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We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation
from one quantum channel into another one, by means of classically correlated preprocessing and
postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is
capable of storing quantum information, as opposed to memories that can be simulated by measurement
and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a
resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of
entanglement in quantum states (correlated spatially). As the set of conditions is complete, the
corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified.
Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum
channel verification. As such, the tests we propose are intrinsically different from the usual process
tomography, for which the probes of both the input and the output of the channel must be trusted. An
explicit construction is provided and shown to be experimentally realizable, even in the presence of
arbitrarily strong losses in the memory or detectors.
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I. INTRODUCTION

Consider a vendor selling quantum devices purportedly
able to store quantum information for a period of time.
However, during their operation, the devices always break
the entanglement between the stored subsystem and any
other subsystem. Such devices are arguably useless as
quantum memories; for example, they would not be able to
establish entangled links in a quantum repeater scheme
[1,2]. In the terminology of quantum channels [3–5], those
devices correspond to entanglement-breaking (EB) chan-
nels [6,7], which are exactly equivalent to the measure-and-
prepare channels depicted in Fig. 1. Measure-and-prepare
channels are implemented by measuring the input state,
storing the classical information corresponding to the
measurement outcome for the required duration, and then
using that information to prepare a quantum state. Even

though, strictly speaking, such channels are quantum
channels (since they act upon an input quantum system),
they actually transmit only classical information from the
input to the output. Thus, in constructing a quantum
memory, one aims to produce a device that could retain
some correlations between the stored system and remote
systems.
Because of its relevance in quantum information science,

the benchmarking of quantum memories has been exten-
sively considered in the literature [8–12]. An obvious way
to verify whether a channel is EB or not is by performing
process tomography [13–15], that is, by feeding a

FIG. 1. The quantum device in diagram (i) is not in the quantum
domain whenever its functioning can be simulated by a fixed
measurement, arbitrary processing of the classical outcome, and a
preparation, as shown in diagram (ii). Such devices are called
entanglement-breaking channels.
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tomographically complete set of states through the channel
and performing a tomographically complete measurement
at the output. By collecting sufficient statistics, it is possible
to reconstruct the process matrix corresponding to the
channel up to any desired level of accuracy and to check
whether the channel is EB or not. This scheme, however,
requires complete control over all parts of the experiment:
The state preparation device and measurement device must
be both accurate and trusted; i.e., the experimenter must
trust that they are doing exactly what they would like to
achieve (or, at least, what they think they are doing).
The possibility of lifting the assumption of trust in the

whole (or parts of the) experimental setup is at the root of
an important area of research known as (partially) device-
independent quantum information [16–18], with important
applications not only to quantum technologies [19–25] but
also to the foundations of quantum theory [26–29]. Indeed,
a fully device-independent approach to quantum channel
verification can be achieved in practice (see Fig. 2). An
initial entangled state φRA is prepared, and subsystem A is
fed through the channel to be tested, denoted byN , with its
output subsystem denoted by B. Channel N may represent
the actual quantum communication channel delivering
subsystem A from one location to another, or perhaps just
a static quantum memory, storing subsystem A while R is
moved to a different location. However, both these scenar-
ios are mathematically equivalent, as the final result, in both
cases, is that the initial bipartite state φRA is transformed
into another bipartite state φ̃RB ¼ ðidR ⊗ N AÞφRA, now
shared between two different locations. At this point, a Bell
test can be performed. The violation of any Bell inequality
between R and B would constitute irrefutable evidence that
the state φ̃RB is entangled and hence that the channel N is
in the quantum domain, even in the case in which both
preparation and measurement devices are untrusted.
This approach allows one to verify a quantum channel in

a fully device-independent way, namely, based solely on
the correlations observed in the experiment. However, it has
some limitations:
(1) The ability to prepare entangled states is assumed.
(2) Subsystem R must be preserved intact during the

waiting phase. Of course, one could imagine storing
R in another copy of the same memory N , but we
would then be testing the quantumness ofN⊗2, which
is generally more demanding than testing N alone.

(3) The violation of a Bell inequality is a sufficient
condition for quantum entanglement, but it is known

not to be necessary, as there exist entangled states
that do not violate any Bell inequality [30,31]. In our
framework, this is equivalent to saying that there
exist genuinely quantum channels that would never
pass this test [32].

(4) Bell tests are very fragile with respect to losses
(during storage or detection) [18,33].

Experimental violations of the Clauser-Horne-Shimony-
Holt inequality (CHSH) [34] have been reported for
quantum memories [35–37] but without closing all loop-
holes (in particular, the detection and locality loopholes).
Ideally then, we would like to lift all the above four

assumptions and construct tests that
(1) do not require entangled states;
(2) do not require the use of any additional side channel

(notice that an identity channel, as it appears, for
example, in Fig. 2, counts as one);

(3) are faithful, i.e., are able to verify any channel in the
quantum domain;

(4) are loss tolerant;
(5) trust neither the preparation of the input nor the

measurement of the output.
Alas, the above desiderata cannot all be met. In particular,
the intimately related conditions (1) and (2) force us to test
the channel in a timelike setting, thus ruling out, not only in
practice but also in principle, a fully device-independent
solution. In this paper, following Ref. [12], we give up the
possibility to mistrust the preparation device; that is, we
assume that the skeptic who wants to be convinced of the
quantumness of the memory is able to prepare trusted
states.
The necessity of trusting the input to the device is a

consequence of the causal configuration of a channel test,
in which the output of the channel necessarily lies in the
future of the input. In such a configuration, since we must
allow any amount of classical communication for free (as
we are testing for quantumness), if the input to the device is
untrusted, then any correlation can be reproduced, and no
conclusion can be drawn about the nature of the channel. In
other words, the trusted input assumption is minimal in
quantum channel verification [38].
We will thus work within the so-called measurement

device-independent (MDI) framework [39], in particular,
taking inspiration from semiquantum nonlocal games [40],
which generalize the usual Bell-nonlocal games by ena-
bling the referee to send quantum input states to the players.
Until now, this framework has only been applied to
scenarios involving spacelike separated systems, where
all entangled states can be detected [39,40]; this charac-
terization is faithful even in the presence of arbitrary losses
[34] and classical communication between the systems
[41]. Other instances of its application include steering
scenarios [42] and nonclassical teleportation [43]. Some of
these tests have been implemented experimentally [44–47],
and even when no prior knowledge about the tested systemsFIG. 2. Quantumness verification via Bell tests.
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is available, the verification can be performed directly on
experimental data [47–49]. Within this framework, several
authors proposed structural or quantitative tests of entan-
glement [49–52] or the quantification of generated random-
ness [52–54]. In our construction below, we apply the MDI
framework to temporal correlations arising out of the use of
a quantum memory.

II. THE SETUP

The construction that we propose here is best formulated
as a game played between a referee (the buyer) and an
experimentalist (the vendor) trying to convince the referee
about her ability to store quantum information. Contrary to
Bell games which involve multiple players, our temporal
game involve only one player, inquired at two successive
instants in time. It is then reasonable to assume that the
player can retain an arbitrarily large amount of classical
information (her memory) during the game. This is also the
reason why we explicitly avoid speaking of two different
players, one receiving the first question (Alice) and another
one receiving the second question (Bob)—nothing prevents
Bob from being just Alice in the future. In the present setup
of “one player at two different times,” we name this player
“Abby” and impose the same operational assumptions for
her at all times. A schematic representation is given in Fig. 3.
More explicitly, the situation considered here is as

follows:
(1) At time t ¼ t0, the referee provides a first quantum

input to Abby. Abby knows the set from which the
state has been chosen, but she does not know the
actual state given to her; however, the referee has
perfect knowledge of the corresponding density
matrix ξx.

(2) The referee then waits for some time, which is
necessary forAbby to implement the specific channel

or memory. Then, at time t¼ t1¼ t0þδ>t0, the
referee hands a second quantum state ψy over to
Abby. Again, Abby knows the set of possible states
but is ignorant about the actual state that she receives.

(3) After Abby receives ψy, she is required to broadcast
a classical outcome, labeled by b.

(4) By repeating the same procedure a sufficient number
of times, the referee, by looking at the input/output
correlation pðbjx; yÞ obtained, can decide whether
or not Abby has been able to store quantum
information during a time δ.

A comparison with the framework of Ref. [12] is in
order. There, also, the input to the channel is trusted (the
referee can trust the state preparation device); however, the
second inquiry is restricted to be a classical question. This
is the reason why the scheme proposed in Ref. [12] is not
able to detect all channels in the quantum domain but only
those corresponding to a steerable [55] Choi operator. Here,
instead, we take the second question to again be encoded on
a trusted quantum state. Notice that this does not constitute
an extra assumption: If the referee must trust the input she
prepares at time t0 (otherwise quantum channel verification
is impossible), there is no reason to mistrust the preparation
device at time t1 (just to trust it again at the next round of
the game). Indeed, since the game is assumed to go on until
sufficient statistics is collected, the assumption of a
“reusable” trusted preparation device is essential. Notice
also that we never require the ability to prepare entangled or
classically correlated states: The quantum questions can
always be drawn independently, so the operational assump-
tions about the preparation device are exactly those in
Ref. [12], namely, of a trusted, reusable, reinitializable (in
information theory jargon, i.i.d.), quantum state preparation
device. The same i.i.d. assumption is made about the
quantum memory being tested.
The rest of the paper is organized as follows: In Sec. III,

we put our discussion on formal ground by formulating it as
a resource theory of quantum memories, including a
definition of monotones ranking the usefulness of memo-
ries. In Sec. IV, we show that the protocol described above
defines a family of monotones able to order precisely all
resources. In particular, they enable the verification of the
quantumness of any channel as soon as it is not entangle-
ment breaking. The above protocol hence provides faithful
tests (i.e., necessary and sufficient), thus improving on
those in Ref. [12], which are only sufficient. In Sec. V, we
complement the existence proof with a way to construc-
tively find practical tests, and we discuss the role of losses
in practical implementations. In particular, we argue that
the present approach is robust against typical models of
loss, contrarily to what happens in Bell tests.

III. QUANTUM MEMORIES AS RESOURCES

Let us consider a quantum channel N between finite
Hilbert spaces HA and HB, governing the evolution of an

FIG. 3. The test configuration. Time flows from left to right.
At time t ¼ t0, a first input ξx (which must be trusted by the
referee who prepares it) is handed over to the experimentalist
(whose laboratory is represented by the flying cloud). After some
time, at t ¼ t1 > t0, the referee hands over a second input ψy. At
this point, the experimentalist is required to output a classical
outcome, labeled by b. By repeating this procedure many times
and observing the input/output correlation pðbjx; yÞ so obtained,
it is possible to verify whether the experimentalist is actually
able or not to preserve quantum information through a time
δ ¼ t1 − t0 > 0.
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arbitrary state stored inside a quantum memory. The
channel N is a completely positive trace-preserving
(CPTP) linear map N ∶DðHAÞ→DðHBÞ. We write
DðHAÞ and DðHBÞ as the sets of density matrices, respec-
tively, for HA and HB; later, we write D≤ðHAÞ for
subnormalized density matrices. The original version of
semiquantum games [40] was constructed to detect the
presence of entanglement in quantum states. The present
work, however, concerns the detection of channels in the
quantum domain. While resource theories have been
extensively studied for quantum states [56–60] (correla-
tions in space), limited results exist for quantum channels
[61] (correlations in time). We thus introduce a resource
theory of quantum channels that mirrors the resource theory
of entanglement for quantum states in what follows.
We include the following free operations in our resource

theory. First, we allow local operations, which are manip-
ulations of a quantum system at a specific point in
spacetime. Second, we allow unlimited storage of classical
information; this includes the use of preexisting random-
ness. However, we do not include storage of quantum
information (that is, when it cannot be otherwise simulated
with the free operations above).
For arbitrary (finite-dimensional) HA and HB, we

consider the set F of quantum channels storing only
classical information, the so-called measure-and-prepare
or quantum-classical-quantum channels:

N A→BðρAÞ ¼
X
μ

πðμÞ
X
i

ρ0Bi;μTr½ΠA
ijμρ

A�; ð1Þ

where μ is preexisting randomness distributed according to
πðμÞ; the measurement on the channel input HA is
described by the positive-operator valued measure
(POVM) elements fΠA

ijμg, which possibly depend on μ;

the family fρ0Bi;μg of density matrices prepared at the
channel output HB is indexed by the previously stored
measurement result i and the classical index μ [see
Fig. 4(ii)]. For ease of presentation when there is no
ambiguity, we sometimes suppress the superscripts used
to indicate the Hilbert space on which each operator acts.
Channels that can be written as in Eq. (1) are also known

as EB, as they are exactly those channels that, when applied
locally to any bipartite state, produce a separable output [6].
We notice that the usual definition of EB channels does not
explicitly account for the mixing index μ; however, it is a
straightforward matter to verify that the two are equivalent
(see Appendix A).
In our resource theory, the channels in F are the free

objects. In contrast, the quantum channels N not in F are
genuine resources, as they require a quantum memory in
their implementation. Such channels are thus in the
quantum domain and, by definition, are not EB: They
preserve the entanglement in at least some states ρAR.

The last piece of our resource theory concerns the
transformations of quantum channels. The transformations
Λ we consider are the quantum supermaps [62,63] that
transform a quantum channel N ∶DðHAÞ → DðHBÞ into
another quantum channel N 0∶DðHA0 Þ → DðHB0 Þ, possibly
related to different Hilbert spaces HA0 and HB0 . We allow
the following ingredients in these supermaps:

(i) the use of preexisting randomness μ,
(ii) a quantum operation DðHA0 Þ → DðHAÞ before the

use of the channel N , possibly selected by μ (in
general, such an operation can also produce a
classical outcome labeled by i; that is, we allow
quantum instruments),

(iii) the storage of an arbitrary amount of classical
information in the memory,

(iv) a quantum operation DðHBÞ → DðHB0 Þ, possibly
selected using the classical information i transmitted
and the preexisting randomness μ.

The general form of a free transformation Λ thus has the
following components [diagram in Fig. 4(iii)]:

N 0 ¼ Λ½N � ¼
X
μ

πðμÞ
X
i

DB0←B
i;μ ∘N B←A∘IA←A0

ijμ : ð2Þ

For each μ, the quantum instrument fI ijμgi is represented
by a family of completely positive (CP) maps
I ijμ∶DðHA0 Þ → D≤ðHAÞ; while each I ijμ is not necessarily
trace preserving, their sum

P
iI ijμ is trace preserving for

each μ. The quantum operations fDi;μg are indexed by i
and μ, and for each pair ði; μÞ, the operator Di;μ∶DðHBÞ →
DðHB0 Þ is a CPTP map. Supermaps as in Eq. (2) are free in
the sense that they only require a classical memory; as a
consequence, Λ maps EB channels N ∈ F to EB channels
N 0 ∈ F . To distinguish our free transformations from the

FIG. 4. (i) The channel N ∶DðHAÞ → DðHBÞ in our resource
theory. (ii) A free channel decomposed as a quantum-classical-
quantum or measure-and-prepare channel using POVM elements
fΠijμg and a family of states ρ0i;μ. (iii) The free transformation of a
channel N into N 0.
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set of all possible supermaps, we write L as the set of all
transformations of the form (2), which we call classically
correlated supermaps.
In the present case, we allow unbounded classical

communication as part of the free resources. Thus, as
discussed in Appendix A, the establishment of the pre-
existing randomness μ can be embedded in the quantum
instrument fI ig, a fact that we use later to simplify the
notation in the proofs.
The set of free resources F is defined by the operational

fact that the free channels break entanglement. It is also
reasonable that free resources constitute a convex set: The
mere act of convexly mixing two “useless” channels should
not give rise to a “useful” one. This is indeed the case for
EB channels. However, the choice of the set L of free
transformations that preserve F is not necessarily unique.
For example, one could consider, instead of classically
correlated supermaps, only preprocessings or, alternatively,
only postprocessings: These would also leave the set of
entanglement-breaking channels invariant. However, such
choices would not allow the preparation of any EB channel
for free: In this sense, the choice we make here for L seems
to be the most natural one in the present setting.
The fact that free operations are not (logically speaking)

uniquely fixed by the set of free resources is a common
feature shared by many resource theories. For example, in
the resource theory of entanglement, the set of free states is
uniquely given by the separable states; however, this does
not automatically single out a set of free transformations,
which can be taken as the set of local quantum operations
correlated by two- or one-way classical communication, or
just by preexisting classical correlations, or even by
classical correlations without causal order [64] (the result-
ing transformations corresponding to separable operations).
In our case, we built L from the most general sequence of
operations that respects the temporal order and grants any
form of classical memory for free. Smaller classes exist,
such as supermaps correlated only by preexisting random-
ness, but those would correspond to artificial restrictions on
the quantum memory users. It is unclear whether larger
classes would exist after relaxing restrictions on the
temporal order; however, it is doubtful that a resource
theory of quantum memories would be meaningful in that
context.
Straightforwardly, we observe that any EB channel

N ∈F can be mapped to any other EB channel N 0 ∈ F
using a suitable Λ ∈ L. We also observe that memories that
exactly preserve their input state are represented by the
identity channel and are the most powerful resources in our
theory (of course, identity channels do not belong to F ).
Indeed, if we have, at our disposal, a memory whose
operation is the identity channel id∶DðHAÞ → DðHAÞ, any
memory N ∶DðHAÞ → DðHBÞ can be simulated by using
the free transformation Λ½id� ¼ D∘id: In this supermap,
we do not use a quantum instrument but simply apply the

operation D ¼ N after storage in id to simulate the
processing of N . The transformations Λ ∈ L classify
the relative power of quantum memories, as formalized
by the following definition.
Definition 1. WewriteN ↣ N 0 whenever there exists a

classically correlated supermapΛ∈L such thatN 0¼Λ½N �.
The transformations L induce a partial order on quantum

channels. Given two channels N and N 0, it can be the
case that neither N ↣ N 0 nor N 0 ↣ N holds; however, if
N ↣ N 0 and N 0 ↣ N 00, then N ↣ N 00.
As it often happens with generalized resource theories,

the partial order ↣ can be studied within the framework of
statistical comparison in statistical decision theory, in the
sense of Blackwell [65] and Le Cam [66]. These ideas have
recently been extended to the quantum setting [67] and
constitute the basis on which semiquantum games were
originally introduced [40]. More recently, the theory of
(quantum) statistical comparison has been successfully
applied to quantum information theory [68,69], quantum
open systems dynamics [70,71], and quantum thermody-
namics [60,72–74]. One of the results of this work is to
construct a framework to apply quantum statistical decision
theory to the comparison of quantum channels and
memories.
Note that the partial order ↣ distinguishes qualitatively

between free and nonfree resources. Quantitative state-
ments about the usefulness of a resource are made using
monotones, which are, in this case, real-valued functions of
quantum channels, N ↦ MðN Þ, such that

N ↣ N 0 ⇒ MðN Þ ≥ MðN 0Þ: ð3Þ

In particular, let N and N 0 be two free resources (i.e.,
two EB channels). As N ↣ N 0 and N 0 ↣ N , it follows
that MðN Þ ¼ MðN 0Þ. Thus, any given monotone has a
constant value on the set of free resources.
A complete family of monotones is a set fMigi∈I that

completely characterizes the partial order ↣:

N ↣ N 0 ⇔ MiðN Þ ≥ MiðN 0Þ; ∀ i ∈ I: ð4Þ

As our resource theory allows convex mixtures of free
and nonfree resources, the absolute and generalized robust-
ness [75,76] can straightforwardly be computed [77], as it
has been done in other resource theories [81–83]. The
Schmidt number of a memory, as defined by the Schmidt
number of the corresponding Choi operator, is a monotone
with a straightforward operational interpretation: It corre-
sponds to the maximal quantum dimension preserved by
the channel [84]. Its practical computation, however, is
outside the scope of the present paper and will be presented
in a future work [85].
In the present work, we focus on a family of monotones

that can be measured using minimal experimental assump-
tions. As the family is complete, for any N ∉ F, there
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exists a monotone that distinguishesN from free resources.
Those monotones are built on the semiquantum signaling
games detailed in the next section.

IV. SEMIQUANTUM SIGNALING GAMES
AND EXISTENCE OF A TEST

We return to the semiquantum tests described in the
Introduction and put them on a formal footing.
Definition 2. A semiquantum signaling scenario is a

tuple S ¼ ðX ;Y;B;QX;QYÞ, where
(1) X ¼ fxg and Y ¼ fyg are two (finite) index sets for

the referee’s questions,
(2) B ¼ fbg is a (finite) index set for Abby’s an-

swers, and
(3) QX ¼ fξx ∈ DðHXÞ∶x ∈ Xg and QY ¼ fψy ∈

DðHYÞ∶y ∈ Yg are two families of quantum states
on HX and HY.

Having fixed a semiquantum signaling scenario S, a
semiquantum signaling game is played as follows:
(1) At some time t ¼ t0, the referee randomly chooses

an initial question x ∈ X and sends the first state ξx
to Abby.

(2) At a later time t ¼ t1 ¼ t0 þ δ (δ > 0), the referee
chooses another question y ∈ Y and sends the
second state ψy to Abby.

(3) Abby replies with an answer b ∈ B.
(4) A payoff function ℘∶B × X × Y → R, which was

publicly announced before the game started, decides
the values ℘ðb; x; yÞ, namely, how much answer b
earns or costs Abby in the face of questions x and y.

A semiquantum signaling game is completely described by
the payoff function ℘ in the (implicit) context of a scenario
S. By comparing the relative frequencies of the questions
posed and the answers given, the referee can estimate the
correlation pðbjx; yÞ. Note that we do not address the
effects of finite statistics in the present work, and for now,
we use ideal distributions for pðbjx; yÞ. We prescribe the
computation of Abby’s average payoff to be

X
x;y

℘ðb; x; yÞpðbjx; yÞ; ð5Þ

which corresponds, up to a multiplicative factor, to a
uniformly random distribution of inputs pðx; yÞ.
The resource that Abby can utilize in order to maximize

her expected payoff is a given channel N ∶DðHAÞ →
DðHBÞ, taking quantum states defined on an input
Hilbert space HA at time t0, to quantum states defined
on an output Hilbert space HB at time t1. We assume that
Abby uses the same channel N only once in each round of
the game. Besides the channel N , Abby can freely use any
amount of classical memory she wants. Formally, this
amounts to letting Abby transform the channel N into
N 0∶DðHXÞ → DðHB0 Þ by any of the (free) transformations
Λ ∈ L. While doing so, Abby also adapts the dimension of

the input in case the spaces HA and HX are not isomorphic.
When the second quantum question is also received, Alice
may jointly measure this second question (state) along with
the output of the transformed channel N 0.
Referring to Appendix A, we embed randomness in the

classical communication and write any admissible strategy
for Abby for the resource N as

pN ðbjx; yÞ ¼
X
i

Tr½fðDB
i ∘N A∘IX

i ÞðξXx Þ ⊗ ψY
y gB0B0Y

bji �;

ð6Þ

where fB0B0Y
bji g represents a POVM for each i, in the sense

that
P

bB
0
bji ¼ 1 for all i. Since the action of the channels

DB
i can be absorbed in the POVMs fB0B0Y

bji g, from now on,
we avoid writing them explicitly.
Given a resource channel N , we obtain our characteri-

zation of admissible strategies.
Definition 3. The correlations pN ðbjx; yÞ are admis-

sible for the resource N in the scenario S if there exists a
quantum instrument fIX

i ∶DðHXÞ → D≤ðHAÞg and a family
of measurements fBBY

bji g such that

pN ðbjx; yÞ ¼
X
i

Tr½fðN A∘IX
i ÞðξXx Þ ⊗ ψY

y gBBY
bji �: ð7Þ

For a given channel N and a given semiquantum
signaling scenario S ¼ ðX ;Y;B;QX;QYÞ, we define the
set

SðN ;SÞ ¼def fpN ðbjx; yÞ∶pN ðbjx; yÞ is admissibleg; ð8Þ

where by “admissible” we mean that pN ðbjx; yÞ can be
written as in Eq. (7) for varying instruments and POVMs.
The set SðN ;SÞ is a convex, closed, and bounded subset of
RN for N ¼ jBj · jX j · jYj (see Appendix A).
It is possible to compute the utility of the resource

channel N in any semiquantum signaling game by com-
puting the maximal expected payoff over all admissible
strategies:

℘�ðN Þ¼def max
X
x;y

℘ðb; x; yÞpN ðbjx; yÞ; ð9Þ

where the optimization is made over all pN ðbjx; yÞ ∈
SðN ;SÞ.
Proposition 1. Let S and ℘ define a semiquantum

signaling game. Then, ℘�∶N ↦ ℘�ðN Þ, as defined in
Eq. (9), is a monotone in the sense of Eq. (3).
Proof.—Let N and N 0 be two channels such that

N ↣ N 0. Then, any strategy that achieves ℘�ðN 0Þ can
also be realized usingN , as there is a transformationΛ ∈ L
that Abby can use as part of her strategy (6) to transformN
into N 0. Thus, ℘�ðN Þ ≥ ℘�ðN 0Þ as required. □
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As ℘� is a monotone, it has a constant value ℘EB on all
entanglement-breaking channels, which we define as the
entanglement-breaking threshold for the signaling semi-
quantum game defined by S and ℘. For a given N , any
admissible strategy pN ðbjx; yÞ that achieves a payoff
greater than ℘EB certifies that N is not entanglement
breaking. This holds even if the admissible strategy does
not achieve the maximal expected payoff ℘�ðN Þ, which
makes the procedure robust when dealing with imperfect
experimental implementations.
Given a non-EB N , the main question is to find a

signaling semiquantum game able to certify that N ∉ F .
We answer that question by proving a stronger result:
Signaling semiquantum games form a complete family of
monotones for the resource theory of quantum memories.
Theorem 1. LetN ∶DðHAÞ→DðHBÞ andN 0∶DðHA0 Þ →

DðHB0 Þ be two channels. If ℘�ðN Þ ≥ ℘�ðN 0Þ for all signal-
ing semiquantum games, then N ↣ N 0.
Proof.—See Appendix B. □

The answer to our question comes from the following
corollary.
Corollary 1. Let N ∶DðHAÞ → DðHBÞ. Then, N is in

the quantum domain ðN ∉ F Þ if and only if there exists a
semiquantum signaling game such that ℘�ðN Þ > 0
while ℘EB ¼ 0.
Proof.—Let N 0∈F be any entanglement-breaking chan-

nel. AsN 0 ↛ N , there exists a semiquantum signaling game
ðS;℘Þ such that℘�ðN Þ > ℘EB by the converse of Theorem1.
Finally, ℘EB can be made zero by simply shifting the original
payoff function by a fixed constant. □

Thus, any channel in the quantum domain can be verified
by some semiquantum signaling game. In the next section,
we provide a constructive proof of this fact.

V. CONSTRUCTION OF EXPERIMENTALLY
FRIENDLY SEMIQUANTUM

SIGNALING GAMES

We now turn to explicit constructions of tests for
channels in the quantum domain and provide a constructive
proof of Corollary 1 independent of Theorem 1. We then
illustrate this construction by an example and finally show
that our construction is resistant to losses.
First, let us consider the particular semiquantum corre-

lations that encode the essential knowledge about a
channel.
Definition 4. Given a channelN ∶DðHAÞ → DðHBÞ, we

define its signature scenario

Ssig
N ¼ ðX ;Y;B;QX;QYÞ;

where QX ¼ fξXx ∶x ∈ Xg and QY ¼ fψY
y ∶y ∈ Yg are

tomographically complete, respectively, for the Hilbert
spaces of the channel: HX ≅ HA and HY ≅ HB. We set

jBj ¼ ðdimHBÞ2. Note that the completeness of QX, QY

implies that jX j ¼ ðdimHAÞ2 and jYj ¼ ðdimHBÞ2.
The signature correlation psig

N ðbjx; yÞ is given by

psig
N ðbjx; yÞ ¼ Tr½fN AðξXx Þ ⊗ ψY

y gBBY
b �; ð10Þ

where we chose the POVM fBBY
b g to be a complete Bell

measurement (remember that HA ≅ HX and HB ≅ HY). For
later use, we assume that the first POVM element B1 ¼
ΦBYþ is the maximally entangled state in the computational
basis:

Φþ ¼ 1

d

X
ij

jiiihjjj; ð11Þ

where d is the corresponding Hilbert space dimension.
Under these conditions, psig

N contains full tomographic data
about the channel N .
The signature correlation of N fully describes its

behavior, as it essentially amounts to a sort of quantum
process tomography. This fact is used in the proof of
Theorem 1 in Appendix B. We now move to the explicit
construction of semiquantum signaling games that witness
channels in the quantum domain. To characterize such
channels, we make use of the Choi-Jamiolkowski [86,87]
representation JN ∈ DA⊗B of N ∶DðHAÞ → DðHBÞ:

JN ¼defð1 ⊗ N ÞðΦþÞ; ð12Þ

where Φþ is the maximally entangled state defined in
Eq. (11), such that

Tr½N ðAÞB� ¼ dTr½JN ðA⊤ ⊗ BÞ�; ð13Þ

where d ¼ dimHA. The superscript ⊤ denotes the trans-
position with respect to the computational basis.
Proposition 2. Let N ∶DðHAÞ → DðHBÞ be a non-EB

channel. Then, its Choi-Jamiolkowski state JN ¼
ð1 ⊗ N ÞðΦþÞ is necessarily entangled [88]. Let W be
an entanglement witness such that Tr½WJN � > 0, while
Tr½Wρ� ≤ 0 for any separable state ρ ∈ DA⊗B. Let S

sig
N be

the signature scenario associated with N , in which W has
the decomposition:

W ¼
X
xy

ωxyðξ⊤x ⊗ ψ⊤
y Þ: ð14Þ

Then, the payoff

℘ð1; x; yÞ ¼ ωxy; ℘ðb > 1; x; yÞ ¼ 0 ð15Þ

defines a semiquantum signaling game that satisfies the
conditions of the Corollary: ℘�ðN Þ > 0, while ℘EB ¼ 0.
See Appendix C. □
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With this construction, the payoff only makes use of the
coefficients psig

N ðb ¼ 1jx; yÞ, and thus, the complete Bell
measurement can be replaced by a partial Bell measure-
ment to reduce the experimental requirements. In
Appendix D, we show how to reduce the number of input
pairs ðx; yÞ for which statistics need to be collected to
d2 þ 3, where d ¼ minðdimHX; dimHYÞ, which has better
scaling than the use of tomographically complete sets of
inputs (at least d4 input pairs).

A. Example: Qubit depolarizing channel

As an example, consider the qubit-qubit depolarizing
channel

N νðρAÞ ¼ νρþ ð1 − νÞ 1
2
: ð16Þ

As N acts on a qubit space, we use the tomographically
complete set of quantum inputs

ξx ¼ UxτU
†
x; ψy ¼ UyτU

†
y; ð17Þ

where U1, U2, U3, and U4 are, respectively, the identity 1
and the three Pauli matrices σx, σy, σz, while τ ¼
1=2þ ðσx þ σy þ σzÞ=

ffiffiffiffiffi
12

p
; note that X ¼ Y. According

to our construction, we use a partial Bell measurement with
B1 ¼ Φþ and B2 ¼ 1 − B1. We get

psig
N ð1jx; yÞ ¼

� ð1 − νÞ=4 if x − y ¼ 2 mod 4;

ð3þ νÞ=12 otherwise:
ð18Þ

In our example, we get

JN ¼ νΦþ þ ð1 − νÞ1=4: ð19Þ
The entanglement witness related to JN isW¼Φþ−1=2.

According to its decomposition on ξx and ψy, we obtain the
payoff

℘ð1; x; yÞ ¼
�−5=8 if x − y ¼ 2 mod 4

1=8 otherwise;
ð20Þ

such that the expected payoff value is ð3ν − 1Þ=4, which
faithfully detects a channel in the quantum domain for
ν > 1=3 ≈ 33%. In contrast, tests based on the CHSH
inequality can only detect channels in the quantum domain
for ν > 2−1=2 ≈ 71% or ν > 2−1=4 ≈ 84% if two copies of
the channel are used, according to the setup of Fig. 2.

B. Robustness against losses

Our construction is robust against isotropic losses and
detection inefficiencies. From the perspective of the corre-
lation pðbjx; yÞ, all losses and detection inefficiencies that
do not depend on the indices x and y can be modeled as an
erasure channel:

EηðρÞ ¼ ηρþ ð1 − ηÞj∅ih∅j; ð21Þ

applied after the use of the channel N , such that we
effectively test

N 0 ¼ Eη∘N : ð22Þ

In the spirit of erasure channels, we assume that j∅ih∅j
lies outside the range of N , so losses are always identified.
Proposition 3. Let Eη be an erasure channel for η > 0.

Then, Eη∘N is in the quantum domain if and only ifN is in
the quantum domain.
Proof.—Let JN be the Choi-Jamiolkowski representa-

tion (12) of N . The representation of Eη∘N is

JEη∘N ¼ ηJN þ ð1 − ηÞ1 ⊗ j∅ih∅j: ð23Þ

When N is EB, the state (23) is a mixture of separable
states, and thus, Eη∘N is EB. Assume now that N is
non-EB. Then, there exists an entanglement witness W,
without support on j∅ih∅j, such that Tr½WJN � > 0 while
Tr½WρSEP� ≤ 0. The result follows by applying W on the
Choi of Eη∘N : Tr½WJEη∘N � ¼ ηTr½WJN � > 0. □

The constructive approach of Proposition 2 can then be
straightforwardly applied. Assume that ℘ðb; x; yÞ corre-
sponds to a semiquantum signaling game for N . When
testing the channel N 0 ¼ Eη∘N with isotropic erasure, we
add an element BBY

0 ¼ j∅ih∅j ⊗ 1 to the measurement
fBbg such that the erased state j∅ih∅j is sent to a new
measurement outcome b ¼ 0. Let pðbjx; yÞ be the corre-
lation of the channel N that obtained a payoff h℘i > 0.
With the above scheme, the correlation of N 0 is readily
obtained:

p0ð1jx; yÞ ¼ ηpð1jx; yÞ: ð24Þ

Accordingly, setting ℘ð0; x; yÞ ¼def 0 for the new measure-
ment outcome, the average payoff on N 0 is

X
xy

℘ð1; x; yÞp0ð1jx; yÞ ¼ ηh℘i ð25Þ

and thus demonstrates the non-EB nature of N 0 for all
η > 0.

VI. CONCLUSION

In our paper, we define a class of tests that can faithfully
verify the quantum nature of memories with minimal
assumptions. To do so, we provide a resource theory
necessary to distinguish (non)entanglement-breaking quan-
tum channels as different classes of resources, mirroring the
resource theory of entangled states and their transformations
under LOCC. Allowing the classical storage of any amount
of information for free, we identify the nontrivial resources
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as the channels preserving entanglement. By using classi-
cally correlated preprocessing or postprocessing supermaps,
we define how quantum channels can be transformed and
accordingly show the existence of a partial order on
channels. We single out the class of entanglement-breaking
channels that operate by the storage of classical information.
We complete our resource theory by defining themonotones
relevant to the quantitative study of quantum memories.
Second, we translate the idea of Buscemi [40] to the
temporal setting and construct semiquantum games for
temporal correlations; by showing that the maximal
expected payoffs of such games form a complete family
of monotones, we demonstrate the existence of measure-
ment-device-independent (MDI) tests for memories in the
quantum domain. We finally provide a construction of such
tests and show that the resulting MDI witnesses can certify
all memories in the quantum domain, even when facing
arbitrary losses.
Our work opens new research avenues regarding the

classification of quantum channels. The monotones
detailed in this work are motivated by experimental tests
that can be constructed with minimal assumptions. As
recently explored in the spatial context [47,51,52], the
semiquantum framework and the related MDI witnesses
can provide bounds on a variety of operational entangle-
ment measures. This relation should also hold in the
temporal context: We leave it as an open question to find
the relation between our family of monotones and the
various quantitative measures already defined on quantum
channels (like, e.g., channel capacities or other entropic
quantities).
We also note that the semiquantum framework applies

equally well to spatial and temporal correlations, without
encountering the issues that plague the description of
timelike joint states [89]. By treating space and time on
an equal footing, this framework requires only minimal
assumptions and is well suited to the examination of
quantum causal structures when facing arbitrary causal
orders [90].
As a final comment, our results cater to memories acting

on finite-dimensional Hilbert spaces. This restriction con-
siderably eases the derivation: For example, our construc-
tion relies on Bell measurements, whose generalization to,
e.g., continuous degrees of freedom has quite a different
nature [91]. As some experimental tests of quantum
memories involve continuous degrees of freedom
[92,93], we leave as an open question the generalization
of our results to infinite-dimensional systems.
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APPENDIX A: USE OF RANDOMNESS IN THE
RESOURCE THEORY OF CHANNELS

Preexisting randomness, represented in our formulas by
the index μ, plays an important role in the definition of
entanglement-breaking channels (1) and free transforma-
tions (2), as it is the basic ingredient that provides convexity
to sets of objects. In our case, however, the use of
randomness can be embedded in the quantum operations
and classical communication, and thus the notation used to
describe related objects can be simplified.
Proposition 4. Let Λ be a free transformation

described by

N 0 ¼ Λ½N � ¼
X
μ

πðμÞ
X
i

DB0←B
i;μ ∘N B←A∘IA←A0

ijμ ; ðA1Þ

where μ, fI ijμg, fDi;μg are as described in the main text.
Then, there is an equivalent free transformationΛ0 that does
not require randomness:

N 0 ¼ Λ0½N � ¼
X
i0
D0B0←B

i0 ∘N B←A∘I 0A←A0
i0 : ðA2Þ

Proof.—First, we remark that our definitions implicitly
assume that μ is discrete and that πðμÞ is a probability
distribution. This does not hinder full generality as the
input and output spaces HA and HB are finite; then, the
space of free transformations between HA and HB has finite
dimension, and thus μ can always be taken finite (by
Caratheodory’s theorem; see a related discussion in
Ref. [94]). To construct our equivalent transformation
Λ0, we write i0 ¼ ði; μÞ and define

I 0
i0 ðρÞ ¼ I 0

i;μðρÞ¼defπðμÞI ijμðρÞ: ðA3Þ

By normalization of πðμÞ, we have Tr½Pi;μI
0
i;μðρÞ� ¼ 1 for

all ρ ∈ DðHAÞ; the elements are still CP maps as πðμÞ ≥ 0.
Thus, I 0

i0 is a proper quantum instrument. We obtain the
desired result by defining D0

i0 ¼ Di;μ. □

Two important consequences follow. First, as all EB
channels can be obtained by applying appropriate free
transformations on another EB channel, we can remove
the use of preexisting randomness from Eq. (1) as well.
Second, the set of admissible correlations for N , SðN ;SÞ
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is convex, as a consequence of the convexity of admissible
strategies in Eq. (7).

APPENDIX B: PROOF OF THEOREM 1

We now demonstrate that ℘�ðN Þ ≥ ℘�ðN 0Þ for all
signaling semiquantum games implies that N ↣ N 0.
Our proof proceeds as follows.
In a fixed signaling semiquantum scenario S, we first

show that ifN achieves a maximal expected payoff at least
as good as N 0 for any ℘, then N can reproduce the full
range of correlations admissible for N 0. We then show that
any channel that can reproduce the full range of semi-
quantum correlations ofN 0 can be, in fact, transformed into
N 0 via some free transformation.
Proposition 5. Let S be a fixed signaling semiquantum

scenario. If ℘�ðN Þ ≥ ℘�ðN 0Þ for all ℘, then N can
reproduce all correlations of N 0:

SðN ;SÞ ⊇ SðN 0;SÞ: ðB1Þ

Proof.—Given a payoff function ℘, the expected payoff
of N can be rewritten as

℘�ðN Þ ¼ max
p⃗∈SðN ;SÞ

p⃗ ·℘⃗; ðB2Þ

where we use the notation ℘⃗ to denote the real vector
ð℘x;y;a ¼ ℘ðx; y; aÞÞ ∈ RN . Correspondingly, the condition
℘�ðN Þ ≥ ℘�ðN 0Þ can be rewritten as follows:

max
p⃗∈SðN ;SÞ

p⃗ ·℘⃗ ≥ max
p⃗0∈SðN 0;SÞ

p⃗0 · ℘⃗; ðB3Þ

for all ℘. The payoff vector ℘⃗ can be any vector in RN .
Since SðN ;SÞ and SðN 0;SÞ are convex (see Appendix A),
the separation theorem for convex sets [95] implies that the
above inequality is equivalent to

SðN ;SÞ ⊇ SðN 0;SÞ; ðB4Þ

which proves the Proposition. □

We nowmake use of the signature correlation (Definition
4) for our target channel N 0. It has the property that any
channel that can reproduce it can be transformed into N 0.
Proposition 6. Let psig

N 0 be the signature correlation
obtained in the scenario Ssig

N 0 for the channel N 0:

psig
N 0 ðbjx; yÞ ¼ Tr½fN 0A0 ðξXx Þ ⊗ ψY

y gB0B0Y
b �: ðB5Þ

Then, any channel N whose admissible set contains psig
N 0

can, in fact, be transformed into N 0: N ↣ N 0.
Proof.—Assume that the channel N can reproduce the

correlation psig
N 0 ðbjx; yÞ. From Eq. (B4), we have an

admissible strategy of psig
N 0 usingN , comprising a quantum

instrument fIX→A
i g and a family of measurements fBBY

bji g,
for which

pðbjx; yÞ ¼
X
i

Tr½fðN A∘IX
i ÞðξXx Þ ⊗ ψY

y gBBY
bji �

¼ Tr½fN 0A0 ðξXx Þ ⊗ ψY
y gB0B0Y

b �; ðB6Þ

for all x, y, and b. The graphical translation of Eq. (B6) is
given in Fig. 5. As the sets of inputs are tomographically
complete, the correlation pðbjx; yÞ contains the data related
to quantum tomography of the process. Thus, the quantum
systems enclosed by the double line have the same external
behavior and are thus indistinguishable for our purposes.
The above arguments can be made rigorous as follows.

Introducing another system HY
0 ≅ HY, we now write

ψY
y ¼ TrY0 ½ΦYY0

þ ð1Y ⊗ ζY
0

y Þ�, where ΦYY0
þ is the maximally

entangled state between HY and HY0 . Because of the
completeness of ψY

y , we have the completeness of ζY
0

y .
Hence, Eq. (B6) can be written as an operator identity, i.e.,

X
i

TrBY½fðN A∘IX
i ÞðξXx Þ ⊗ ΦYY0

þ gfBBY
bji ⊗ 1Y

0 g�

¼ TrB0Y½fN 0A0 ðξXx Þ ⊗ ΦYY0
þ gfB0B0Y

b ⊗ 1Y
0g�: ðB7Þ

Now invoking the protocol of quantum teleportation
[Fig. 6(i)], we know that there exist unitary channels UY0

b
such that

N 0A0 ðξXx Þ ¼
X
b

UY0
b ðTrB0Y½fN 0A0 ðξXx Þ ⊗ ΦYY0

þ g

× fB0B0Y
b ⊗ 1Y

0 g�Þ; ðB8Þ

for all x, namely, using Eq. (B7),

FIG. 5. A diagram relating the uses of the channels N and N 0

to produce the signature correlation of N 0 in Eq. (B6). The
correlations of both boxes enclosed in double lines are identical,
and thus their behavior is essentially indistinguishable.
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N 0A0 ðξXx Þ ¼
X
ib

UY0
b ðTrBY½fðN A∘IX

i ÞðξXx Þ ⊗ ΦYY0
þ g

× fBBY
bji ⊗ 1Y

0 g�Þ: ðB9Þ

Because of the completeness of ξXx , the above equation
indeed holds as a map (remember that HA0 ≅ HX):

N 0A0 ð•A0 Þ ¼
X
ib

UY0
b ðTrBY½fðN A∘IX

i Þð•XÞ ⊗ ΦYY0
þ g

× fBBY
bji ⊗ 1Y

0 g�Þ: ðB10Þ

A schematic diagram of the above equation is given in
Fig. 6. Finally, introducing the maps Di∶B → Y 0 ≅ B0
defined as

DB
i ð•Þ ¼def

X
b

UY0
b ðTrBY½f•B ⊗ ΦYY0

þ gfBBY
bji ⊗ 1Y

0g�Þ;

we have that

N 0B0←A0 ¼
X
i

DB0←B
i ∘N B←A∘IA←A0

i ;

which proves that N ↣ N 0. □

The proof of Theorem 1 follows, as we proved that N
can reproduce all correlations of N 0 as a consequence of
℘�ðN Þ ≥ ℘�ðN 0Þ for all games.

APPENDIX C: PROOF OF PROPOSITION 2

We first remark that, by construction of the signature
correlation (10), we have, using Eq. (13), that

psig
N ð1jx; yÞ ¼ Tr½ðN ðξXx Þ ⊗ ψY

y ÞΦBYþ �
¼ dTr½ðJN ⊗ ψY

y Þðξ⊤x ⊗ ΦþÞ�
¼ Tr½JN ðξ⊤x ⊗ ψ⊤

y Þ�: ðC1Þ

Then, by construction,

X
xy

℘ð1jx; yÞpsig
N ð1jx; yÞ ¼

X
xy

ωxyTr½JN ðξ⊤x ⊗ ψ⊤
y Þ�

¼ Tr½JNW� > 0: ðC2Þ

Thus, the optimal payoff when Abby has access to N is
positive. Now, consider an EB channel. Without loss of
generality, its correlations can be written, again using
Eq. (1), as follows:

pEBðbjx; yÞ ¼
X
i

Tr½ξxΠX
i �Tr½ψyBY

bji�; ðC3Þ

where we folded the creation of a state ρ0i into the
measurement BY

bji. Then,

X
xy

℘ð1jx;yÞpEBð1jx;yÞ¼
X
xyi

ωxyTr½ðξxΠX
i Þ⊤�Tr½ðψyBY

1jiÞ⊤�

¼
X
i

Tr½ðΠX
i ⊗BY

1jiÞ⊤W�≤0;

ðC4Þ

as the element traced with W is a product of positive
semidefinite operators.

APPENDIX D: SPARSE
WITNESS DECOMPOSITIONS

The construction given in Sec. V rests on the decom-
position (14) of an entanglement witness W on pairs of
input states ðξx;ψyÞ with coefficients ωxy. Notice that the
statistics pðbjxyÞ need only be collected for the input pairs
ðx; yÞ that have ωxy ≠ 0. We now provide a method to
minimize the number of those input pairs.
Proposition 7. LetW be a Hermitian operator acting on

HX ⊗ HY. Let d ¼ minðdimHX; dimHYÞ. Shifting the
transpose to the left-hand side of Eq. (14), the operator
W⊤ has a decomposition

W⊤ ¼
X
xy

ωxyðξx ⊗ ψyÞ; ðD1Þ

where the number of nonzero ωxy is at most d2 þ 3.
Proof.—The operator W⊤ has the operator-Schmidt

decomposition [96]

W⊤ ¼
Xn
i¼1

γiðAi ⊗ BiÞ; ðD2Þ

FIG. 6. (i) To correct the effect of the Bell measurement and the
preparation of a maximally entangled state, it is sufficient to
apply a unitary correction selected using the outcome of the Bell
measurement. The resulting channel (bigger box) is equivalent to
N 0. (ii) As seen in Fig. 5, the same correction can be applied
when using N to recover N 0. In the dotted blob, we show the
parts of the protocol that are regrouped to form a free trans-
formation Λ as defined in Sec. III.
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where n ¼ d2, γi ≥ 0, and fAig and fBig are Hermitian
operators acting on HX and HY, respectively. This form
does not match with Eq. (D1) as Ai and Bi do not
necessarily represent density matrices: Their eigenvalues
can be negative, and their trace can be different from 1. The
real mismatch is given by non-negative eigenvalues, as
normalization is easily fixed by rescaling. For simplicity,
we first decompose W⊤ over unnormalized density matri-
ces fξ̃xg and fψ̃yg. We define ξ̃0 ¼ 1 and ψ̃0 ¼ 1 with
suitable dimension and write, for x; y ¼ 1;…; n,

ξ̃x ¼ Ax þ axξ̃0; ψ̃y ¼ By þ byψ̃0;

for minimal ax, by ≥ 0, such that all ξ̃x, ψ̃y have non-
negative eigenvalues. Then,

W⊤ ¼ μξ̃0 ⊗ ψ̃0 þ Ã ⊗ ψ̃0 þ ξ̃0 ⊗ B̃þ
Xn
i¼1

γiξ̃i ⊗ ψ̃ i;

where

μ¼
X
i

γiaibi; Ã¼ −
X
i

γibiξ̃i; B̃¼ −
X
i

γiaiψ̃ i;

which is nearly of the required form apart from Ã and B̃. We
again write

ξ̃nþ1 ¼ Ãþ anþ1ξ̃0; ψ̃nþ1 ¼ B̃þ bnþ1ψ̃0

for minimal anþ1, bnþ1 ≥ 0 to ensure semidefinite pos-
itiveness. This provides a final decomposition W⊤ ¼Pnþ1

x;y¼0 ω̃xyðξ̃x ⊗ ψ̃yÞ with nonzero coefficients:

ω̃00 ¼ μ − anþ1 − bnþ1; ω̃0;nþ1 ¼ ω̃nþ1;0 ¼ 1; ω̃ii ¼ γi;

for i ¼ 1;…; n. The correct decomposition (D1) is found
by normalizing the states ξx ¼ ξ̃x=Tr½ξ̃x�, ψy ¼ ψ̃y=Tr½ψ̃y�,
rescaling the coefficients ω̃xy → ωxy in the process. The
final decomposition has at most d2 þ 3 nonzero coeffi-
cients, to compare with the full tomographic data that
correspond to ðdimHXÞ2ðdimHyÞ2 ≥ d4 coefficients. □

For the entanglement witness W ¼ Φþ − 1=2 of our
qubit depolarizing channel example, we have the operator-
Schmidt decomposition

W⊤ ¼ ð−14 þ σx ⊗ σx − σy ⊗ σy þ σz ⊗ σzÞ=4: ðD3Þ

By following the process described above, we obtain a
decomposition with only six nonzero coefficients. The
input states are

ξ0 ¼
1
2
; ξ1 ¼

1þ σx
2

;

ξ2 ¼
1þ σy

2
; ξ3 ¼

1þ σz
2

; ðD4Þ

and

ξ4 ¼
1þ ðσx − σy þ σzÞ=

ffiffiffi
3

p

2
; ðD5Þ

where ψ i ¼ ξi. The six nonzero coefficients are ω00 ¼
2ð ffiffiffi

3
p

− 1Þ, ω04¼ω40¼−
ffiffiffi
3

p
, and ω11 ¼ −ω22 ¼ ω33 ¼ 1.

Note the similarity of this decomposition with the one used
in the experimental work [44]; however, our construction is
general and not tailored to a specific family of witnesses.
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