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We investigate the response of colloidal flocks to external fields. We first show that individual colloidal
rollers align with external flows, as would a classical spin with magnetic fields. Assembling polar active
liquids from colloidal rollers, we experimentally demonstrate their hysteretic response: Confined colloidal
flocks can proceed against external flows. We theoretically explain this collective robustness, using an
active hydrodynamic description, and show how orientational elasticity and confinement protect the
direction of collective motion. Finally, we exploit the intrinsic bistability of confined active flows to devise
self-sustained microfluidic oscillators.
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I. INTRODUCTION

For centuries, applying an external pressure difference has
remained the only solution to flow a liquid in a pipe. Over
the last ten years, by engineering soft materials from self-
propelled units, we have learned how to drive fluids from
within [1–10]. The generic strategy consists in assembling
orientationally ordered liquids from self-propelled particles
[11–13]. From a fundamental perspective, significant efforts
have been devoted to explaining the emergence of collective
motion in ensembles of interacting motile bodies, and the
flow patterns of the resulting polar and nematic phases
[10–13]. However, we still lack a basic understanding of
these nonequilibrium materials. One of the major questions
that remains to be elucidated is the response of active phases
to external fields [14,15]. The situation is all the more
unsatisfactory because, from an applied perspective, the
potential of active fluids as smart materials will be chiefly
determined by their ability to sustain their spontaneous flows
against external perturbations.
Here, combining experiments and theory, we elucidate

how confined active fluids with broken rotational sym-
metry respond to external fields. Our experiments are based
on colloidal rollers self-assembled into polar flocks, i.e.,
active liquids with orientational order akin to that of a
ferromagnet [4,16,17]. We first demonstrate that isolated
colloidal rollers align their direction of motion with an
external flow as would classical spins with a magnetic field.

In contrast, we establish that the response of polar liquids is
intrinsically nonlinear. When confined in channels, trans-
verse confinement and bending elasticity act together to
protect the direction of collective motion against external
flows. We close this paper by showing how the resulting
hysteretic relation between the flock velocity and external
flows results in the spontaneous oscillations of confined
polar-liquid droplets.

II. RESPONSE OF MOTILE COLLOIDS TO
EXTERNAL FLOWS: ALIGNMENT WITH

EXTERNAL FIELDS

In our experiments, we exploit the so-called Quincke
mechanism to motorize inert colloidal particles and turn
them into self-propelled particles [4]. We recall the motori-
zation principle in Appendix A, and provide details about
the experimental setup in Appendix B. In brief, we observe
the 2D motion of colloidal rollers of diameter 2a ¼ 4.8 μm
confined in 50 × 16 × 0.1-mm channels filled with hex-
adecane oil, as illustrated in Fig. 1(a). They behave as
persistent random walkers, moving at a constant speed
v0 ¼ 0.98� 0.1 mm=s and having a rotational diffusivity
D ¼ 1.5 s−1 [18]. As a result, the distribution of the roller
velocities is isotropic and narrowly peaked on a circle of
radius v0; see Fig. 1(b).
We investigate their individual response to external flows

by injecting a fresh hexadecane solution at a constant
flow rate. Given the aspect ratio of the fluidic channel, the
flow varies only in the z direction along which it has a
Poiseuille profile [Fig. 1(a)]. We denote h as the magnitude
of the hexadecane flow evaluated at z ¼ a along the x̂
direction. Over a wide range of h, the speed of the rollers is
virtually unchanged; see Figs. 1(b) and 1(c). Their orienta-
tional distribution is, however, strongly biased. As seen in
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Fig. 1(b), the average roller velocity points in the direction
of the flow and the angular fluctuations are reduced upon
increasing h. More quantitatively, this behavior is very well
captured by the following equations of motion:

∂triðtÞ ¼ v0v̂i; ð1Þ

∂tθiðtÞ ¼ −μh sin θi þ
ffiffiffiffiffiffiffi
2D

p
ξiðtÞ; ð2Þ

where the riðtÞ and v̂i ≡ ½cos θiðtÞ; sin θiðtÞ� are, respec-
tively, the positions and velocity orientations of the
colloids. μ is a constant mobility coefficient, and ξðtÞ is
a Gaussian white noise of unit variance. Equation (2)
corresponds to the overdamped Langevin dynamics of a
classical spin coupled to a constant magnetic field. We
henceforth use this magnetic analogy and define the
average roller magnetization as V ¼ hv̂iii. Equation (2)
is readily solved and used to measure the rotational
mobility μ ¼ 0.08 μm−1 from the magnetization curve in
Fig. 1(d). This value is in excellent agreement with the
estimate derived from first principles in Ref. [4] and has a
sign opposite to that of the colloidal surfers studied in
Ref. [19]. Isolated rollers align with a flow field as would
uncoupled XY spins with a magnetic field.

III. ROBUSTNESS TO EXTERNAL FIELDS:
HYSTERETIC RESPONSE OF POLAR LIQUIDS

A. Experiments

In the absence of external flows, ferromagnetic orienta-
tional order emerges over system-spanning length scales
when increasing the roller packing fraction ρ above 10−2

[4]. A homogeneous polar liquid then forms and sponta-
neously flows through the microchannels as illustrated in
Fig. 2(a) and Video 1 in Supplemental Material [20]. We
now address the response of this active ferromagnet to
external fields, taking advantage of the coupling between
the roller velocity and the surrounding fluid flows. To do
so, we assemble a polar liquid confining hundreds of
thousands of rollers in a racetrack pattern of width
W ¼ 0.5 mm (the area fraction is set to ρ ¼ 0.1). Once
a homogeneous and stationary polar order is established,
we study its longitudinal response by applying a uniform
flow along one of the two straight parts of the channel,
as sketched in Fig. 2(a) and detailed in Appendix B. For
the sake of clarity, we henceforth refer to the hexadecane
flow field evaluated at z ¼ a as the external field h ¼ hx̂.
Figure 2(b) shows that applying a field h along the
direction of V reduces the transverse velocity fluctuations
of collective motion.

(a) (c)

(b)

(d)

FIG. 1. Isolated colloidal rollers align with external flows as XY spins with magnetic fields. (a) Microfluidic setup. Top: Top view.
Bottom: Side view. Colloidal rollers (black dots) of diameter 2a ¼ 4.8 μm and speed v (blue arrow) are confined in a 50 × 16 × 0.1-mm
channel. Hexadecane is injected through the channel at a constant flow rate. A Poiseuille flow results in the ẑ direction (green arrows).
The strength of the external field h is defined as the magnitude of the hexadecane flow at a distance z ¼ a from the bottom wall.
(b) Probability density function of the roller velocities for three different hexadecane flows PhðvÞ. The dashed circles are guidelines
corresponding to v ¼ v0. When h ¼ 0, the distribution is isotropic and strongly peaked around v ¼ v0. When h ≠ 0, the distributions
are biased along the direction of h, resulting in finite average velocities (blue arrows). (c) Superimposed images of a colloidal roller in a
hexadecane flow (h ¼ þ60 μm=s). The time interval between two subsequent pictures is 30 ms. The roller reorients at constant speed
along the flow direction. The scale bar represents 100 μm. (d) Magnetization curve VðhÞ of the noninteracting rollers (blue circles) and
time and ensemble average of the normalized roller speed hj_riðtÞjii;t=v0 (red open circles). The rotational mobility μ ¼ 0.08 μm−1 is
evaluated from the best fit of the magnetization curve with the theoretical formula (dark solid line), V ¼ I1ðμh=DÞ=I0ðμh=DÞ, where In
is the modified Bessel function of order n.
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In stark contrast to the individual response, Fig. 2(b) also
shows that collective motion can occur in the direction
opposite to the external field with a high level of ordering.
But this robustness has a limit. Increasing jhj above
hc ¼ 63 μm=s, the rollers abruptly change their direction
of motion and align with h. As quantitatively demonstrated
in Fig. 2(c), this behavior translates into a strong hysteresis
of the magnetization curve VðhÞ upon cycling the magni-
tude of the external field.
We now elucidate the origin of this collective robustness,

or more precisely, what sets the magnitude of the coercive
field hc in this active ferromagnet. We thus focus on the
regime where V · h < 0 and leave the discussion of the

case where V · h > 0 to Appendix C. In an infinite system,
hc should vanish as the polar-liquid flow stems from the
spontaneous breaking of a continuous rotational symmetry.
In this active system, however, orientation is intimately
coupled to mass transport. Therefore, the homogeneous
rotation of the roller velocity is forbidden by the confining
boundaries: Reversing the direction of the flock requires
finite wavelength distortions. As shown in Fig. 2(d), this
picture is supported by the very sharp increase of hc
measured when decreasing the channel width.
To gain a more quantitative insight, we inspect the inner

structure of the roller flow field. Video 2 in Supplemental
Material [20] and Fig. 3(a) both show that applying a field

(b)

(d) (e)

(a)

(c)

FIG. 2. Nonlinear response of polar liquids to longitudinal external fields. (a) Bottom: Sketch of the microfluidic geometry. The rollers
are confined in a photolithographied racetrack (black). A constant hexadecane flow is applied to the rollers by means of an additional
microfluidic channel (green). Top: Close-up on the homogeneous polar liquid flowing in a racetrack of widthW ¼ 0.5 mmwhen h ¼ 0.
In this experiment, the polar liquid spontaneously flows along the clockwise direction as indicated by the instantaneous particle
velocities (blue arrows). The velocity of one roller out of ten is plotted. The scale bar represents 100 μm. (b) Probability density function
of the roller velocities in the polar-liquid state. At h ¼ 0, the distribution is biased, revealing the spontaneous symmetry breaking of the
roller orientation. At h ¼ þ60 μm=s, transverse velocity fluctuations are reduced. At h ¼ −60 μm=s, the polar liquid cruises against the
external field and velocity fluctuations are enhanced. The speed of the rollers v0 (red dotted circles) is left unchanged by the external
field. (c) Magnetization curve V · x̂ðhÞ of the polar liquid. Upon cycling the external field h (dark arrows), the active ferromagnet
displays a hysteretic behavior. The coercive field hc is defined as the width of the hysteresis loop. Top: Close-up showing the minute
decrease of the magnetization prior to reversal. (d) The coercive field hc decreases with the channel widthW (green dots). (e) Theoretical
prediction hcðWÞ ¼ ð2= ffiffiffiffiffiffiffiffi

243
p Þαv0ð1þ 2DTq2=αÞ3=2. As a technical remark, we note that the limit W → ∞ is not relevant. Our two-

mode model is intrinsically based on the scale separation between the variations of the longitudinal and transverse components of v: vx
varies over the scale of the channel length, while vy varies over the channel width. Unconfined polar liquids cannot resist external fields.
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in the upstream direction causes finite wavelength distor-
tions dominated by bending deformations. We introduce
the Fourier transform of the roller flow field as
vðq; tÞ ¼ hviðtÞ exp½iq · riðtÞ�ii, and we plot in Fig. 3(b)
the time-averaged spectrum of the bending modes along the
q ¼ ðqx; 0Þ direction: BðqxÞ ¼ hjvyðqx; tÞj2it. The bending
deformations are dominated by spatial oscillations at a
well-defined wavelength λB. Figure 3(c) indicates that
confinement sets λB ¼ 2W; see also Video 3 in
Supplemental Material [20]. Increasing the magnitude of
the field strongly increases the amplitude of the bending
oscillations until jhj ¼ hc [Fig. 3(d)]. As exemplified in
Video 4 in Supplemental Material [20], the bending waves
are then destabilized into vortices leading to flow reversal.
Subsequently, the external field stabilizes a strongly pola-
rized homogeneous polar liquid flowing in the direction
of h. We stress that the reversal of the flow is completed
without resorting to local melting. Orientational order is
locally preserved regardless of the direction and magnitude
of the external field. The weak decrease of the magneti-
zation curve seen in Fig. 2(c) in the negative V · h region

chiefly stems from the constrained oscillations of the
spontaneous flow.

B. Theory

We use a hydrodynamic description of the polar liquid to
theoretically account for the bistability of the spontaneous
flows and for the variations of the coercive field hcðWÞwith
confinement. The Toner-Tu equations are the equivalents
of the Navier-Stokes equations for polar active liquids
[15,21]. They describe the dynamics of the velocity vðr; tÞ
and density fields ρðr; tÞ. In the presence of an external
driving field hðr; tÞ, they take the generic form:

∂tρþ ∇ · ðρvÞ ¼ 0; ð3Þ

and

∂tv þ λ1ðv · ∇Þv þ λ2ð∇ · vÞv þ λ3∇ðjvj2Þ
¼ αv − βjvj2v − ∇PþDB∇ð∇ · vÞ þDT∇2v

þD2ðv · ∇Þ2v þ μhh: ð4Þ

0 50 100

0.005

0.01

0.015

0.02

0 200 400 600 800
0

500

1000

1500

0 0.01 0.02 0.03 0.04

5

10

15

10-3

0.5

0.25

0.175

W (mm)

|h| (µm/s)

0

41

93 -    /2

+   /2

0

0.5

0.25

0.175

W (mm)

(a)

(c)(b) (d)

FIG. 3. Bending deformations of a polar liquid flowing against an external field. (a) Snapshots of polar liquids flowing against external
fields of increasing magnitude. The color indicates the angle of the instantaneous velocity of the rollers θ. As jhj increases, a bending-
oscillation pattern grows. W ¼ 0.25 mm. The scale bar represents 100 μm. (b) The time-averaged spectra of the bending modes along
q ¼ ðqx; 0Þ [BðqxÞ ¼ hjvyðqx; tÞj2it] are plotted for three different confinement widths: W ¼ 0.5, 0.25, 0.175 mm. The values of h are
taken just before flow reversal: h ¼ 62, 93, 119 μm=s, respectively. λB is defined by the wavelength where B is maximal. (c) Variations
of λB with W. λB ¼ 2W (dashed line). (d) Variations of the amplitude of the bending mode at q ¼ 2π=λB with jhj. The bending
deformations at λB increase when increasing jhj. The vertical lines indicate the values of hcðWÞ for the three experiments. The error bars
represent 1 sd (time statistics).
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These phenomenological equations involve a number of
hydrodynamic coefficients, which we do not describe here
(see, e.g., Ref. [13] for a comprehensive discussion). The
only parameters relevant to the following discussion are
(i) the convective coefficient λ1, which translates the lack of
translational invariance of the system (the rollers drag on a
fixed substrate defining a specific frame) and (ii) DT and
D2, which are two elastic constants of the broken symmetry
fluid.DT andD2 both hinder the orientational distortions of
the velocity field.
Describing the flow-reversal dynamics and the underlying

spatiotemporal patterns would require solving the strongly
nonlinear system given by Eqs. (3) and (4). This task goes far
beyond the scope of this article. Here, we instead exploit our
experimental observations to construct a minimal model. As
Fig. 3 indicates that a single bending mode of wave vector
q ¼ π=Wx̂ dominates the deformations of the velocity and
density fields, we make a simplifying ansatz by writing
vðx; tÞ ¼ vxðtÞx̂þ vyðtÞ cosðqx − ωtÞŷ, and we neglect all
contributions from spatial frequencies higher than π=W. We
also ignore density fluctuations and restrain our analysis to
longitudinal external fields h ¼ −hx̂. Within this two-mode
approximation, Eq. (3) is always satisfied, and Eq. (4)
reduces to the dynamical system:

∂tV ¼ FðV; hÞ; ð5Þ

where VðtÞ ¼ ½vxðtÞ; vyðtÞ� are the amplitudes of the two
coupled velocity modes. The generalized force FðV; hÞ ¼
ðFx; FyÞ is given by

Fx ¼
�
α − β

�
v2x þ

1

2
v2y

��
vx − h; ð6Þ

Fy ¼
�
ðα −DTq2Þ −D2q2v2x − β

�
v2x þ

3

4
v2y

��
vy: ð7Þ

These equations are completed by the relation
ðω − λ1qvxÞvy ¼ 0, defining the oscillation frequency ω.
To gain more intuition on the physical meaning of the

dynamical system, we plot the force field Fðvx; vyÞ in Fig. 4
for four values of h. Anticipating the comparison with our
measurements, we use the parameter values estimated in
Ref. [4] and recalled in Appendix D. Looking for fixed
points in the absence of an external field, FðV; h ¼ 0Þ ¼ 0,
we find five solutions for V when α > DTq2; see Fig. 4(a)
[22]. The trivial solution (0,0) is obviously unstable and
corresponds to a fluid at rest. The four other solutions
are given by ð0; vy;�Þ ¼ �½0; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα −DTq2Þ=ð3βÞ

p
� and

ðvx;�; 0Þ ¼ �ð ffiffiffiffiffiffiffiffi
α=β

p
; 0Þ, as illustrated in Fig. 4(a).

The former are saddle points, while the latter are linearly
stable fixed points corresponding to the two possible
homogeneous flows at speed v0 ¼

ffiffiffiffiffiffiffiffi
α=β

p
along the �x̂

|h| (µm/s)0 1.9 120 hc=161

vx

vy

vx

vy

vx

vy

vx

vy

hb

h h h
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FIG. 4. Two-mode theory of the hysteretic response. We look for stationary solutions of the hydrodynamics of polar liquids taking
the form v ¼ vxðtÞx̂þ vyðtÞ cosðqx − ωtÞŷ. The problem then reduces to studying a dynamical system: ∂tV ¼ FðV; hÞ, where
V ¼ ðvx; vyÞ. (a) Force field FðV; h ¼ 0Þ in the absence of an external field, plotted for W ¼ 0.5 mm. The blue circles correspond to
stable fixed points where F ¼ 0. The crosses indicate the positions of saddle points. A trivial unstable point is located at (0,0), but is not
shown. (b) Force field FðV; hÞ at finite h. The star symbol indicates the stationary position of the dynamical system. When jhj < hB, the
system stays in the stable fixed point, corresponding to a uniform longitudinal flow in the direction opposite to h, as sketched in the
bottom panel. (c) Increasing jhj, such that the homogeneous solution of (b) becomes unstable. Another stable point emerges between
two saddle points and corresponds to the buckled flow sketched in the bottom panel. Such stable buckled flows are consistent with the
experimental observations of Fig. 3. (d) At jhj ¼ hc, the topmost saddle point collides with the stable fixed point (superimposed cross
and dot symbols). As a result, the only stable conformation corresponds to a flow aligned with h.
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directions. It is worth noting that the force field focuses the
position of the dynamical system along a closed line
connecting the four fixed points, thereby making the
dynamics of V almost one dimensional; see Fig. 4(a).
The bistability of the flow at finite h, viz., the

existence of a finite coercive field, is understood from
the dynamics of the fixed points in phase space. Upon
increasing h, the dynamical system and, therefore, the
active flow explore three different states labeled with a
star symbol in Figs. 4(b)–4(d).

(i) We start from a polar liquid flowing in the þx̂
direction and an opposing external field h ¼ −hx̂,
with h > 0. As sketched in Fig. 4(b), this state,
where V ¼ ½v0 − h=ð2αÞ; 0�, corresponds to a polar
fluid uniformly flowing against the external field.
This situation remains stable until h reaches hb ¼
DTv0q2 þOðDTq2=αÞ [Fig. 4(b)]. Above this value,
the homogeneous flow is unstable to buckling, and
the stable point V ¼ ½v0 − h=ð2αÞ; 0� becomes a
saddle point.

(ii) Yet, the flow is not reversed. The system indeed
reaches one of the two new stable fixed points with
vy ≠ 0. They both correspond to homogeneously
buckled conformations; see Fig. 4(c). This predic-
tion is consistent with the buckled patterns observed
prior to flow reversal shown in Fig. 3 and Supple-
mentary Videos 2 and 3 [20].

(iii) Further increasing h, the buckled state approaches
the topmost saddle point. The two points even-
tually merge at a critical value hc, corresponding
to Fig. 4(d). The only stable conformation then
corresponds to a situation where V ¼ ð−vx; 0Þ.
The flow is reversed and aligns along the direction
prescribed by h. hc defines the value of the
coercive field.

The value of hc is determined analytically by the
merging condition between the saddle and the fixed
point; see Fig. 4(d). We find that hc stems from the
competition between the external field and all the
velocity-alignment terms (α and DT): hc ¼ ð2= ffiffiffiffiffiffiffiffi

243
p Þαv0

ð1þ 2DTq2=αÞ3=2. Our model correctly predicts that the
stability of the flows opposing an external field is
enhanced when further confining the polar liquid, i.e.,
increasing q ¼ π=W. Remarkably, this simplified picture
also provides a reasonable estimate of the magnitude of
the coercive field; see Figs. 2(d) and 2(e).
In summary, we have established the bistability of

polar active fluids. Their hysteretic response originates
from buckled flow patterns stabilized by orientational
elasticity. We expect this phenomenology to apply to
all confined active fluids with uniaxial orientational
order. Our theory builds on the observation of a single
set of buckling modes. Explaining the pattern-selection
process remains, however, a significant technical
challenge.

IV. APPLICATION: SPONTANEOUS
OSCILLATIONS OF POLAR-LIQUID DROPLETS

We close this article by exploiting the intrinsic multi-
stability of polar-liquid flows and demonstrating emergent
functionalities in active microfluidics [23–25]. The exist-
ence of a hysteresis loop in the response function provides a
very natural design strategy for spontaneous oscillators via
the relaxation-oscillation mechanism [26]. Simply put,
having mechanical devices in mind, relaxation oscillations
stem from the coupling between a system with a hysteretic
“force-velocity” relation and a harmonic spring. This
minimal design rule is transposed to active fluids by
confining them in curved containers and applying a
constant and homogeneous external field h ¼ hx̂. As
illustrated in Video 5 in Supplemental Material [20], and
in the image sequence of Fig. 5(a), the colloids form a
polar-liquid droplet that spontaneously glides along the
confining boundary in an oscillatory fashion. We denote α
as the polar angle defining the position along the confining
disc and vðα; tÞ as the azimuthal component of the velocity
field averaged over the radial direction. Figure 5(b) shows
the variations of the velocity field vðα; tÞ. The oscillatory
dynamics of the polar-liquid droplets is clearly periodic,
with a well-defined period and amplitude, both decreasing
with the magnitude of the stationary external field
[Figs. 5(c) and 5(d)].
We now explain these collective oscillations as the

periodic exploration of the four states (i), (ii), (iii), and
(iv) along the hysteresis loop established in Fig. 2(c)
and sketched in Fig. 5(e). The key observation is that
the droplet follows the boundary of the circular chamber.
The droplet hence experiences a longitudinal field of
magnitude hkðαÞ ¼ h sin α, which either favors or hinders
its motion. The periodic exploration of the hysteresis loop
is supported by Fig. 5(e). Figure 5(e) shows the distribution
PðvCoM; hkÞ, where vCoM is the polar-liquid velocity
evaluated at the center of mass of the droplet αCoM. The
support of this distribution corresponds to the rectangular
shape of the velocity-field relation measured in Fig. 2 for
a straight channel. The droplet spends most of its time
exploring the stable horizontal branches and quickly jumps
from one stable conformation to the other along the vertical
ones. We can gain more intuition on this oscillatory
dynamics by describing the four states one at a time.
In state (i), the head of the flock is located at α < 0 and

vðαÞ · h < 0. The flock proceeds in the direction opposite
to the azimuthal component of the external field. The
system moves toward the left of the bottom branch of the
hysteresis loop [Fig. 5(e)]. As the flock moves toward the
negative α direction, the field strength jhkj increases and
reaches the maximal value hc at an angle −αc. The system
then reaches the left vertical branch of the response curve
and hence becomes unstable [state (ii)]. The flock bends
and reverses its direction to reach the upper branch of the
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response curve [state (iii)]. When the flock proceeds in the
positive α region, it experiences an increasingly high field in
the direction opposite to its motion. As hk ¼ hc, the flock
reaches the right vertical branch of the response curve at the
maximal angle þαc [state (iv)], thereby leading the system
back to state (i). The hysteresis loop is periodically explored.
This oscillatory motion relates to the conventional

relaxation-oscillation picture as follows: The response
curve ðh;VÞ plays the role of the force-velocity relation
in a mechanical system, and the angle-dependent longi-
tudinal flow plays the role of the harmonic spring.

V. CONCLUSION

In conclusion, we have established that colloidal rollers
respond to external flows as classical spins to magnetic
fields. Assembling active fluids with broken orientational
symmetry from these elementary units, we have exper-
imentally demonstrated, and theoretically explained, the
hysteretic response of polar-active-fluid flows. We have
shown how confinement and bending elasticity act together

to protect emergent flows against external fields. Finally,
we have effectively exploited the bistability of active flows
to engineer active-fluid oscillators with frequency and
amplitude set by the geometry of the container. Together
with the virtually unlimited geometries accessible to micro-
fabrication, the intrinsic nonlinearity of active flows offers
an effective framework for the design of emergent micro-
fluidic functions [23–25].
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APPENDIX A: MOTORIZING COLLOIDAL
ROLLERS

Our experiments are based on colloidal rollers; see [4].
We turn inert polystyrene colloids of diameter a ¼ 4.8 μm
into self-propelled bodies by taking advantage of the
so-called Quincke electrorotation mechanism [27,28].

(a)

(c) (d)

(b)

(e)

FIG. 5. Spontaneous oscillations of a polar-liquid droplet. (a) Subsequent pictures of a polar liquid droplet oscillating spontaneously in
a circular chamber of radius R ¼ 0.5 mm. The green arrows indicate the direction of h. The color of the particles indicates the
instantaneous direction of their velocity θ. The polar-liquid droplet reverses its motion when it reaches a critical angle �αc along the
curved boundary. h ¼ 485 μm=s. (b) Time variations of the radial average of the active-liquid flow vðα; tÞ, showing a well-defined
period T and amplitude αc of oscillations. The four states defined in (a) are indicated in the close-up view. (c) The critical angle αc is
reduced when increasing the magnitude of the external field h. R ¼ 2.3 mm. (d) The period of the oscillations T is reduced when
increasing the magnitude of the external field h. R ¼ 2.3 mm. (e) Density of probability PðvCoM; hkÞ. The support of this probability is
defined by the hysteresis cycle. The dashed line shows a sketch of the dynamical response of the polar liquid, and the arrows give the
direction of the cycle exploration. The four states defined in (a) correspond to the four branches of the hysteresis loop.
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Applying an electric field to an insulating body immersed
in a conducting fluid results in a dipolar distribution of its
surface charges. Increasing the magnitude of the electric
field E0 above the Quincke threshold EQ destabilizes the
dipole orientation, which in turn makes a finite angle with
the electric field. A net electric torque builds up and
competes with viscous friction to power the spontaneous
rotation of the colloids at constant angular velocity. As
sketched in Fig. 1(a), the colloids sediment on a flat
electrode. Rotation is then readily converted into transla-
tional motion at constant speed v0 in the direction opposite
to the charge dipole. The direction of motion is randomly
chosen and freely diffuses as a result of the spontaneous
symmetry breaking of the surface-charge distribution.

APPENDIX B: METHODS

We disperse commercial polystyrene colloids (Thermo
Scientific G0500) in a mixture of hexadecane and AOT
with concentration ½AOT� ¼ 0.13 mol=L. We inject this
solution into microfluidic chambers made of two electrodes
spaced by a 110-μm-thick scotch tape. The electrodes are
glass slides, coated with indium tin oxide (Solems,
ITOSOL30, with 80-nm thickness). A voltage amplifier
(TREK 609E-6) applies a DC electric field between the
two electrodes. We image the system with a Nikon AZ100
microscope with a 3.6× magnification and record videos

with a CMOS camera (Basler Ace) at a frame rate of up to
380 Hz. We use conventional techniques to detect and track
all particles [29–31]. To confine the colloidal rollers inside
racetracks, we pattern the bottom electrode by means of
photolithography, using a 2-μm-thick layer of UV photo-
resist (Microposit S1818), as in Ref. [17]. The geometry of
the microfluidic device is detailed in Fig. 6. We study the
response of rollers to an external field, by injecting a fresh
hexadecane solution at a controlled flow rate using a high-
precision syringe pump (Cetoni neMESYS). Each meas-
urement was done at least 60 seconds after the relaxation
of the flow pattern in the main branch of the racetrack. The
construction of the hysteresis loop in Fig. 2(b) corresponds
to a 7-hour-long experiment.

APPENDIX C: NONLINEAR RESPONSE OF
THE ORDERED PHASE: V · h > 0

We discuss here the strengthening of orientational
order when V · h > 0. We plot in Fig. 7(a) the variations
of δV ≡ jVðhÞ − Vðh ¼ 0Þj in this regime. At small h, V
responds linearly to the external field. However, the
increase of δVðhÞ becomes sublinear for field amplitudes
as small as h ¼ 3 × 10−2v0. The simplest possible explan-
ation of this anomalous attenuation is that V is a bounded
quantity that is maximal and equals 1 when all the rollers
move along the very same direction. A second and more
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ITO coated glass slide

Hexadecane
([AOT] = 0.13 mol/L)

Scotch tape
(thickness: 110µm)
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(thickness: 3 µm)

Colloids
(diameter: 4.8 µm)

W

(a) (b)
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FIG. 6. Schematics of the microfluidic device. (a) Top view. The photoresist pattern is shown in red. The racetrack along which the
active liquid flows corresponds to the white path. The geometry of the fluidic channel corresponds to the black solid lines. The flow
direction is indicated with a green arrow. The two bottom pictures show the solvent flow field measured by particle image velocimetry
seeding the hexadecane oil with colloids. Because of the imbalance between the two hydrodynamic resistances, the residual flow in the
bottom branch is negligible (right picture) compared to the flow in the observation window (left picture). The scale bar represents
500 μm. (b) Side view in the A-B section defined in (a). Two ITO coated glass slides are assembled with a double-sided tape. The
colloids roll on the bottom ITO surface and are confined by the photoresist pattern (red). (c) Side view in the C-D section as defined in
(b). The hexadecane flow has a Poiseuille profile along the z-direction.
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involved explanation was put forward in Ref. [15]. For
finite systems, a crossover from linear response at small h
to the anomalous scaling law δVðhÞ ∼ h1=3 was predicted
from renormalization group analysis [15]. As shown in
Fig. 7(a), this scaling law is consistent with our experi-
ments for system sizes ranging from W ¼ 0.175 mm to
W ¼ 0.5 mm. However, the finite size scaling shown in
Fig. 7(b) fails to ascertain this explanation. Disentangling
the two effects would require operating closer to the
transition toward collective motion where the fluctuations
of V are more prominent. Such a regime cannot be achieved
in our experiment due to the strongly first-order nature of
the transition toward collective motion.

APPENDIX D: HYDRODYNAMIC PARAMETERS
OF THE ROLLER FLUID

We recall the estimates of the hydrodynamic parameters
relevant to the computation of the coercive field hc. Starting
from the Stokes and Maxwell equations describing the
microscopic dynamics of the colloids, we established in
Ref. [4] the hydrodynamics of colloidal-roller liquids. The
results of this kinetic theory are summarized in Table I. We
determined the value of μh following the same procedure
and found μh ¼ 1

2
μv0, where μ is the rotational mobility

measured in Fig. 1.

[1] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R
Bausch, Polar Patterns of Driven Filaments, Nature
(London) 467, 73 (2010).

[2] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann, and
Z. Dogic, Spontaneous Motion in Hierarchically Assembled
Active Matter, Nature (London) 491, 431 (2012).

[3] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and
R. E. Goldstein, Confinement Stabilizes a Bacterial
Suspension into a Spiral Vortex, Phys. Rev. Lett. 110,
268102 (2013).

[4] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and
D. Bartolo, Emergence of Macroscopic Directed Motion in
Populations of Motile Colloids, Nature (London) 503 95
(2013).

[5] D. Nishiguchi and M. Sano, Mesoscopic Turbulence and
Local Order in Janus Particles Self-Propelling under an AC
Electric Field, Phys. Rev. E 92, 052309 (2015).

[6] A. Creppy, O. Praud, X. Druart, P. L. Kohnke, and F.
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