribute to the homogeneous nucleation rate (I).
Here, we note that the temperature is the control parameter
for the thermal SW system but not for the athermal BD
system. A general definition of a glass former is a system
for which I as a function of the control parameters is always
low enough such that the system can be quenched to low
temperatures without the appearance of a crystal nucleus of
critical size, that would otherwise trigger irreversible
crystallization. The inability to transform into the stable
phase leaves the system in a disordered state. According to
classical nucleation theory, the crystal nucleation rate I is
obtained as

I ¼ f
D
D0

expð−βΔF�Þ; ð1Þ

where f is a numerical factor (which depends on terms like
the Zel’dovich factor [1]), D=D0 is the adimensional self-
diffusion constant, ΔF� is the free-energy barrier that the
system has to overcome in order to crystallize, and β ¼
1=kBT (where kB is the Boltzmann’s constant). Here, we
note that the crystallization kinetics is controlled by the
self-diffusion and not by the viscosity, which are decoupled
for T ≤ Tm (see, e.g., Ref. [7]). We write the free-energy
cost to form a crystal nucleus, of size Nn and interface area
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Sn, in adimensional form by scaling it with the thermal
energy,

βΔF ¼ −NnðβΔμÞ þ SnðβγÞ; ð2Þ

where γ is the interface tension between crystal and liquid,
andΔμ ¼ μsolid − μliquid is the chemical potential difference
between solid and liquid. It is important to note that the
terms competing in the dimensionless free-energy cost
scaled by the thermal energy are βΔμ and βγ, and not Δμ
and γ themselves (for convenience, we set the unit of length
to 1). Here, we refer to these scaled adimensional quantities
as the “thermodynamic driving force” (βΔμ) and “thermo-
dynamic interface penalty” (βγ). Thus, the nucleation rate
should not be described by the absolute values of Δμ and γ,
but by those scaled by the available thermal energy. This
also allows us to have a unified description of the glass-
forming ability for both thermal (SW) and athermal (BD)
systems, as will be shown later. In this picture, βΔF� is
expressed as

βΔF� ¼ cðβγÞd=ðβΔμÞd−1; ð3Þ

where d is the dimensionality and c is a numerical factor
depending on the shape of the nucleus.
Here, we note that the macroscopic definition of the

thermodynamic interface penalty can be directly linked to
the structural difference between two phases via the general
Ginzburg-Landau theory [7], where the thermodynamic
interface penalty is obtained from the gradients of the order
parameter fields,

βγ ¼
Z

dx

�
K1

�
dρ
dx

�
2

þ KQ

�
dQ
dx

�
2
�
; ð4Þ

where ρ and Q are density and structural order parameters,
x is the coordinate perpendicular to the interface, and Kρ

and KQ are positive coefficients associated with the spatial
gradients of ρ and Q, respectively. This also shows that the
order parameter gradient, which is an intrinsic physical
quantity characterizing the penalty associated with the
structural difference between the two phases, is charac-
terized by βγ and not by γ. We will see the importance of
this fact later.
Thus, the nucleation rate I is controlled by three

dimensionless physical factors: (i) D=D0, the dynamics
of mass transport from the melt to the nucleus; (ii) βΔμ, the
thermodynamic driving force; and (iii) βγσd−1, the thermo-
dynamic interface penalty of forming an interface of area
σd−1 (σ is the typical size of the particles, which we set to
unity for convenience) between the melt and the crystal. In
principle, all three factors can contribute to the decrease of
the nucleation rate in the glass-forming region, but in the
following, we will show that the glass-forming ability is
mainly controlled by the last term, βγσd−1, in the region of
competing orderings. Notice that, in the SW system, γ
refers to an interface tension, while in the BD system to a
line tension.

C. Phase diagrams and thermodynamic driving force

We start our discussion by presenting the phase diagrams
of both the Stillinger-Weber (SW) and binary hard disks
mixture (BD) systems. Details on the computational
techniques are given in Appendix A 1. In Fig. 1(a), we

(a) (b)

FIG. 1. Phase diagrams and thermodynamic driving force. (a) P ¼ 0 phase diagram of the SWmodel. The different colors indicate the
regions of stability of the crystalline phases: bcc (red) for small λ, β-tin (white) for intermediate λ, and dc (blue) for high λ. Continuous
lines represent the melting line of the crystalline phases. Dashed lines are lines where βΔμ ¼ k; with the increments in k being Δk ¼ 0.2
between each line (starting from the melting line where k ¼ 0). Dots represent the homogeneous nucleation line, which here is defined
as the state points in which homogeneous nucleation occurs directly in simulations. (b) Phase diagram of the BD model. The dark red
regions indicate the L and S hexagonal solids, respectively, at low and high cS. The light red regions indicate fluid-solid coexistence,
limited by the liquidus lines (circles) and the solidus lines (squares). The dashed lines represent lines of constant driving force, βΔμ ¼ k,
with k ¼ 0.05, 0.1, 0.15 in the liquidþ L region, and k ¼ 0.005, 0.01, 0.015, 0.02, 0.025 in the liquidþ S region.
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plot the zero pressure (P ¼ 0) phase diagram of the SW
model as a function of λ. Our results confirm the presence
of stable open crystal structures, the cubic (dc) and
hexagonal (dh) phases at high λ, the bcc phase at low λ,
and the melting point depression region corresponding to a
β-tin phase at intermediate values of λ (18≲ λ≲ 19). We
then use Hamiltonian integration (for the methods, see
Ref. [36]) to obtain the lines of constant driving force,
βΔμ ¼ k, for k ¼ 0.2, 0.4, 0.6. The first observation is that
the gradient of the thermodynamic driving force increases
towards the melting point depression region. This can be
seen from the spacing of the βΔμ ¼ k lines getting more
dense towards the glass-forming region. The same is true
regardless of the stable crystalline phase, which changes
with λ: the driving force grows faster with decreasing T
when approaching the melting point minimum from either
side. We note that the behavior of the thermodynamic
driving force is often studied as a function of T=Tm or at
constant supercooling T=Tm ¼ const (the homologous
temperature). Thus, we also study such behavior and the
results are shown in Figs. 5–8 in Appendix B 1. As shown
in Fig. 7(a), we find that, along the line T=Tm ¼ 0.8, the
thermodynamic driving force has no anomalous behavior in
the glass-forming region, as it just monotonically increases
as a function of λ. This is true for any supercooling T=Tm,
as shown in Fig. 5. Full symbols in Fig. 1(a) represent the
homogeneous nucleation lines for both the bcc and dc
crystals, here approximately defined as the loci of state
points where homogeneous crystallization in the corre-
sponding crystal occurs directly in simulations. Both
homogeneous nucleation lines have a stronger λ depend-
ence than the lines of constant driving force (dashed lines),
meaning that higher driving forces are necessary to over-
come the free-energy barrier for nucleation as the melting

point depression is approached. We can conclude that
homogeneous nucleation is not hindered by a lack of
driving force, but either by dynamical slowing down or
by an increase of interfacial free-energy cost. Interestingly,
a similar result was obtained for ice nucleation [37]. Given
the observation that the crystallization rate is dramatically
(by many orders of magnitude) suppressed in the glass-
forming region [10], we can conclude that the thermody-
namic driving force is not responsible for the glass-forming
ability of the SW system.
In Fig. 1(b), we plot the phase diagram for the BD

system as a function of the pressure P and the concentration
of small disks, cS (see Appendix A 1). The BD system
behaves like a typical eutectic mixture, with the hexagonal
L and S solids coexisting with a fluid phase: The melting
pressure increases as the eutectic composition is
approached from either L-rich and S-rich sides. As in
the SW phase diagram, also in Fig. 1(b), we plot lines of
constant thermodynamic driving force βΔμS ¼ βΔμL ¼ k
(dashed lines) and also observe that there is no loss of
driving force as the glass-forming region is approached.

D. Transport kinetics

We next consider the dynamics of the system, starting
from the SW system. Figure 2(a) reports the diffusion
coefficient D, computed with NVE molecular dynamics
simulations, along different isotherms and at different
values of λ. The figure shows that the glass-forming region
is a locus of dynamic anomaly, signaled by the maximum in
D along the different isotherms (symbols in the figure), in
agreement with previous studies of thermodynamic and
dynamic anomalies [38,39]. When following a line of
constant thermodynamic driving force (the black continu-
ous line for βΔμ ¼ 0.6), the slowing down of the dynamics

B

(a) (b)

FIG. 2. Diffusion coefficients. (a) λ dependence of the diffusion coefficient (D) for different isotherms, i.e., at constant T (symbols) for
the SW system. The continuous (black) line denotes state points with βΔμ ¼ 0.6 [see Fig. 1(a)]. The inset shows the values for the
fragility index (B) and for the Kauzmann temperature (T0) obtained from fitting the diffusion coefficients to a VFT relation (see text).
See Appendix B 2 and Fig. 9 for the behavior of isodiffusivity lines. (b) cS dependence of the diffusion coefficient (D) for different
isobars (open symbols) for the BD system. The diffusion coefficient along the liquidus line is plotted with full symbols. Pressure is in
adimensional units with σL ¼ 1 and β ¼ 1.
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with decreasing temperature is partly compensated by the
dynamic anomaly. The net effect is that the suppression of
the dynamics along a line of constant thermodynamic
driving force is less than a factor of 5, far too low to
account for the suppression of the nucleation rate I by many
orders of magnitude, as also pointed out in Ref. [40], where
the increase of 48 orders of magnitude was observed from
λ ¼ 21 to 24. Figure 9 in Appendix B 2 reports on the λ
dependence of the isodiffusivity lines, showing that the
thermodynamic driving force along these lines becomes
lower around the melting point depression. We fit our
diffusivity data with the Vogel-Fulcher-Tammann (VFT)
relation D ¼ A exp½−BT0=ðT − T0Þ�, where B is the so-
called fragility index and T0 is the Kauzmann temperature.
Note that a higher B value means a less fragile (stronger)
liquid. The results are displayed in the inset of Fig. 2(a),
where both B and T0 are plotted as a function of λ, showing
that the liquid always remains fragile (B ≪ 100), but
around the melting point, the depression region becomes
less fragile, with both a decrease of T0 and an increase of B,
as predicted [25]. It is worth noting that we experimentally
observed similar behavior [23], including the unimportance
of the transport kinetics in the enhancement of the glass-
forming ability and the decrease of the fragility near the
eutectic point, in LiCl-water mixtures, where the control-
ling factor (equivalent to λ) is the water concentration.
In Fig. 2(b), we plot the diffusion coefficient computed

from event-driven molecular dynamics simulations of the
BD system along different isobars. In this case, we do not
distinguish between the two species L and S, as they
share the same trends as the average diffusivity reported in
Fig. 2(b). Diffusion increases monotonically with cS,

showing no anomalous slowing down around the glass-
forming region. The slowing down of the dynamics is, thus,
only due to the increase of pressure on approaching the
eutectic point. In the figure, we plot as full symbols the
diffusivity computed along the liquidus line, showing that D
drops around the eutectic composition by one order of
magnitude. As in the case of the SW model [Fig. 2(a)], this
decrease does not account for the suppression of the
nucleation rate I in the glass-forming region, which, as we
will see in the next section, is almost ten orders of magnitude.

E. Thermodynamic interface penalty

We now turn to the last factor affecting glass-forming
ability, i.e., the thermodynamic interface penalty βγ. For the
SW system, we employ two different methods to compute
the interface tension γ. In the first method, we directly
compute the free-energy barriers for nucleation as a
function of nucleus size n and apply classical nucleation
theory to estimate βγ [41–44]. In order to disentangle the
contribution of βΔμ and βγ on the nucleation barriers, we
follow lines where βΔμ is constant, so that any change in
the free-energy barrier can only be ascribed to a change
in βγ. The results are shown in Fig. 3(a), where the
free-energy barrier βΔF is plotted for state points at
different λ with constant βΔμ ¼ 0.6. The different colors
represent state points where the crystal being grown is bcc
(red lines) or dc (blue lines). We note that other forms of
crystals (like β-tin) are not nucleated in our simulations due
to their high free-energy barriers. The figure shows that
the barriers drastically increase as one approaches the
glass-forming region from either the bcc or the dc side.

(a) (b)

FIG. 3. Free-energy barriers and interface tension. (a) Free-energy barriers for the SW model as a function of nucleus size n, βΔFðnÞ,
for the formation of the bcc crystal (red lines) and the dc crystal (blue lines) for state points at constant thermodynamic driving force,
βΔμ ¼ 0.6. The system size for these simulations is N ¼ 4000 particles. The inset shows βγσ2 extracted from the fit of the free-energy
barrier with the CNT expression: βΔFðRÞ ¼ jβΔμj4πρR3=3þ βγ4πR2, where R is the radius of the nucleus [R ¼ ð3n=4πρÞ1=3 for a
spherical nucleus], jβΔμj ¼ 0.6. (b) Order parameter probability distribution functions ΠðcSÞ for the BD system at coexistence at
different pressures, P ¼ 12, 13, 15 for the L crystal and P ¼ 19, 20, 21 for the S crystal. The inset shows the height of the barrier
(circles) as a function of concentration cS, which is directly proportional to the line tension. Also plotted are the liquidus line (dashed red
line) and the state points (diamond symbols) at which ΠðcSÞ is calculated (notice that, in this case, the y-axis represents pressures).
Pressure is in adimensional units with σL ¼ 1 and β ¼ 1.
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Fitting the barriers with the classical nucleation theory
(CNT) expression (and with the Tolman length [44]), one
obtains a height of 23.5kBT for λ ¼ 23.15 (a good crystal-
forming system) that rapidly grows to 3800kBT at λ ¼
20.15 (completely suppressed crystallization). The same
behavior is observed approaching the melting point depres-
sion region from low λ. The inset of Fig. 3(a) shows the
value βγσ2 extracted from a classical nucleation theory fit
of the free-energy barriers at different values of λ. This
result shows that the increase of the nucleation barrier is
due to a steep increase in the interfacial free-energy penalty
scaled by the available thermal energy βγ in the melting
point minimum region.
In Appendix B 1, we do the same calculation of free-

energy barriers along a line of constant supercooling,
T=Tm ¼ 0.8 (Fig. 6). Figure 7 reports both the thermody-
namic driving force (a) and the thermodynamic interface
penalty (b), showing that, while βΔμ has a monotonous
behavior across the glass-forming region, the same is not
true for βγ, which is sharply peaked in that region. βγ is,
thus, the control parameter for glass-forming ability. It is
important to note that the same is not true for the bare
interface tension γ. This is plotted in Fig. 8(b), where we
see that γ behaves differently on the bcc-stable and the dc-
stable sides: It decreases towards the glass-forming region
from the bcc side, while it increases from the dc side.

For consistency, we also check if the same behavior is
observed for the interface tension at coexistence in a thin
slab geometry. We compute the free-energy difference
between a two-phase system with a planar interface and
the bulk fluid (or crystal) phase at melting. This calculation
is reported in Appendix B 3 (see Fig. 10), where we show
the interfacial free-energy penalty along the melting lines
(i.e., where the driving force is null, βΔμ ¼ 0). The inset of
Fig. 10 indicates that βγσ2 has a steep maximum in the
melting point depression region, in agreement with the
behavior of the same quantity calculated using CNT [see
the inset of Fig. 3(a)]. In Fig. 11 in Appendix B 3, we also
show the λ dependence of the unscaled bare values of the
interface tension γ estimated by the two methods.
In Fig. 12(b) in Appendix B 4, we show the density

difference Δρ between the melt and the stable crystalline
phase. By comparing the λ dependence of Δρ in Fig. 12(b)
and that of γ in Fig. 11, we can see that the quantity γ
correlates with Δρ (see also Appendixes B 3 and B 4). As
can be seen in Eq. (4), the information on the spatial
gradient of the order parameters is hidden by the λ
dependence of the available thermal energy. The above
results show that the density (ρ) difference between the
liquid and crystal is asymmetric between the bcc and dc
sides [see Fig. 12(b)], whereas the structural order param-
eter (Q) difference is almost symmetric [see Fig. 4(a)].

(b)(a)

P

F

F

FIG. 4. Fraction of precursors. (a) SW system for βΔμ ¼ 0.6. Left scale: Open circles (black) represent the average
fraction of particles with five or more connected neighbors (precursors). Right scale (in units of kB): Full squares (red)
represent the configurational entropy, and open diamonds (red) the vibrational entropy. The vibrational entropy is shifted by
6.5kB for readability. The three top panels are snapshots of configurations at λ ¼ 14.5 (left), λ ¼ 18.6 (center), and λ ¼ 23.15
(right), where only precursor particles are depicted. The color of the precursor particles depends on the number of connected
neighbors: Blue corresponds to five connected neighbors, red to six to nine connected neighbors, and yellow to ten or
more connected neighbors. (b) BD system, with average hexatic order ψ6 at different isobars (open symbols) and along the
liquidus line (full symbols). Pressure is in adimensional units with σL ¼ 1 and β ¼ 1. The three top panels depict snapshots of
systems along the liquidus line at concentrations cs ¼ 0.1456, 0.6106, and 0.9745, respectively. Disk i is colored red
if ψ6ðiÞ > 0.6.
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According to Eq. (4), this means that the density and
structure order parameter differences should contribute
asymmetrically and symmetrically to βγ, respectively.
The rather symmetric shape of βγ [see the inset of
Fig. 3(a)] indicates that βγ is largely dominated by the
contribution from the structural order parameter gradient
(j∇Qj) across the interface, and is rather weakly affected by
the density gradient (∇ρ).
For the BD system, we compute the full density of

states of the system for different pressures. From the density
of states, we thus obtain the order parameter distribution
ΠðcSÞ, as shown in Fig. 3(b) (see Appendixes A 3 and B 6 for
the details). It is known [45] that the ratio log ½Πmax=Πmin� is
directly proportional to the free-energy cost of forming an
interface between the two phases and can be regarded as an
adimensional measure of the interface tension. We plot
log ½Πmax=Πmin� in the inset of Fig. 3(b). We note that it
was not numerically feasible to obtain the barrier heights
closer to the eutectic point than what is plotted in Fig. 3(b).
But the trend of increase of the barriers can be expected to
continue when approaching the eutectic point even closer.
Thus, the BD system experiences a rapid increase of the bare
interfacial free-energy cost (∝ γσ) in the glass-forming
region. The free-energy barrier to nucleation depends expo-
nentially on the square of the interface tension [note that
d ¼ 2 in Eq. (3)], which allows us to estimate around ten
orders of magnitude suppression in the range considered in
Fig. 3(b).
Here, we emphasize again that, as shown in the

Introduction, it is crucial to consider the behavior of Δμ
and γ scaled by the thermal energy, i.e., βΔμ and βγ,
respectively, to correlate them with glass-forming ability. In
particular, the penalty coming from the structural difference
should be measured by the thermodynamic interface
penalty βγ and not by the bare interface tension γ [see
Eq. (4)]. The control parameter in the SW and BD systems
is different (temperature for SW and pressure for BD), and
the nature of the melting point minimum is also different in
the two cases (it is a triple point for SWand a eutectic point
for BD), but the mechanism controlling the glass-forming
ability is the liquid-crystal structural difference, macro-
scopically quantified by the adimensional thermodynamic
interface penalty βγ, in both systems. To further strengthen
this common feature and provide the underlying micro-
scopic mechanism behind this macroscopic rule, we now
consider the glass-forming ability from a microscopic
perspective.

F. Microscopic origin of glass-forming ability

It is often suggested that the similarity between a crystal
and its melt is an important factor controlling crystalliza-
tion. Several works on a variety of simple potentials
[44,46–49] have suggested that the relevant symmetry
expressing this similarity is bond-orientational order.
The fluctuations in bond-orientational order that promote

crystallization are referred to as “crystalline precursors.”
Like crystal nuclei, particles in precursors have high bond-
orientational order, and they are orientationally correlated
with a finite correlation length. However, differently from
nuclei, the local density of crystalline precursors is still
close to the one of the melt, and they do not possess local
translational order. Nucleation is observed to occur from
these regions [44,46–49]. We show here that the increase in
the glass-forming ability towards the melting point mini-
mum is linked with the suppression of crystal precursors.
Crystalline precursors share the same local symmetry of the
corresponding crystalline structures: For the SW system,
we identify them based on the same Q12 order parameter
used to identify crystals (see Appendix A 4); for the BD
system, we instead employ local hexatic order ψ6 as a
measure of crystallinity in the system (see Appendix A 4).
Both Q12 and ψ6 measure bond-orientational order.
Figure 4 plots the fraction of precursors (open circles) as

a function of λ for state points with βΔμ ¼ 0.6 in the SW
model (a), and as a function of cS along the liquidus line of
the BD model (b). In both cases, we see that the glass-
forming region corresponds to a minimum in the number of
precursors, or the degree of crystalline bond-orientational
order. The top panels in Fig. 4(a) display precursor particles
in snapshots at low (left), intermediate (center), and high
(right) values of λ, with the glass-forming region clearly
devoid of precursors for the SW model. The decrease of
precursors towards the triple point is consistent with the
above argument that the structural difference between the
liquid and crystal increases towards the triple point, which
is inferred from the steep increase of βγ and Eq. (4). For the
BD system, in Fig. 4(b) we plot the average hexatic order
ψ6 for different isobars (open symbols) and for state points
along the liquidus line (full symbols). Differently from
that observed in the analysis of the diffusion coefficients
[Fig. 2(b)], the hexatic order shows a pronounced minimum
for each isobar around the eutectic composition. Again,
structural order of the fluid phase is strongly suppressed in
the glass-forming region, in accordance to what found in
the SW system. Figure 4(b) also shows snapshots where
precursor regions whose disks i with ψ6ðiÞ > 0.6 are
colored in red; we notice that, indeed, the length scale
of the precursor regions becomes smaller in the glass-
forming region. This analysis highlights that the glass-
forming region of the liquid has the largest structural
difference from both crystals, since it contains two com-
peting local arrangements, while each crystal contains only
one. In other words, our analysis confirms that structural
similarity between the liquid and the crystal, which can be
characterized by βγ [see Eq. (4)], is a key feature of good
crystal formers.
Near the melting point minimum, the liquid structure is

more disordered due to competing ordering, suggesting a
larger difference in the free-energy difference between the
liquid and crystal, βΔμ. Glass-forming ability can thus only
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originate from a concomitant increase of the interfacial
term βγ.
Here, it is worth pointing out that there is an important

difference in the coupling of structural ordering with
density between the SW and BD model. In the above,
we showed that the bare interface tension γ correlates with
the density difference between the melt and the stable-
crystalline phase in the SWmodel (see Appendixes B 3 and
B 4). For liquids of directional bonding, such as the SW
model including water, local structural ordering accom-
panies a decrease in the local density [50]. Thus, the
crystal-liquid density difference linked to the degree of
local structural ordering in the liquid is an important factor
controlling the crystal-liquid interfacial energy. This is the
case for the SW model for λ > 18, where low-density
tetrahedral order is the local structural order. It should be
noted, however, that the contribution of ∇Q to βγ in
Eq. (4) [rather symmetric with respect to the triple point
[see Fig. 4(a)] ] is much larger than that of ∇ρ [asymmetric
[see Figs. 11 and 12(b)] ], resulting in the rather symmetric
shape of βγ with respect to the triple point [see the inset
of Fig. 3(a)]. In other words, the dominant contribution to
βγ comes from the structural order parameter difference
between the liquid and crystal rather than the density
difference, as discussed above. On the other hand, for liquids
with isotropic interactions such as the BD model, there is
little coupling between structural ordering and density
[46–49]. In this case, the interface tension is controlled
solely by the difference in bond-orientational order.
In Fig. 4(a) (right scale), we also plot both the configu-

rational (filled squares) and vibrational (open diamonds)
contributions to the entropy of the melt as a function of λ.
As can be seen in Fig. 4(a), the glass-forming region shows
an anomalous increase of sconf in the melt, suggesting a
close connection between βγ and the configurational
entropy difference between the liquid and crystal (with
zero configurational entropy). In Appendix B 5 (see
Fig. 13), we show that the configurational entropy sconf
is indeed the largest contribution to the free-energy barrier
to crystallization. We note that this result is plotted along a
line of constant βΔμ, showing that the increase of the
configurational entropy due to competing orderings (bcc vs
dc) overcomes the rapid decrease of T toward the triple
point (usually entropy decreases with lowering T, as seen,
for example, in the behavior of the vibrational entropy). We
stress that since the entropy s contributes to free energy as
−Ts, sconf should be linked to βγ rather than γ. We note that
this behavior of the configurational entropy is fully con-
sistent with that of crystal precursors: Both are the
measures of the structural complexity of a supercooled
liquid. In the simple Adam-Gibbs scenario [51], the
increase of configurational entropy is in agreement with
the decrease of fragility that was observed in the inset of
Fig. 2(a), where the glassy dynamics becomes stronger in
the glass-forming region.

III. CONCLUSIONS

To conclude, we have investigated the origin of the glass-
forming ability in two model systems where glassiness is
signaled by a depression of the melting point as a function
of some parameter (λ for the SW model, and cS for the BD
model). By isolating all the factors that control the crystal
nucleation rate, we show that neither the difference in bulk
free energy nor the transport kinetics can account for the
enhanced glass-forming ability, while the drastic suppres-
sion of the nucleation rate is in fact due to a rapid increase
of thermodynamic interface penalty, βγσ2, which is a
macroscopic measure of the liquid-crystal structural
differences [see Eq. (4)]. From a microscopic point of
view, the increased interface penalty mirrors the increased
structural differences between the crystal and the melt, i.e.,
the disappearance of crystal precursors. For the SW model,
by further investigating the thermodynamics and structure
of the melt and the crystals, we also find an increase in
configurational entropy in the melt around the melting
point depression region, reflecting the large number of local
arrangements that are possible when two (or more) local
orderings are in competition, which also makes a liquid less
fragile (i.e., stronger) [7].
In the models studied here, we have considered both the

competition between an isotropic attraction and an aniso-
tropic repulsion (SW model), and the competition induced
by disorder factors (concentration in the BD model).
Furthermore, the former is a thermal system, whereas
the latter is an athermal one. Despite their completely
different characters, the phenomenology of glass-forming
ability is essentially the same between the two models. This
provides strong evidence that the enhancement of glass-
forming ability is caused by an increase in the structural
difference between the liquid and crystal, which is signaled
by the thermodynamic interface penalty βγ (not γ). This
point should be checked carefully for various systems,
including realistic systems, in the future.
In relation to the above, it is worth considering other

types of frustration to crystallization. Since we put our main
focus on the glass-forming ability in systems with com-
peting crystalline orderings in this work, we have not
considered systems where a different type of noncrystalline
ordering can come into play (e.g., icosahedral ordering),
which can represent another important source of glass-
forming ability [7,18,33,52,53]. Reference [18] is particu-
larly important, as it shows the effect of the competition of
different locally favored structures on the crystallizability
of a large variety of spin liquids with a common order-
disorder transition (one crystal). In their work, they show
that locally favored structures can have both an agonist or
antagonist behavior towards crystallization, and also, in
their case, crystal affinity correlates linearly with the
interface tension. We note that, even in such cases, our
theoretical consideration (see Sec. II.B) suggests that the
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key controlling factor of glass-forming ability may be the
thermodynamic interface penalty βγ.
The general expression for the thermodynamic interface

penalty in the Ginzburg-Landau theory, Eq. (4), establishes
the direct connection of βγ (not γ) to the difference of
the order parameters between the disordered and ordered
phases. The relevant order parameters are determined
by the type of ordering, such as crystalline order parameters
(more precisely, the density and crystalline bond-
orientational parameter) for the systems considered in this
work. But a similar mechanism should hold also for
systems where glassy behavior stems from a competition
between competing orderings and a disorder effect, includ-
ing materials with first-order magnetic, electronic, charge,
orbital, and dipolar ordering [54–59]. Finally, we note that
the principle found here is consistent with available experi-
ments on glass-forming ability [22,23,25,28]. We hope that
our finding will provide a general physical principle for
controlling the glass-forming ability in various materials,
including metallic alloys and phase-change materials, and
open a new avenue towards physics-based material design
of various types of glassy materials.
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APPENDIX A: SIMULATION AND
ANALYSIS METHODS

1. Simulation methods

a. SW model

The SW potential is given by

USW ¼
X
i

X
j>i

U2ðrijÞ þ λ
X
i

X
j≠i

X
k>j

U3ðrij; rikÞ;

where λ is the parameter controlling the relative importance
of the three-body term [U3ðrÞ] over the two-body term
[U2ðrÞ]. The two-body term comprises a steep repulsion at
very short separations and a short-range attraction:

U2ðrÞ ¼ Aϵ

�
B

�
σ

r

�
p
−
�
σ

r

�
q
�
exp

�
σ

r − aσ

�
:

The three-body term is a directional repulsion that pro-
motes specific conformations in between triplets of par-
ticles, modeling the effect of directional interactions:

U3ðrij; rikÞ ¼ ϵ½cos θijk − cos θ0�2

× exp

�
γσ

rij − aσ

�
exp

�
γσ

rik − aσ

�
:

All microscopic parameters are the same as in the SW
parametrization of silicon [34], except for λ, which
becomes the control parameter. The system size is N ¼
1000 particles if it is not mentioned. In the following, we
will always consider isobars at P ¼ 0; see Ref. [36] for full
phase diagrams of the model. We use reduced units where ϵ
and σ are the units of energy and length, respectively. In the
original SW parametrization for silicon, the units corre-
spond to ½T�silicon ¼ 25, 157 K and ½p�silicon ¼ 377, 674 bar.
Simulations are conducted in the NPT ensemble, allowing
anisotropic responses to the pressure [60].
Absolute entropies are calculated via standard free-

energy techniques (Widom insertion method and thermo-
dynamic integration for the melt, and Einstein crystal for
the solid) and checked against grand-canonical simulations
[36]. The vibrational contribution to the entropy is com-
puted via normal-mode analysis. Configurations are
quenched to the inherent state via a conjugate-gradient
algorithm, and the vibrational entropy is computed in the
harmonic approximation by calculating the eigenvalues
(ω2

i ) of the Hessian matrix: s ¼ 1
2

P
3N−3
i f1 − log½ðβω2

i Þ=
ð2πÞ�g. We have checked that the anharmonic correction is
negligible at the temperatures investigated. Integration of
coexistence points and constant βΔμ lines in the ðT; λÞ
plane are conducted with Hamiltonian integration [61].
Free-energy barriers are computed with the CNT-US
method described in detail in the Supplemental Material
of Ref. [44]. Diffusion coefficients are computed withNVE
molecular dynamics simulations.

b. BD model

The interaction potential of the BD system is given by

UBD ¼
�
0; if rij ≥ ðσi þ σjÞ=2
∞; if rij < ðσi þ σjÞ=2

;

where the two species have diameters σL and σS, respec-
tively. In the following, we fix σL=σS ¼ 1.4, which gives
rise to a eutectic phase diagram, with two competing
crystals that are hexagonal phases of large (L) and small
(S) disks, respectively. Monte Carlo simulations are con-
ducted in the NPT ensemble. The system size is N ¼ 1058
disks. Cluster moves are employed for the volume step
[62], and event-chain moves with swap moves for the
displacement step [63]. The density of states is computed
with Wang-Landau simulations, which we have adapted for
the semigrand-canonical ensemble [64,65]. Wang-Landau
simulations are further improved with parallel tempering
simulations between windows with different compositions.
Integration of coexistence points is obtained with
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Gibbs-Duhem integration techniques in the semigrand-
canonical ensemble [66]. We note here that, in the thermo-
dynamic limit, two-dimensional ordering of hard disks
happens via aweakly first-order phase transition to a hexatic
phase, and a second-order phase transition to the crystalline
phase [63], but these transitions are only observed with a
very large number of disks, while, at our system sizes, the
transition appears as a first-order transition between a liquid
and a solid phase, as shown in Appendix B 6. For our
purposes, we can thus safely ignore the difference between
the hexatic and solid phase, as they appear as a single peak in
the order parameter distribution functions. Diffusion coef-
ficients are computedwith event-driven simulationswith the
DynamO package [67]. See Appendix B 6 for further details
on simulations.

2. Estimation of βγ for the SW model

In order to isolate the interfacial effect from that of the
driving force, we compute the free-energy barriers along a
path of constant driving force, βΔμ ¼ 0.6. In this way, the
difference between the free-energy barriers can only be
ascribed to a change in the term βγσ2, where again σ is
the unit of length. The main difficulty in the calculation of
the barriers is the choice of a proper order parameter for the
identification of crystalline nuclei. In our case, this issue is
made more difficult by the fact that we need an order
parameter that is able to detect all four crystal phases that are
relevant in the glass-forming region (cubic and hexagonal
diamond, bcc, and β-tin). Very recently [44], we developed a
novel order parameter, called Q12 (see Appendix A 4),
which is able to detect all the relevant crystalline structures
of tetrahedrally coordinated materials. We thus employ the
Q12 order parameter to bias the formation of crystalline
nuclei in umbrella sampling (US) simulations and, thus,
compute the free-energy barriers for crystallization. In
particular, we use the CNT-US scheme, a variation of the
US scheme that allows the computation of the nucleation
barrier in a very efficient way [44].

3. Estimation of βγ for the BD model

For the BD system, we compute the full density of states
of the system for different pressures. From the density of
states, we thus obtain the order parameter distribution
ΠðcSÞ. A detailed explanation of the method is contained
in Appendix B 6. At coexistence, ΠðcSÞ is a doubly peaked
distribution, one peak representing the liquid phase, and the
other the solid (either L or S solid), with a minimum in
between the two peaks (see Fig. 14 in Appendix B 6). The
probability distributions for several state points along
the coexistence line are plotted in Fig. 3(b). The ΠðcSÞ
function is normalized such that its peak value at coexist-
ence is unity, ΠðcSSÞ ¼ ΠðcLS Þ ¼ 1, where cSS and c

L
S are the

concentration of the solid and liquid phases, respectively. In
this way, it is easily observed that the height of the barrier is

increasing as we increase the pressure on either side
of the eutectic point. As is well known [45], the ratio
log ½Πmax=Πmin� is directly proportional to the free-energy
cost of forming an interface between the two phases,
βFs ¼ limL→∞ log ½Πmax=Πmin�=2L, where Fs is the line
free-energy cost (i.e., the line tension) and L is the size of
the system. We thus use the ratio log ½Πmax=Πmin� as an
adimensional measure of the interface tension.

4. Precursors and crystallinity

To identify crystal particles in the SW model, we use
local bond-order analysis, following Ref. [44]. A (2lþ 1)-
dimensional complex vector (ql) is defined for each particle

i as qlmðiÞ ¼ f1=ðNbðiÞ�g
PNbðiÞ

j¼1 Ylmðr̂ijÞ, where we set
l ¼ 12, andm is an integer that runs fromm ¼ −l tom ¼ l.
The functions Ylm are the spherical harmonics, and r̂ij is the
normalized vector from particle i to particle j. The sum
goes over the first NbðiÞ ¼ 16 neighbors of particle i.

We then introduce a spatial coarse-graining step QlmðiÞ¼
f1=½NbðiÞ�g

PNbðiÞ
k¼0 qlmðkÞ [68]. The scalar product

between Q12;m of two particles is defined as
Q12ðiÞ · Q12ðjÞ ¼

P
mQ12;mðiÞQ12;mðjÞ. If the scalar prod-

uct ½Q12ðiÞ=jQ12ðiÞj� · ½Q12ðjÞ=jQ12ðjÞj� between two
neighbors exceeds 0.75, then the two particles are deemed
connected. A connection between two particles expresses
the fact that their local environment, as quantified byQ12, is
similar. We then identify particle i as crystalline if it is
connected with at least 12 neighbors. A precursor is then
defined as a particle with five or more connected neighbors.
For the BD model, we use the definition of local hexatic

order,

ψ6 ¼
1

nj

X
k

ei6θjk ;

where nj are the neighbors of particle j, and θjk is the angle
that the bond between particle j and k makes with a
reference axis. In the above definition, neighboring par-
ticles are defined as particles sharing an edge in the radical
Voronoi diagram obtained from the particles’ positions
and sizes.

APPENDIX B: SUPPORTING INFORMATION

1. Thermodynamic factors at constant
supercooling T=Tm

In Fig. 5, we plot the thermodynamic driving force βΔμ
as a function of T=Tm for different values of λ, in the bcc
(red lines), β-tin (black lines), and dc (blue lines) stable
regions. The figure shows that the rate of change in driving
force is a monotonous function of λ, with the rate being
slowest in the bcc region and fastest in the dc region.
The nucleation barriers in Fig. 3(a) were computed along

lines of constant driving force βΔμ ¼ 0.6. In Fig. 6, we
instead compute the barriers along a line of constant
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supercooling T=Tm ¼ 0.8, showing a rapid increase of the
activation energy on approaching the glass-forming region,
either from the bcc side (a) or the dc side (b).
In Fig. 7, we plot the thermodynamic factors along the

line T=Tm ¼ 0.8: both the thermodynamic driving force
(a), obtained via thermodynamic integration, and the
thermodynamic interface penalty (b), obtained by a one-
parameter fit of the barriers in Fig. 6. We observe that,
while the thermodynamic driving force (βΔμ) has a
monotonous behavior across the glass-forming region,
the thermodynamic interface penalty (βγ) steeply increases
towards the glass-forming region, indicating that βγ is the
factor controlling glass-forming ability.
We highlight here the importance of using adimensional

parameters. Figure 8 shows the bareΔμ (a) and γ (b) factors
along the homologous line. We observe that the behavior of
these thermodynamic quantities is very different between
the bcc-stable side and the dc-stable side. The chemical

potential difference Δμ decreases sharply from the dc side
with decreasing λ, but in the glass-forming region, it is still
bigger than the low values measured on the bcc side. This is
consistent with the estimates in Ref. [10]. The interface free
energy γ increases while approaching the glass-forming
region from the dc-stable side. This is similar to the
pressure effect observed for γ in simulations of water
[37]. But on the bcc-stable side, we instead observe a
decrease of γ when approaching the glass-forming region.
These results clearly indicate that γ alone is not a good
control parameter for glass-forming ability, and the thermo-
dynamic interface penalty (βγ) should be used instead, as
shown in Fig. 7(b). We stress that only the behavior of the
thermodynamic interface penalty (not the bare interface
tension) provides a coherent picture for the thermal SWand
athermal BD systems.

2. Isodiffusivity lines in the SW model

We show in Fig. 9 the phase diagram of Fig. 1(a) with
superimposed isodiffusivity lines (open purple symbols)
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and the glass transition line T0 [taken from the inset of
Fig. 2(a)]. The shape of the isodiffusivity lines closely
mirrors the underlying glass transition line. Away from the
melting point depression, their λ dependence closely
follows lines of constant thermodynamic driving force
βΔμ ¼ k. As already noted in Fig. 2(a), the dynamics
becomes anomalous around the melting point depression,
and less thermodynamic driving force is required to
produce the same diffusivity compared to the regions away
from the melting point depression. Departure from βΔμ¼ k
lines happens closer to the melting point depression as the
system becomes slower.

3. Excess free energy for interface
formation in the SW model

In the main text [Fig. 3(a)], we computed the free-energy
barriers along lines of constant driving force βΔμ ¼ 0.6,
which displayed a steep increase in the triple-point region.
From a CNT fit to the barriers, we then obtained numerical
estimates of the adimensional interface tension contribu-
tion, or the thermodynamic interface penalty βγσ2, plotted
in the inset of Fig. 3(a). While unambiguously showing an
increase of interface free-energy cost in the triple-point
region, the value of βγσ2 depends on the particular choice
of the fitting function. In this section, we compute βγσ2

without relying on classical nucleation theory. It has been
recently demonstrated that it is possible to reversibly
construct a path between a bulk fluid phase and a two-
phase system with a planar interface separating the fluid
from the crystal [69,70]. We obtain this by use of umbrella
sampling simulations with the order parameter Q12 defined
in Appendix A 4. We use a thin-box configuration, where
the width, height, and length are in the ratio 1∶3∶10. In this

configuration, the crystal nucleus transforms from a cylin-
drical shape to a slab perpendicular to the length direction.
Shape transitions are continuous and allow a reversible
sampling in the fluid-solid coexistence region, from the
fluid to the slab geometry, where the interface is flat and
there is no free-energy penalty in moving the interface [71].
This is represented in Fig. 10, where the free-energy profile
as a function of the number of solid particles n, and for
different values of λ, is reported. The fluid basin corre-
sponds to n ¼ 0, while the two-phase system with the
crystal in the slab geometry is encountered at high values of
n > n�, where βΔFðnÞ becomes flat. Here, the flat profile
of βΔFðnÞ signals that we are correctly at the melting
temperature, where both fluid and crystalline phases are
equally likely. The free-energy difference represents the
cost of the interface formation

βγσ2 ¼ ½βΔFðn�Þ − βΔFð0Þ�=2S;

where S is the area of the interface (the width and height
directions). The numerical results are reported in the inset
of Fig. 10 as red squares, showing again a steep increase in
the triple-point region.
The results for the bare interface tension γσ2 are

compared in Fig. 11. Red squares represent the interface
tension computed from the free-energy cost of forming a
thin slab interface at coexistence. The black circles are
instead the interface tension computed with a CNT fit to the
free-energy cost of forming spherical nuclei at βΔμ ¼ 0.6.

16 18 20 22
λ

0

0.02

0.04

0.06

0.08

T

FIG. 9. Isodiffusivity lines for the SW model. The phase
diagram is reproduced from Fig. 1(a), with superimposed iso-
diffusivity lines (open purple symbols), and the glass line T0 (full
purple symbols) reproduced from the inset of Fig. 2(a). The
isodiffusivity lines range fromD ¼ 0.002 (slowest) toD ¼ 0.007
(fastest) with intervals of ΔD ¼ 0.001.

0 100 200 300 400 500 600 700 800
n

0

50

100

Δ

150

β
F

15 20 25
λ

0.4

0.5

0.6

0.7

0.8

β 
γ σ

2

18

17

15
21.15
21.65
22.15
22.65

FIG. 10. Excess free energy at coexistence. The free-energy
landscape [βFðnÞ] is a function of the number of crystalline
particles n along the coexistence line at different values of λ. The
bulk fluid phase is at n ¼ 0, while at some n ¼ n�, the system
reaches a plateau, which corresponds to a planar fluid-crystal
interface. Red curves are for values of λ where bcc is the stable
crystalline phase, while blue curves are computed along the
melting line of the dc phase. Red square symbols in the inset
show the interfacial contribution computed as βγσ2 ¼
½βΔFðn�Þ − βΔFð0Þ�=2S, where S is the area of the planar
interface.

JOHN RUSSO, FLAVIO ROMANO, and HAJIME TANAKA PHYS. REV. X 8, 021040 (2018)

021040-12



The dependence on the tetrahedral parameter λ is similar for
both measurements, but a relative discrepancy of 15%
exists between them.
Since our focus is on the free-energy cost of nucleation,

we extract the thermodynamic interface penalty directly
from the nucleation barriers with classical nucleation
theory. In principle, the solid-liquid interface tension
depends on the orientation of the interface, but most
simulations point to the fact that this dependency is very
weak, and nuclei are mostly spherical [72]. It is never-
theless interesting to consider the interface tension at
coexistence. Above, for numerical convenience, we have
only considered the case of a thin-slab geometry, but recent
extensions of the capillary wave method [73] or the mold
integration technique [74] allow for a full calculation of the
interface tension of a flat interface.
The biggest source of error originates from the CNT fit,

which is applied only to relatively small nuclei, where the
capillary approximation is more likely to fail.

4. Pair correlators and liquid-crystal density
difference as a function of λ in the SW model

Here, we consider common parameters that fail to
capture the onset of glassy behavior. In particular, we
consider the two-body radial distribution function gðrÞ and
the density difference between the melt and the crystal.
In Fig. 12(a), we plot the radial distribution function for

different liquid state points along a line of constant thermo-
dynamic driving force to crystallization, βΔμ ¼ 0.6. Also
plotted are the gðrÞ functions for the corresponding stable
crystals at λ ¼ 14.5 (bcc), λ ¼ 18.1 (β-tin), and λ ¼ 23.15
(dc). The figure shows that the melt undergoes considerable
restructuring as a function of λ, and that this change closely
mirrors the local structure of the corresponding crystals. At

low values of λ, the local order is a dense structure with
eight nearest neighbors, while, at high values of λ, it is
characterized by tetrahedral ordering with four nearest
neighbors. As we move to intermediate values of λ (the
triple-point region), the melt progressively acquires com-
peting local orderings, as the relative strength of three-body
interactions changes [75]. We note that a similar change
takes place as a function of pressure P (instead of λ), which
is the origin of the V-shaped T-P phase diagram of water-
type liquids such as water, Si, and Ge [25]. The maximum
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FIG. 11. Interface tension γσ2. Comparison between the inter-
face tension computed from the free-energy cost of forming a
planar interface at coexistence (red squares) and the classical
nucleation theory fit to the free-energy cost of forming spherical
nuclei at βΔμ ¼ 0.6 (black circles).
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liquid density difference. (a) Radial distribution function gðrÞ for
different values of λ along a line of constant thermodynamic
driving force, βΔμ ¼ 0.6. The continuous lines are gðrÞ for liquid
states at λ ¼ 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 17.96 (red lines,
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(λ ¼ 14.5), β-tin (λ ¼ 18.1), and dc (λ ¼ 23.15), shifted verti-
cally for clarity. (b) Density of the liquid (green continuous line)
and the solids (bcc in circles, β-tin in squares, and dc in
diamonds) for the state points with βΔμ ¼ 0.6, the same as in
(a). The dashed line is the density difference between the liquid
and the stable solid phase, shifted by 0.5 (the horizontal dashed
line thus represents the 0 density difference line).
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rate of change in the structure occurs around λ ≈ 18, where
we observe a jump in the position of the first minimum
[Fig. 12(a)]. This region of fast structural rearrangement
corresponds to the location of maximum diffusivity
observed in Fig. 2. While the radial distribution functions
in Fig. 12(a) show significant structural changes in the
liquid, it is not evident why these would lead to a large
increase in the thermodynamic interface penalty in the
glass-forming region.
Another simple measure of structural difference between

a liquid and a solid is their difference in density. In
Fig. 12(b), we plot the density of the liquid (continuous
line) and that of all relevant crystalline structures (symbols)
for state points at different λ but constant thermodynamic
driving force, βΔμ ¼ 0.6. The difference between the melt
and solid densities is represented by the dashed line (shifted
for clarity). The dc crystal is an open crystalline structure,
with a density lower than the density of the melt, while both
the β-tin and bcc structures are denser than the melt. The
behavior of the dc crystal is different from the other
structures: While the dc crystal barely changes its density
as a function of λ, both β-tin and bcc have density changes
that mirror the one of the melt. So while the density
difference increases noticeably in the dc region going
towards the triple-point point, it is instead far less pro-
nounced on the bcc/β-tin side, where it is almost constant
with λ. The density difference between the crystal and the
melt is very well correlated with the λ dependence of the
bare interface tension γσ2 shown in Fig. 11. This confirms
that the density difference plays an important role in
determining the interface free-energy cost, as is well known;
however, the contribution of the density difference to the
thermodynamic interface penalty βγσ2 is much smaller than
that of the structural order parameter difference.
Here, it is worth discussing a link between structural

ordering and density in the liquid state of λ > 18. For
models with directional bonding, such as the SW model,
local structural ordering automatically accompanies a
decrease in the local density [50]. So high λ liquids with
higher structural order have a lower density, which is closer
to the density of the crystal. The degree of structural
ordering in a liquid state decreases with a decrease in λ for
λ > 18 since the degree of frustration increases due to
competing ordering. This explains the increase of the
density difference between the liquid and the solid with
a decrease in λ (>18).

5. Energy and entropy contribution to the
free-energy barrier in the SW model

In Fig. 13, we plot separately the free-energy barrier
(βΔF) and its entropic contribution (s) as a function of
nucleus size n for λ ¼ 23.15. The entropic contribution is
obtained by calculating the average energy of particles in
nuclei of size n (the inset of Fig. 13) and subtracting it from
the total free-energy barrier obtained from CNT-US

simulations. The figure shows that the transition is energy
driven and that most of the barrier is of entropic origin,
meaning that the energy and entropy of the bulk crystal are
both lower than those of the liquid. The same is true for all
values of λ considered in this study.
Through normal mode analysis, we can further separate

the entropy in its vibrational (svib) and configurational
(sconf ) contributions. Loosely speaking, sconf measures the
number of equilibrium configurations that are separated by
some structural rearrangement; importantly, a crystal has
only one such configuration and, thus, zero configurational
entropy. svib, on the other hand, measures the extent of the
vibrations about each of these configurations. We find that
the largest contribution to the barrier is due to sconf
(svib ≪ sconf for all n), which is entirely lost when the
fluid orders in the crystalline state. In Fig. 4(a) (right scale),
we plot both the configurational (filled squares) and
vibrational (open diamonds) contributions to the entropy
of the melt as a function of λ. The glass-forming region
shows an anomalous increase of sconf in the melt, which,
being the largest contributor to the nucleation barrier,
disfavors the transition to the crystalline state. The increase
in sconf signals an increased number of possible global
arrangements of the system that arises when two local
environments have an unresolved competition. This can be
rationalized by thinking of the melt as a mixture of many
small patches of different (although rapidly intercon-
verting) local symmetry and size. To this mixture, one
can associate a sort of “mixing entropy,” which is absent in
a homogeneous liquid. This mixing contribution explains
the increase of configurational entropy and, in turn, the
increase in the interface tension and, finally, the glass-
forming ability of the system. Note that, as mentioned in
the main text, sconf and βγσ2 are both adimensional
quantities, which can be compared on common ground.

0 20 40 60 80 100
n

0

5

10

15

20

25

30

s (n)
Δβ F(n)

0 20 40 60 80 100
n

-3.7

-3.65

-3.6

-3.55

-3.5

-3.45

-3.4

e(
n)
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6. Hard disks’ phase transition

In the thermodynamic limit, one-component hard disks
undergo a first-order phase transition from the liquid to the
hexatic phase and a second-order phase transition from the
hexatic phase to the solid phase. These transitions were
observed in systems of N ¼ 10242 disks [63], a size that is
necessary to resolve the very narrow density window in
which the hexatic phase is stable. In our study, the system
size (N ¼ 1058) is such that the hexatic and solid phases
are not resolved, and the transition appears as a first-order
transition between a fluid and a solid/hexatic phase [76].
This is seen, for example, with Wang-Landau simulations
in the isothermal-isobaric ensemble, in which different
density states are sampled uniformly. Starting from the
density of states, the probability distribution of the order
parameter (the density ρ) can be computed for different
values of the pressure P. The coexistence pressure is such
that the area under the two peaks is equal, and, in our case,
we obtain βPcoexσ

2 ≈ 9.09. The ρ distribution at coexist-
ence is shown in Fig. 14. Only two peaks are resolved, one
corresponding to a fluid phase at ρ ¼ 0.884, and the other
one corresponding to a hexatic/solid phase at ρ ¼ 0.907.
The units of length are such that the diameter of the disks is
unity σ ¼ 1. In the case of the BD system, we are limited to
small system sizes, as the calculation of the phase diagram
is computationally very expensive: both simulations in the
isobaric ensemble and density of state calculations are
prohibitively expensive for hard interactions at large system
sizes (despite our use of cluster moves and parallel temper-
ing techniques). We thus limit our study to sizes of N ¼
1058 and consider the transition to be effectively first order,
as the presence of an intermediate hexatic phase would not
impact our arguments.
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