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Isolated quantummany-body systemswith integrable dynamics generically do not thermalizewhen taken
far from equilibrium. As one perturbs such systems away from the integrable point, thermalization sets in,
but the nature of the crossover from integrable to thermalizing behavior is an unresolved and actively
discussed question. We explore this question by studying the dynamics of the momentum distribution
function in a dipolar quantum Newton’s cradle consisting of highly magnetic dysprosium atoms. This is
accomplished by creating the first one-dimensional Bose gas with strong magnetic dipole-dipole
interactions. These interactions provide tunability of both the strength of the integrability-breaking
perturbation and the nature of the near-integrable dynamics. We provide the first experimental evidence
that thermalization close to a strongly interacting integrable point occurs in two steps: prethermalization
followed by near-exponential thermalization. Exact numerical calculations on a two-rung lattice model yield
a similar two-timescale process, suggesting that this is generic in strongly interacting near-integrablemodels.
Moreover, themeasured thermalization rate is consistent with a parameter-free theoretical estimate, based on
identifying the types of collisions that dominate thermalization. By providing tunability between regimes of
integrable and nonintegrable dynamics, our work sheds light on the mechanisms by which isolated quantum
many-body systems thermalize and on the temporal structure of the onset of thermalization.

DOI: 10.1103/PhysRevX.8.021030 Subject Areas: Atomic and Molecular Physics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

In classical physics, chaos and the approach to thermal
equilibrium are intimately related: The irregular space-
filling trajectories of a chaotic system sample all of phase
space. An integrable system, on the other hand, executes
simple closed orbits. Systems that are nearly but not strictly
integrable (such as the famous Fermi-Pasta-Ulam chain [1])
have a rich multiple-timescale dynamics and equilibrate
extremely slowly. Classical thermalization near integrabil-
ity is understood in terms of Kolmogorov-Arnold-Moser
(KAM) theory [2] and related concepts. Classical chaos
and KAM theory are based on the notion of phase-space
trajectories, whereas quantum chaotic dynamics and

thermalization are understood in terms of a different
conceptual framework, involving random matrix theory
and the eigenstate thermalization hypothesis [3–8]. Within
this framework, there is no general theory of thermalization
in near-integrable systems, though it has been widely
discussed [9–26]. Moreover, numerical exploration of such
questions is challenging because the achievable system
sizes are quite small if one wishes to simulate to arbitrarily
long times [11,12].
Experimental studies are far less limited by finite-size

concerns. In a pioneering experiment [27], oppositely
moving bunches of ultracold bosonic atoms were confined
to an array of one-dimensional (1D) tubes; atoms in this
quantum Newton’s cradle collided repeatedly, yet did not
thermalize as atoms in a 3D trap would. Rather than
exhibiting thermalization or revivals [1], a nonthermal
momentum distribution persisted to long times. Such
long-lived, nonthermal states are often termed prethermal
states and are naturally present in nearly integrable systems;
they have been experimentally observed in weakly interact-
ing, quasi-1D quantum gases [28–30]. The question of how
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such prethermal states eventually thermalize, once integra-
bility is broken in the presence of strong interactions,
remains unexplored. In particular, there is no theoretical
consensus even on the basic question of whether relaxation
involves two distinct timescales or three [13,14,17–19].
Motivated by these findings, we explore the onset of

thermalization in a nearly integrable, strongly interacting
system—an array of dipolar quantum Newton’s cradles
consisting of dysprosium atoms—subject to an integrabil-
ity-breaking perturbation of tunable strength, namely, the
magnetic dipole-dipole interaction (DDI); see Fig. 1(a)
[31]. The tunability of our system enables us to system-
atically map out how the dynamics of observables changes
as the system moves away from integrability; this has never
before been done experimentally. We focus on an observ-
able, the momentum distribution of the interacting dyspro-
sium atoms, that exhibits nontrivial dynamics even in the
integrable limit (because of the presence of contact inter-
actions and confining potentials). We find that the dynam-
ics of the momentum distribution exhibits two temporal
regimes: rapid dephasing followed by a nearly exponential
approach to the thermal distribution. This is similar to
numerical results obtained in weakly interacting systems
near a noninteracting limit [19,24], even though our
integrable limit is strongly interacting. We corroborate
the generality of these findings using exact diagonalization
calculations of a two-rung hard-core boson model with
inter-rung nearest neighbor interactions.
Furthermore, the thermalization rate extracted experi-

mentally can be quantitatively captured by a simple physical

picture: The thermalizationmechanism involves an effective
three-body collision, consisting of an intratube s-wave
scattering event (the strength of which controls the param-
eters of the integrable model) together with an intertube
dipolar scattering event (which serves as the dominant
integrability-breaking perturbation). Both couplings are
sensitive to the DDI. Based on our experimental observa-
tions, we argue that the thermalization rate depends not only
on the strength of the integrability-breaking perturbation,
but on the parameters of the integrable model itself.

II. DIPOLAR QUANTUM NEWTON’S CRADLE

The dipolar quantum Newton’s cradle consists of ultra-
cold bosonic dysprosium atoms, which have a magnetic
DDI about 100× stronger than, e.g., Rb’s. The Bose-
Einstein-condensed (BEC) atoms are tightly confined in
1D potentials created by a 2D optical lattice. The atoms are
kicked into motion using an optical phase grating, and two
packets of atoms in opposite momentum states collide twice
each period of motion along the weakly confined direction
of the 1D tubes. The integrability-breaking interaction
strength mediated by the DDI is tuned by changing the
angle θ that the dipoles of the atoms (set by the magnetic
field orientation) make with respect to the 1D tube axis; see
Fig. 1(b). We now describe the experimental details.

A. BEC production

We follow the procedure in Ref. [32] to produce a BEC of
1.5ð2Þ × 104 162Dy atoms in the Zeeman sublevel mJ ¼ −8

(a) (c)(b)

FIG. 1. Dipolar Newton’s cradle setup. (a) Two of the 1D tubes of atoms in a dipolar quantum Newton’s cradle. Application of an
optical phase grating (not shown) kicks atoms along the tubes, and the weak harmonic confinement induces periodic collisions. The
highly magnetic dysprosium atoms (silver spheres) are trapped in a 2D optical lattice (red) defining the tubes. (b) DDI strength between
the central atom and atoms in neighboring tubes in one quadrant of the square lattice when θ ¼ 90°, where θ is the angle between the
B-field in the xz-plane and the axis of the 1D tubes along x̂. The patterns of strengths in the other three quadrants are the same by
symmetry. The DDI strength is tunable via changing θ. Numbers labeled on the atoms and the tubes are the pairwise DDI strength and
integrated DDI along the tubes, respectively, in Hz. Blue indicates large positive strength, and red large negative strength.
(c) Dependence of integrability-breaking dipolar interaction strength and γ on θ. Solid curves: Integrability-breaking contributions
of the DDI energy UDDI (added in quadrature and defined in Appendices A–C) versus θ. Shown are the total, total intertube, and total
integrability-breaking intratube DDI energies. While the intratube DDI is maximally repulsive (attractive) for θ ¼ 90° (0°), it vanishes
among intratube atoms for θ ¼ 55°. Integrability-breaking DDI contributions come not just from the intratube 1D DDI along x̂, but also
from the 3D DDI between atoms in all neighboring tubes along ŷ and ẑ. This dilutes the tunablility of the DDI, reducing the contrast to a
factor of approximately 1.5 between θ ¼ 0° and 90°. Dashed curve: Lieb-Liniger parameter γðθÞ; see Appendix D for calculation.
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(J ¼ 8), the absolute ground state, by evaporatively cooling
in a 3D trap formed by a pair of 1064-nm optical dipole
trap (ODT) laser beams crossing in ŷ and ẑ. The ŷ-ODTbeam
is elliptical, with a horizontal waist of 65 μm and a vertical
waist of 35 μm. The ẑ-ODT beam has a circular waist of
75 μm. The final trap frequency before turning on the 2D
optical lattice is ½ωx;ωy;ωz� ¼ 2π× ½57ð1Þ;16ð2Þ;92ð2Þ�Hz.

B. 2D optical lattice

We adiabatically load the BEC into the 2D lattice by
simultaneously turning on the two lattice beams using a
150-ms exponential ramp. The atoms are confined to
approximately 700 parallel 1D tubes, with about 50 atoms
in each tube. The 2D lattices are formed by retroreflecting a
pair of beams in the ŷ and ẑ directions. Both beams are red-
detuned from the Dy narrow-line λ ¼ 741-nm transition
[33] by 13.7 GHz. The waist radii of the ẑ-lattice beam and
the ŷ-lattice beam at the BEC position are 195 μm and
150 μm, respectively. Both beams are linearly polarized,
and the polarization direction is chosen to be perpendicular
to the applied magnetic field (confined to the xz-plane)
such that the total ac Stark shift is maximal, including the
tensor shift [34]. The ẑ-lattice beam is polarized along ŷ,
such that the total light shift is constant for any θ. The
polarization of the ŷ-lattice beam lies in the xz-plane and is
set by a half wave plate to be perpendicular to the field
direction for each θ setting. The lattice depth is calibrated
using the Kapitza-Dirac diffraction method [35]. We
experimentally verified that the depth of the ẑ lattice is
independent of θ. For the ŷ lattice, we experimentally find
the optimumwave plate angle and calibrate the lattice depth
for each θ setting.
We used a lattice depth of V0 ¼ 18.0ð3ÞER, leading

to a transverse trap frequency ω⊥ ¼ kR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=m

p ¼
2π × 19.0ð2Þ kHz [36], where kR ¼ 2π=λ is the recoil
momentum and ER¼ðℏkRÞ2=2m. To achieve V0¼18ER,
the power of the ẑ-lattice beam is set to 250 mWand that of
the ŷ-lattice beam is tuned between 130 and 170 mWas θ is
changed. This power tuning is required to compensate for
both the θ-dependent change in the tensor part of the atomic
light shift and the loss of power through polarization-
dependent optics as the laser’s polarization is rotated to
follow θ. The Gaussian intensity profile of the lattice
beams, though broader than the ODTs, increases ωx to
2π×60ð1ÞHz at ω⊥ ¼ 2π × 19.0ð2Þ kHz. The atoms oscil-
late within each tube with a frequency 1=T ¼ 60ð1Þ Hz.

C. Kicking the cradle in motion

After loading into the 2D lattice, we split the gas into two
equal but opposite j�2ℏkDi momentum states by applying
a precisely timed double-pulse 1D optical phase grating
along the tube direction [27,37,38]; kD¼

ffiffiffi
2

p
π=λ. The

phase grating beams are also red-tuned 13.7 GHz from the
741-nm transition. The twobeams are linearly polarized along

ẑ and are oriented along the ðx̂þŷÞ= ffiffiffi
2

p
and ð−x̂þŷÞ= ffiffiffi

2
p

directions. Large momentum collisions can occur every
T=2 ¼ 8.3ð1Þ ms; the maximum collision energy between
a pair of atoms is up toEc¼ 2ð2ℏkDÞ2=ð2mÞ¼ h×9.0 kHz.
This energy is three times lower than that required for
transverse motional excitations due to the large transverse
trap frequency ω⊥=2π ¼ 19 kHz [39]. Atomic motion is
therefore restricted to 1D [40,41].
We experimentally observe that kicking the gas at

different θ leads to different populations of undiffracted
atoms. These atoms are manifest in the momentum dis-
tribution as a small central peak in the dephased momentum
distribution. This central peak, though small, has a shape
and height that varies with θ and therefore biases the
distance-to-thermalization (DT) metric of the dephased
distribution. (DT is defined in Sec. II F below.) Among
the reasons for this effect may be the dependence on the
shape of the initial momentum distribution on θ due to a
dependence of the diffraction efficiency on DDI strength.
To mitigate this systematic bias, after kicking the gas, we
allow the distribution to evolve with θ fixed to 35° for 5
periods of oscillation before we rotate the field to the
desired θ setting. This rotation takes 20 ms using a linear
ramp. The ramp time is much shorter than the thermal-
ization timescale of interest. Appendix H shows data
demonstrating that this procedure results in a dephased
momentum distribution that exhibits no systematic varia-
tion in DT versus the target θ setting. Moreover, data are
shown that demonstrate that the time chosen for the rotation
also does not affect the subsequent thermalization rate.

D. Thermalization tunability

To control thermalization, we break integrability through
collisions mediated by the angle-tuned DDI. The effect of
the DDI can be understood perturbatively as follows. In 1D,
two-particle collisions only swap momenta between par-
ticles, leaving the overall momentum distribution invariant.
In integrable systems, three-particle collisions (and colli-
sions with more than three particles) also have the same
property: They are “nondiffractive.” The non-zero-range
DDI breaks integrability by inducing diffractive three-
particle collisions, which simultaneously change three
momenta; the three particles involved need not reside in
the same tube. For example, two particles in the same tube
can collide via short-range interactions while interacting
with a third particle in a nearby tube via the long-range
DDI. This should lead to thermalization of the momentum
distribution [41].
The DDI’s anisotropic nature, proportional to

1–3cos2ðθÞ, provides control of the DDI strength through
tuning of θ; see Figs. 1(b) and 1(c) and Appendixes A–C.
Several experimental imperfections can also break integra-
bility, though none in the strongly θ-dependent fashion we
observe. Chief among these are heating and atom loss from
spontaneous emission due to absorption of the optical
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trap confinement light [42]. Neither of these effects
dominates thermalization at the employed trap depth; see
Appendixes E and F. Tunneling between the tubes also
breaks integrability. However, we estimate that its contri-
bution to the observed thermalization is negligible;
see Appendix I. Lastly, virtual excitation of transverse
motion can mediate diffractive three-body interactions,
and the longitudinal confinement can break integrability.
Both contributions are expected to be small for our
system [43–46].
We note that dipolar effects were far weaker in the

Rb-based experiment of Ref. [27]. Dy has a dipole
moment μ that is 10 times larger than Rb’s. Since the
thermalization rate is proportional to the dipolar inter-
action squared (as we demonstrate in Sec. III B) and,
therefore, to μ4, the contribution to the thermalization rate
due to dipolar interactions was approximately 104 slower
in the Rb experiment.

E. Oscillation evolution and observation
of momentum distribution

After we allow the state to dephase following the initial
kick, we rotate the field to the target angle θ and hold
constant the power of the lattice beams and the optical
dipole trap beams for a duration of varying integer

multiples of oscillation half-periods, T=2. To measure
the evolved momentum distribution along x̂, we first deload
the lattice using a 500-μs exponential ramp and then
suddenly turn off (in <10 μs) the ODT beams. The lattice
deloading time is slow compared to the band-excitation
timescale (approximately 50 μs), but fast compared to the
thermalization timescale in the 3D trap [approximately
100 ms; see 3D thermalization data in Fig. 2(a)]. Therefore,
this deloading procedure constitutes a band-mapping oper-
ation [47] that adiabatically transfers the quasimomentum
distributions in the lattice confinement directions (ŷ and ẑ)
into real momentum distributions, but it does not affect the
momentum distribution along the tube direction x̂, the
direction of interest.
We image the gas along ŷ after 14 ms of time of flight

using absorption imaging at the 421-nm transition. The
images are the sum of the contributions from all tubes. We
integrate the 2D distribution along ẑ to obtained a 1D
distribution pðxÞ because the momentum distribution of
interest is along x̂ and the band-mapping procedure produces
an approximately flat distribution along ẑ within the first
Brillouin zone.
We observe no atomic population outside the lowest,

ground-state band in ẑ, verifying that the 2D lattice confine-
ment realizes an effective 1D environment for the atoms.
We cannot directly observe the expanded atomic distribution

35  3D

35

0 55 90

T
T

T

T T
ms

ms

ms

ms ms

log(DT)=1.78

log(DT)=0.97

(a)

(b)

(c) (d) (e)

FIG. 2. Evolution of postkick momentum distributions at multiples of T. (a) 3D gas at θ ¼ 35°. (b) Regime I, fast dephasing of the 1D
gas at θ ¼ 35°. While the momentum distribution of the 3D gas thermalizes after about 5T, the 1D gases exhibit nonthermal (i.e.,
non-Gaussian) distributions far longer. The remaining panels show 1D gases in regime II for θ’s of (c) 0°; (d) 55°; and (e) 90°. We diffract
and evolve with θ ¼ 35° until rotation at 5T to the target θ. As can be seen in panels (c)–(e), this procedure produces nearly identical
momentum distributions after field rotation regardless of θ. The color scale is proportional to the distance to thermalization. The best-fit
Gaussian curve and the corresponding log(DT) value are shown for the 90° data at the earliest and latest times.
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along ŷ, the imaging direction, but we expect that atoms also
remain in the ground band due to the identical depth and
deloading procedure used for both lattices. We also note that
a time-of-flight expansion without transverse 1D confine-
ment also eliminates complications arising from interaction
effects during expansion. For measuring thermalization in a
3D trap as in Fig. 2(a), we diffract the BEC without loading
into the lattice and allow thegas to evolve in the crossedODT.
The oscillation period in the x̂-direction is 14.8(1) ms in
this trap. The 3D gas thermalizes within seven oscillation
periods.

F. Distance-to-thermalization metric

Figure 2 shows the momentum distribution evolution of
a kicked gas in a 3D dipole trap as well as the evolution for
1D gases at different θ’s. We quantify the DTof a measured
momentum distribution pðxÞ by fitting pðxÞ to a Gaussian
distribution fðxÞ ¼ ae−x

2=ð2σ2Þ þmxþ b, where the last
two terms accounts for the background gradient and offset
of the image, respectively. We then compute the quadrature
sum of the fit residuals, DTðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i½pðxiÞ − p̂ðxiÞ�2

p
,

where p̂ðxiÞ is the fitted distribution, i is the pixel index,
and t is the holding time. See Appendix F for a discussion
of the spontaneous emission heating analysis and
Appendix G for comments regarding other DT metrics.
The detection noise causes DTðtÞ to decrease to a finite

positive value rather than zero when pðxÞ becomes thermal:
At long holding times DTðtÞ reaches a constant, as evident
in Figs. 3 and 11. We use the mean and standard deviation
of all the DTðtÞ values in the constant region across all
measurements as the mean and uncertainty of the noise
floor, respectively. The natural log of the DT is plotted in
Fig. 3 for these θ’s.

G. Interaction regime of Lieb-Liniger model

Prekick, the gas is just below the strongly correlated,
Tonks-Girardeau (TG) regime of the Lieb-Liniger model
wherein the bosons fermionize [48]. This regime arises
when γðθÞ ¼ mgtotal1D ðθÞ=ðn1Dℏ2Þ, which contains the ratio
of the short-range (contact) interaction strength [∝ gtotal1D ðθÞ]
to kinetic energy, grows larger than unity [48–53]. The
initial γðθÞ varies between 0.6 and 1.9, where n1D is the 1D
atomic density. The unusual angle dependence of γ arises
due to the short-range, delta-function aspect of the intratube
DDI; see Appendixes A and D.
The postkick dephasing of oscillations (which constitute

regime I of evolution discussed below) reduces the initial
density, allowing the gas to achieve a larger γðθÞ ¼ 2.2–7.4,
placing the system in the crossover to the TG; see Fig. 1(c)
for a plot of γðθÞ and Appendix D for more details.
However, the postkick kinetic energy scale is also much
larger, and whether fermionization transiently persists
during the far-from-equilibrium, postkick evolution is
a priori unclear [54]. Once thermalized, the gas is classical
in nature.
One can estimate postkick interaction effects as follows:

The characteristic length scale of the nonequilibrium state
is given by the wavelength of the standing-wave phase-
grating pulse as λ0 ¼ λ=

ffiffiffi
2

p
≈ 520 nm. A dimensionless

ratio of this scale to atotal1D ðθÞ ¼ 2ℏ2=½mgtotal1D ðθÞ�, defined as
γ0 ≡ 2λ0=atotal1D ðθÞ, generalizes the zero-temperature quan-
tity γ to this far-from-equilibrium situation. The logic is the
same as when defining γ, or generally when considering
whether a problem involves weak or strong correlations:
One considers the ratio of the interaction strength [55] to
kinetic energy. However, since the system is far from
equilibrium, the kinetic energy is no longer set by the
density, but is in general much larger. We find that γ0ðθÞ
ranges from 0.9 to 3.1.

III. THERMALIZATION OBSERVATIONS

We now describe the two regimes of thermalization
evolution in the experimental results. The evolution of the
kicked, bimodal distribution to a dephased, flattop distri-
bution at a time 7T is shown in Fig. 2(b) for the example of
θ ¼ 35°. Figure 3 shows the full evolution for this θ, where
the vertical dashed line at 10T demarcates the boundary
between regimes I and II. See Appendix H for more details.

A. Regime I evolution

The first regime, characterized by a fast decay in log
(DT), is governed by dephasing effects, which brings the
system to a prethermal state. Dephasing is dominated by
dynamics arising from the inhomogeneous trapping poten-
tial in the presence of interactions. There are two distinct
dephasing processes due to the trap: (1) dephasing of
oscillations between different harmonic tubes, owing to
their different natural frequencies and subsequent ensemble

FIG. 3. The full θ ¼ 35° evolution showing the boundary
between regime I and regime II. The solid blue line is fit to
the data between the beginning of regime II [logðDTÞ ≈ 1.5] and
the noise floor [logðDTÞ ¼ 1]. Vertical bars indicate standard
error. The light blue horizontal band is the standard uncertainty of
the noise floor. The inset contains regime II decay results for the
same angles as in Figs. 2(c)–2(e).
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averaging over tubes with different T during the imaging
process, and (2) dephasing of the oscillations of the gas in a
single tube, owing to its anharmonicity. Both processes
were discussed in Ref. [27]. These processes correspond to
different physics: Process (1) yields an approximately
stationary state as an artifact of averaging over tubes,
while process (2) causes dephasing in each individual tube.
We have quantified these trap-induced technical dephas-

ing processes by a collisionless classical simulation of the
particle dynamics in each anharmonic tube, averaged over
the inhomogeneous tubes; see Appendix J. This allows us
to use knowledge of trap parameters to predict the
dephasing timescale of processes (1) and (2). The simu-
lation shows that the momentum distribution completely
dephases in approximately 150 ms. It also shows that the
contribution from process (2) is as important as process (1).
We note that the simulated dephasing time is slightly

longer than that observed in the experiment; see Fig. 2(b).
The discrepancy is likely due to the lack of interactions in
the simulation, though it could also be the result of an
imperfect modeling of the trap arising from uncharacterized
distortions to the beam shapes and overlap of the beam
focus. Interactions are expected to rapidly broaden the
initial momentum peaks [56] and, hence, to speed up
dephasing. Indeed, our exact diagonalization simulations in
Fig. 6 show that a rapid decay due to interacting integrable
dynamics ensues after the quench, even in the absence of
technical dephasing. (Section IV and Appendix L describe
these simulations in more detail.) However, we remark that
in a strictly harmonic trap, integrable interactions alone are
not expected to yield a stationary distribution as we observe
in our anharmonic system: Processes (1) and (2) together
with interactions are important in the experiment.
To gain further understanding of the interplay between

technical dephasing and interaction effects in our system,
we performed an experimental study involving a single-
sided kick measurement. This measurement reveals the
effect of technical dephasing in the absence of high-energy
collisions, i.e., head-on collisions. See Appendix K for
experimental details and comments. We observe that the
dephasing time, where the initial fast decay of the DT
transitions to a much slower decay, is approximately 70 ms
and is similar to the dephasing time observed in our
double-sided data in Fig. 2(b). We conclude that dephasing
due to anharmonicity and inhomogeneity in the presence
of interactions, but in the absence of large-momentum
collisions, explains the regime I evolution.
We note that integrable dynamics immediately after a

quench are often referred to as prethermalization. During
prethermalization, observables not directly related to the
conserved quantities dephase; see, e.g., Refs. [25,28,57]. In
this experiment, the observable is the momentum distribu-
tion of the atoms, while what is conserved at integrability is
the distribution of the so-called rapidities. At zero density
in interacting systems, or in noninteracting systems, the

rapidities are the same as the momenta of the particles (in
systems that are translationally invariant). However, at
nonzero densities in interacting systems, the rapidities
are not easily related to the momenta of the atoms [58].
As a result, even though the distribution of rapidities does
not change, physical observables such as the momentum
distribution function of the atoms can change and do
change in this experiment.
Regime I is the prethermalization regime in our experi-

ment. The dephased state at the end of regime I can be
described using a generalized Gibbs ensemble [59] arising
from the combination of all three mechanisms. Physically,
mechanisms (1) and (2), and integrable interactions, give
rise to a dephased state through independent prethermal-
ization processes, and each dephased state may be
described by a generalized Gibbs ensemble. We therefore
refer to the final dephased state at the end of regime I as a
“prethermal state” regardless of its prior history. We now
turn to the thermalization of this prethermal state.

B. Regime II evolution and thermalization rate

To determine the thermalization rate for the regime II
slow-decay evolution data shown in Fig. 3, we fit the
regime II decay to

logDT¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlogDT0Þ2 þ ½ðt− tthÞ=τth�2
p

; t < tth
logDT0; t ≥ tth

; ð1Þ

which is asymptotically a single exponential decay char-
acterized by a rate 1=τth at short times and becomes a
constant noise value DT0 at long times. Here τth and tth are
free parameters, and DT0 is determined from the data.
The fitted rates versus θ are plotted in Fig. 4. The rates

are corrected for spontaneous-emission heating; see
Appendix F. Comparing to the total DDI and γðθÞ plotted
in Fig. 1(c), we see that the slowest (fastest) thermalization
rate occurs at small (large) θ, where both the DDI and γ are
smallest (largest), with a monotonic increase from low to
high θ. While there is no ab initio theory we can yet invoke
to explain either this trend or magnitude, we can provide a
simple estimate. We expect the thermalization rate to scale
as the square of both the contact and dipolar interactions, as
the largest integrability-breaking perturbation involves both
an s-wave collision and a two-body dipolar collision. The
matrix element giving rise to thermalization is linear in both
the s-wave collision rate and the DDI and, thus, by Fermi’s
golden rule, the rate is quadratic in both quantities. An
appropriate measure of contact interactions in the non-
equilibrium state is γ0, as argued in Sec. II G above. This
suggests that the rate should scale as γ02ðθÞU2

totalðθÞ=Ec,
where Ec ¼ 2Ek is the collision energy of two intratube
atoms and Ek ¼ ð2ℏkDÞ2=2m. This simple estimate, plotted
in Fig. 4, is in good quantitative agreement with the data.
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IV. EXACT DIAGONALIZATION CALCULATIONS

In what follows, we relate the observation of a two-
timescale evolution to the dynamics obtained in exact
diagonalization calculations of a two-rung lattice model
of hard-core bosons.

A. Setup

The lattice consists of two identical 1D chains, with each
chain described by a t-t0-V Hamiltonian with nearest
neighbor hopping t, next-nearest neighbor hopping t0,
and nearest neighbor interaction V. The two chains interact
along the rungs, with a strength set by Vr, to mimic the
intertube DDI in the experiment (see Fig. 5). The
Hamiltonian can be written as

Ĥ ¼
X2
l¼1

XL=2
i¼1

−tðb̂†l;ib̂l;iþ1 þ H:c:Þ − t0ðb̂†l;ib̂l;iþ2 þ H:c:Þ

þ
X2
l¼1

XL=2
i¼1

V

�
n̂l;i −

1

2

��
n̂l;iþ1 −

1

2

�

þ
XL=2
i¼1

Vr

�
n̂1;i −

1

2

��
n̂2;i −

1

2

�
; ð2Þ

where b̂†l;i (b̂l;i) is the creation (annihilation) operator

at site i in chain l (¼1, 2), and n̂l;i ¼ b̂†l;ib̂l;i is the site
occupationoperator.L denotes the total number of sites in the

lattice, which has L=2 sites per chain. Periodic boundary
conditions along the chains are imposed by the conditions
ðl;L=2þ1Þ¼ðl;1Þ and ðl;L=2þ2Þ¼ðl;2Þ.
The hard-core boson creation-annihilation operators obey

bosonic commutation relations ½b̂l;i; b̂l0;j� ¼ ½b̂†l;i; b̂†l0;j� ¼ 0,

½b̂l;i; b̂†l0;j� ¼ δl;l0δi;j, supplemented by the constraints

b̂2l;i ¼ b̂†l;i
2 ¼ 0 to prevent multiple occupancy of the lattice

sites. When t0 ¼ Vr ¼ 0, the Hamiltonian reduces to that of
two disconnected integrable chains (the spin-1=2 XXZ
Hamiltonian in the spin language) and can be solved using
the Bethe ansatz [60]. For V ¼ t0 ¼ Vr ¼ 0, the chains
become the lattice analogue of the Tonks-Girardeau gas,
and the Hamiltonian can be mapped onto that of non-
interacting spinless fermions [60]. Given t ≠ 0 and V ≠ 0,
the Hamiltonian is nonintegrable for t0 ≠ 0 and/or Vr ≠ 0.
We aremostly interested in dynamicswhenVr ≪ V (t0 ¼ 0),
so that integrability is weakly broken.
We take our initial states to be in thermal equilibrium, as

described by the grand canonical ensemble (GE), for the
initial Hamiltonian ĤI,

ρ̂I ¼
exp½−ðĤI − μIN̂Þ=TI�

Trfexp½−ðĤI − μIN̂Þ=TI�g
; ð3Þ

where N̂ ¼ P
l;in̂l;i is the total number of particle oper-

ators, TI is the initial temperature (we set the Boltzmann
constant to 1), and μI is the initial chemical potential. We
set μI ¼ 0 in all our calculations, which results in the
lattices being at half filling because of the particle-hole
symmetry of Hamiltonian (2).
The system is taken out of equilibrium by a sudden

quench in which ĤI is changed to ĤF, such that
½ĤF; ĤI� ≠ 0. The system is assumed to be isolated so
that the ensuing dynamics is unitary. The density matrix at
time τ after the quench is given by (we set ℏ ¼ 1)

ρ̂ðτÞ ¼ e−iĤFτρ̂IeiĤFτ

¼
X
n;n0

e−iðEn0−EnÞτjn0ihn0jρ̂Ijnihnj; ð4Þ

where jni and En are the energy eigenkets and eigenvalues
of ĤF, respectively.

FIG. 5. Two-rung lattice made of two identical chains with
nearest neighbor hopping (t), interaction (V), and next-nearest
neighbor hopping (t0). The two chains interact along the rungs (Vr).

FIG. 4. Thermalization rate data in red versus θ. See Eq. (1) for
the definition of the thermalization rate 1=τth. The gray curve is
the scaling estimate γ02ðθÞU2

totalðθÞ=ðEcÞ with no free parameters
or offset. Vertical bars and the light blue band indicate standard
error; atom number noise and a3D uncertainty dominate the latter.
Evidently, the thermalization rate in the dipolar quantum
Newton’s cradle is well described by terms dependent on both
the long-range and short-range parts of the DDI, the former
through total (intertube plus intratube) U2

totalðθÞ and the latter
through the intratube DDI dependence of aintra1D ðθÞ in γ02ðθÞ.
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Our observable of interest is, as in the experiments, the
momentum distribution (m̂k) along the chains (see also
Appendix L 1),

m̂k ¼
1

L

X2
l¼1

XL=2
j;j0¼1

eikðj−j0Þb̂†l;jb̂l;j0 : ð5Þ

The time dependence of m̂k is studied by computing
mkðτÞ ¼ Tr½m̂kρ̂ðτÞ�, while the expectation value of this
observable after relaxation can be obtained from the
infinite-time average [6],

m̄k ¼ lim
τ0→∞

1

τ0

Z
τ0

0

mkðτÞdτ: ð6Þ

In the absence of degeneracies, which is ensured in our
calculations by breaking down the Hamiltonian into its
symmetry irreducible sectors, the infinite-time average
agrees with the prediction of the so-called diagonal
ensemble (DE) [5]:

mkðDEÞ ¼
X
n

hnjρ̂DEjnihnjm̂kjni; ð7Þ

where

ρ̂DE ¼ lim
τ0→∞

1

τ0

Z
τ0

0

ρ̂ðτÞdτ: ð8Þ

A central question we address with the exact diagonaliza-
tion calculations is how the momentum distribution
equilibrates after the quench. For that, we compute a
“distance-to-equilibrium” as the RMS deviation of the
momentum distribution function at each time from the DE
prediction:

δDEðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k½mkðτÞ −mkðDEÞ�2
L=2

s
: ð9Þ

See Appendix L 2 for a discussion of thermalization.

B. Numerical results

We set t ¼ 1 (our energy scale) before and after the
quench (and set our unit of time to ℏ=t ¼ 1). As mentioned
before, our quenches start from an initial state in thermal
equilibrium. We take the temperature to be TI ¼ 5t0I
(qualitatively similar results were obtained for other tem-
peratures) for an initial Hamiltonian ĤI that has t0I ¼ 50

and VI
r ¼ 0. A large t0 in ĤI is chosen to create an initial

momentum distribution that peaks at k ¼ 0 and k ¼ π (see
Fig. 16). This is done to resemble the postkick bimodal
initial state created in the experiment. After the quench, t0 in
ĤF is set to 0 and Vr is set to various nonzero but small
values, so that the evolution occurs under a (in most cases)
weakly nonintegrable Hamiltonian. Exploiting translation

symmetry, particle-hole symmetry, number conservation
per chain in the two-rung system, as well as parity under
space reflection, we perform exact diagonalization calcu-
lations in systems with up to L ¼ 22 sites. The value of V is
kept constant during the quench and is selected to be
V ¼ 1.6.
Figure 6 shows the “distance-to-equilibrium” δDE plotted

as a function of time for four values of the strength of the
integrability-breaking inter-rung coupling Vr. Like in the
experiments, one can see that the exact diagonalization
results exhibit two-timescale dynamics. Prethermalization
occurs for times ≲ℏ=t, a timescale set by V ∼ t. The near-
exponential approach to the diagonal ensemble result
occurs in a longer timescale, which is set by Vr.
The experiment strives to use the same initial state to

study the approach to thermalization when the strength of
the DDI (set by θ) is changed. The initial state is taken to be
the one after the short-time dephasing for a particular value
of θ (θ is changed after that). We can emulate such a
procedure in our numerical calculations by “splitting” our
single quench, in which t0 is set to zero, and Vr is made
nonzero, into a two-step quench. In the first quench, t0 is set
to zero (this is a quench to the integrable part of ĤF), and
the system is allowed to equilibrate. One can then take the
equilibrated state as the initial state for a second quench in
which the integrability-breaking interaction Vr is turned on.
Alternatively, one can take the diagonal ensemble after the

FIG. 6. Numerical results for the approach to equilibrium [see
Eq. (9)] in the two-rung hard-core boson model calculations with
22 lattice sites and nearest neighbor coupling V ¼ 1.6. The
symbols show results for a quench in which the system is
initialized in a state with a two-peaked momentum distribution
(created through an initial Hamiltonian with strong next-nearest
neighbor coupling t0 ¼ 50), and the integrability-breaking inter-
action is turned on postquench. Dashed lines show results for
evolution under the same final Hamiltonian, but from an initial
state that has already dephased under the fast integrable dynam-
ics. Specifically, the initial state is a diagonal-ensemble state
generated by a quench in which t0 ¼ 50 → t0 ¼ 0 is changed but
dipolar interactions are absent. The fast dephasing at short times
in the simulation depends weakly on the strength of the
integrability-breaking perturbation.

YIJUN TANG et al. PHYS. REV. X 8, 021030 (2018)

021030-8



first quench as the initial state for the second quench. Both
procedures produce indistinguishable relaxation rates (see
Appendix L 3).
Using the diagonal ensemble after the first quench as the

initial state for the second quench allows us to separate out
the effects of the integrable and the nonintegrable parts of
the Hamiltonian. The ensuing dynamics, shown as dashed
lines in Fig. 6, are indistinguishable from those of the
original quench after the short-time dephasing, making
apparent that regime II is entirely due to the integrability-
breaking interactions.
The similarity between the results in Figs. 3 and 6 is

striking considering that the systems studied experimen-
tally and theoretically are microscopically very different.
By doing so, it highlights the robustness of our findings
about the relaxation dynamics close to a strongly interact-
ing integrable point [61].

V. CONCLUSIONS

In summary, we explored the far-from-equilibrium
dynamics of a strongly interacting, nearly integrable system
as it is systematically tuned away from integrability. We
provide the first experimental demonstration that observ-
ables in such systems thermalize in a two-step process:
prethermalization, followed by near-exponential thermal-
ization. A similar behavior is observed in exact numerical
calculations of a strongly interacting lattice model. We have
also shown that the thermalization rate in our experiments
is well described by a DDI-dependent scaling function that
is consistent with perturbative expectations: The scaling is
quadratic in the effective intratube contact interactions, and
also in the intratube and intertube dipolar interactions.
Our ability to control the strength of integrability-

breaking perturbations opens a new venue to explore
quantum thermalization in strongly interacting systems.
Many questions remain, such as how thermalization
depends on the “quantumness” of the system, which we
can also control by changing the amount of energy
deposited in the initial state. Our detailed characterization
of the approach to the thermal regime can also play an
important role in the development and benchmarking of
quantum Boltzmann approaches that could be used in other
areas of physics, such as heavy ion collisions.
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APPENDIX A: INTRATUBE DIPOLAR
INTERACTION

The dipole moment μ of Dy is 9.93μB. The effective 1D
dipole-dipole interaction (DDI) has been derived in the
single-mode approximation to be [62–64]

U1D
DDIðxÞ ¼ VðθÞ

�
V1D
DDIðuÞ −

8

3
δðuÞ

�
; ðA1Þ

where

VðθÞ ¼ μ0μ
2

4π

1 − 3 cos2 θ
4l3⊥

; ðA2Þ

V1D
DDIðuÞ ¼ −2juj þ

ffiffiffiffiffiffi
2π

p
ð1þ u2Þeu2=2erfcðjuj=

ffiffiffi
2

p
Þ; ðA3Þ

and u ¼ x=l⊥, l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
, and erfcðuÞ is the comple-

mentary error function. The δ-function term in Eq. (A1)
comes from the point limit of an extended dipole [65]
and has an opposite sign to V1D

DDIðuÞ. For large distances
jxj ≫ l⊥, V1D

DDIðuÞ → 4=juj3, just like the DDI in 3D.
However, V1D

DDIðuÞ assumes a finite value at the origin,
becomingmore sharply peaked for smaller l⊥. This behavior
resembles that of a δ function and allows one to define
an effective δ-function potential for V1D

DDIðuÞ at a short
distance [63].
We note that the intratube DDI is suppressed as atoms

approach within a few l⊥ by a factor of 4=juj3=½2juj−ffiffiffiffiffiffi
2π

p ð1þ u2Þeu2=2erfcðjuj= ffiffiffi
2

p Þ�. To understand this reduc-
tion in 1D, consider θ ¼ 90°. While most of the DDI
between atoms along x̂ is repulsive (i.e., dipoles lying
abreast), there remains a small attractive contribution (i.e.,
dipoles lying head to tail) from the part of their wave
functions that extend transversely by l⊥. In general, if the
DDI interaction between two dipoles is repulsive when they
are separated in the longitudinal direction (side by side),
their interaction will be attractive when separated in the
transverse direction (head to tail), and vice versa, reducing
the strength of the DDI in either case. See Ref. [63] for
details.
In the following discussions, we use the superscript to

denote the interaction range (“sr” for short range and “lr”
for long range) and the subscript to denote the nature of the
interaction (“intra” for intratube and “inter” for intertube).

1. Short-range part of the intratube dipolar interaction

The magnitude of the short-range part of the 1D DDI is
given by the sum of the term proportional to the δ function
− 8

3
δðuÞ in Eq. (A1) and the δ-function-like part of V1D

DDIðuÞ
in Eq. (A3). We calculate the strength of the V1D

DDIðuÞ by
integrating it over a suitably chosen spatial domain in x̂.
Reference [63] determines this range to be� ffiffiffiffiffiffi

2π
p

l⊥, which
is sufficiently smaller than the interparticle spacing inside
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the tube such that the long-range 1=r3 tail of the DDI is not
double counted. Taking u ∈ ½− ffiffiffiffiffiffi

2π
p

;þ ffiffiffiffiffiffi
2π

p � as in Ref. [63],
we find the normalized strength A of the short-range part of
the interaction V1D

DDIðuÞ to be

A ¼
Z þ ffiffiffiffi

2π
p

−
ffiffiffiffi
2π

p V1D
DDIðuÞdu ≈ 90%

Z þ∞

−∞
V1D
DDIðuÞdu ¼ 3.6:

ðA4Þ

This leads to a DDI-induced δ-function interaction strength,

Usr
intraðθÞ ¼ gDDI1D ðθÞδðxÞ ¼ VðθÞðA − 8=3Þl⊥δðxÞ: ðA5Þ

2. Long-range part of the intratube dipolar interaction

The long-range (i.e., 1=r3-scaling) part of the intratube
DDI is given by VðθÞB, where

B ¼
Z þ∞

−∞
V1D
DDIðuÞdu −

Z þ ffiffiffiffi
2π

p

−
ffiffiffiffi
2π

p V1D
DDIðuÞdu

≈ 10%

Z þ∞

−∞
V1D
DDIðuÞdu ¼ 0.4: ðA6Þ

However, not all of the long-range intratube DDI contrib-
utes to the integrability-breaking perturbation; only the
momentum-dependent part can lead to momentum random-
izing collisions. To find the leading momentum-dependent
part, we expand the Fourier transform of V1D

DDIðuÞ up to
Oðk2Þ, which provides the terms associated with the
DDI-induced virtual interactions leading to integrability
breaking; higher-order terms would contribute less to
thermalization. The k-space form of the DDI is V1D

DDIðkÞ ∼
½1 − σ exp σΓð0; σÞ� [62], where σ ¼ ð2kDl⊥Þ2=2 ≈ 0.2 and
Γð0; σÞ is the incomplete gamma function. The result
is η ¼ ðγ̃ þ log σÞσ, where γ̃ ¼ 0.577… is the Euler-
Mascheroni (Euler-gamma) constant. The integrability-
breaking term from the intratube DDI is, therefore, ηVðθÞB.

APPENDIX B: INTERTUBE
DIPOLAR INTERACTION

Because of the lack of spatial correlations between atoms
in nearby tubes after splitting, the intertube DDI should be

calculated as that between an atom in one tube and the
integral over all x positions in the nearby tube. More
explicitly, for a tube located at ðy; zÞ,

Uy;z
interðB⃗Þ ¼ n1D

Z þ∞

−∞
V interðr⃗; B⃗Þdx; ðB1Þ

where

V interðr⃗; B⃗Þ ¼
μ0μ

2

4π

1 − 3ðr̂ · B̂Þ2
r3

: ðB2Þ

Here r⃗ ¼ ðx; y; zÞ denotes the atomic position vector and B̂
the direction of the magnetic field. With the geometry
of our experimental setup, we can parametrize the two
vectors as

r⃗ ¼ a

�
x
a
; i; j

�
;

B⃗ ¼ Bðcos θ; 0; sin θÞ;
Vi;j
interðθÞ ¼ V interðr⃗; B⃗Þ;

where a ¼ λ=2 ¼ 371 nm is the lattice constant and i, j are
integer indices that denote the location of each tube.
Dimer bound states are predicted to form between

pairs and arrays of tubes for any negative interaction
Uy;z

interðθÞ < 0 [66,67]. However, these complexes would
have binding energies far lower than the postkick atomic
collision energy, and so are unlikely to survive the kicking
process. We therefore do not expect intertube spatial atomic
correlations to arise from the prekick dimer formation.

APPENDIX C: CALCULATION OF U2
totalðθÞ

We calculate U2
total, the quadrature sum of the integra-

bility-breaking DDI contributions, using

U2
totalðθÞ ¼ ½ηUlr

intraðθÞ�2 þ
X
i;j

½Ui;j
interðθÞ�2; ðC1Þ

where i, j are the tube indices, and

Ulr
intraðθÞ ¼ VðθÞðn1Dl⊥Þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
−

ffiffiffiffi
2π

p

−∞
½V1D

DDIðuÞ�2duþ
Z þ∞

þ ffiffiffiffi
2π

p ½V1D
DDIðuÞ�2du

s
; ðC2Þ

Ui;j
interðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1D

Z þ∞

−∞
½Vi;j

interðθÞ�2dxi;j
s

: ðC3Þ
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The magnitudes of the integrability-breaking intratube and

intertube DDI energies, ηUlr
intraðθÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j½Ui;j

interðθÞ�2
q

for i; j ≤ 2, are plotted in Fig. 1(c).

APPENDIX D: LIEB-LINIGER
PARAMETER γðθÞ CALCULATION

In the absence of a DDI, the dimensionless coupling
parameter γ due to the van der Waals interaction is defined
as [68]

γVdW ¼ 2

n1Dja1Dj
¼ mgVdW1D

n1Dℏ2
; ðD1Þ

where n1D is the 1D particle density and the interparticle
interaction along the tube axis is well approximated by an
effective potential U1D ¼ gVdW1D δðxÞ. The 1D van der Waals
interaction strength is gVdW1D ¼ −2ℏ2=ðma1DÞ [49]. The
effective 1D scattering length is given by

a1D ¼ −
l2⊥
a3D

¼ −435ð53Þ nm; ðD2Þ

where a3D ¼ 141ð17Þ Bohr is the weighted-average s-wave
scattering length of 162Dy, as measured in two previous
experiments [69–71], and l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω⊥
p ¼ 57.3ð3Þ nm.

With a DDI present, γ is

γðθÞ ¼ mgtotal1D ðθÞ
n1Dℏ2

; ðD3Þ

where gtotal1D ðθÞ¼gDDI1D ðθÞþgVdW1D , and gDDI1D ðθÞ is given
in Eq. (A5). Confinement-induced resonances modify
this expression for a1D through an additional factor of
f1−½ðCa3DÞ=ð

ffiffiffi
2

p
l⊥Þ�g¼0.87ð2Þ, where C ≈ 1.46 [49,72].

This correction does not significantly change the shape or
magnitude of the theory curve in Fig. 4. Moreover, this
factor could be modified by the presence of the DDI to a
value that has not been either measured or uniquely
determined by theories of dipolar confinement-induced
resonances [62,73–76]. Given this uncertainty, we choose
to use the simple expression in Eq. (D2) for a1D.
To find a weighed averaged γavgðθÞ, we calculate the

number of atoms in each tube by assuming a Thomas-Fermi
density distribution nTF for the BEC:

nTFðrÞ ¼
15

8π

NQ
iRi

max
�
1 −

X
i

r2i
R2
i
; 0
�
; ðD4Þ

where N ¼ R
dr3nTF is the total atom number; Ri is the

Thomas-Fermi radius; and i ¼ x, y, z. The TF approxi-
mation is justified given the weak dependence of γ ∼ N2=3

on atom number [27]. We then obtain a 2D density
distribution of the BEC in the yz-plane by integrating
along the tube direction:

nðy; zÞ ¼
Z

nTFðrÞdx ðD5Þ

¼ 5

2π

N
RyRz

�
max

�
1 −

y2

R2
y
−

z2

R2
z
; 0

��
3=2

: ðD6Þ

To find the number of atoms loaded into each tube Ni;j, we
assume that each tube collects atoms in a square cross
section with length a ¼ λ=2, equal to the lattice site
spacing, at a local density nðy; zÞ, with the atom number
given by Ni;j ¼ a2nðyi; zjÞ, where yi and zi denote the tube
position. This calculation neglects rearrangements of atoms
during the lattice loading procedure, i.e., tunneling when
the lattice is still shallow, but this assumption is justified by
the weak dependence of γ on atom number.
We calculate the peak atomic density of each tube using

the 1D Thomas-Fermi distribution before the gas is excited.
Since γ is only weakly dependent on atom number, we use
the mean-field result rather than the full TG result, as in
Ref. [77]:

nTF0 ¼
�
9

64
N2

i;j

�
mωx

ℏ

�
2

ja1Dj
�
1=3

: ðD7Þ

Before exciting the gas, each tube has a γi;j0 ðθÞ ∝ 1=nTF0 ,
and for the ensemble of tubes, we calculate an average
γavg0 ðθÞ weighed by atom number in each tube:

γavg0 ðθÞ ¼
P

i;jγ
i;j
0 ðθÞNi;jP
i;jNi;j

: ðD8Þ

Note that, for each tube, γi;j0 ðθÞ has a weak dependence on

atom number: γi;j0 ðθÞ ∼ N2=3
i;j .

For our experimental conditions, we load into approx-
imately 70 × 10 tubes, with approximately 50 atoms in the
central tubes, resulting in an ensemble-averaged density
navg0 ¼ 3.1 μm−1. This yields an ensemble-averaged initial
γVdW;avg
0 ¼ 1.5ð2Þ. Including the gDDI1D ðθÞ term, γavg0 ðθÞ
varies from 0.6(1) at 0° to 1.9(2) at 90°.
The gas dephases at a time approximately 100 ms after

being diffracted. The dephasing reduces the density in each
tube because the narrow, counterpropagating packets of
atoms spread throughout the entire tube length with a higher
classical turning point due to the addition of the large energy
from the momentum kick. Our classical noninteracting
dynamics simulation, discussed in Sec. III A, shows that
the dephased density distribution is approximately uniform,
and we therefore estimate the dephased density to be
ni;jd ¼ Ni;j=ð2dmÞ, where dm ¼ ℏkD=ðmωxÞ ¼ 12 μm is
the maximum distance an atom travels away from the trap
center. The dephased ensemble-averaged γavgd ðθÞ is
then found by replacing γi;j0 in Eq. (D8) with γi;jd ∝ 1=ni;jd .
For the aforementioned experimental parameters, we find
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γVdW;avg
d ¼ 5.7ð7Þ, with an ensemble-averaged dephased
densitynavgd ¼ 0.8 μm−1. Including the gDDI1D ðθÞ term, γðθÞ≡
γavgd ðθÞ varies from 2.2(3) at 0° to 7.4(9) at 90°, as shown in
Fig. 1(c).
In its ground state, a system at such values of γ would be

in the crossover to the TG regime, in which the microscopic
bosons exhibit antibunching, as free fermions would
[48,51]. This antibunching occurs because the interaction
strength dominates the zero-point energy. Whether fermio-
nization persists in the high-energy, far-from-equilibrium
postkick evolution is a priori unclear, though in equilib-
rium, at the postkick energy density, there is no antibunch-
ing [54]. Since the dephased state is far from equilibrium,
these results cannot be applied directly, but they are sug-
gestive (as one might expect typical high-energy-density
states to be thermal in some respects [11]).

APPENDIX E: ATOM NUMBER VARIATION

Any atoms that flip spin due to spontaneous emission
from the optical trap and lattice beams are immediately lost
from dipolar relaxation collisions and do not lead to heating
of the gas [78]. Feshbach resonances are avoided by
tuning to 1.58(1) G, which lies within a resonance-free
region between 0.5 G and 2.5 G [79]. We ensure that the
B-field remains at this field within 10 mG at every angle.
We do not observe any confinement-induced resonances
or dipolar confinement-induced resonances since we do not
observe resonant atom loss at any θ angle investigated
[52,62,72–76,80].
We do not observe significant atom loss in the data

sets presented. Atom number as a function of time is shown
in Fig. 7 for θ ¼ 0°, 55°, and 90°, with γVdW;avg

d ¼ 5.7ð7Þ.
For the longest observation time of 2.8 s, we lose about
25% of the total atoms, which increases γi;j0 by just 16%

according to the γi;j ∼ N2=3
i;j scaling relation. Aside from

atom number loss during the observation time, there is also
a slight variation of atom numbers between data taken for
different θ. For all angles used in the γVdW;avg

d ¼ 5.7ð7Þ

measurement, the mean atom number is 15ð2Þ × 103,
corresponding to a 13% variation, which is smaller than
the 25% variation in atom number over the time evolution
at a fixed θ. We therefore conclude that it is reasonable to
treat γVdW;avg

d as constant in interpreting our data for
different θ; i.e., the observed trend in thermalization time
cannot be explained by variation in atom number. This
constancy of γVdW;avg

d ¼ 5.7ð7Þ versus time is in contrast to
the rapid increase in γ observed in Ref. [27] due to large
atom loss rates.

APPENDIX F: HEATING MEASUREMENTS
AND SIMULATIONS

Heating from the lattice beams can affect the momentum
distribution evolution. The lattice lasers can induce heating
in two ways: (i) Intensity noise at certain frequencies can
parametrically heat the gas or excite atoms to higher lattice
bands; (ii) spontaneous emission imparts photon recoil
momentum onto the atoms, whose projection along the
tube direction leads to heating [81,82]. We now show
that the second mechanism is the dominant heating source
in our system before discussing its effect on the DT in
more detail with the aid of a collisionless Monte Carlo
simulation.
We measure the heating rate in our system by loading a

BEC into the lattice and measuring its momentum distri-
bution versus lattice hold time. The procedure is identical to
the DT measurements, though without splitting the gas. At
short hold time (t < 0.5 s at 18ER), we observe a distri-
bution along x̂ that is similar to that reported in Ref. [27]: a
broad Gaussian centered about a narrower Gaussian. At
longer times, the measured distribution fits well to a single
Gaussian. The fitted width of the single Gaussian increases
linearly with time, and the best-fit slope corresponds to the
heating rate. We verify that the dominant heating mecha-
nism in our system is spontaneous emission by observing
that the heating rate of an unkicked gas decreases as 1=Δ
when we vary the detuning Δ from atomic resonance at
constant lattice depth V0.
Engineering a TG system requires the deepest lattice

possible. However, too much heating from a large V0 would
obscure the dynamics of interest. We therefore search for a
V0 with the slowest thermalization rate. We experimentally
determine this optimal depth by measuring the DTat a fixed
holding time for a range of V0 values at θ ¼ 90°, the angle
with the largest DDI. The results for three different holding
times, t ¼ 10T, 15T, and 20T, are shown in Fig. 8. The
slowest thermalization occurs near V0 ¼ 18ER, which is
the lattice depth we use for our measurements, yielding
γVdW;avg
d ¼ 5.7ð7Þ.
We measured the heating rate at V0 ¼ 18ER for the 12θ

values used in our thermalization rate data. The results are
shown in Fig. 9. The heating rates are similar among all
angles with little to no systematic variation. The highest

FIG. 7. Atom number during the momentum evolution at
γVdW;avg
d ¼ 5.7ð7Þ for θ ¼ 0° (triangle), 55° (square), and 90°
(diamond).
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rate, 17ð1Þ nK=s at 0°, is still about 5× slower than the
slowest rate observed in Ref. [27]. The low heating rates
versus those in Ref. [27] are achieved through the use of
lower 2D lattice depths and 5–10× smaller n1D.
Nevertheless, in Ref. [27] the ratio between collision
energy and transverse trap frequency is Ec=ðℏω⊥Þ¼0.45,
whereas we have 0.47—essentially the same. However, the
recoil momentum of the lattice kR used in Ref. [27] isffiffiffi
2

p
× larger than ours. In addition, the mass of their atomic

species, Rb, is twice lighter than Dy’s. Therefore, their ω⊥
has to be four times larger than in our experiment, and so a
much deeper lattice is required to remain in the 1D regime,
leading to larger heating rates. On the other hand, our
shallower lattice results in a faster intertube tunneling rate
J. However, we estimate in Sec. I that the thermalization
rate associated with tunneling is ≥10× smaller than our

lowest measured thermalization rate and is therefore
negligible.
We use the measured heating rate of a BEC at equi-

librium to simulate the effect of spontaneous emission
heating on the DT evolution of an experimentally measu-
red dephased distribution. A Monte Carlo method is
employed that accounts for the heating effects described
in Refs. [81,82], and we find that the dominant heating
process is from one-body spontaneous emission. Following
Ref. [81], we consider those changes in a vibrational state
in the transverse direction with n ¼ ny þ nz → n� 1 due
to both absorption and emission of lattice photons. Atoms
with n ≥ 3 are considered lost from the trap, since we
expect intertube tunneling for atoms in these states to
become non-negligible because their vibrational energy
approaches the transverse lattice depth. Atom loss can
also occur in the axial direction when the total axial energy
for an atom exceeds the axial trap depth V0 ¼ mω2w2

0=4,
where ω and w0 are the trap frequency and Gaussian beam
waist in the direction of interest, respectively. As in the
experiment, we observe little atom loss in the simulation:
The typical loss is 3% in 8 s, which is over two times longer
than the longest thermalization time measured in the
experiment.
In addition to one-body loss due to spontaneous emis-

sion, two-body collisions after a spontaneous emission
event can lead to heating. In particular, Ref. [82] considers
seven two-body transverse state-changing collisional proc-
esses that are energetically allowed and permitted by parity
selection rules. As the vibrational levels of the scattered
atoms are modified, there is a finite probability for the
transverse energy to be deposited in the axial direction,
leading to an axial momentum kick. Since the rates of such
transitions depend on the population of the relevant n ≠ 0
states, these collisions are second order; the atoms are
initialized in the ðny; nzÞ ¼ ð0; 0Þ state, and spontaneous
emission is the only mechanism to excite them to higher
vibrational levels. Indeed, by using the worst-case reflec-
tion and transmission probabilities [57], we find within
the experimental timescale that the simulated momentum
distributions exhibit negligible deviation compared to
those without two-body collisions. Therefore, we need
only consider one-body heating processes in our analysis.
This is fortunate, as dipolar two-body collisions could have
led to θ-dependent heating.
We can now use these heating rates as inputs to

simulations of the DT evolution. This is done in order to
account for how heating affects the rate of change of DT
so that we may then account for heating in our measured
thermalization rates. To do so, we introduce to the
simulated momentum distributions the measured heating
rate and a Gaussian white noise background that is matched
to the experimentally measured noise level. The DT and
noise floor are then computed in the same way as described
in Sec. II F. To reduce Monte Carlo sampling noise, we
average 20 simulated distributions so that their noise is

FIG. 8. Thermalization distance at θ ¼ 90° measured as a
function of lattice depth for different observation times: 10T
(triangle), 15T (square), and 20T (diamond). The blue band
represents the noise floor and its 1σ uncertainty. The γVdW;avg

d ’s
associated with the lattice depths are shown on top.

FIG. 9. Measured heating rate of the undiffracted BEC at
equilibrium in a V0 ¼ 18ER 2D lattice at various angles.
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negligible compared to the addeddetectionnoise. The simula-
tions yield thermalization rates between 0.156ð5Þ s−1 and
0.25ð1Þ s−1 versus θ. This shows that the fastest sponta-
neous-emission-limited heating rate is slower than the
slowest measured thermalization rate. Therefore, this heat-
ing rate is never larger than our measured thermalization
rates and, indeed, is much smaller than those rates for θ’s
above 30°. Finally, to deduce the thermalization rate due to
the integrability-breaking physics alone, i.e., the rates
plotted in Fig. 4, we subtract the simulated spontaneous
emission-induced thermalization rates from the experimen-
tal thermalization rates.

APPENDIX G: COMMENTS ON DT METRIC

We have considered other metrics for distance to
thermalization (DT): (i) Kurtosis is a common measure
of deviation from a Gaussian for a given distribution, but
does not work well for our data due to its high sensitivity to
noise. (ii) We compared pðxÞ to a thermal distribution with
the same total energy at each recorded time step, including
both the initial kinetic energy imparted on each atom and
heating from spontaneous emission. This method is less
reliable because the energy summation from pðxÞ is
sensitive to noise in the high-momentum wings.

APPENDIX H: MEASUREMENT OF DT FOR
DIFFERENT θ AND ROTATION TIMES

The kicking procedure described in Sec. II C ensures that
the boundary between regime I and II appears at logðDTÞ ≈
1.5 regardless of the final θ setting. We recall that this is
because, to eliminate the systematic bias due to the splitting
processes, we fix the system to evolve under θ ¼ 35° in
regime I before rotating θ to its final setting at the beginning
of regime II. Figure 10 shows data exhibiting no systematic
variation in DT versus θ at the end of regime I.

While for some θ there can be an additional dephasing
evolution after the rotation time—e.g., the 0° data in the
inset of Fig. 3 takes longer to reach regime II
[logðDTÞ ≈ 1.5] than the 90° data—we have verified that
waiting longer to rotate does not affect the subsequent
thermalization rate: We took data at two different rotation
times for θ ¼ 0° to demonstrate that the time chosen for the
rotation also does not affect the subsequent thermalization
rate. We choose θ ¼ 0° because it exhibits the slowest
decay time so that we can best test the difference between
these rotation times. These data are shown in Fig. 11, and
we find that the slow decay rate is approximately
unchanged within experimental resolution.

APPENDIX I: TUNNELING BETWEEN TUBES

The tunneling rate is approximately given by

J
ER

≃
4ffiffiffi
π

p s3=4 expð−2s1=2Þ; ðI1Þ

where s ¼ V0=ER is the dimensionless lattice depth. This
formula agrees with the exact value of J to better than 10%
accuracy for s > 15 [83]. For our lattice, s ¼ 18 and
J ¼ 0.004ER, which corresponds to a J=ℏ ¼ 2π × 9 Hz
tunneling rate.
Tunneling between tubes can break integrability by

allowing effectively 2D scattering [41]: To leading order,
two particles in the same tube collide while one atom
scatters to a neighboring tube via tunneling. Such a
scattering event conserves total momentum and energy,
but not momentum along the tubes, due to a finite lattice
bandwidth 4J, leading to thermalization.
We estimate the thermalization timescale set by tunnel-

ing in the following manner. The initial momentum
ki ¼ 2kD and final momentum kf of an atom in a two-
particle scattering event that involves tunneling can be
related by

FIG. 10. Distance-to-thermalization (DT) of the field-rotated
state near the end of regime I for each θ value investigated. The
blue horizontal line is the mean noise floor, and the light blue
band represents its 1σ uncertainty.

FIG. 11. Time evolution of DT at θ ¼ 0° for rotating the field
after a waiting time of 10T (triangle) and 20T (square).
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ðℏkiÞ2
2m

−
ðℏkfÞ2
2m

¼ 4J; ðI2Þ

from which we obtain the relative change in momentum
Δk¼ ki−kf≈ ð4J=2ERÞkD. Such scattering events involv-
ing tunneling then lead to a random walk in momentum
space with a step size of Δk. Thermalization requires a
change in momentum on the order of ki, and the time T th
that it takes for this process is given by

Δk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T thð2flÞRN=2

p
¼ ki; ðI3Þ

where the collision rate is twice the longitudinal trap
frequency, fl ¼ T−1 ¼ ωx=ð2πÞ, and the square root on
the left side arises from the random walk process. The
factor of RN=2 is the total number of collisions given N
atoms in each tube, with reflection coefficient R ¼
ð2kDa1DÞ−2 ¼ 1=28 per atom [27]. For our parameters,
T th ≈ 600 s. This estimated timescale is two orders of
magnitude larger than the longest measured thermalization
time. We also note that tunneling cannot be the source of
the angular dependence that we observe in the data.
Therefore, we conclude that tunneling between tubes,
while not completely negligible, is a much smaller thermal-
ization mechanism than either the DDI or the spontaneous
heating caused by the lattice lasers.

APPENDIX J: COLLISIONLESS CLASSICAL
DYNAMICS SIMULATION

As mentioned in Sec. III A, there are two dephasing
processes due to the trap: (i) dephasing of oscillations
between different harmonic tubes due to their different
natural frequencies and (ii) dephasing of the oscillations of
the gas in a single tube due to its anharmonicity. To quantify
their relative contributions to dephasing, we simulate the
momentum distribution evolution using a classical dynam-
ics model that does not take account for interactions.
We numerically solve the classical equation of motion

for atoms in each tube given its longitudinal Gaussian
potential. The parameters of the Gaussian potential of each
tube are determined by the tube location with respect to the
center of the crossed ODT trap. We simulate an array of
70 × 12 tubes in the yz-plane. The ODT beam parameters
are given in Sec. II A. We assume that the foci of the two
crossed ODT beams overlap perfectly and neglect the axial
trapping contribution from the lattice beams. We note that
any slight imperfection in beam alignment and beam shape
distortion only increases the effect of (i) and (ii); con-
sequently, the simulation provides an upper bound to the
dephasing time.
We initialize the simulation by distributing 15 × 103

atoms into the tubes using the density calculation described
in Appendix D. All atoms are located in the center of each
tube and, to match the measured initial momentum spread,

we assign an initial momentum to each atom by sampling
from a Gaussian distribution with standard deviation
σ ¼ 0.2ℏkD. We then add a �2ℏkD momentum kick to
the atoms in each tube. We solve the trajectory for each
atom at a time step of T=30, where T ¼ 16 ms is the trap
period of the central tube. Doing so allows us to keep track
of the momentum and position of each atom at every
time step.
Unlike in the experiment, the momentum distribution

produced by this collisionless simulation is not stationary
within a period. However, the averaged distribution over a
period reaches a steady state, as shown in the inset of
Fig. 12. The figure’s main panel shows the RMS difference
between the averaged distribution over each period and this
steady distribution. We call this metric the distance to
dephasing (DD). This metric is more appropriate than DT
because we are interested in the time to the end of technical
dephasing. The figure shows two simulation cases: The first
(shown as light blue triangles) only includes process (ii);
the second (shown as darker blue circles) includes both
processes (i) and (ii). We see in Fig. 12 that if only process
(ii) is present, the momentum distribution completely
dephases in about 600 ms, while the dephasing time reduces
to approximately 150 ms when process (i) is included. Both
processes are important, and the non-negligible contribution
of process (ii) means that it is reasonable to assume an
equilibrated density profile when calculating dipolar inter-
actions and γ.

APPENDIX K: DETAILS OF SINGLE-SIDED
KICK MEASUREMENT

We impart a single-sided momentum kick p ≈ −2ℏkD to
the atoms while keeping all other trap settings identical
to that employed to take the thermalization data in Fig. 3.

FIG. 12. Time evolution of distance to dephasing (DD) pre-
dicted by the collisionless classical dynamics simulation for two
cases: the first for when only process (ii) is present (circle), and
second when both (i) and (ii) are present (triangle). The inset
shows the dephased momentum distribution.
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We then measure the time at which the resulting distribu-
tion dephases. The single-sided kick is achieved using a
double-pulse sequence similar to that used for creating the
symmetric j�2ℏkDi splitting. The spatial symmetry is
broken by introducing a small initial momentum ks to
the BEC. Using a numerical optimization algorithm,
we find that nearly all atoms can be transferred to the
jks − 2ℏkDi state using the following parameters:
ks ¼ −0.21kD, a phase grating lattice depth of 11.1Er=2,
a first pulse with duration τ1 ¼ 60 μs, followed by
τ2 ¼ 93 μs of free evolution, and a second pulse with
duration τ3 ¼ 90 μs. The calculated time evolution of the
populations of the lowest two diffraction orders and the
undiffracted order are shown in Fig. 13. Populations in
the higher diffraction orders are negligible.
To compare the single-sided dephasing time to our

thermalization data, and to facilitate the pinpointing of
the dephasing time, we add to the single-sided distribution
its own mirror image to emulate the situation where there
are two packets of atoms oscillating symmetrically in the
tube. We then use the same analysis procedure as described
earlier to find the DTðtÞ. The results are shown in Fig. 15.
The observed single-sided momentum distribution evo-

lution is shown in Fig. 14. We note that the value of DT at
this dephasing time, logðDTÞ ≈ 1.5, is consistent with the
choice of division between regimes I and II in the thermal-
ization data of Fig. 3.
The experimental sequence ensures that the atoms

experience the same level of anharmonicity and inhomo-
geneity as in the measurements starting with a symmetric
j�2ℏkDi distribution, but removes the effects of high-
momentum interactions, i.e., head-on collisions. In this
configuration, the collisions alone (in the absence of
anharmonicity) cannot give rise to a stationary momentum
distribution, and so the stationary momentum distribution
must arise from the technical dephasing processes.

(The generalized Kohn theorem [84] guarantees that the
oscillatory center of mass motion in a strictly harmonic
trap—and hence the oscillations of the momentum
distribution—are unaffected by interactions.)

FIG. 13. Calculated time evolution of the fractional populations
of the jℏðks � 2kDÞi states and the undiffracted state jℏksi during
the single-sided kick pulse sequence. See text for detailed settings
for each parameter.

T ms

FIG. 14. Time evolution of an initially single-sided momentum
distribution, whose dephasing timescale accounts for the tech-
nical dephasing mechanisms while minimizing those from high-
energy collisions.

FIG. 15. Thermalization distance of synthesized symmetric
distributions generated by adding to the single-sided distributions
shown in Fig. 14 their own mirror images. The blue horizontal
line is the mean noise floor, and the light blue band represents its
1σ uncertainty.
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APPENDIX L: EXACT DIAGONALIZATION
CALCULATIONS

1. Momentum distribution functions

In Fig. 16, we show examples of momentum distribution
functions of (i) initial states, (ii) the diagonal ensemble
(DE) after the quench to the integrable part of ĤF, (iii) the
DE after the quench to ĤF, and (iv) the grand canonical
ensemble (GE) prediction for the thermal momentum
distribution after the quench (see Appendix L 2). Note
that the initial state and the DE after the quench to the
integrable part of ĤF exhibit a peak at k ¼ π, while such a

peak is absent in the thermal predictions—there is no
“memory” of the initial state distribution. The thermal
predictions are almost k-independent because of the high
energy density of the initial state in ĤF (as in the experi-
ments), which results in a high temperature TF. The DE
predictions can be seen to approach those of the GE with
increasing Vr. As we argue next, the differences between
these two ensembles in Fig. 16 are due to finite-size effects.
They vanish in the thermodynamic limit.

2. Thermalization

An important question that was not discussed in the main
text in the context of the exact diagonalization calculations
is whether the momentum distribution thermalizes, namely,
whether the equilibrated momentum distribution function
is that of a system in thermal equilibrium. Observables in
integrable systems are expected to equilibrate but not
thermalize, while in nonintegrable ones they are expected
to thermalize [6]. In order to determine whether the momen-
tumdistribution thermalizes,we first need to compute theGE
prediction mkðGEÞ ¼ Tr½m̂kρ̂GE� at the same energy and
number of particles as in the time-evolved state. The density
matrix of the grand canonical ensemble that describes
thermalized observables is

ρ̂GE ¼ exp½−ðĤF − μFN̂Þ=TF�
Trfexp½−ðĤF − μFN̂Þ=TF�g

; ðL1Þ

where TF and μF are found by solving for the two equations:

Tr½ρ̂GEĤF� ¼ Tr½ρ̂IĤF�; ðL2Þ

Tr½ρ̂GEN̂� ¼ Tr½ρ̂IN̂�: ðL3Þ

Since our systems are always at half filling, μF ¼ 0.
We then compute a distance-to-thermalization metric

δGEðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k½mkðτÞ −mkðGEÞ�2
L=2

s
: ðL4Þ

It is only in the thermodynamic limit that the diagonal
ensemble (DE) predictions become identical to those of the
GE in nonintegrable systems [6,16]. Because of finite-size
effects, δDEðτÞ and δGEðτÞ are different in our calculations
away from integrability. To check that thermalization takes
place in our nonintegrable systems, we also compute a
distance between the diagonal and the grand canonical
ensemble,

δðDE − GEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k½mkðDEÞ −mkðGEÞ�2
L=2

s
; ðL5Þ

and explore its behavior with changing system size.

(a)

π/2 3π/4π/4 π

(b)

π/2 3π/4π/4 π

FIG. 16. Examples of momentum distributions (mk) obtained in
the exact diagonalization calculations of the two-rung hard-core
boson model with L ¼ 22. We show the momentum distributions
for an initial state (labeled as “initial state”), the diagonal
ensemble after the quench to the integrable part of ĤF (labeled
as “initial DE”), the diagonal ensemble after the quench to ĤF
(labeled as “DE”), and the grand canonical ensemble prediction
for the thermal momentum distribution after the quench (labeled
as “GE”). For the quenches, we set V ¼ 1.6, with (a) Vr ¼ 0.2
and (b) Vr ¼ 0.8. The momentum distribution of the initial state
and of the diagonal ensemble after the quench to the integrable
part of ĤF are the same in (a) and (b); only the diagonal and grand
canonical ensemble predictions change due to the change of Vr.
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In Fig. 17(a), we plot the distance to thermalization
δGEðτÞ for quenches with fixed V ¼ 1.6 but different values
of Vr. At any given time, one can see that δGEðτÞ is larger
the closer the system is to integrability. One can also see
that, for the largest value of Vr, δGEðτÞ converges to a
nonvanishing value at long times. This is the result of finite-
size effects. In Fig. 17(b), we plot δGEðτÞ for a fixed value
of Vr in chains with different numbers of sites. The plots
show that the saturation value of δGEðτÞ at long times
decreases with increasing system size. This suggests that, in
the thermodynamic limit, the time-evolving momentum
distribution function approaches the thermal prediction
during the equilibration dynamics. Further evidence to
support this expectation is presented in the inset in
Fig. 17(b), in which we plot the distance between the
diagonal and grand canonical ensemble predictions
δðDE-GEÞ as a function of L. The results are consistent
with δðDE-GEÞ, vanishing exponentially with increasing L.

3. Equilibration

Figure 18(a) shows the distance to the diagonal ensemble
of the single quench case, taking a state at two different
times after the short-time dephasing following the first
quench, and taking the diagonal ensemble after the first
quench. They all can be seen to result in an exponential
decay at long times to the diagonal ensemble of the single
quench case. The exponentially decaying part exhibits
nearly the same relaxation rate in the three curves (see
fits). This shows that the thermalization rate is not affected
by the choice of time to switch on Vr. The near-exponential
relaxation can then be understood as generated by the time
evolution of the DE of the integrable part of ĤF under the
nonintegrable ĤF.

(a)

τ
(b)

τ

δ
δ

δ

FIG. 17. (a) RMS distance δGEðτÞ [see Eq. (L4)] versus τ for
quenches in which V ¼ 1.6 and the integrability breaking Vr
takes different values. The results shown are for a system with
L ¼ 22 sites. (b) RMS distance δGEðτÞ versus τ for quenches in
which V ¼ 1.6, Vr ¼ 0.4, and for different lattice sizes (L ¼ 16,
18, 20, and 22). Inset in (b): Distance between the diagonal and
the grand canonical ensembles δðDE-GEÞ [see Eq. (L5)] versus L
for V ¼ 1.6 and Vr ¼ 0.4 (as in the main panel). The black
dashed line depicts exponential behavior.

(a)

τ
(b)

τ

δ
δ

τ

τ
τ
τ

FIG. 18. (a) RMS distance δDEðτÞ [defined in Eq. (9)] versus τ
for two-step quenches in which V ¼ 1.6, Vr ¼ 0.4, and L ¼ 22.
The distance is computed, in all cases, from the DE result for the
single quench. Results are shown when the second quench is
carried out at τ ¼ 0.8 and 9.0 following the first quench, and at
τ ¼ 0 when starting with the DE of the integrable system after the
first quench (labeled as “initial DE”). The solid lines at long times
depict exponential behavior indicating the same relaxation rate in
all cases. (b) Distance to equilibration in single quenches for
different systems sizes L. These results show the finite-size effect
on the relaxation rates.
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The main limitation of our exact diagonalization results
is, as mentioned before, finite-size effects. Figure 18(b)
shows the evolution of the distance to equilibration δDEðτÞ
in the single quench protocol as one changes the system
size (L ¼ 16, 18, 20, and 22). The near-exponential
relaxation is apparent in all cases, but the relaxation rate
can be seen to be affected by finite-size effects.
Nevertheless, the trends manifest in the simulations quali-
tatively match those in the experiment, which has a far
larger system size.
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