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Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of
the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of
forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified
two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell
microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several
different organisms, including those with known coupling to a circadian clock and those without known
coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features
that can be compared with the experimental data. By fitting the model to the data, we extract the important
parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for
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cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been
explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-
cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian
clock reduces variability. Our results show that simple correlations can identify systems under periodic
forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular
processes of growth.

DOI: 10.1103/PhysRevX.8.021035 Subject Areas: Biological Physics, Nonlinear Dynamics

I. INTRODUCTION

The process of cell division has fascinated scientists
since the invention of the microscope. During the process
of cell division in organisms that divide symmetrically, a
cell generates two almost identical copies of itself. Many
mechanisms act in concert to enhance the fidelity of
replication and division, including proofreading, DNA
repair enzymes, an elaborate partitioning apparatus, and
feedbacks. The statistics of the cell division process in
single cells has been proposed to provide an unbiased way
to uncover the type of feedback that controls the process
of cell division ([1,2] and references therein) and has
motivated researchers to gather as much data as possible.
Powell, one of the pioneers of single-cells measurements,
was described as sitting in a 37° C room for many hours
watching bacteria divide and recording manually cell-
division events [3]. Recent technological advances in
microscopy and microfluidics [4,5] have boosted our
ability to gather information over tens of thousands of
cells and opened the door to quantitative analyses of the
process of cell division on lineages [6,7].
Cell division is a discrete process (Fig. 1 and

Supplemental Material [8] for Video 1) that occurs at each
generation. The cellular components inherited from the
previous division govern the state of the cell at birth.
Therefore, it is appealing to describe this process with
discrete maps. For maps, consecutive timing of key events
such as the duration of sleep [9], phase of cardiac firing in a
stimulation cycle [10], or cell-cycle duration [11], depend
in an iterative manner on the timing of previous events. In
most studies involving maps, one assumes that the map is
identical under subsequent iterations. For example, for
the duration of the cell-cycle Tn measured at generation n,
the iterative map f will be of the form Tn þ 1 ¼ fðTnÞ.
Interestingly, assuming cell division can be described by a
map, the map itself would be duplicated at each generation.
This duplication would not contain new information in the
absence of a noise term. However, noise is always present
and its result is that, at each generation, an additional
branch is generated with slightly different initial conditions,
a remarkable feature of self-replication [11,12]. Thus, the
information contained in the lineage is much larger than on
a single branch [13,14]. Rich dynamics can emerge from
the iterative processes, but these dynamics have rarely been
analyzed on lineages [12]. Thus, the study of cell lineages

introduces a new class of problems involving dynamics of
nonlinear maps that are themselves duplicated with noise in
subsequent generations. Our goal is to explore the dynam-
ics of cell-cycle inheritance measured on lineages of single
cells (Fig. 1). For this purpose, we focus on the measure-
ment of the duration of the cell cycle, which is the time
between two consecutive cell divisions, and its inheritance
along lineages that generates the time series Tn and its
branches. We expand on our previous work analyzing the
correlations in cell-cycle duration in mouse lymphocytes
[11] and compare high throughput single-cell microscopy
data from different organisms, with and without putative
periodic forcing. We analyze various measurements such
as the correlations between cells in the lineages, the
distributions of cell-cycle duration, and the distribution
of phase at birth using a discrete two-dimensional map
representing the periodic forcing of the cell cycle by an
external oscillator.

FIG. 1. (a) Schematic illustration of the symmetric self-
replication process that generates two nearly identical sister cells
at each division, with sister cells in red (middle) and cousin cells in
green (on the right). (b) Single-cell phase-contrast images of the
cell-cycle duration in various cells. The time labels are in hours.
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A. Periodic forcing

One of the classic problems in mathematics involves the
effects of period forcing of a nonlinear oscillator [15]. The
nonlinear oscillator can be represented by a differential
equation containing a stable limit cycle. The periodic
forcing is typically either a continuous periodic input or a
pulsatile stimulus. In either case, one expects the appear-
ance of certain universal features that can often arise
independently of the detailed equations or the nature of
the stimuli. If the intrinsic period of the driven oscillator is
sufficiently close to the period of the forcing oscillator,
then there will typically be entrainment or 1∶1 phase
locking where the two oscillators are synchronized. As
one changes the relative frequencies of the oscillators and
the strength of influence of the periodic forcing on the
driven oscillator, then many different behaviors can arise.
One such behavior is n∶m phase locking, in which there
is a stable periodic rhythm with n cycles of the forcing
oscillator to m cycles of the driven oscillator. Two
different types of aperiodic rhythms are possible. These
can be distinguished by considering what happens to the
trajectories starting from two different nearby phases of
the driven oscillator as time proceeds. If the distance
between the two trajectories grows with time, then the
dynamics are chaotic, and if the distance stays approx-
imately the same, then the dynamics are quasiperiodic
[16]. Moreover, many features of the locking zones have a
universal structure. For low forcing amplitudes, there are
typically zones of stable phase locking, called Arnold
tongues, where the ratio m=n monotonically increases as
the ratio of the forcing oscillator period to the intrinsic
period of the forced oscillator increases. These basic
insights emerge from research stretching back to
Poincaré, with major insights from Arnold [17], Smale
[18], and many others. Study of periodically forced
nonlinear oscillators is not only of interest in itself, but
it can also help us understand dynamics in a wide range of
physical [15,19,20] and biological systems [10,21–23].
One such problem involves the effects of an external

rhythm on the cell-cycle duration [11,23,24]. This exter-
nal rhythm can be externally imposed, leading to new
insight on the cell cycle itself [25], or originate from a
clock encoded within the cell, such as the circadian clock
[26]. The circadian clock is an internal cellular oscillator
that has an approximate period of 24 h and that can
influence cellular processes depending on the time of the
day [26]. For example, in some organisms that have a
circadian clock, there are time intervals in the day during
which the progression through the cell cycle proceeds
slowly. This phenomenon is called gating [27,28]. It is
widely believed that, in the presence of a gate, cell-cycle
states synchronize to the circadian signal [23]. Since
biological systems typically have considerable variability,
even in situations in which there is believed to be
synchronization, there can be considerable variation in

the timing of the events, and quantitative analysis and
modeling are needed to test hypotheses.
Two types of theoretical models have been proposed to

interpret the experimental results on entrainment of oscil-
lations: nonlinear differential equations and nonlinear
maps. Nonlinear differential equations are often developed
specifically for particular systems with parameters gener-
ally determined by optimizing fits to data [23,29]. In
situations in which the differential equations are based
on realistic models, as, for example, in models of the
interactions of the circadian clock and the cell division
cycle [23], it is possible to determine some of the
parameters based on different sets of experiments than
those used to model entrainment data [24]. Maps constitute
an alternative type of model.
In what follows, we discuss the synchronization of the

cell cycle to the circadian rhythm in the context of non-
linear dynamics models of periodic forcing. In order to
simplify previous approaches and reduce the number of
parameters, we apply a stochastic nonlinear map to study
cell-cycle time correlations in lineages from several differ-
ent species. The analysis demonstrates the importance of
deterministic nonlinear factors in controlling the cell cycle
and also suggests new directions for theoretical analyses. In
Sec. II, we present the mathematical model of periodic
forcing. Section III gives the experimental results, math-
ematical analysis of a null model, and the fitting of the
mathematical model of periodic forcing to the data.
Section IV is the discussion of the results, and in Sec. V
we present the experimental methods.

II. MATHEMATICAL MODEL

In recent work, some of us proposed a biologically
plausible model for the interaction of the circadian rhythm
with the cell cycle, called the “kicked cell cycle” [11],
which we expand on below. This model is based on the
assumption that the cycle duration of a daughter cell
depends linearly on the cycle duration of the mother cell,
as well as on the circadian time of the cell division. The
basic idea is that the cell-cycle duration Tn of a cell in
generation n can be influenced both by the cell-cycle
duration of its mother Tn−1 and the phase at its birth of a
forcing oscillator such as the circadian clock. Given the
birth time of a cell in generation n as tn, the phase in the
forcing rhythm is tn=Tosc, where Tosc is the period of
the forcing oscillator (approximately 24 h for the circadian
clock). The model for analysis is

t�nþ1 ¼ tn þ τ0ð1 − αÞ þ αTn−1 þ k sin

�
2πtn
Tosc

�
þ ξ�n ; ð1Þ

T�
n ¼ t�nþ1 − tn; ð2Þ

where tn represents the birth time of a cell in generation n,
Tn represents the cell-cycle duration of a cell in generation
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n, τ0 is the intrinsic cell-cycle period in the absence of
circadian forcing, k is a parameter that controls the
magnitude of the coupling between the cell cycle and
the circadian oscillation, α ∈ ½−1; 1� is a parameter that
allows a tuning for the influence of the mother cell-cycle
duration on the current cell-cycle duration. Instead of the
cat map term introduced in Ref. [11], we add here a white
noise term that is simpler and biologically more plausible,
ξ�n , with hξ�n i ¼ 0 and hξ�n ξ�mi ¼ ξ2δn;mδþ;−, where h·i
denotes average over realizations. The superscripts (�)
designate the two sister cells. If ξ ¼ 0, both sisters have the
same cell-cycle duration. In this case, the model has a rich
history. For α ¼ 0, it is equivalent to the Arnold circle map
[17]; for α ¼ 1, it is the standard map [30]; and, for general
values of α, it is the fattened Arnold circle map [31], also
known as the dissipative kicked rotor [32,33]. The latter
has previously been considered only as an abstract model.
Its properties, especially for α < 0, are not well understood.
We find that, depending on the parameters, the dynamics
of the model include fixed points (for example, around
τ0 ¼ Tosc) and regions of periodic, quasiperiodic, or
chaotic behavior.

III. RESULTS

A. Experimental correlations in lineages of cells

We measured or analyzed the cell-cycle duration in
thousands of single cells and in various organisms: E. coli,
corynebacteria, cyanobacteria, EMT6 human cells, and
L1210 mouse lymphocytes (Table I). While the first two
organisms are not known to be controlled by an external
oscillator, the circadian clock coupling to the cyanobacteria
cell cycle has been extensively studied, and a similar coupling
has more recently been suggested to be active in mammalian
cells [26]. Corynebacteria were chosen because of their
division mode that occurs by snapping (see Supplemental
Material [8] for Video 1), thus reducing the experimental
noise in the determination of the cell division event.
Mother cells divide into two daughter cells, called

sisters. The sisters again divide into four cells. Two

daughter cells from different sisters are called cousins
(Fig. 1). As shown in our previous work on the analysis
of the L1210 data [11], meaningful information can be
gained from measuring the correlations between different
cells within the same lineage. In particular, we measured
the Spearman correlations in cell-cycle duration between
sister cells ρs−s, between mother and daughter cells ρm−d,
and between cousin cells ρc−c. (See Table I for measured
correlations.) The averages in the correlation coefficients are
over different lineages. We found significant correlations
between sister cells in all data sets, in agreement with earlier
results [36]. In most data sets, the ρm−d was low or
nonsignificant, suggesting that the memory of the cell-cycle
duration was lost within one cell cycle. The coefficient of
variation of the cell-cycle duration varied from 10% to 40%
in the various data sets, similarly to typical values in the
literature. This variation is larger, for example, than the
one expected from the measured noise between sisters ξ,
according to a simple model of inheritance, the bifurcation
autoregression (BAR) model [37]. Another departure from
this model is the observation that cousins often had
correlated cell-cycle duration that could not be attributable
to microenvironmental conditions [11]. Intuitively, the cor-
relation between cousin cells despite the absence of corre-
lation between mother and daughters is surprising. In order
to formulate this intuition more rigorously and for the
general case, we consider a process that proceeds in a
treelike fashion, as the division process does [Fig. 1(a)].

B. Expected correlation of cell-cycle duration
in a lineage

Similarly to the assumptions of the BAR model, we
assume that the fate of a daughter cell is determined by
inherited factors from its mother cell and that there are no
external influences. Likewise, we assume that the fates of
two sister cells are directly related due to the resemblance in
their composition at birth. Thus, the correlations between
cells are determined by the lineage relations.
In order to neutralize the effect of the fate of cell Z in

Fig. 1(a), on the correlation of cells X and Y, we use the

TABLE I. Typical experimental measures of the cell-cycle duration and correlations in various organisms (see also Table III). Mean
cell-cycle duration computed on the third generation (� std), coefficient of variation (CV), Spearman correlations, and Δ [as defined by
Eq. (7)]. The expected value forΔ for the null model is zero. The noise between sisters cells ξ is defined in Eq. (1) and extracted from the
data shown in Fig. 8 (see Sec. V). Data sets that have Δ significantly above zero are marked in grey (see Sec. V for significance
evaluation).
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partial correlation function. The partial correlation ρXY;Z
between random variables X and Y, removing the effect of
the variable Z, is

ρXY;Z ¼ ρXY − ρXZ · ρYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ2XZÞð1 − ρ2YZÞ

p : ð3Þ

We now return to the labels of Fig. 1(a) and recall that we
expect zero correlation between the fates of X and Y when
the effect of Z is removed. For Spearman correlations, this
assumption is valid if the correlations reflect monotonous
relations between cells. Thus, ρXY;Z ¼ 0, and Eq. (3)
implies

ρXY ¼ ρXZ · ρYZ: ð4Þ

Likewise, we expect zero correlation between K and Y
when the effect of X is removed, so ρKY;X ¼ 0.
Equation (5) is obtained directly from Eq. (4) by changing
labels (X → K, Z → X), and by substitution of Eq. (4):

ρKY ¼ ρKX · ρYX ¼ ρKX · ρXZ · ρYZ: ð5Þ

Replacing the labels KY, KX, XZ, and YZ by the cells’
relations [as in Fig. 1(a)] leads to

ρc−c ¼ ρ2m−d × ρs−s: ð6Þ

This derivation is valid for any cell fate measured on a
lineage. In particular, Eq. (6) is the expected relation
between the cell-cycle correlations ρc−c, ρs−s, and ρm−d
(using Spearman coefficients), under the assumption of at
most a monotonic dependence of a cell cycle on its mother
cell cycle and on its sister cell cycle (see also [37]).

C. Comparing expected and measured correlations
in cell-cycle duration

According to the derivation of the null model, ρc−c is
expected to be always smaller than ρm−d [Eq. (6)]. For the
data sets of corynebacteria and of E. coli, Eq. (6) holds
quite well. However, for the cyanobacteria, lymphocytes,
and EMT6 data sets, we observe a large deviation from this
expected behavior (Fig. 2 and Table I), as quantified by the
parameter Δ:

Δ ¼ ρc−c − ρ2m−d × ρs−s: ð7Þ

Moreover, in several data sets, contrary to expectations,
we observe empirically an even stronger departure from
Eq. (6), which we termed the cousin-mother inequality:

ρc−c > jρm−dj: ð8Þ

D. Generic features of the kicked cell-cycle model

The kicked cell-cycle model offers a potential explan-
ation for these results, by including a nonmonotonous and
nonlinear relation between the cell-cycle of the mother and
its daughter, which departs from the assumptions of the null
model. As the intrinsic cell-cycle period τ0, the forcing
amplitude k, and the mother-daughter coupling α vary,
different dynamical behaviors and bifurcations occur. In
Fig. 3(a), the complex landscape of periodicity regions
coming from the kicked cell-cycle model is shown for
α ¼ −0.5. Despite the classical nature of this problem,
there is still comparatively little known about the bifurca-
tions when α ≠ 0 and α ≠ 1. We observed a strong
similarity to the locking zones in the sine circle map for
which α ¼ 0 [21,22,38]. The rich nature of the dynamics
shown in Fig. 4 is apparent also in the maximal Lyapunov
exponent phase space of the kicked cell-cycle model that
we plot in Fig. 5, which allows us to distinguish between
chaotic (green to red), quasiperiodic (cyan), and periodic
regions (blue). One can observe that these generic features
are kept also when α is varied from negative [Fig. 5(a)] to
positive [Fig. 5(b) and Fig. 6]. In order to find in which
regions of the parameters’ phase space the cousin-mother
inequality observed in the data holds, we plot in Figs. 3(b)
and 3(c) the simulated values of the cousin-mother inequal-
ity for noise level ξ ¼ 0.01 [Fig. 3(b)] and ξ ¼ 0.1
[Fig. 3(c)]. In a large part of the plot, the cousin-mother
inequality holds, showing that the model can account for the
departure of the experimental data from Eq. (6). This plot
demonstrates that the Arnold tongue structure plays a strong
role in defining the value of the correlations, even in the
presence of a substantial noise level. Interestingly, themodel

FIG. 2. Measured correlation coefficient in lineages. (a) Plot of
the correlations in cell-cycle duration between cousin cells (ρc−c)
versus ρ2m−d × ρs−s. The diagonal line corresponds toΔ ¼ 0. Data
points in the yellow area are those with Δ significantly above zero
(p-value < 0.05), i.e., where Eq. (6) does not hold. (b) The same
data as in (a), plotted as the correlations in cell-cycle duration
between cousin cells versus jρm−dj. Data points in the yellow area
are those for which the cousin-mother inequality holds [Eq. (8)].
The grey areas mark correlation values that could result from a
random process within one (dark grey) or two (light grey)
standard deviations from the diagonal line (see Sec. V).
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predicts that both negative and positive mother-daughter
correlations can be obtained for the same coupling param-
eter α (Fig. 7), showing that α does not solely determine the
sign of mother-daughter correlations.

E. Fitting the mathematical model to the data

In order to further test the validity of the kicked cell-
cycle model in describing the experimental data sets with
high Δ (L1210, EMT6, and cyanobacteria), we extracted
for each of these data sets the six measurements listed in
Table I and fitted them to Eqs. (1)–(2) (see Sec. V for more
details). The noise level of each data set was directly
evaluated from the variation between sister pairs (see ξ in
Table I, Sec. V, for the derivation, and Fig. 8). The fit
resulted in values for τ0, k, and α (Table II).
The values of τ0 are close to the measured mean values,

but not identical, as expected from the model. The mean cell-
cycle duration is τ0 in the absence of a clock and is
determined by growth conditions such as nutrients.
However, the periodic forcing may drive the mean cell-
cycle duration to be above or below τ0, as seen in simulations
[Fig. 9(a)]. Similarly, changing Tosc can push the mean cell-
cycle duration below or above τ0 [see Fig. 9(b)].
Another interesting feature that comes out of the fitting

procedure is that the cell-cycle distributions over the

population predicted from the simulations are very close
to the measured distributions. One striking example is the
cyanobacteria data (Cyanobacteria 1) that displays a
bimodal distribution, and this bimodality is apparent also
in the simulated distribution [Fig. 4(a)]. More examples of
predicted distributions [Figs. 9(c) and 9(d)] show that
changing τ0 or k can result in switching between unimodal
and bimodal distributions. Accordingly, as the parameters
of growth of WT Cyanobacteria 2 are different from WT
Cyanobacteria 1, the distribution of cell-cycle duration,
which was bimodal for Cyanobacteria 1, is predicted by the
model to be unimodal for Cyanobacteria 2, as observed
[Fig. 9(e)].
The ability to determine the circadian phase at birth in

single cells in Cyanobacteria enables us to compare the
distribution of phases at birth to that obtained from
simulations of the model. Interestingly, the distribution
of the phase at birth of the cyanobacteria follows the
predicted distribution from the model [Fig. 4(b)]. Note that
the distribution of phases displays “gating”; i.e., the cells
preferentially divide at certain phases of the clock [23].
This feature comes naturally out of the kicked cell-cycle
model without having been fed into the model.

F. Inheritance of cell-cycle duration in a mutant
deleted for the clock genes

The model suggests that the coupling of the cell cycle to
the circadian clock can, depending on the parameters’
values, either synchronize the cells and reduce cell-to-cell
variability [39] or increase the variability of the cell-cycle
duration in the population. In order to illustrate this
prediction, we plot in Fig. 9(f) the simulated coefficient
of variation (CV) of the cell-cycle duration versus k. The
CV increases with k away from the locking regions.
However, close to the locking regions, the CV decreases
back. This suggests that driving the cell cycle by the
circadian clock outside the fixed points’ regions should lead
to enhanced variability in the cell-cycle duration and,

TABLE II. Parameters’ values [defined in Eq. (1)] extracted
from the fitting procedure for the experiments with large Δ. τ0
and k are in units of Tosc (we assumed Tosc ¼ 24 h in all sets
except Cyanobacteria 1; the measured value was Tosc ¼ 23.16 h).
ξ values are taken from Table I.

Organism τ0 � 0.01 k� 0.01 α� 0.1 ðξ=ToscÞ � 0.01

Lymphocytes 1 0.67 0.11 0.7 0.03
Lymphocytes 2 0.65 0.18 0.7 0.06
EMT6 0.45 0.06 0.9 0.02
Cyanobacteria 1 0.66 0.39 −0.5 0.07
Cyanobacteria 2 0.59 0.17 0.2 0.09

FIG. 3. Features of the kicked cell-cycle model with and without noise, α ¼ −0.5. (a) Periodicity map showing the Arnold tongues in
the absence of noise. For example, dark blue denotes a fixed point region, light blue denotes a period 2 region, and dark red denotes
either periods higher than 10 or quasiperiodic and chaotic regions. (b),(c) Visualization of the cousin-mother inequality [Eq. (8)] for a
noise level of ξ ¼ 0.01 (b) and for ξ ¼ 0.1 (c), which represent the lower and upper bounds of the measured experimental noise (see
Table II). The black circle denotes the fit parameters to the data set Cyanobacteria 1. τ0, k, and ξ are in units of Tosc.
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therefore, reducing the coupling to the circadian clock
should reduce this variability. In order to test this pre-
diction, we compared cyanobacteria cell-cycle variability

for the wild-type (WT) strain and for a mutant deleted
for the circadian clock. Here we present new data sets of
WT strain of cyanobacteria and its derived clock mutant
(Cyanobacteria 2 and Cyanobacteria 2 mutant in Tables I–II),
as these two data sets were measured in the same conditions
and have similar mean cell cycles (Table I). Interestingly,
we observe that the variability in the cell cycle is significantly
reduced (F-test, p-value < 0.05) in the mutant strain
(CV ¼ 0.12) compared to the WT strain (CV ¼ 0.22)
[Fig. 4(c)]. Accordingly, whereas the cousin-mother inequal-
ity was fulfilled in theWT strain, it was not significant in the
mutant strain (Table I).
A further direct comparison with the oscillating term

predicted by the model can be done by plotting the
experimental values of the cell-cycle duration versus the
phase of the circadian clock at birth [Figs. 4(d) and 4(e)].
The oscillating dependence expected from the model
[Fig. 4(d)] disappears in the mutant of the clock [Fig. 4(e)].

IV. DISCUSSION

By fitting various data sets with the kicked cell-cycle
model, we show that the model can reproduce the deter-
ministic variability observed previously [11]. In addition,
the model predicts several features such as nonmonotonic
dependence of the mean cell-cycle duration on growth
conditions (Fig. 9) and multimodal cell-cycle distributions
(Fig. 9, [40]). Strikingly, although the kicked cell-cycle
model does not explicitly gate the cell cycle at certain
phases of the clock, effective gating occurs because of the
dynamics of the coupling [Fig. 4(b)].
One main feature of the dynamics of the kicked cell-

cycle model is the observation that the cousin-mother
inequality is obtained for quite a wide range of parameters,
even when the noise level is relatively high [Fig. 3(c)].
However, there are still regions of parameters where the
cousin-mother inequality is not fulfilled, for example, at
fixed points. Also, higher noise level may eventually mask
the deterministic periodic forcing, as well as the inequality,
as illustrated in Fig. 8(f). Therefore, whereas the cousin-
mother inequality strongly suggests the existence of a
nonlinear driving mechanism, its absence cannot lead to
a definite conclusion. Although the absence of the inequal-
ity in E. coli and corynebacteria data is consistent with the
absence of a known internal clock, a putative clock may
have been masked by the factors mentioned above. Data of
E. coli grown on a poorer medium [3,41] shows the cousin-
mother inequality, and future work is needed to determine
the underlying biological mechanism.
Comparison between the periodicity plot and the

cousin-mother inequality plot reveals that both display
the “Arnold tongues” features. The periodicity plot pre-
sented in Fig. 3(a) shows the geometry of the locking zones
as the period τ0 and the amplitude of the periodic forcing k
are varied. This nonlinear locking can result in nonintuitive
behavior of the driven system. For example, changing

FIG. 4. Comparison between experiments and the kicked cell-
cycle predictions. (a) Distributions of the cell-cycle duration of
Cyanobacteria 1, with data (blue bars) and model predictions (red
lines). The simulated cell-cycle duration distribution is bimodal (red
line), as the measured one. (b) Distribution of phase at birth for the
same data as shown in (a). There is a reduction of cell division for
certain phases, i.e., gating, as predicted by the model (red line).
(c)Mutant of the strain ofCyanobacteria 2 deleted for the clockgene
(red), displaying a significantly smaller coefficient of variation (CV)
compared to theWT (blue). (d),(e) Cell-cycle duration as a function
of time (in Tosc units), synchronized to the circadian clock, for
Cyanobacteria 2 (d) and a clockmutant (e), with data (blue dots) and
model prediction [black line in (d)]. The dashed line in (e) represents
the experimental mean of the mutant cell-cycle duration.
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parameters can move the system from a period 1 (fixed
point) to a period 2 zone, resulting in moving from a
unimodal to a bimodal distribution of the cell-cycle duration,
as shown in Fig. 9, and as observed [Fig. 4(a) and [40]].
Comparing the periodicity plot to the plot of the cousin-

mother inequality [Fig. 3(c)] reveals that, even in the
presence of high noise level (ξ ¼ 0.1), the period 2 and
fixed point features are retained. At lower noise levels, it is
interesting to follow which additional features are robust to
noise. For example, the regions of intersections are very
prominent in Fig. 3(b). Therefore, the strength of the
cousin-mother inequality may serve as a straightforward
experimental measurement that can reveal nontrivial fea-
tures characteristic of discrete maps in empirical data.
In contrast with the periodicity plot, Lyapunov exponent,

correlation dimension, or other indicators used to analyze
chaotic behavior that require long data sets, the cousin-
mother inequality does not require extremely large quantities
of data to detect deterministic contributions of the nonlinear
process to the dynamics of the system. Therefore, the cousin-
mother inequality could be useful as a means to detect
nonlinear coupling on lineages of cells. However, the
analysis should be done only after experimental artifacts
that may lead to similar observations are ruled out. In
particular, spurious spatial correlation between cells due to
the microenvironment should be ruled out by analysis of
spatial and temporal dependencies. Furthermore, the depar-
ture from Eq. (6) may be due to noise and insignificant.
Therefore, an analysis of the confidence interval for the
departure from Eq. (6) should be done (see Sec. V), as
represented by the grey areas in Fig. 2. Once these external
influences are ruled out, the cousin-mother inequality can be
a powerful tool for revealing the effect of nonlinear coupling
on the cell-cycle variability. However, it should be noted that
for determining a significant inequality (i.e., outside the grey
area in Fig. 2), a large enough number of independent
lineages should be analyzed. For example, another data set
of cyanobacteria was analyzed [42], showing features
consistent with a vicinity to the fixed point in the model
(mean cell cycle close to 24 h); however, the small number of
lineages (<20) resulted in nonsignificant correlations, and
the fitting procedure could not be performed.
It should be noted that our analysis is not restricted to

measurements of the cell-cycle duration. In effect, any
observable that is measured on a self-replicating entity may
display the cousin-mother inequality, provided that its
variability is governed by a nonlinear process. For example,
the cousin-mother inequality could be evaluated for corre-
lations in the level of expression of specific genes or in the
cell size increase, and it could detect nontrivial inheritance
patterns. Therefore, we expect that the cousin-mother
inequality could be used as a general indicator of deter-
ministic nonlinear processes along lineages.
In this work, the cousin-mother inequality has been used

to unveil a strong deterministic component in the variability

of the cell-cycle duration of cyanobacteria. In agreement
with our understanding, the deletion of the clock genes
results in a significantly reduced cell-cycle variability in the
population. In most theoretical analyses, such variability is
understood as the inevitable consequence of cellular noise
[43,44]. Here, we show that deterministic factors, such as
periodic forcing, can increase the variability of the cell
cycle in a way that can be controlled. In bacteria, the cell-
cycle variability has been shown to have important conse-
quences for the survival of populations under stress [4], as
well as for their ability to evolve resistance factors [45].
Therefore, understanding the source of this variability is
important for predicting the behavior of bacteria under
antibiotic treatment, as well as their ability to evolve.

V. MATERIAL AND METHODS

A. Time-lapse microscopy

1. Lymphocytes

The cells in Lymphocyte 1 and 2 were imaged in a Leica
automated fluorescence microscope system, as previously
described [11]. Briefly, a polydimethylsiloxane (PDMS)
square mold was filled with medium (L-15) and sealed with
a coverslip. Illumination was kept low enough to show no
influence on total cell-cycle duration.
The analysis of division times was done using phase-

contrast images and custom image analysis software
(Fig. 1). We used an automatic cell-tracking platform
written in MATLAB (MathWorks) as well as an ImageJ
custom plug-in. Cell-cycle duration was determined from
phase-contrast images acquired at 5-min intervals. Together
with the sharp division process of L1210 cells, this resulted
in less than 1%–2% experimental noise in Tn.

2. E. coli

In the E. coli experiments, we used the same system
described for the lymphocytes. Here, the PDMS square mold
was filled with melted Lysogeny broth (LB) agarose, that was
prepared fromLBBroth, Lennox (Difco) (LBL). Imageswere
acquired using a 100 × 1.3 NA oil objective and a cooled
CCDcamera (Orca;Hamamatsu).Microscopywas carried out
at 37° C. The phase-contrast images were acquired at 1-min
intervals. The images were tracked semiautomatically for
supervised analysis using a plug-in developed for ImageJ [11].
Prior to microscopy, single colonies were diluted into

fresh LBL. Cells were grown overnight at 37° C, with
shaking. Cultures were supplied with 15% glycerol and
stored at−80° C. The frozen cultures were diluted into fresh
LBL and grown at 37° C, with shaking, for 3 h.

3. Cyanobacteria

The Cyanobacteria 1 data set was described in Ref. [23].
Parameters used in this study for Cyanobacteria 2 were
extracted from time-lapse movies of Synechococcus
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elongatus wild type cells (ATCC strain 33912TM), and
clock deletion mutant (ΔkaiBC) cells grown under constant
light conditions [35]. Clock deletion cells carry an insertion
of a gentamicin resistance cassette into the ORF of the
kaiBC operon.
For time-lapse microscopy movies of cyanobacteria, cells

were first grown in liquid BG-11 media at 30° C with
constant rotation. TheΔkaiBC strain was supplemented with
gentamicin at 2 μgmL−1. Constant light levels were main-
tained at approximately 20–25 μEm−2 s−1 by cool fluores-
cent light sources. Cell cultures were kept at the exponential
phase and entrained by subjecting cells to a 12-h light:12-h
dark cycle. Therefore, the circadian phase was assumed to
run freely after entrainment with a 24-h period, and the phase
at birth was evaluated from the time elapsed since the release
into constant light conditions. Nikon Ti-E inverted micro-
scopes, equipped with the Nikon Perfect Focus System
module, were then used to acquire time-lapse movies of
growing microcolonies over several days under constant
light at 15 μEm−2 s−1, using a protocol adapted from
Ref. [46]. Illumination for photoautotrophic growth was
provided by a circular cool white light LED array (Cairn
Research, U.K.), attached to the condenser lens. Images
were acquired every 45 min using a CoolSNAP HQ2 camera
(Photometrics, Arizona), and a 100× objective.
Movies were segmented and tracked using a modified

version of Schnitzcells [47]. Finally, cell lineages were
reconstructed by tracking individual cells across frames and
identifying mother-daughter relationships in division
events. For a full description of methods and data,
see Ref. [35].

4. Corynebacteria

Experiments were carried out (as in Ref. [48]) using an
inverted time-lapse live cell microscope (Nikon TI-Eclipse,
Nikon Instruments, Germany) equipped with a 100× oil
immersion objective (CFI Plan Apochromat Lambda
DM 100×, NA 1.45; Nikon Instruments, Germany) and
a temperature incubator (PeCon GmbH, Germany).
Cultivations were performed at 30° C. Phase contrast
images of growing microcolonies were captured every
2 min using an Andor Clara-E CCD camera (Andor
Technology, U.K.).
Time-lapse movies were analyzed using a custom,

specialized workflow implemented as an ImageJ/Fiji
plug-in. Cell identification was performed using a segmen-
tation procedure tailored to detect individual rod-shaped
cells in crowded populations. Detected cells were sub-
sequently tracked throughout all image sequences using an
adapted single particle tracking approach as implemented
in TrackMate. Derived quantities, i.e., growth rates, were
computed using the Vizardous framework [49].
Cells were precultured as 20-mL cultures in 100-mL

baffled Erlenmeyer flasks on a rotary shaker at 120-rpm
orbital shaking at 30° C. A first preculture in a brain-heart

infusion (BHI) (Becton Dickinson, USA) complex medium
was inoculated into a second preculture in a CGXII mineral
medium, which was finally inoculated at OD600 ¼ 0.05
into a CGXII mineral medium, the main culture.
CGXII [50] was used as standard mineral medium for

C. glutamicum cultivations consisting of (per liter) 20 g
ðNH4Þ2SO4, 5 g urea, 1 g K2HPO4, 1 g KH2PO4, 0.25 g
MgSO4 · 7H2O, 42 g 3 morpholinopropanesulfonic acid
(MOPS), 10 mg CaCl2, 10 mg FeSO4 · 7H2O, 10 mg
MnSO4 · H2O, 1 mg ZnSO4 · 7H2O, 0.2 mg CuSO4,
0.02 mg NiCl2 · 6H2O, 0.2 mg biotin, and 0.03 mg of
protocatechuic acid. The medium was adjusted to pH 7
and 4% glucose (w=v) was added as a carbon source. All
chemicals were purchased from Carl Roth and Sigma
Aldrich. The medium was autoclaved and sterile filtered
(0.22-μm pore size) to prevent clogging of the microfluidic
channels by particles and cell agglomerates.

B. Microfluidic devices: Corynebacteria

Polydimethylsiloxane (PDMS) (Dow Corning; Farnell
GmbH, Germany) microfabrication was carried out [48] to
manufacture single-use microfluidic devices with inte-
grated 10-μm high supply channels and cultivation cham-
bers with a height of 1 μm. A 100-mm silicon wafer
(Si-Mat, Silicon Materials, Germany) was spin coated
separately with two layers of SU-8 photoresist (Micro
Resist Technology GmbH, Germany), processed by photo-
lithography. This silicon wafer served as a reusable mold
during subsequent PDMS casting. Thermally cured and
separated PDMS chips were treated with oxygen plasma
and permanently bonded to 170-μm-thick glass slides
(Schott, Malaysia) just before the experiments. Manually
punched inlets and outlets were connected with tubing
(Tygon S-54-HL, ID ¼ 0.25 mm, OD ¼ 0.76 mm; VWR
International) via dispensing needles (dispensing tips,
ID ¼ 0.2 mm, OD ¼ 0.42 mm; Nordson EFD Germany).
Fluid flow into the microfluidic chip was controlled with a

four-fold NeMESYS syringe pump (Cetoni GmbH,
Germany). A detailed setup protocol can be found in
Ref. [51]. Prior to microfluidic cultivation, the microfluidic
chip was purged with fresh and sterile-filtered CGXII
medium at 200 nL=min for 10 min. Afterwards, the chip
was infused with a bacterial suspension for single-cell
inoculation as described in full detail recently. Bacterial
suspensions were withdrawn from the main culture at the
exponential growth phase (OD600 between 0.5 and 1). As
soon as sufficient single cells were inoculated into the
microfluidic cultivation chambers, solely CGXII medium
was infused at 200 nL=min throughout the entire cultivation.

C. Cell lines and bacterial strains

1. Lymphocytes

L1210 lymphoblast cell line stably transfected with the
Fucci marker system were used [11].
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2. E. coli

E. coli B Rel606 strain was used.

3. Cyanobacteria

Cyanobacteria 1 was described in Ref. [23]. For
Cyanobacteria 2 and the clock mutant, Synechococcus
elongatus wild type cells (ATCC strain 33912TM), and
the corresponding clock deletion (ΔkaiBC) cells were used.

4. Corynebacteria [48]

Corynebacterium glutamicum ATCC 13032 strain
was used.

D. Computation of correlation coefficients

All correlation coefficients are Spearman coefficients
(similar results were obtained using Pearson coefficients).
ρs−s and ρc−c were calculated on the third generation, while
ρm−d was calculated on the second and third generations
(the mother from generation 2 and the daughter from
generation 3). To avoid spurious dependencies, we were
careful to include only one pair of cells chosen randomly
from each cell lineage. The correlation coefficients were
computed on the chosen cell cycles. This computation was
repeated 1000 times, and the final correlation coefficients
are the averages of those repetitions, while the errors of the
correlations were taken to be the standard deviation σ.

E. Significance computation

We simulated cell cycles of random data. The simulated
cells were taken from a normal distribution with exper-
imentally measured coefficient of variation (CV). Each
simulation contained 60 lineages (the typical number of
lineages that we track in each experimental set) and 7 cells
per lineage (three generations, consisting of a mother,
2 sisters, and 4 cousins). By determining the covariance
matrix of mothers and their two daughters, we matched ρs−s
and ρm−d to the experimental results (with a separate
simulation for each experiment). We computed all corre-
lations from the simulated data and made 100 simulations
for each experiment. We determined the departure from
Eq. (6) as significant (with a p-value < 0.05) if the
experimental Δ (or the experimental value of ρc−c−
jρm−dj) was larger than two standard deviations of the Δ
(or ρc−c − jρm−dj) that is obtained from the random
simulations described above. The grey area in Fig. 2
was computed using 500 simulations, similar to the
procedure described above. Here, we used constant typical
values for CV and ρs−s (CV ¼ 0.15, ρs−s ¼ 0.6) and a
range of values for ρm−d. The grey and light grey areas
display one and two standard deviations from Δ ¼ 0,
respectively [Fig. 2(a)], or from ρc−c ¼ jρm−dj [Fig. 2(b)].
These areas indicate the region where the correlations might
result from a random process.

F. Evaluation of ξ from the experimental data

In Eq. (1), ξ is the noise between sister cells that is related
to the difference between sisters’ cell cycle ΔTss (see
Fig. 8):

ΔTss ≡ Tþ
n − T−

n ¼ ξþn − ξ−n : ð9Þ

Thus, the variance of ΔTss is

VarðΔTssÞ ¼ 2ξ2: ð10Þ

We evaluate ξ for each experiment, by computing the left-
hand side of Eq. (10) from the data.

G. Fitting method

We simulated Eqs. (1) and (2) for a range of the
parameters τ0, k, and α, for 1000 lineages and 50
generations, and computed the correlations on the last
generation. We fitted the model to six features of each
experiment with Δ significantly above zero (see Table I,
Fig. 2, and Sec. V 5): ρs−s, ρm−d, ρc−c, ξ, the mean cell
cycle, and the cell-cycle CV. We found all parameters that
provide close features to the experimental features. We
chose the parameters that provide the closest simulated ρs−s
as the best fit, as ρs−s is the most significant measured
correlation that we have, and we reckon that ρs−s deter-
mines the noise level. For Cyanobacteria 1, Tosc was
measured directly for every colony. We used the average
on all colonies as the measured Tosc. For all other experi-
ments, we fitted the model for Tosc ¼ 24 h.

H. Periodicity computation

In order to find the periodicity shown in Fig. 3(a), we
simulated Eqs. (1) and (2), without noise, for 10,000
generations, and for a range of τ0 and k, with α ¼ −0.5.
For the last 100 generations, we checked whether the
circadian phase (which, in our case, is the absolute time
modulo 1, as we normalized all the parameters by Tosc) is
equal to the previous generations. If the phase is equal to
the phase of one generation before, the period is 1. If not,
but it is equal to the phase of two generations before, the
period is 2, and so forth. Periods above 10 were not
computed. The maximal Lyapunov exponent (Fig. 5) was
computed as described in Ref. [52].
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APPENDIX: ADDITIONAL FIGURES AND TABLE

FIG. 5. Maximal Lyapunov exponent for α ¼ −0.5 (a) and α ¼ 0.2 (b). The blue areas (negative Lyapunov exponent) are periodic
areas. The cyan areas are quasiperiodic (zero Lyapunov exponent), and the red, yellow, and green represent the chaotic areas (positive
Lyapunov exponent). The maximal Lyapunov exponent was computed as explained in Ref. [52]. The parameters in (a) are identical to
those of Fig. 3(a), and similar features such as Arnold tongues are observed.

FIG. 6. Periodicity map showing the Arnold tongues in the absence of noise for the values of α extracted from the experimental data
sets. For example, dark blue denotes a fixed point region, light blue denotes a period 2 region, and dark red denotes either periods higher
than 10 or quasiperiodic and chaotic regions. The black circles indicate the values of k and τ corresponding to the fit to the data
(Cyanobacteria 2, lymphocytes, and EMT6 fitted parameters, with α ¼ 0.2, 0.7, and 0.9, respectively; see Table II). Note the similar
features for the various α, also similar for negative α, as shown in Fig. 3(a).

TABLE III. Statistics of the cell divisions observed for the data shown in Table I.

Organism Number of cells in third generation Number of divisions

Lymphocytes 1 321 580
Lymphocytes 2 254 454
EMT6 140 258
Cyanobacteria 1 105 182
Cyanobacteria 2 258 452
Cyanobacteria mutant 283 499
Corynebacteria 204 357
E. coli 1 236 312
E. coli 2 141 211
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FIG. 7. Mother-daughter correlation ρMD as a function of τ0 and k, with noise level ξ ¼ 0.01 and α ¼ −0.5 [as in Fig. 3(b)]. Right:
Zoom-in on small k’s. It can be seen that for k larger than the noise, ρMD can become positive, even for negative α. For k below the noise
level (dashed black line), the forcing features disappear.

FIG. 8. Histograms of the experimental noise [ΔTss from Eq. (9)] for all data sets with large Δ (Tables 1 and 2): (a) Cyanobacteria 1,
(b) Cyanobacteria 2, (c) EMT6, (d) Lymphocytes 1, and (e) Lymphocytes 2. (f) Visualization of the cousin-mother inequality [Eq. (8)]
for a noise level of ξ ¼ 0.5 and α ¼ −0.5. The parameters are the same as for Figs. 3(b) and 3(c), except for a greater noise level. Note
that, at this high noise level, the periodic forcing features disappear and the cousin-mother inequality is not fulfilled.
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FIG. 9. Prediction of the kicked cell-cycle model. (a),(b) Nonmonotonous dependence of the mean cell-cycle duration
versus different parameters. In both panels, α ¼ −0.5 and ξ ¼ 0.01. (a) Tosc ¼ 1 (accordingly, all times are in Tosc units);
k ¼ 0.5; and τ0 is varied. The dashed line is the line where the mean cell-cycle equals τ0. Paradoxically, changing τ0 from
0.7 to 0.9 (for example, by lowering the nutrients’ concentration) can result in faster mean growth. (b) k ¼ 0.6, τ0 ¼ 0.6 (the
dashed line represents the value of τ0, and Tosc is changing). (c),(d) Examples for cell-cycle duration distributions predicted by
the model for different parameters. In both panels, Tosc ¼ 24 h, k ¼ 0.4, α ¼ 0.2, ξ ¼ 0.01. ξ, k, and τ0 are in Tosc units.
τ0 ¼ 0.8 (c) or τ0 ¼ 1 (d). (e) Distributions of the cell-cycle duration of experiment Cyanobacteria 2, with data (blue bars) and
model predictions (red lines). (f) Cell-cycle duration CV versus k as predicted from the model, with α ¼ 0.2, τ0 ¼ 0.6, and
ξ ¼ 0.01. Note that the CV (and hence the variability) is increasing or decreasing for different k’s. (g) Birth phase distribution
as predicted from the model for the parameters obtained from the fit to Cyanobacteria 1 (Table 2) in the red line, and for the
same parameters but with k ¼ 0 (blue dashed line).
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