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Dipartimento di Fisica, Università di Roma “Tor Vergata” and INFN,
Via della Ricerca Scientifica, 1-00133 Roma, Italy

(Received 3 October 2017; revised manuscript received 6 March 2018; published 4 May 2018)

We study the solid-to-liquid transition in a two-dimensional fully periodic soft-glassy model with an
imposed spatially heterogeneous stress. The model we consider consists of droplets of a dispersed phase
jammed together in a continuous phase. When the peak value of the stress gets close to the yield stress of
the material, we find that the whole system intermittently tunnels to a metastable “fluidized” state, which
relaxes back to a metastable “solid” state by means of an elastic-wave dissipation. This macroscopic
scenario is studied through the microscopic displacement field of the droplets, whose time statistics
displays a remarkable bimodality. Metastability is rooted in the existence, in a given stress range, of two
distinct stable rheological branches, as well as long-range correlations (e.g., large dynamic heterogeneity)
developed in the system. Finally, we show that a similar behavior holds for a pressure-driven flow, thus
suggesting possible experimental tests.
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I. INTRODUCTION

Soft amorphous materials—such as emulsions, micro-
gels, foams, and colloidal suspensions—display a solid-to-
liquid transition for sufficiently large values of an external
forcing: they are solid at rest and able to store energy via
elastic deformations, whereas they flow whenever the stress
is above a critical threshold known as the yield stress [1].
The complex spatiotemporal behavior shown by soft
glasses at the yield-stress transition has been the subject
of intense scrutiny in recent years [2–5]. Some materials,
often denoted as “simple” yield-stress fluids [5] (e.g.,
microgels [6], nonadhesive emulsions [7,8]), exhibit yield-
ing properties that are rather homogeneous in space: For
any imposed shear rate, even a small one, there is always a
stress at which these materials can fluidify homogeneously;
the steady flow dynamics is also typically preceded by a
nontrivial transient behavior [9,10]. In other materials with
thixotropic properties [5], like adhesive emulsions [11],
a specific kind of heterogeneous flow can be steadily
established: If an imposed shear rate is smaller than a
given threshold, the system may decompose in two distinct

spatial regions, showing a solid and fluidized behavior,
respectively. By changing the shear-rate value, the widths
of the two regions are changed, whereas the shear stress
remains constant. This phenomenon is known as shear
banding [12–18]. Here, the term “shear banding” refers to a
form of heterogeneous flow characterized by shear locali-
zation independently of any stress heterogeneity [5]. This
differs from the shear localization induced by stress
heterogeneity, where part of the material is above yield
and part is below; it also differs from the shear localization
emerging in the presence of slippage at the walls.
From the theoretical point of view, different phenom-

enological models have been proposed to capture the
fundamental physics underlying soft-glass behaviors. In
some cases [such as the soft-glassy-rheology (SGR) model
[19–21] or shear-transformation-zone (STZ) theory [22]],
the notion of “effective temperature” provides a useful
way to describe the onset of the plastic flow in soft glasses.
Such “temperature” is actually thought of as a quantifica-
tion of the mechanical noise induced by the flow itself
[19–21] and triggers activated hopping through the energy
landscape of the system. Moreover, it has been clearly
demonstrated both experimentally [23–25] and numerically
[26] that soft glasses exhibit a nontrivial size dependence.
This may give rise to “nonlocal” rheological effects [7,8]
parametrized by a cooperativity length [6–8,27] estimating
the typical size of the region involved in plastic rearrange-
ments of the constituents following local elastic deforma-
tions. A recent proposal [18] has also linked cooperativity
effects and nonlocal rheology to the emergence of shear-
banding configurations. From a more general perspective,
the shear-banding phenomenon has often been interpreted
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as the signature of a dynamic transition with a “phase
coexistence” of two distinct states in space [27–29]: a
jammed solid state and a fluidized state. A common
explanation is to assume an underlying nonmonotonous
rheological curve relating the stress to the shear rate
[12,15,16], with two stable branches separated by an
unstable branch. This nonmonotonicity has also been linked
to the competition between different timescales related to
different physical processes [29–32] (e.g., aging vs flow-
induced rejuvenation in Ref. [29] or restructuring time vs
stress-release time in Ref. [31]). When the minimum of the
rheological curve occurs at very small shear rates, one can
draw a “simple” picture of coexisting branches [5]: a solid
branch described by zero shear (S ¼ 0) and stress σ in the
interval ½0; σst�, where σst is referred to as the static yield
stress; and a fluidized branch characterized by a Herschel-
Bulkley (HB) relation of the type σ ¼ σY þ ASn [33], with
σY < σst denoted as the dynamic yield stress. For stress
values σ ∈ ½σY; σst�, the shear rate is multivalued, hence
the phase coexistence in space. For shear rate S greater than
the critical shearSc ¼ (ðσst − σYÞ=A)1=n, the rheology of the
system is described uniquely by the HB relation, and no
shear banding is observed. This scenario has been explored
and discussed in glassy models and numerical simulations
[28,34–37].
In this paper, we study the statistical properties of the

yield-stress transition when σY < σst from a different point
of view. Permanent shear bands are often observed by
applying an external velocity difference, say, ΔU on a
system of size L [18]. For ΔU=L < Sc, the system shows a
homogeneous stress in space and splits into two shearing
regions (a solid and a fluidized band), which permanently
persist in time. Now, let us consider the same system
under an imposed space-dependent stress ranging, say,
from 0 to some value σp close to σst. In this case, we have
two solutions linked to the two possible branches. If the rate
of plastic rearrangements is large enough, the system can
perform activated processes, and transitions in time
between the two solutions may be observed. In other
words, for a relatively narrow range of values of the
imposed shear stress peak σp, one should be able to observe
a clear bimodality in the probability distribution of a global
rheological variable, like the space-averaged velocity, or
some other convenient observable. Hence, we expect a time
bimodality because of the repeated (back-and-forth) tran-
sitions between two different states that are unimodal in
space. Such transitions are expected to be enhanced by the
choice of a heterogeneous stress field, which reduces the
extent of the spatial region in which transitions take place.
Based on numerical simulations of a soft-glassy model
[38–43] (see Sec. II), we aim at providing clear evidence
that the above scenario holds.
In Sec. III, we analyze the rheological response at “large

scales” and analyze the signatures of bimodality in the time
evolution of the flow; then, in Sec. IV, we enrich these

observations with a comprehensive analysis of the rheo-
logical response at “small scales,” i.e., by studying the
statistical properties of the displacement field of the micro-
structural constituents. When bimodality is observed, we
also observe that the overlap-overlap correlation length (see
Sec. V) becomes of the same order of the system size. We
argue that a long-range correlation function among plastic
events is necessary in order to observe transitions in time
from one state to the other. Preliminary investigations for
a pressure-driven flow (see Sec. VI) will also support the
same scenario, thus suggesting an experimental setup that
could be used to test the predictions of numerical simu-
lations. Some concluding remarks will be given in Sec. VII.
We believe that our results open a new perspective in the
phenomenology of shear banding in soft glasses.

II. MODEL

We simulated a soft-glassy model by means of a lattice
Boltzmann (LB) equation, which allows the simulations of
droplets of one component dispersed in another component
[38–44]. Droplets are stabilized against coalescence (see
Fig. 1) by the combined effect of attractive and repulsive
interactions [44]. In previous publications, we showed that
the model displays many of the well-known properties
observed for soft glasses. Importantly, for shear-controlled
experiments (i.e., in Couette geometry), it behaves as a non-
Newtonian fluid displaying a dynamic yield stress σY [38],
a nonlinear HB rheology with HB exponent n ≃ 0.5 [41],
elastic shear waves, and plastic rearrangements [45]. For
values of the stress σ larger than σY , our model shows
quantitative agreement with nonlocal rheology theories
[39,42], which have been used to rationalize the flow of
concentrated emulsions [7,8,27] and other yield-stress
fluids [6,42,46] in confined geometries. The values of
the cooperativity scale ξ extracted from the model
[41,47,48] are in agreement with experimental observations
[7,49]. Recently, the model has been used in synergy with
experiments on real emulsions in order to quantify the
impact of the fluidization induced by the roughness of
microchannels on the flow behavior of the emulsion
[47,48]. As shown in the reminder of the paper, for this
“model emulsion,” the static and dynamic yield-stress
values are found to differ. Looking at the literature on real
emulsions, we know that “pure” emulsions do not show this
behavior, whereas loaded “attractive” emulsions actually
do [37,50,51]. Hence, in terms of the yielding properties,
our model bears similarities with the behavior of an
attractive emulsion with σY < σst. Hereafter, we present
all of our numerical results by rescaling the LB units in
such a way that the flowing rheological branch for a
Couette flow is given by σ=σY ¼ 1þ S1=2, where S is
the shear. The system we consider is two dimensional, with
x and y being the streamwise and spanwise coordinates,
respectively. We study the rheology of our model by
imposing a space-dependent stress. For this purpose, we
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consider fully periodic boundary conditions with a space-
dependent forcing imposing the xy component of the stress
(Kolmogorov flow):

σxyðx; yÞ ¼ σp cos

�
2π

L
y

�
; ð1Þ

where L is the system size, which has the same value in
both directions, and σp is the peak value for the stress (see
Fig. 1). A very similar setting has been used in previous
experimental [26] and numerical [52,53] works. The choice

of a fully periodic setup is initially taken in order to avoid
possible wall effects and dependence on boundary con-
ditions, which may alter the rheological response of the
system [49,54–57]. Later, in Sec. VI, we discuss some
preliminary simulations for a pressure-driven flow. In the
fully periodic setup, for a Newtonian fluid with constant
viscosity η, the streamwise component of the stationary
velocity field induced by the stress would read

uN
x ðx; yÞ ¼ uN

0 sin

�
2π

L
y

�
; ð2Þ

where the peak value for the Newtonian velocity profile
uN
0 ¼ ½L=ð2πηÞ�σp is a constant. In the model, an important

control parameter is the quantity R ¼ 2δ
ffiffiffiffi
N

p
=L, where δ is

the average thickness of the continuous phase, N is the
number of droplets, and L is the system size. Such a
quantity is a measure of the ratio between the interface area
and the area occupied by the droplets. Note that 1 − R
should be considered proportional to the packing fraction in
our system. The numerical simulations for the Kolmogorov
flow have been performed with L ¼ 1024 grid points,
N ¼ 512 droplets, and R ¼ 0.09, which implies a packing
fraction well above the jamming point.

III. RHEOLOGICAL RESPONSE
AT “LARGE SCALES”

The simplest way to measure the rheology in our system
is to compute the characteristic shear S as a function of σp.
The value of S is computed using the average streamwise
velocity profile uxðy; tÞ ¼ L−1P

xuxðx; y; tÞ at time t and
performing its projection onto the viscous profile in Eq. (2),

usðtÞ ¼
2

L

XL−1
y¼0

uxðy; tÞ sin
�
2π

L
y

�
: ð3Þ

From usðtÞ, we compute sðtÞ ¼ 2πusðtÞ=L, whose time
average provides the value of the shear S. In the top panel
of Fig. 2, we show the rheological curve obtained in our
system: Starting from σp=σY ≃ 1, we perform a series of
numerical simulations (red bullets) by increasing stepwise
the peak stress σp (i.e., “ramp-up” protocol). At relatively
large values of the forcing (namely, for σp=σY ≃ 2.2), the
system is completely fluidized. Next, we reduce the forcing
(i.e., “ramp-down” protocol) using exactly the same values
σp=σY of the “ramping-up” simulations: As observed in the
top panel of Fig. 2, a clear (although small) hysteresis loop
is observed. In the top panel of Fig. 2, the black continuous
line refers to the same quantities for a simple HB fluid
whose parameters are the same as those observed for our
model in a Couette geometry [41], while the blue connected
crosses refer to the same HB fluid supplemented with
cooperativity effects, obtained using the steady nonlocal
fluidity model [7,8,27]. Finally, in the lower panel of Fig. 2,

FIG. 1. Sketch depicting the fundamental quantities used in our
analysis. (a) Flow setups and relative stress profiles: (1) Kolmo-
gorov flow on fully periodic square domain of size L; (2) pres-
sure-driven flow with streamwise periodic boundary on a square
domain. (b) Density field of the simulated soft-glassy model:
Deformable droplets in yellow are jammed together in a con-
tinuous phase (light blue); the droplets’ centers of mass are
indicated with a dot and are connected in their Delaunay
triangulation [58,59] in the right half of the panel. (c) Comparison
between two successive Delaunay triangulations at initial time tin
(gray color with squared points) and final time tf (black color
with round points): Arrows indicate the value of the displacement
field Δ⃗iðtÞ [see Eq. (4)] at each droplet; the region where a plastic
rearrangement occurs (i.e., an edge flip in the triangulation [59])
is highlighted with thicker lines.
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we show the average velocity profiles uxðyÞ observed at
σp=σY ≃ 1.5 for the ramp-up simulation (purple squares)
and ramp-down simulation (green triangles). Velocity
profiles uxðyÞ are obtained from an average in time of
uxðy; tÞ. The results shown in Fig. 2 clearly demonstrate the
existence in our system of two rheological branches with a
dynamical yield stress smaller than the static one.
Moreover, looking at the top panel of Fig. 2, we can
immediately observe that the yielding point is above the
yielding threshold evaluated in homogeneous conditions,
i.e., σp=σY ≃ 1.4. Qualitatively, we can argue that this is a
consequence of the nonlocality in the flow coupled to the

heterogeneity of the stress. Indeed, for the flow to occur, the
peak stress needs to be above σY in a spatial region of the
order of the cooperativity length [40,53]. The net effect of
this is to increase the yielding threshold. However, a closer
quantitative inspection reveals that the nonlocal model
works very well only when the peak stress is well above
the yield stress, while it fails to describe the transition point
for σp=σY ≃ 1.4. We indeed observe an abrupt transition in
the rheological response that neither the simple HB model
nor the stationary nonlocal fluidity model is able to capture.
This contrasts with previous observations in yield-stress
fluids subject to heterogeneous stress distribution [53].
We are therefore interested in investigating the nature and
properties of this transition.
To get an intuitive picture on the system behavior at the

transition, we show in Fig. 3 the time behavior of usðtÞ for
three different values of σp. All of the following simulations
have been performed using the ramp-up protocol unless
explicitly stated otherwise (see Sec. VI). For relatively small
σp (top panel), the system intermittently tries to flowwith an
average value of us close to zero; at large σp (lower panel),
the system is fluidized, and the signal corresponds to a
plastic flow, as expected. The interesting point is the
behavior of the system at σp=σY ≃ 1.4 (middle panel):
The system persists for a relatively long time in a fluidized

FIG. 2. Top panel: Rheology data for the Kolmogorov flow
setup. The hysteresis cycle for the LB simulations (red dots) is
clearly visible: ramp-up (upper line with right-pointing arrow)
and ramp-down simulations (lower line with left-pointing arrow).
Rheological data extracted from simulations are compared to the
results obtained from the fluidity model [7,8,27] (blue crosses)
and the HB [33] fit in a Couette geometry (black continuous line).
Neither model can describe the solid branch and the transition to
the plastic one; however, the fluidity model better describes the
flowing regime. The purple empty square and the green empty
triangle signal the position on the rheological curve of the
corresponding profiles shown in the bottom panel. Bottom panel:
Velocity profiles for the Kolmogorov flow at fixed peak-stress
value σp=σY ≃ 1.5 obtained from two different protocols: ramping
up from lower peak-stress values (purple empty squares) and
ramping down from larger peak-stress values (green empty
triangles). This is clear evidence of the existence of two stable
rheological branches, signaling that the static yielding threshold
is above the dynamic one [28].

FIG. 3. Time sequence for the projection of the velocity field
onto the viscous solution usðtÞ [see Eq. (3)] for Kolmogorov flow
simulations at different peak-stress σp values. Time is rescaled by
the stress-dependent shear time τshear ¼ S−1 as derived from
Eq. (3). For small forcing, σp=σY ≃ 0.8, the system responds
elastically and dissipates mainly through elastic waves visible
from the periodic oscillations around 0. At σp=σY ≃ 1.4, the
system is at the middle point between the two branches (see
Fig. 2), and it intermittently switches between an elastic response
and a plastic flowing regime for which usðtÞ > 0. At σp=σY ≃ 1.6,
the system is plastically flowing [7,8,27].
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state and then goes back to a “solid” state. We also notice, in
the upper and middle panels of Fig. 3, strong periodic
oscillations of usðtÞ. These oscillations are due to elastic
waves generated in the system. The signal shown in the
upper panel recalls the “stick-slip” behavior observed near
the yield-stress transition in shear controlled systems [28]:
Sincewe impose the stress, the shear (or the velocity) shows
intermittent bursts of activity. It is much less immediate,
however, to understand the physics behind the behavior of
usðtÞ shown at σp=σY ≃ 1.4. Since the intermittency in usðtÞ
is due to plastic rearrangements occurring in the system, it is
important to inspect the system behavior at the scales of the
microstructural constituents in order to get a deeper insight
about the nature of the observed transition.

IV. RHEOLOGICAL RESPONSE
AT “SMALL SCALES”

Plastic rearrangements are localized topological changes
in the droplet configurations. In our system, we can identify
plastic rearrangements, corresponding to topological
changes in the Voronoi tessellation of the centers of mass,
by using its dual Delaunay triangulation (see Fig. 1):
A plastic event happens whenever a link in the triangulation
flips [59]. Next, we need to measure the droplet displace-
ment during plastic rearrangements and try to understand
whether this measurement can be correlated to the obser-
vations discussed in Fig. 3. For this purpose, we start by
looking at the displacement Δ⃗iðtÞ of the droplets defined as

Δ⃗iðtÞ ¼ x⃗iðtÞ − x⃗iðt − δtÞ; ð4Þ
where x⃗iðtÞ is the position of the center of mass of the ith
droplet at time t and δt is a given time interval, which, in
our simulations, is set at δt ¼ 100 simulation time steps.
This choice corresponds roughly to δt ¼ tdrop=10, where
tdrop ¼ ηhRi=γ is the droplet time, with hRi the average
radius and γ the surface tension.
As expected, jΔ⃗iðtÞj is a highly intermittent quantity both

in i (space) and time: It fluctuates around a small value when
there are no plastic rearrangements, while it becomes large
and strongly localized in space when a plastic rearrangement
occurs somewhere in the system. For this reason, we consider

ΔsðtÞ≡ sup
i
jΔ⃗iðtÞj; ð5Þ

as a quantitativemeasure of plastic activity in the system. The
behavior in timeofΔsðtÞ is shown inFig. 4 for the samevalues
of the peak stress discussed in Fig. 3. Quite remarkably (but
not surprisingly), the behavior ofΔsðtÞ is qualitatively similar
to the one shown by usðtÞ. However, an important difference
must be stressed:Δs is not affected by the presence of elastic
waves. This difference can be understood in a simple way:
The displacement due to elastic waves is relatively small, and
it is coherent in space (all droplets oscillate); in contrast, the
displacement due to plastic rearrangements is rather large and

not coherent in space. Therefore, our quantity Δs is not
sensitive to elastic waves.
Finally, in Fig. 5, we compare the amplitude of Δs and

simultaneously track the time (blue dots) when plastic

FIG. 4. Time sequence for the supremum of droplet displace-
ments ΔsðtÞ [see Eq. (5)] at the same peak stresses displayed in
Fig. 3 for the Kolmogorov flow. Time is rescaled by the stress-
dependent shear time τshear ¼ S−1 as derived from Eq. (3). At the
smallest forcing σp=σY ≃ 0.8, Δs shows only a few intermittent
spikes with the smallest absolute values. For a peak stress
σp=σY ≃ 1.4, passing from one rheological branch to the other
(see Fig. 2),Δs displays both small and large stable values, whereas
at σp=σY ≃ 1.6, there are fluctuations around a large mean value.

FIG. 5. Lines represent data for logðΔsÞ, while dots single out
values concurrent with plastic rearrangements. Time is rescaled
by the stress-dependent shear time τshear ¼ S−1 as derived from
Eq. (3). Two different regimes are displayed. Top panel:
σp=σY ≃ 1.4, the system spends roughly half of the time in an
elastic solid state and the other half in a plastic fluidized state
where the plastic rearrangements cluster. Bottom panel:
σp=σY ≃ 1.6, the system is in a fluidized state and plastic
rearrangements are homogeneously distributed.
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rearrangements occur. We show the time behavior of Δs
for two different values of the peak stress: σp=σY ≃ 1.4,
showing the previously described intermittent behavior and
σp=σY ≃ 1.6 for which the system is plastically flowing
[7,8,27]. Inspection of Fig. 5 suggests that we should
consider the probability distribution P( logðΔsÞ), in agree-
ment with the approach to intermittent fluctuations in
dynamical systems theory [60]. We remark that, upon
writing Z ¼ logðΔsÞ, it is easily shown that PðZÞ ¼
ΔsPðΔsÞ; i.e., the peak in the probability distribution of
P( logðΔsÞ) corresponds to the relevant value of Δs
contributing to the average hΔsi [61].
The probability distributions P( logðΔsÞ) are shown in

Fig. 6 for the three different peak stresses already consid-
ered before: At small σp, P( logðΔsÞ) is peaked at small
values and shows a rather long tail; at large σp, P( logðΔsÞ)
is peaked at large values corresponding to the plastic flow
previously discussed. Remarkably, at the transition point
σp=σY ≃ 1.4, the probability distribution P( logðΔsÞ) is
bimodal; i.e., the system shows transitions in time between
two states with small (solid) and large (fluidized) values.
Hence, we observe bimodality in time of two states that are
unimodal in space.
Now, we go back to the results shown in Fig. 3. The

results discussed in terms of Δs suggest that transitions
from the solid branch to the fluidized branch should be

observed for us as well. As already remarked, however,
usðtÞ is strongly perturbed by elastic waves, which makes it
impossible to observe the same bimodality unless the
effects of elastic waves are removed. This can actually
be done. In Fig. 7, we show a short snapshot of the time
behavior of Δs (upper panel) and usðtÞ (lower panel)

FIG. 6. Probability distribution functions for logðΔsÞ for three
different values of the forcing displayed in Fig. 4. Top panel: At
the smallest forcing, σp=σY ≃ 0.8, there is one peak at small
values with a long tail over larger values indicating the inter-
mittent spikes of plastic activity that the system experiences.
Middle panel: At σp=σY ≃ 1.4, the system spends time both in the
solid elastic response branch (smaller peak) and in the plastic
flowing one (larger peak; see Fig. 2), so the probability
distribution is bimodal. Bottom panel: At σp=σY ≃ 1.6, only
the fluidized state exists, signaled by the peak at large values.

FIG. 7. Top panel: Time evolution of the quantity ΔsðtÞ
showing both plastic and elastic regimes. Bottom panel:
Velocity field projection onto the viscous solution usðtÞ. It is
possible to notice that both signals are rather compatible in the
plastic regimes (high variability), whereas the elastic wave
dissipation is clearly visible for usðtÞ and practically does not
affect the data for ΔsðtÞ.

FIG. 8. Probability distribution functions for log jûsðtÞj for the
same values of the peak stress σp reported in Fig. 6, where ûsðtÞ is
the projection of the velocity field onto the viscous solution [see
Eq. (3)] once elastic waves are filtered out [see Eq. (6)]. We
obtain the same qualitative behavior as in Fig. 6, stressing the
transition from the solid branch (top panel) to the plastically
flowing one (bottom panel) passing through a regime where both
coexist (middle panel). See Fig. 2.
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for σp=σY ≃ 1.2. When Δs becomes small, usðtÞ shows
damped oscillations near us ¼ 0. Knowing the period
and the dissipation time of the elastic wave [41], it is
possible to fit the damped oscillations rather well, as shown
from the blue dashed line in the lower panel.We then obtain
the filtered signal ûsðtÞ by computing a running average

ûsðtÞ ¼
1

2Tel

XtþTel−1

i¼t−Tel

usðiÞ; ð6Þ

where 2Tel is the oscillation period of the elastic waves.
In Fig. 8, we report the probability distribution for log jûsj
for different peak stresses. We consider the log jûsj for the
same reasons previously discussed for Δs. Comparing
Figs. 6 and 8, once the elastic waves are filtered from
the original signals, the probability distributions of log jûsj
display the same features as P( logðΔsÞ) at the same
forcing.

V. DISCUSSION

Bimodal distributions and/or metastability have already
been reported in the literature of amorphous systems
[52,61–66]. Regarding bimodal distributions, a recent
theoretical work on amorphous solids by Jaiswal et al.
[65] showed bimodality for an ad hoc order parameter
constructed to see how much the system is correlated to
the initial condition after an athermal, quasistatic (AQS)
shearing protocol is applied. An experimental study on
colloidal glasses by Chikkadi et al. [64] reported bimo-
dality for the spatial distribution of an order parameter
constructed with the time-integrated mean-square displace-
ment of particles. It is also worth recalling some other
studies on glasses under shear [61–63], in which a non-
trivial statistics has been observed in the nonaffine dis-
placements of particles, whose probability distribution
exhibits peaks in different displacement ranges depending
on the observation time. The present investigation differs
from previous studies in an important way: The results
displayed in Figs. 6 and 8 show the succession in time of
two metastable states at σp=σY ≃ 1.4 corresponding to
different rheological branches. In other words, the whole
system spends roughly the same amount of time in both the
elastic and fluidized phases, constantly tunneling back and
forth from one state to the other. Transitions are due to
plastic events, which eventually drive the system from the
solid to the fluidized branch. Once the system reaches the
fluidized branch, it flows plastically with a large number of
plastic rearrangements (see Fig. 5). Plastic flow dissipates
energy quite efficiently, and eventually, the power input due
to the forcing is not able to sustain the energy dissipation
due to plastic flow, and the system goes back to the solid
branch. Last but not least, we argue that the choice of
heterogeneous stress enhances the probability to perform
transitions between the two branches because this choice

reduces the region (in physical space) where the system
may switch from a flowing regime to a solid or elastic
state (and vice versa). This phenomenology differs from
the bimodality discussed by Chikkadi et al. [64] that is
related to bimodality “in space” of the underlying shear.
Our transitions in time, between elastic and fluidized
states, also differ qualitatively from the observations of
Refs. [65,66] on the intermittent periods of elastic loadings
displayed in the failure of amorphous solids. Indeed, the
loading and the failure take place on remarkably different
timescales, which leads to a power-law distribution of the
displacement field rather than a bimodal distribution (see
Ref. [67] for a study of our model under shear flow). It must
also be emphasized that in Ref. [65] bimodality is reported
for the overlap variable describing how well the system
remembers its initial configuration as a function of the
applied quasistatic deformation: Such a choice would not
allow us to determine whether or not a given system
repeatedly tunnels from a jammed to a flowing state and
back since the overlap is measured with respect to the
starting configuration; thus, attaining a high overlap after a
low value is reached is highly improbable. On the other
hand, we observe bimodality for the time evolution of a
rheological observable, signaling repeated transitions in
time from a jammed to a flowing state and back, both states
being unimodal in space. The presence of bimodality in
time, for both log½ΔSðtÞ� and log½ûsðtÞ�, should be related to
long-range space correlations of plastic events, of the order
of the domain size. In fact, for systems with a short-range
space correlation, the effect of a single plastic rearrange-
ment is unable to develop a cascade (in space and time)
of other plastic events and trigger the transition of the
whole system from the metastable solid branch to the
metastable fluidized branch. A similar reasoning applies for
the reversed transition: Once plastic rearrangements stop
occurring in some part of the system, the flow ceases
locally and the transition to the solid branch for the whole
system necessitates a correlation length that allows us to
cover the entire system size. This picture is actually borne
out by a direct calculation of the correlation. A simple and
intuitive way to look at space correlations is to compute the
overlap-overlap correlation GðrÞ that was already used in
Ref. [41]: We follow the analysis presented in Ref. [68],
based on the idea of Ref. [69]. The physical meaning of
GðrÞ is rather clear. In a nutshell, we can say that small
values of GðrÞ indicate that part of the system moves
somewhere, while some other parts do not; large values of
GðrÞmean the opposite, implying that different parts of the
system move or do not move at the same time. In other
words, for large values of

R
drGðrÞ (also known as

dynamic heterogeneity [70]), the system either moves
everywhere or does not move almost anywhere. We
compute GðrÞ as follows: We consider two times, t and
tþ Tq, and at each time, we define the field ϕðx⃗; tÞ ¼
ρAðx⃗; tÞ − ρBðx⃗; tÞ − hρA − ρBix⃗, where h…ix⃗ stands for the
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space average and ρA, ρB are the densities of the continuous
and dispersed phases. Then, we define the overlap
qðx; y; t; tþ TqÞ as

qðx⃗; t; tþ TqÞ ¼
ϕðx⃗; tÞϕðx⃗; tþ TqÞ

½hϕðtÞ2ix⃗hϕðtþ TqÞ2ix⃗�1=2
: ð7Þ

Using Eq. (7), we define the overlap-overlap correlation
function, centered in the middle of the channel at y ¼ L=2:

GðrÞ¼hqðx;L=2;t;tþTqÞqðx;L=2þr;t;tþTqÞit;x; ð8Þ
where h…it;x stands for the time and x averages and Tq is
chosen to be of the order of the time needed to perform a
plastic rearrangement [41]. In Fig. 9, we show GcðrÞ (the
connected part of GðrÞ) for σp=σY ≃ 1.2; 1.4, and 1.6.
Clearly, at the transition point σp=σY ≃ 1.4, GcðrÞ is very
large everywhere in the system. It is crucial to remark that
the correlation length observed for σp=σY ≃ 1.4 differs from
the cooperative scale ξ of the system, the latter being equal
to few droplets diameters [41]. When the system is in the
fluidized branch for σp=σY ≃ 1.6, the functionGcðrÞ decays
to zero with a correlation scale of the order of ξ [7,8]. These
features in our model have already been observed in
conditions of imposed shear in Ref. [41]. Here, they are
confirmed in a setup with imposed heterogeneous stress.
Moreover, stress-controlled experiments (like the one we
propose) somehow offer valid alternatives to the shear-
controlled ones [28,37] in order to investigate the presence
of multiple rheological branches. Indeed, if the system
shows long-range correlations [27] among plastic events, it
may well be that in a shear-controlled experiment, the shear
bands (if they form) are strongly fluctuating both in time
and space. Eventually, these fluctuations would simply
disappear in the average flow profile, and one should rather

observe a complex dynamics in time of the shear stress
characterized by a strong intermittency of the time deriva-
tive of the stress, a phenomenology well reminiscent of the
stick-slip behavior [28,29,71]. In favor of this argument, we
can mention the study by Varnik et al. on a model glass
[28], where the authors find that long-lived shear bands are
replaced by the emergence of stick-slip phenomena with
intermittent bursts; this happens at very low shear rates, i.e.,
at the point of discontinuity between the solid branch at
S ¼ 0 and the fluid branch. We also mention the study by
Pignon et al. [71] and by Picard et al. [29], where the two
regimes of stick slip and shear bands are observed for
different apparent shear rates; however, one can see that the
stick slip observed here is rather an oscillatory flow with
undetectable intermittency. In the specific case of the
theoretical model by Picard et al. [29], this may be related
to the minimalistic nature of the model; i.e., no noise is
added [18].
In order to stress the combined role of multiple rheo-

logical branches and space correlations, it is worthwhile to
further connect our observations with some other results
presented in the literature [53,73]. A recent work by
Chaudhuri et al. [53] studied the interplay between the
system size and the cooperative length in the flow arrest.
Specifically, the model is that of soft-jammed repulsive
disks (the “Durian” model [74]) in a periodic flow setup
with heterogeneous stress, very similar to our stress
profile. Upon decreasing the driving force, the authors
determined the yielding threshold at which the flow ceases:
Interestingly, under the conditions of periodic flow [53],
when the cooperative length becomes of the order of the
system size, the authors find that the yielding threshold is
increased with respect to the yield stress σY , somehow in
line with our findings (see Fig. 2). However, although an
increased intermittency is reported at the onset of flow, the
authors in Ref. [53] do not report any signature of
metastable states like the one we observe, whereas simu-
lation results are well predicted by the stationary fluidity
model [27]. This contrasts with our observations. The
interplay between system size and cooperative scale was
also highlighted in another work by Chaudhuri and
Horbach [73], who studied the transition to the flowing
regime in a pressure-driven flow for a Yukawa binary fluid
[75,76]. When the cooperative length is of the order of the
system size, it is shown that (in the long time limit) the
system fluidizes nearly homogeneously. This behavior
bears similarities with the transition from the solid-to-
fluidized branch that we observe (see Fig. 3), with an
important difference: The study by Chaudhuri and Horbach
[73] does not report the existence of metastable states; i.e.,
once the fluidized state is reached, it is shown to persist for
the whole simulation time. However, the time spent by the
system in the solid phase is remarkably long, much longer
than the time that would be observed for an unstable state.
In other words, one may argue that in Ref. [73] two

FIG. 9. Overlap-overlap connected correlation function [See
Eq. (8) and text for details] for different values of peak stress σp. It
is possible to notice that the correlation function takes on the
highest values on the entire domain for the ratio σp=σY ≃ 1.4
corresponding to the bimodal behavior (see Fig. 6). The integral
of GðrÞ is usually known as dynamic heterogeneity [72].
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metastable branches coexist, although the possibility of
transition between the branches has not been investigated in
detail. According to the results shown in the previous
section and to the overlap-overlap correlation function
shown in Fig. 9, we identify two conditions that should
be satisfied for a clear signature of metastable states: There
must exist a difference between the static and the dynamic
yield-stress values (i.e., there must exist two rheological
branches), and there must be long-range correlations
among plastic events. In Refs. [53,73], it is unknown
whether one or both requirements are not met. We may
argue that the model used by the authors in Ref. [53] is
rather a model for a nonadhesive emulsion [77], and the
difference between the static and dynamic yield stress is so
small [37] that metastability between two different rheo-
logical branches cannot be observed. The Durian [74]
model has also been used recently by Kawasaki and
Berthier [52] to study the yielding transition under oscil-
latory flow. By analyzing the displacement fields of the
particles, the authors report a rather discontinuous transition
at the yield stress: While above the yield stress the fluctua-
tions in the displacement fields are persistent in time
(fluidized state), below the yield stress they are metastable
and cease after some time. The possibility of transitions back
to the fluidized state has not been studied in detail when
changing the stress protocol and/or for longer simulation
times, but again we argue that they would not be observed
because of the model used [53]. All these considerations
suggest that studies regarding the presence of shear bands
and stick slip should be consistently accompanied by the
measurement of the correlation functions. Correlations of
the microscopic strain field were actually measured by
Chikkaddi et al. [23] in colloidal glasses, showing the
formation of shear bands; however, such results were only
obtained for the two bands separately.
Further analysis in our numerical simulations is also

stimulated by a direct comparison of the phenomenology
that we observe to that of glassy models [28,34,35] and, in
particular, finite-size p-spin models [34]. The nontrivial
and interesting point is the observation that the system
spontaneously develops two stable branches in its phase-
space dynamics, similarly to the two rheological branches
needed to describe the formation of shear bands. Such
systems are also known to display a dynamic transition at
some temperature Td. For T < Td, the system is trapped in
a large number of states, which grows as the exponential of
its size. Upon applying an external force, the system shows
a dynamic transition similar to a yield-stress transition. For
a finite number of spins, the system exhibits bursts of
activity, i.e., the activated process, which show self-sim-
ilarity in size and time [34,78]. The probability distribution
of the trapping time τ, namely, the time between two
successive bursts, shows a scaling behavior PðτÞ ∼ τ−a,
with a ¼ 1þ T=Td. This behavior is qualitatively similar
to the one described by SGR theories [19–21] based on the

trap model [79]. Going back to our results, for the case
where P( logðΔsÞ) is bimodal (σp=σY ≃ 1.4), we can define
the trapping time τ spent by the system in the solid branch:
We use the value of logðΔsÞ at the local minimum (see
Fig. 6) as a threshold to condition the data. We expect τ to
be a random variable, and we look at the probability
distribution PðτÞ shown in Fig. 10. The probability dis-
tribution PðτÞ behaves as a scaling function of τ, i.e.,
PðτÞ ∼ τ−α, with α ∼ 1 showing the existence of nontrivial
time correlations. In the bottom panel of Fig. 10, we show
the running average SRðtÞ of the shear SðtÞ ¼ 2πusðtÞ=L
[see Eq. (3) and below], normalized to its maximum SM

R for
the bimodal forcing σp=σY ≃ 1.4. The running average
SRðtÞ is computed when the system is in the flowing
phase, i.e., when usðtÞ belongs to the larger peak shown in
the middle panel of Fig. 8; thus, the value of log jûsj in
correspondence of the probability minimum is used as a
cutoff. From the bottom panel of Fig. 10, it is possible to
see that the time evolution of SRðtÞ is consistent with a
logarithmic decay. Indeed, this is a further characterization
of our results, which can be verified in nonhomogeneous
stress experiments such as the one that we outline in the
following section.

FIG. 10. Top panel: Probability distribution for the trapping
time τ (in simulation time steps), i.e., the time spent in the solid
state, at σp=σY ≃ 1.4. The distribution can be well fit by a power
law PðτÞ ∼ τ−α, with α ∼ 1 indicating a self-similar structure in
the intermittent transitions from the solid to the fluidized state.
Such self-similar distribution has also been measured in spin
glasses [34]. In the lower panel, we show the running average
SRðtÞ of the shear SðtÞ ¼ 2πusðtÞ=L, normalized to its maximum
SM
R (see text for details). The behavior of SRðtÞ is consistent with a

logarithmic decay.
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VI. PRESSURE-DRIVEN FLOWS

The results discussed in the previous sections refer to
fully periodic boundary conditions. In this section, we
comment on the possibility to obtain the same results in the
case of realistic boundary conditions. In particular, we
consider the case of a pressure-driven flow in a two-
dimensional channel and streamwise periodic boundary
conditions. Since the system is driven with a constant force
(pressure gradient) in the streamwise direction, the stress is
a linear function of the coordinate y (see Fig. 1), and its
absolute value reaches the maximum σp at the boundaries.
The system shows a rather clear apparent slip [49,57,80] at
the smooth boundaries, and this goes together with a
nonzero mean flow; hence, the analysis in terms of Δs is
no longer suitable. Furthermore, because of strong locali-
zation of plastic events at the boundary, there is less energy
available to switch from one rheological branch to the other
for the whole system. This implies that the characteristic
“trapping” time becomes much longer with respect to the
one observed in periodic boundary conditions. To perform
long-time numerical simulations, we choose a square
system with L ¼ 512 lattice points. In Fig. 11, we show
the most interesting information obtained from our simu-
lations. We choose σp=σY ≃ 1.4, and we run simulations
imposing a pressure gradient on a configuration picked
from a lower forcing steady state (i.e., ramp-up protocol).
The interesting variable to look at is the velocity flux uðtÞ
defined as the space average at time t of the streamwise
velocity. In the upper panel of Fig. 11, we show uðtÞ
(thick red line) for about 9 × 103 shear times. The system
shows a nonzero average velocity (due to the slip at the
boundaries) with superimposed bursts of larger values,
similar to a stick-slip behavior. The probability distribution
of u is shown in the middle panel, while the average velocity
profile is shown in the bottom panel. Next, we increase σp so
that the system reaches a fluidized state (not shown). Once
the statistical properties in the fluidized state can be
considered stationary, we reduce the pressure gradient
(i.e., “ramp-down” protocol) and perform a new numerical
simulation at the same value of the peak stress σp ≃ 1.4
already discussed. For this new simulation, the results are
reported with the thin blue line in Fig. 11. It is quite clear that
the system shows transitions in the rheological behavior,
characterized by small and large values of u (see the
probability distribution). The qualitative picture is similar
to the one discussed in the previous section, although the
timescale is much longer.
The results shown in Fig. 11 can be considered a

preliminary investigation for systems with realistic boun-
dary conditions. The point we want to highlight here is that
the existence of two metastable states, discussed in the
previous section, can be observed numerically and (most
importantly) experimentally with long-time statistics (order
104 shear times of the system) and with a fine scanning of

the forcing parameters. Moreover, further analysis is
required to investigate hysteresis effects.

VII. CONCLUDING REMARKS

Based on numerical simulations of a soft-glassy model,
we have studied its rheological response with an imposed
space-dependent stress in an ideal fully periodic setup. The
rheological properties of the model under study show the
existence of multiple rheological branches with a difference

FIG. 11. Results for the flow driven by a constant pressure
gradient producing a peak stress σp=σY ≃ 1.4. Different line
thicknesses (indicated also with different colors) correspond to
different system preparations: Data reported using the thick red
line refer to a system previously driven from a lower forcing (i.e.,
ramp-up protocol), whereas data represented by a blue thin line
refer to a system previously driven at a larger forcing (i.e., ramp-
down protocol). Top panel: Velocity flux uðtÞ as a function of
time normalized by the shear time τshear. The thick red line
displays some intermittent spikes, while the blue one shows a
sequence of transitions. Middle panel: Probability distributions
for the velocity flux u displaying a single peak for the thick red
line and a bimodal character for the thin blue line. Bottom panel:
Velocity profile for uxðyÞ averaged over time and along the
streamwise direction x. The thick red curve indicates a plug-flow
dynamics dominated by an elastic bulk, while the thin blue one
shows a developed velocity gradient near the boundaries.
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between static and dynamic yield stress. The peak value σp

of the imposed stress is set close to the static yield stress of
the material. We observe that the time dynamics of the
system is remarkably nonsteady, as it tunnels intermittently
between two different states, a “solid” state and a “fluidized”
one. Numerical simulations [38–43] allow us to bridge the
rheological response at large scales to the behavior displayed
deeper down at small scales, where we observe a bimodal
probability distribution of the largest value of the displace-
ment field describing recurrent transitions in time between
two unimodal states in space. Our results highlight the role
of plastic rearrangements as the mechanical trigger for the
hopping between the two states, as well as the role of long-
range correlations for the hopping to occur. Preliminary
investigations have shown that such a scenario holds for the
more realistic case of a flow driven by a constant pressure
gradient. Hence, such nonsteady yielding dynamics with
recurrent transitions can be put to the test by laboratory
experiments.
From a general perspective, we point out that the

existence of multiple rheological branches has often been
introduced to explain the formation of permanent shear
bands in soft glasses [28,34]. From this point of view, the
formation of shear bands can be considered as a “phase
separation” in space, allowing the space coexistence of solid
and fluidized regions [27].Our observations somehow take a
broader perspective and generalize the idea of coexistence in
the time domain. For this coexistence in time, both long-
range space correlations and the stress protocol are crucial.
We indeed argue that a spatial correlation length of the order
of the system size is crucial to trigger transitions between
states and establish the time coexistence. Moreover, we
argue that the choice of heterogeneous stress enhances the
probability to perform transitions between the two branches
because this choice reduces the region (in physical space)
where the system may switch from a flowing regime to a
solid or elastic state (and vice versa).
Given the role of space correlations in our system, it is

then natural to comment on their expected role in a
“classical” shear-banding scenario, i.e., when hetero-
geneous flow is observed in the presence of shear-
controlled experiments with homogeneous stress [5]. We
indeed argue that the “phase coexistence” in space can be
observed only if short-ranged correlations are present,
whereas in the presence of long-ranged correlations, one
would instead expect a stick-slip behavior. It is noteworthy
to mention that preliminary simulations of our system
under the conditions of imposed shear flow do not show
permanent shear bands [67]. The above discussion may
suggest that some complex dynamic and rheological
properties observed in some soft glasses, namely, stick-
slip behavior [10,29,71,81] and formation of permanent
shear bands [13,15], can somehow be unified within the
same theoretical framework, depending on the range of
space correlations. Given this view, it could be interesting

to revisit our recent proposal [18], where cooperativity
effects have been linked to the formation of permanent
shear bands. One could add to the model a tunable
correlation between plastic rearrangements and explore
the consequences on the formation of the bands.
We remark that our findings share many features with the

analysis performed on p-spin glasses near the dynamic
transition at the temperature T ¼ Td. The analysis per-
formed in Ref. [34] shows that for T < Td, the system
develops two stable rheological branches. Moreover, the
trapping time in the solid branch shows a power-law
distribution, which is also observed in our system.
Finally, the theoretical analysis in Ref. [72] shows that,
near the critical temperature, the system displays bimodal-
ity in the order parameter and long-range correlations in
space (i.e., diverging dynamic heterogeneity) because of
the spinodal character of the transition. All the above
features are observed in our simulations.
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