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We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed
realizable. We unify the results of two approaches. In the first one, the original system is compared with its
copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the
Hamiltonian, the precision of its estimation is known to scale at most as N−1 (Heisenberg scaling) in terms
of the number of elementary subsystems used N. The second approach compares the overlap between the
ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent
super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to
perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by
the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain
example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical
value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an
elementary estimator represented by a single-site magnetization already outperforms the Heisenberg
behavior providing the N−1.5 scaling. In this case, Fisher information sets the ultimate scaling as N−1.75,
which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal
scaling predictions of the estimation precision offered by such observables, both at zero and finite
temperatures, and support them with numerical simulations in the model. We provide an experimental
proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically
shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for
preparation of quantum states involved is taken into account.
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I. INTRODUCTION

At the center of quantum metrology [1–4] lies the
concept of estimation of a small external parameter with
the help of a quantum procedure. The main idea is to

engineer a family of quantum states depending strongly
on that parameter in the sense that a small difference in the
parameter value makes the states significantly different
from each other. The relevant quantifier of a distance
between quantum states is the quantum fidelity [5],

F ðρ̂; σ̂Þ ¼ Tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffî

ρ
p

σ̂
ffiffiffî
ρ

pq �
; ð1Þ

where density operators ρ̂ and σ̂ describe the states being
compared.
Now consider a family of quantum states ρ̂ðλÞ controlled

by a parameter λ and let δλ be a small shift of the parameter
that we want to estimate. An ultimate bound on the
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accuracy of any estimate one may make on the unknown δλ
is set be the quantum Fisher information (QFI) [3,6]:

GðλÞ ¼ −4∂2F ½ρ̂ðλÞ; ρ̂ðλþ δλÞ�=∂δλ2jδλ¼0: ð2Þ

Indeed, in order to identify δλ one has to measure some
observable Â, called an estimator. The precision it offers is
quantified by the error propagation formula given by the
inverse of signal-to-noise ratio:

ΔδλðÂ; λÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂ2iρðλÞ − hÂi2ρðλÞ

q
��� ∂hÂiρðλþδλÞ∂δλ

���
δλ¼0

��� : ð3Þ

The ultimate lower bound for the uncertainty of estimation
of the small deviation δλ is set by the quantum Cramer-Rao
bound [3],

ΔδλðÂ; λÞ ≥ GðλÞ−1=2; ð4Þ

which is independent of the observable Â and determined
by the QFI. In principle, the above bound would be
saturated by the measurement projecting on the eigenvec-
tors of the so-called symmetric logarithmic derivative
operator L̂, satisfying 2½∂ρ̂ðλÞ=∂λ� ¼ L̂ ρ̂ðλÞ þ ρ̂ðλÞL̂. In
practice, however, an identification of an appropriate
symmetric logarithmic derivative operator is a formidable
task in itself. For a quite general class of systems we show
that there exists the observable yielding a correct scaling
with the system size in appropriate limits.
There are basically two different scenarios discussed in

the literature on how to introduce the dependence of the
state on the parameter δλ. In the first approach [7–9] the
state is rotated by some Hamiltonian and then the estimator
observable Â is measured—providing the accuracy that is
determined by the error propagation formula. Let us call it a
rotation scenario.
In principle, with a many-body interacting Hamiltonian

the corresponding Fisher information could have implied
the error vanishing exponentially with N [10]. It has been
proven, however, that when the Hamiltonian is composed
only of local on-site (or one-body, see, e.g., Ref. [11]) terms
ĥn, i.e.,

Ĥ ¼ λĤ1 ¼ λ
XN
n¼1

ĥn; ð5Þ

then at most G−1=2 ∼ N−1. Such a scaling is referred to as
the Heisenberg limit and should be contrasted with the
classical type of behavior where G−1=2 ∼ N−1=2, i.e., the
shot-noise limit. It has been argued that adding to the above
Hamiltonian other interactions—not coupled to λ—cannot
improve the scaling beyond the Heisenberg limit [11–16].
Furthermore, let us mention that the final formula is quite
sensitive to a local noise, and because of that, one basically

always ends up with the classical scaling for large enough
N [17].
More precisely, bringing the time of the evolution

explicitly into the picture, for the Hamiltonian of the form

Ĥ ¼ Ĥ0 þ λĤ1; ð6Þ

it has been proven that [11]

G−1=2 ≥
1

tkĤ1k
: ð7Þ

Above, t is the time of the evolution and kĤ1k is the norm
of the operator coupled to δλ. Most importantly, as the time
factor might be experimentally limited, the focus usually is
on the scaling of the norm only. The above bound holds for
any initial state. Saturating it, if at all possible in the general
case (even only in the limit of short times), usually requires
considering highly entangled Greenberger-Horne-Zeilinger
(GHZ)-like probe states.
When the Hamiltonian Ĥ1 above includes k-body terms,

the possible scaling shifts to G−1=2 ∼ N−k [11], provided
that all possible k-body subsets are present in Ĥ1 to
contribute to the norm in Eq. (7). In principle, this might
allow one to go beyond the Heisenberg limit for k ≥ 2.
Such democratic couplings are, however, difficult to create
in nature. Recently, those results were extended to describe
both open and noisy systems [18–22].
The rotation scenario serves also as a powerful entan-

glement detector [23,24] that can detect a vanishing
fraction of entanglement [25] or even bound entanglement
[26] with scaling close to the Heisenberg limit. The
entanglement detection method has recently found a new
application in the proposal to extract the Fisher information
from a dynamical susceptibility of the thermal input state
[27] (see also Ref. [28]), which is measurable, for instance,
by means of Bragg spectroscopy [29,30]. Recently, the
pure state metrology in the spirit of the rotation scenario has
been reformulated in terms of the Loschmidt echo [31,32].
Let us also mention that one can consider Fisher informa-
tion as a detector of nonequilibrium phase transitions
[33,34] or for multipartite entanglement questions [35].
For a review of quantum enhanced measurements without
entanglement, see Ref. [36].
Having all the above in mind, one immediately recalls

the second approach that connects the estimation problem
to the concept of criticality [37–45]. In that approach one
focuses on the situation where the dependence of the state
on λ has a completely different origin. The state jΨðλÞi is
the ground state of the Hamiltonian depending on the
parameter λ, which exhibits criticality at some critical point
λc. The essence of this approach is an observation that in
the vicinity of the critical point the ground state becomes
drastically sensitive to a small change of λ. Clearly, this
sensitivity is again quantified by QFI.
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In the context of ground-state fidelity (or more generally
for the thermal states), it is customary to introduce fidelity
susceptibility χFðλÞ. For sufficiently small δλ, in a finite
system, one has

F ½ρ̂ðλÞ; ρ̂ðλþ δλÞ� ¼ 1 −
1

2
χFðλÞδ2λ þOðδ3λÞ: ð8Þ

Fidelity susceptibility and QFI are directly proportional to
the Bures distance between density matrices at slightly
differing values of λ [40,46] and GðλÞ ¼ 4χFðλÞ.
Interestingly, it has been observed in this case that for

Hamiltonian Eq. (6), criticality can boost QFI to G−1=2 ∼
N−l with 2 < l < 3, see Refs. [47–49], leading to an
apparent super-Heisenberg scaling. There seems to exist
a clear contradiction with the rotation scenario. Can these
two pictures be reconciled? This is the main aim of the
present work—we solve this super-Heisenberg puzzle. We
show that the overlap measurement contains an additional
ingredient, namely, the time it takes to transform one
ground state into another one at a slightly different
parameter value. This may be translated into the additional
N-power scaling of time in the vicinity of the critical point
if one assumes adiabatic dynamics, which is a necessity if
we are to compare ground states. This allows us to reconcile
the two approaches to quantum metrology.
The rest of the article is organized as follows. In Sec. II,

we define and discuss basic properties of fidelity and
fidelity susceptibility, the main tools of the analysis that
follow. Section III contains the main results of our work.
Using a finite-size scaling hypothesis based on the renorm-
alization group approach, a well-established tool in the
treatment of quantum criticality, we derive the scaling of
precision offered by the most natural observables coupled
to the perturbation. In the adiabatic limit they can saturate
the ultimate scaling set by QFI. Most importantly, we also
bring the time directly into the picture and discuss the
appropriate timescale necessary to recover the adiabatic
dynamics at the critical point and reach the above-
mentioned scalings. By factoring out the evolution time
we illustrate that the ground-state approach naturally sat-
isfies theHeisenberg limit as it is understood in the rotational
scenario. The apparent super-Heisenberg scalings are recov-
ered in the limit of sufficiently long evolution times and can
be understood as the ultimate limit of precision that can be
obtainedwithin this approach (whatever the time is). Using a
critical ground state as a probe state, nevertheless, might
allow one to break the shot-noise limit due to strong
correlations or entanglement in such a state.
The general theory is illustrated on a particular example

in Sec. IV. We discuss the ferromagnetic Heisenberg spin
chain where the parameter to be estimated is a small
external magnetic field. This model provides a minimal
entanglement model in a sense that H1 is separable while
H0 involves only two-body (nearest-neighbors) terms. Here

we test the universal scaling of the error propagation
formula for those natural observables against numerical
data in the immediate vicinity of the critical point of the
model. In particular, we obtain in this model G−1=2ðλcÞ∼
N−1.75, with λc being the parameter value at the critical
point. Moreover, unlike in the standard, rotation-based
metrology, the most natural, strictly local, and parameter-
independent estimator, namely the single-site magnetiza-
tion, is enough to go beyond the apparent Heisenberg limit
by reaching N−1.5. We also show that the operator which
measures the magnetization on all sites simultaneously
scales in the same way as the optimal one. We should point
out that finding an analytical form of the optimal operator
in a many-body system is typically a daunting challenge;
see, e.g., Refs. [39,40]. With all these interesting properties,
when a time factor is properly taken into account (i.e., the
time needed to adiabatically transfer a ground state into
another ground state at different value of the parameter) we
recover the Heisenberg limit.
The possible realization of this model in a cold-atom

optical lattice setting is given in Sec. VII. We find it
appropriate to first extend the discussion from smooth
adiabatic quench to the instantaneous one, i.e., the
Loschmidt echo, arguing that similar universal behavior
can be observed also in that case. This is discussed in
Sec. V. In Sec. VI, we consider the robustness of the
observed features; i.e., we consider the situation detuned
from criticality as well as the impact of finite temperature.
We conclude in Sec. VIII. Finally, in the Appendix, we
discuss a universal estimator-type measurement in the
paradigm where the original reference state and the specific
quadratic interactions are accessible.

II. BASICS OF FIDELITY SUSCEPTIBILITY

Consider the quantum system depending on a parameter
λ, the value of which we shall try to estimate. For the
ground state jΨðλÞi of the Hamiltonian ĤðλÞ the fidelity
defined in Eq. (1) simplifies as

F ¼ jhΨðλÞjΨðλþ δλÞij: ð9Þ

It is intuitively clear that fidelity may be significantly
below unity, or alternatively that χFðλÞ [compare Eq. (8)]
is large, when the properties of the system change
significantly with λ. Then the measurement of some
observable might lead to an accurate determination of λ.
Clearly, when the system undergoes the quantum phase
transition its properties change dramatically; that is why the
maxima of χFðλÞ (for a finite system) or its divergences (in
the thermodynamic limit) signal the location of the quan-
tum critical point [37]. Obviously, for Eq. (8) to hold we
have to consider a finite system and sufficiently small δλ—
otherwise higher terms in that expansion are non-negligible
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and one should be considering logF , which becomes an
extensive quantity in that limit [50,51].
It has been shown that the universal information can be

extracted from the behavior of fidelity susceptibility in
the vicinity of the critical point [52–55]. To that end,
and in order to relate directly to the rotational scenario in
Eqs. (5)–(7), we consider the Hamiltonian

ĤðλÞ ¼ Ĥ0 þ λĤ1 ¼ Ĥ0 þ λ
X
n

ĥn; ð10Þ

specifying it to be in a broad class of systems consisting of
N ¼ Ld spins in d spatial dimensions which has a con-
tinuous critical point at λc. The general concept and scaling
analysis [56–58] naturally applies also to systems of
fermions and bosons. The perturbation coupled to λ in
Eq. (10) consists of local on-site terms; note, however, that
the same would hold for ĥn having support on a couple of
neighboring sites. Ĥ1 is a relevant renormalization group
perturbation which drives the transition and we assume that
it has a well-defined scaling dimension. The divergence of
the correlation length in the vicinity of the critical point,
ξ ∼ jλ − λcj−ν, specifies the critical exponent ν.
The universal part of the fidelity susceptibility at the

critical point is expected to scale as [53–55]

GðλcÞ1=2 ∼ χFðλcÞ1=2 ∼ N1=dν: ð11Þ

One may also look at χFðλÞ away from the critical point
where the expected scaling reads

GðλÞ1=2 ∼ χFðλÞ1=2 ∼ N1=2jλ − λcjdν=2−1: ð12Þ

The above universal contributions dominate the behavior of
fidelity susceptibility when dν < 2, so that nonuniversal,
system-specific corrections remain subleading [55,59].
As a consequence, a realization of a physical system with

small ν can lead to a hypersensitive estimation of λ. The
standard and often considered exactly solvable one-
dimensional spin Ising chain where λ corresponds to the
transverse field exhibits the critical point with ν ¼ 1,
resulting in χFðλcÞ1=2 ∼ N [40,60,61]. In the following we
propose a physical realization of another spin system leading
to a much smaller value of dν < 1. This provides a more
intriguing example of a system which exhibits extreme
sensitivity when λ is varied across the critical point, and, at
first sight, might seem to break the Heisenberg limit.

III. METROLOGY AT THE CRITICAL POINT

In this section, we employ the adiabatic theorem to argue
how slowly the parameter λ has to change for the system to
be able to adjust to it and follow the instantaneous ground
state. At the critical point this results in a time factor which
scales as a power law with the system size. More generally,
we show that the time dependence of QFI satisfies the

bound where the time factorizes and the remaining scaling
with N can exceed the shot-noise limit due to strong
correlations in the critical ground state. It is, however,
consistent with the Heisenberg limit in Eq. (7). As such, we
reconcile this approach with the rotational scenario. On the
other hand, using finite-size scaling analysis we argue that
in the adiabatic regime the most natural observables,
corresponding to part of the Hamiltonian coupled to λ,
offer the same scaling of the error propagation formula as
promised by the QFI.

A. Characteristic timescale

First, we estimate the rate of changes of λ which is
needed for the system to stay in the instantaneous ground
state. We assume that

δλðt0Þ ¼ t0=τQ ¼ t0

t
δλ; ð13Þ

for t0 ∈ ½0; t�, where t is the total time of the evolution,
δλðtÞ ¼ δλ, and τQ ¼ t=δλ is the quench rate. In order to
estimate this rate we have to know the behavior of the
energy gap at the critical point. For a continuous critical
point this gap is expected to scale as ΔE ∼ L−z, which
introduces the critical exponent z. We also need to estimate
the width of the region of λ’s for which the gap is close
to its minimal value. The standard finite-size argument
gives Γ ∼ L−1=ν. It follows from the general heuristics
that in the finite system the gap would be comparable with
its minimum when L ∼ ξðλÞ ∼ jλ − λcj−ν ¼ Γ−ν. Now, the
adiabatic condition reads ΓΔE ≫ 1=τQ; see, e.g., Ref. [62].
This is equivalent to

τQ ≫ Lðzνþ1Þ=ν ¼ Nðzνþ1Þ=dν: ð14Þ

The same estimate of the relevant quench rate is obtained
from the application of the Kibble-Zurek argument
[63–65]. The latter predicts the density of defects excited
during the slow quench across the critical point. The
adiabatic dynamics corresponds, in that case, to the extreme
limit when no defects are created in a finite system.
In order to induce the change of the parameter δλ ∼

N−1=dν which, according to Eq. (11), can possibly be
observed, the time must scale at least as

t̂ ∼ τQδλ ∼ Nz=d: ð15Þ

Otherwise, Eq. (15) simply represents the characteristic
timescale at the critical point, given by the inverse of the
energy gap in the finite system. This means that this
timescale would naturally be relevant also beyond the
scheme assuming adiabatic evolution and the ground-state
overlap. We further elaborate on this point in Sec. V, where
we briefly discuss how a small instantaneous quench and
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Loschmidt echo naturally fits into the general picture
discussed here.
We can now bring those scalings together. The bound in

Eq. (7) applied to the ground-state fidelity scenario would
then read

N−1=dν ∼GðλcÞ−1=2 ≥ 1=t̂kĤ1k ∼ N−z=d−1; ð16Þ

note that kĤ1k ∼ N, which corresponds to the usual
Heisenberg factor. In this reasoning we make a straightfor-
ward generalization of the argument of Ref. [11], valid for
time-independent systems, to the time-dependent adiabatic
evolution. In the scaling sense, Eq. (16) is equivalent to the
condition that ðzþ dÞν ≥ 1.
At this point it is convenient to introduce the scaling

dimension of the operator ĥ, [h], which describes the
rescaling of the operator upon the scale transformation
at the critical point. It gives the power-law behavior of
the connected correlation function CðrÞ ¼ hĥnĥnþri −
hĥnihĥnþri ∼ r−2½h� in the thermodynamic limit. The scaling
exponents are not independent but, as we have one relevant
operator here, can be typically expressed as a combination
of [h], z, and d. For instance, ν ¼ 1=ðdþ z − ½h�Þ [58,66].
As ½h� ≥ 0, this shows that Eq. (16) is indeed consistent
within our scaling discussion as ðzþ dÞν ≥ 1 holds.

B. Error propagation formula in the adiabatic limit

Second, we focus on the adiabatic limit, where we
discuss the scaling of the error propagation formula of
the most natural observables Ĥ1 and ĥ ¼ ĥN=2. We assume
ĥ to be in the bulk of the system to avoid possible effects
related with the boundaries of the system. It is an exercise
in finite-size scaling analysis to argue that at the critical
point

ΔδλðĤ1; λcÞ ∼ N−1=dν; ð17Þ

ΔδλðĥN=2; λcÞ ∼ N−1=dνþ½h�=d: ð18Þ

The Eq. (17) is saturating the bound provided by the fidelity
susceptibility and Eq. (18) is close to it for small [h]; see
below for the derivation under the assumption that in a d-
dimensional system the correlation function is vanishing
with distance r slower than r−d, and that the hyperscaling
relations hold. Those scalings are closely connected with
the important observation that fidelity susceptibility (QFI)
can be directly calculated by integrating the dynamic
susceptibility of the system to the external driving Ĥ1

[27,52–54,67].
In order to derive Eqs. (17) and (18) we analyze the

scaling of the standard deviation and susceptibility appear-
ing in the error propagation formula in Eq. (3). In the
thermodynamic limit, the susceptibility ∂λhĥi ∼ jλ − λcj−θ.
We assume that the hyperscaling law holds, i.e., that there

are no dangerous irrelevant operators which could modify
the scaling hypothesis. In that case, θ ¼ 1 − ½h�ν. It is
expected to hold for a sufficiently low-dimensional system,
not exceeding the so-called upper critical dimension. This
is the limit of interest from the perspective of quantum
enhanced metrology, as the quantum effects in quantum
many-body systems are becoming less important with the
growing dimension of the system due to the monogamy of
entanglement. In the above, we also assume that θ ≥ 0.
Otherwise, nonuniversal effects dominate the behavior of
susceptibility, and effectively θ ¼ 0. Now, the standard
finite-size scaling argument implies that for a finite system
at the critical point ∂λhĥi ∼ ðL−1=νÞ−θ ∼ Nθ=dν. Assuming
that the standard deviation s:d:ðĥÞ ∼ 1 leads to Eq. (18),
where we have used the hyperscaling relation.
Similarly, the susceptibility ∂λhĤ1i ∼ N1þθ=dν follows

from the scaling for ĥ (times factor of N; we additionally
assume that possible boundary effects are subleading). It is
then enough to estimate the behavior of the standard
deviation where we have to take into account the correlator
CðrÞ ∼ r−2½h� in the ground state at the critical point. The
leading behavior is obtained by integrating the correlation
function over the d-dimensional ball of radius L. If CðrÞ is
not vanishing faster than r−d, i.e., for d − 2½h� > 0, the
integral is dominated by the tail of the correlation function

and gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2

1i − hĤ1i2
q

∼ Ld−½h� ¼ N1−½h�=d. Note that

the standard deviation corresponds to a structure factor at
k ¼ 0. Combining the expected scaling of standard
deviation and susceptibility together with the hyperscaling
relation gives Eq. (17).
It is worth discussing the case of d − 2½h� ≤ 0 as well.

Here,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2

1i − hĤ1i2
q

∼ Ld=2 ¼ N1=2 and, consequently,

ΔδλðĤ1; λcÞ ∼ N−1=dνþ½h�=d−1=2. It does not saturate the
bound given by QFI and we only see the classical N−1=2

improvement over the single-site measurement in Eq. (18).
This is, for instance, the case in the often discussed
quantum Ising spin chain in the transverse field,
Ĥ ¼ −

P
N
n¼1 σ

x
nσ

x
nþ1 þ gσzn. It has a critical point for gc ¼

1 with the exponent z ¼ 1. When ĥn ¼ σzn corresponds to
the transverse field, the scaling dimension ½h� ¼ 1, ν ¼ 1,
and effectively θ ¼ 0. The error propagation formula for
Ĥ1 ¼

P
nσ

z
n was calculated in Ref. [43] and does not

saturate the scaling of G−1=2ðgcÞ ∼ N. It reads
ΔδλðĤ1; λcÞ ∼ ½N logðNÞ�−1=2, in agreement with the gen-
eral prediction above. We note that logarithmic corrections
to the scaling are typically expected in this case as θ ¼ 0.

C. Consistency with the rotational scenario

The above scalings of the error propagation formula
assume adiabatic dynamics and as such would be recovered
for long enough evolution times. At this point, we bring the
time explicitly into the picture. We show that
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Gðλ; tÞ1=2 ≤ t2ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2

1i − hĤ1i2
q

; ð19Þ

where the standard deviation is calculated in the initial
ground state. The factor ζ ¼ ð1=tδλÞ

R
t
0 dt

0δλðt0Þ follows
from the evolution profile in Eq. (13). Here, ζ ¼ 1=2.
Equation (19) represents the quantum speed limit adjusted
to our setting. For a recent review on quantum speed limits,
see, e.g., Ref. [68].
For a system at the critical point, as discussed in the

previous section, this leads to

Gðλc; tÞ1=2 ≲ t2ζN1−½h�=d: ð20Þ
We assume here that the correlations CðrÞ ∼ r−2½h� do not
vanish to quickly and d > 2½h�. Obviously, as ½h� ≥ 0,
Eq. (20) is within the general bound (valid for any initial
state) given by the Heisenberg limit. In this article—and
more generally in the ground-state fidelity approach—the
focus is on the ground state of the critical system and the
evolution generated by the Hamiltonian slightly perturbed
from it. As can be seen in Eq. (20), this allows one to go
beyond the shot-noise limit, Gðλ; tÞ ∼ tN1=2, as a result of
strong entanglement of such an initial state and algebrai-
cally vanishing CðrÞ.
For the system detuned from criticality, or when

d − 2½h� ≤ 0, the variance in Eq. (19) is not superextensive
and the classical scaling with N is recovered. This would
again be the case for the Ising model briefly discussed at the
end of the previous section. There, for ĥn ¼ σzn correspond-
ing to the transverse direction, CðrÞ ∼ r−2 at the critical
point.
It is worth comparing this with the rotational scenario, in

which case the suitable GHZ-type probe state is usually
considered. We would then have CðrÞ ∼ 1 and effectively
½h� ¼ 0, which saturate the scaling of the Heisenberg limit
(at least for short times). Interestingly, a critical spin
Hamiltonian for which the GHZ state is the ground state
can be supplied [69,70].
The scalings in Eqs. (11), (17), and (18) are reached for

the evolution times of the order of t̂ ∼ Nz=d, Eq. (15). They
comprise the ultimate limits of the criticality-based quan-
tum metrology, giving the title of this article a proper
meaning.
To derive Eq. (19) we straightforwardly generalized the

result of Refs. [13–15] to the time-dependent Hamiltonian,
with δλðt0Þ, e.g., as in Eq. (13). This leads to [71]

Gðλ; tÞ ¼ 4ζ2t2ðhΨjÔ2
1jΨi − hΨjÔ1jΨi2Þ ¼ 4ζ2t2varðÔ1Þ;

where Ô1 ¼ ð1=tδλζÞ
R
t
0 dt

0δλðt0ÞUðλ; t− t0Þ†Ĥ1Uðλ; t− t0Þ
is the time-averaged operator Ĥ1 rotated by Uðλ; tÞ ¼
e−itĤðλÞ and jΨi is the probe state. As variance is
convex, we have Gðλ; tÞ ≤ 4t2ζ2ð1=tδλζÞ

R
t
0 dt

0δλðt0Þ×
var½Uðλ; t − t0Þ†Ĥ1Uðλ; t − t0Þ�. In our setup we consider

the initial state which is the ground state of ĤðλÞ,
jΨi ¼ jΨðλÞi, which leads to Eq. (19).

IV. EXAMPLE: XXZ MODEL
IN THE EXTERNAL FIELD

The discussion in the previous section is general and
should hold for a broad class of systems exhibiting
continuous quantum critical points. In order to illustrate
those predictions, in this section we consider the ferro-
magnetic XXZ spin-1=2 spin chain in the external field.
The Hamiltonian reads

ĤðλÞ ¼ −
XN−1

n¼1

ðσxnσxnþ1 þ σynσ
y
nþ1 þ Jzσznσ

z
nþ1Þ þ λ

XN
n¼1

σxn;

ð21Þ

where we assume open boundary conditions. N ¼ L is the
number of spins (d ¼ 1) and Jz is an anisotropy parameter.
We consider changes induced by the magnetic field λ with
other parameters fixed. For jJzj ≤ 1, the system has a
critical point at λc ¼ 0with the critical exponent z ¼ 1. The
exponent ν was calculated in Ref. [72] and for fixed
−1 < Jz < 1 reads

ν ¼ 2

4 − arccosðJzÞ=π
; ð22Þ

which follows from the scaling dimension of the operator
σx, ½σx� ¼ arccosðJzÞ=2π. The desired condition of dν < 1
is satisfied for all values of jJzj < 1.
We note that fidelity susceptibility for a quite similar

XXZ model was studied, e.g., in Refs. [73–75] at both zero
and nonzero temperature. There, however, the external
magnetic field λ was not present and the shift of parameters
was induced by changing the value of Jz. This leads to a
qualitatively different type of behavior related with the
Berezinskii-Kosterlitz-Thouless critical point, and in that
case the system does not exhibit superextensive scaling of
the fidelity susceptibility.
At the risk of multiplying the notation, let us define the

following observables:

M̂x ≡ Ĥ1 ¼
XN
n¼1

σ̂xn; ð23Þ

which corresponds to the simultaneous measurement of
magnetization on all sites, and

m̂x ≡ ĥN=2 ¼ σ̂xN=2; ð24Þ

i.e., the on-site magnetization in the center of the system.
In Fig. 1, we calculate both QFI and the error propa-

gation formula for M̂x and m̂x in the adiabatic limit. We
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numerically verify that the scaling relations in Eqs. (11),
(17), and (18) indeed hold in our model. Most importantly,
it can be seen that the very natural operator M̂x practically
reproduces the apparent super-Heisenberg scaling allowed
by QFI. Moreover, while on-site magnetization in the bulk,
m̂x, grows slower with the system size then the ultimate
bound, it is still well in the apparent super-Heisenberg
regime. For instance, Eqs. (17), (18), and (22) imply
that for Jz ¼ 0, we expect ΔδλðM̂x; λcÞ ∼ N−7=4 and
Δδλðm̂x; λcÞ ∼ N−3=2. This is in excellent agreement with
the numerical results presented in Fig. 1(a). The exponents
for other values of the parameter Jz, both theoretical
predictions and the values fitted from the numerics, are
shown in Fig. 1(b).
The above results were obtained assuming that the

evolution is adiabatic and the time of the evolution might
have been, in principle, infinite. We present the limitations
imposed by finite evolution time in Fig. 2. To that end, the
system was initialized in the ground state at the critical
point λc ¼ 0. Subsequently, it was evolved to some
infinitesimal δλ according to Eq. (13), with τQ ¼ t=δλ set

by the total evolution time and δλ. We then use Eq. (1) to
calculate QFI as a discrete derivative corresponding to
Eq. (2) (for small enough δλ).
We rescale the evolution time with the characteristic

timescale in Eq. (15) and the QFI according to the adiabatic
(long-time) limit in Eq. (11). As can be seen in Fig. 2, the
rescaled data obtained for different system sizes collapse,
corroborating the scaling predictions. QFI saturates at its
adiabatic limit at the time given by Eq. (15). We obtain
similar collapse for other values of the anisotropy param-
eter Jz (not shown).
The bound on QFI given by Eq. (19) is plotted with the

dashed line. The bound is tight in the limit of short times, in
which case Gðλc; tÞ1=2 ∼ tN3=4 for Jz ¼ 0 plotted in Fig. 2.
This scaling is obviously in full agreement with the
Heisenberg limit. Employing the ground state of the critical
system as a probe allows one, however, to go beyond the
shot-noise limit.
Finally, in Fig. 2 we show how sensitivity allowed by M̂x

depends on time in our setup. As expected, for long enough
times, ΔδλðM̂x; λc; tÞ saturates at the adiabatic value, almost
saturating the ultimate QFI bound. It is, however, far from
being optimal for short times. In that case, for 1 ≪ t ≪
Nz=d we can expect [77]

ΔδλðĤ1; λc; tÞ ∼ t−θ=zνN−½h�=d: ð25Þ

(b)

(a)

FIG. 1. XXZ model in the external field, Eq. (21). (a) Scaling of
the error propagation formula for operators M̂x and m̂x, and the
ultimate bound given by inverse of QFI, as a function of the
system size. The error propagation formula for M̂x closely
follows the ultimate bound. Dashed lines indicate the slopes
corresponding to the expected scaling and serve as guidance for
the eye. The fits give GðλcÞ−1=2 ∼ N−1.74, ΔδλðM̂x; λcÞ ∼ N−1.73,
and Δδλðm̂x; λcÞ ∼ N−1.49, where the expected exponents are 1.75,
1.75, and 1.5, respectively. Here, Jz ¼ 0 and the fits were done
for N ¼ 128 − 256 [76]. (b) In the considered model the scaling
exponents in Eqs. (11), (17), and (18) depend continuously on the
value of parameter Jz, following Eq. (22). We compare those
predictions with numerical results obtained similarly as in (a).
The exponent associated with the standard Heisenberg limit is
marked with the dashed line for comparison. Its apparent
breaking is the main subject of this article.

FIG. 2. Time dependence of QFI at the critical point in the XXZ
model. Results from a small external magnetic field change as in
Eq. (13). The time is rescaled by the system size according to
Eq. (15). QFI (blue symbols) is rescaled corresponding to the
adiabatic limit given by Eq. (11). Here, for Jz ¼ 0, z=d ¼ 1 and
dν ¼ 4=7. For evolution times t ≫ Nz=d we recover the adiabatic
limit. For short times G1=2 ∼ tN1−½h�=d, which is marked with
dashed line. In our case, 1 − ½h�=d ¼ 3=4. We also show the time
dependence of the precision allowed by M̂x, as described by the
error propagation formula (red symbols). For long time, in the
adiabatic limit, it is almost optimal and nearly saturates QFI. For
short times it is suboptimal. In that case ΔδλðM̂x; λc; tÞ ∼
t−1.5N−0.25 is below the shot-noise limit as a function of N,
see Eq. (25), a result of strong fluctuation at the critical point.
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For Jz ¼ 0 in Fig. 2 this translates into ΔδλðM̂x; λc; tÞ∼
t−3=2N−1=4. Such scaling of an error propagation formula
in the limit of short times follows from the behavior
of susceptibility, i.e., the denominator in Eq. (3). The susce-
ptibility ∂λhĤ1i ∼ Ntθ=zν, which directly follows from the
universal scaling of dynamical susceptibility at the critical

point [56,57]. As the standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2

1i − hĤ1i2
q

∼
N1−½h�=d is set by the reference initial state, this gives
Eq. (25). This derivation demonstrates that in this limit
strong fluctuations—corresponding to slowly vanishing
correlation CðrÞ—limit the precision allowed by the oper-
ator Ĥ1, putting it below the shot-noise limit. Conversely, we
would be able to recover the shot-noise limit here for CðrÞ
vanishing faster then r−d (or away from the critical point).
All numerical results presented in this section were

obtained using the toolbox of matrix product states
(MPS) [78–80]. The time evolution is simulated using
the time-dependent variational principle [80], which
projects the Schrödinger equation onto the tangent space
of the manifold of the MPS. For our problem, we use the
fourth-order time-dependent Suzuki-Trotter decomposition
[81], necessary to split the unitary evolution operator onto
parts acting on matrices of MPS associated with individual
spins. We check that the results are converged in both the
discreet time step and MPS bond dimension.
The natural question is how to produce or emulate the

above physical system. Such a spin model may be possibly
realized for repulsively interacting ultracold bosons in
optical lattice potential in a quasi-one-dimensional geom-
etry resulting from tight confinement in the perpendicular
directions. The optical lattice potential can be precisely
controlled, in particular, it can be shaken laterally [82,83],
which allows us to change the system properties. By
modulating the intensity of the laser beams forming the
optical lattice, its depth can also be modulated periodically
[84]. Assuming that both processes occur with the same
frequency ω, a frequency that is much larger than the
tunneling frequency as well as a characteristic frequency
due to interactions, one can derive an effective time-
averaged Hamiltonian governing the long-time physics,
as reviewed, e.g., in Refs. [85–87]. Importantly, we assume
that this frequency (or rather its integer multiple, Nω) is
resonant with the s → p transition between the lowest s and
the excited p band. Such a resonance leads to additional
slowly varying terms that affect the effective Hamiltonian
obtained after time averaging.
Consider such a systemwith unitmean filling. Identifying

the proper ground-state manifold one may describe the
dynamics with an effective spin Hamiltonian. Depending on
N one may realize the effective XXZ Heisenberg model for
N ¼ 2, or the model that reduces to the desired XXZ
Heisenberg Hamiltonian in the magnetic field in Eq. (21) for
N ¼ 3. For the interested readers, we provide the explicit
derivation in Sec. VII, while we first show that analogical

universal behavior holds for instantaneous quench of the
Hamiltonian, i.e., the Loschmidt echo. We discuss as well
the possible effects due to an imperfect tuning and a finite
temperature.

V. LOSCHMIDT ECHO

In the previous sections, in order to be able to recover the
limit of adiabatic evolution, we were considering parameter λ
changing smoothly in time as in Eq. (13). For completeness
of the discussion we briefly comment that qualitatively
similar behavior is obtained in the other extreme limit,
namely, that of a sudden quench. Such a situation is closer
to the original spirit of the rotational scenario where the
Hamiltonian generating the evolution is usually time inde-
pendent. To that end, we are again going to initialize the
system in the ground state of the initial Hamiltonian, focusing
on the critical point as the most interesting regime, and
consider evolution generated by the Hamiltonian detuned by
δλ. Fidelity in Eq. (1) gives directly the so-called Loschmidt
echo, which received significant attention in the literature
[88], for instance, in the studies of decoherence. Most notably
for us, it was shown that the decay of the Loschmidt echo is
enhanced at the vicinity of the quantum critical point [89].
We illustrate the time dependence of the QFI calculated

in this setting, GLEðλ; tÞ, for our XXZ model at the critical

FIG. 3. Time dependence of QFI at the critical point in the XXZ
model, which results from a small instantaneous shift of the
external magnetic field, i.e., the Loschmidt echo. The time is
rescaled by the system size according to Eq. (15). The maximal
value which can be reached by QFI is bounded by the ground-
state fidelity susceptibility (dashed line). We rescale QFI (blue
lines) according to Eq. (11). Here, for Jz ¼ 0, z=d ¼ 1 and
dν ¼ 4=7. For short times, G1=2 ∼ tN1−½h�=d, marked with dashed
line, with 1 − ½h�=d ¼ 3=4 in our case. For evolution time
t ∼ Nz=d, QFI almost reaches it maximal value and later exhibits
periodic revivals characteristic for the Loschmidt echo. We also
show the time dependence of the precision allowed by M̂x (red
lines). For long time it is close to optimal, mimicking the behavior
of QFI. For short times it is suboptimal. In that case,
ΔδλðM̂x; λc; tÞ ∼ t−1.5N−0.25 is below the shot-noise limit as a
function of N; see Eq. (25).
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point with Jz ¼ 0 in Fig. 3. The scaling behavior is similar
to the smooth quench shown in Fig. 2. Indeed, the general
bound in Eq. (19) directly applies to this case, where now
δλðt0Þ ¼ δλ and ζ ¼ 1. For very short times the bound is
tight [90], which follows from the perturbation theory [91],
and at the critical point we again get G1=2

LE ðλc; tÞ ∼ tN1−½h�=d

[under the assumption that CðrÞ is not vanishing too
quickly] [92,93]. As we consider evolution of the initial
ground state by the Hamiltonian which is slightly detuned
from the initial one, it is easy to see that QFI cannot grow
unbounded and G1=2

LE ðλ; tÞ ≤ 2G1=2ðλÞ. Here, GðλÞ ¼
4χFðλÞ corresponds to ground-state fidelity. At the critical
point the bound is reached at the timescale given by
Eq. (15). In opposition to the smooth (adiabatic) scenario,
Loschmidt echo displays revivals visible as peaks in Fig. 3,
characteristic for the critical point [88]. The operator M̂x ≡
Ĥ1 again proves to offer a near optimal precision for long
times. For short times the derivations in the previous
section and Eq. (25) are expected to similarly hold, as
can indeed be seen in Fig. 3.

VI. ROBUSTNESS TO DETUNING FROM
CRITICALITY

To complete the study of scaling results for the error
propagation formula, it is quite natural to ask to what extent
such a scaling is relevant in real systems, for example, due
to a nonperfect tuning to the phase transition point and/or a
finite temperature of an experiment. Fortunately, general
scaling predictions addressing this issue can be provided
and verified by numerical simulations, which we show in
this section.
First, when λ is not tuned sufficiently close to the critical

point, the fidelity susceptibility depends linearly on N as
discussed around Eq. (12). The crossover is expected for
L=ξ ∼ Ljλ − λcjν ∼ 1, where ξ is the correlation length.
This means that in order to obtain an apparent super-
Heisenberg scaling, λ should be tuned to the critical point
within jλ − λcj ≪ L−1=ν. This is also the range of δλ which
can be observed in this case.
In the opposite limit of jλ − λcj ≫ L−1=ν, away from the

critical point, the error propagation formulas are expected
to scale as

ΔδλðĤ1; λÞ ∼ N−1=2jλ − λcj1−dν=2; ð26Þ

Δδλðĥ; λÞ ∼ N0jλ − λcj−θ: ð27Þ

The derivation is analogical as in Sec. III. The susceptibility
∂λhĥi ∼ jλ − λcj−θ, together with s:d:ðĥÞ ∼ 1, trivially gives
the second of the above relations. For the first one,
the standard scaling argument estimates the standard

deviation (or a static structure factor) as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2

1i − hĤ1i2
q

∼
N1=2ξd=2−½h� ∼ N1=2jλ − λcj−νd=2þν½h�, where the correlations

are approximately algebraic ∼r−2½h� up to a distance given
by the correlation length ξ. Similarly as in Sec. III, we
assume here that the algebraic part of the correlation
function is vanishing slower then r−d. Otherwise, long-
distance behavior contributes subleadingly to the standard
deviation. Finally, combining this with the susceptibility
∂λhĤ1i ∼ Njλ − λcj−θ, together with the hyperscaling rela-
tion for θ, gives Eq. (26).
In Fig. 4, we numerically verify those scaling predictions

for Jz ¼ 0 in the XXZ model in Eq. (21). While away from
the critical point the accuracy allowed by mx ≡ ĥ ¼ σxN=2

becomes significantly worse then the optimal one, the
accuracy of M̂x ≡ Ĥ1 ¼

P
nσ

x
n closely follows the ultimate

bound set by QFI. It is worth pointing out that even though
we have classical N−1=2 scaling in this limit, being in the
vicinity of the critical point significantly improves the
prefactor as, in general, for dν < 2, jλ − λcj1−dν=2 ≪ 1.
Similarly as discussed in the previous sections for the
critical point, this enhancement comes at a price of suitably
longer evolution times. Here, however, the characteristic
timescale t̂ ∼ ξz ∼ jλ − λcj−zν is independent of N.
Second, the pure state idealization discussed so far

cannot be fully realized due to the external noise, including
the thermal one. Here, for simplicity, we consider the
situation where the temperature T is finite but λ ¼ λc is
exactly tuned to the critical point. As the finite-size energy

FIG. 4. The crossover between different scaling limits when λ is
not tuned exactly to the critical point. Results correspond to the
adiabatic limit of the evolution. For given deviation λ − λc we
recover the apparent super-Heisenberg scaling when N is small
enough. When the system size is further increased and
N=ξd ∼ Njλ − λcjdν ≫ 1, GðλÞ−1=2 and ΔδλðM̂x; λÞ have a cross-
over to the classical N−1=2 dependence. On the other hand,
Δδλðm̂x; λÞ saturates and becomes xindependent on the system
size in that limit. Nevertheless, notice that even in this case the
prefactors in front of N−1=2ð0Þ are enhanced by the vicinity of the
critical point. ΔδλðM̂x; λÞ is closely following the optimal bound
set by QFI for all values of the parameters. Dashed lines indicate
various scalings and serve as guidance for the eye. Results for the
XXZ model in the external field in Eq. (21) with Jz ¼ 0.
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gap at the critical point scales as L−z, one expects an
apparent super-Heisenberg behavior to hold for T ≪ L−z.
In the opposite limit of T ≫ L−z we recover the classical

behavior. We expect

ΔδλðĤ1; λc; TÞ ∼ N−1=2Tð1−dν=2Þ=zν; ð28Þ

Δδλðĥ; λc; TÞ ∼ N0T−θ=zν: ð29Þ

To that end, in order to simplify the analysis, we assume
that there is no line of thermal phase transitions terminating
at the quantum critical point which could alter the behavior
and we employ simple scaling analysis; see, e.g., Ref. [58].
This is the case for our exemplary XXZ model and, more
broadly, for one-dimensional systems.
In this case, the susceptibility ∂λhĥi ∼ T−θ=zν leads to the

second of the above relations. With the correlation length
ξT ∼ T−1=z, the estimation of the standard deviation givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2

1i − hĤ1i2
q

∼ N1=2ξ−d=2þ½h�
T ∼ N1=2T−d=2zþ½h�=z, where

we again assume that the algebraic part of the correlation
function is vanishing slower than r−d. Similarly as in the
previous case, ∂λhĤ1i ∼ NT−θ=zν, together with the hyper-
scaling relation, results in Eq. (28).
We illustrate those scaling predictions in our model for

Jz ¼ 0 in Fig. 5. We employ MPS calculations, where the
finite-temperature density matrix ρ̂ðλÞ ∼ e−ĤðλÞ=T is
expressed as purification and obtained via simulation of
the finite system in the imaginary time [78–80]. We again
employ a time-dependent variational principle to that end.
Direct computation of fidelity in Eq. (1) and, in par-

ticular, finding the positive square root appearing there is
not feasible in the MPS representation. We then follow
Ref. [74], and in this case calculate the fidelity defined as
F̃½ρ̂ðλÞ;ρ̂ðλþδλÞ�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ρ̂ðλÞ1=2ρ̂ðλþδλÞ1=2�

p
. Importantly,

as discussed in Ref. [74] and derived in Ref. [54], if one
uses this definition to calculate fidelity susceptibility χ̃FðλÞ
[similarly as in Eq. (8)], then χ̃FðλÞ ≤ χFðλÞ ≤ 2χ̃FðλÞ. This
allows us to define G̃ðλ; TÞ ¼ 8χ̃FðλÞ, which sets an upper
bound on Fisher information, G̃ðλ; TÞ=2 < Gðλ; TÞ <
G̃ðλ; TÞ, and which we plot in Fig. 5. Those bounds cannot
be tightened. Exact diagonalization done for systems of few
spins suggests that Gðλ; TÞ ≈ G̃ðλ; TÞ=2 in the limit of
small enough N or T. This is also seen in Fig. 5 from
comparison to the data for T ¼ 0. In the opposite limit of
large enough N or T, Gðλ; TÞ ≈ G̃ðλ; TÞ.
In our exemplary XXZ model, z ¼ 1. Therefore, for

Jz ¼ 0 and for a large enough system size or temperature,
we expect the scalings ΔδλðĤ1; λc; TÞ ∼ N−1=2T1.25 and
Δδλðĥ; λc; TÞ ∼ N0T1.5, which follow from Eqs. (28)
and (29). By fitting the temperature dependence to the
numerical results for N ¼ 26, i.e., the largest size in Fig. 5,
and T ¼ 0.25 − 1, we obtain the exponents equal to 1.2 and
1.55, respectively. This is in reasonable agreement with the

scaling predictions, especially given the numerical limi-
tations. Simulations of the thermal states with MPS is
typically much more demanding than the case of pure
states, especially in the critical systems, which limits the
system sizes that can be simulated here.
It is also worth pointing out that, as can be seen in Fig. 5,

ΔδλðĤ1; λc; TÞ is again closely following the optimal bound
set by an inverse of the Fisher information. This is
consistent with the scaling of QFI which, similarly to
Eqs. (11) and (12), can be deduced from the scaling

FIG. 5. The crossover between different scaling limits when the
temperature T is nonzero. Results obtained by comparing states at
equilibrium. For given small T we recover the apparent super-
Heisenberg scaling when N is small enough, or alternatively, for
T ≪ N−z=d. In the opposite limit, when the system size is further
increased and NTd=z ≫ 1, G̃ðλc; TÞ−1=2 and ΔδλðM̂x; λc; TÞ have
a crossover to the classical N−1=2 dependence, however, with the
prefactors that are enhanced by the presence of a quantum critical
point at T ¼ 0. Δδλðm̂x; λ; TÞ saturates and becomes independent
on the system size in that limit. Similarly as in Fig. 4, we observe
that ΔδλðĤ1; λ; TÞ is closely following the optimal bound set by
QFI even at nonzero temperatures. G̃ðλc; TÞ−1=2 plotted here
is a lower bound of the (inverse of the square root of)
Fisher information, which lies between G̃ðλc; TÞ−1=2 and
ðG̃ðλc; TÞ=2Þ−1=2; see text for discussion. Solid lines show the
corresponding ultimate bound for T ¼ 0 from Fig. 1. Dashed
lines indicate various scalings and serve as guidance for the eye.
Results for Jz ¼ 0.
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dimension of the fidelity susceptibility [52,53] and standard
scaling argument. Those give χFðλc; TÞ ∼ NTðdν−2Þ=zν.
At the risk of stating the obvious, it is worth pointing out

that the scaling predictions in Eqs. (17) and (18) and in
Eqs. (28) and (29) correspond to a different order of taking
the limits of T → 0 and N → ∞ with the smooth crossover
when the relevant order is changed.
Finally, let us note that the finite-temperature approach

assumes implicitly a contract of the system with thermal
reservoir, i.e., with thermal, Markovian noise. Thus, the
behavior observed is just the example of the classical
scaling recovery for sufficiently large temperature studied
in detail recently for a more general case of an arbitrary
Markovian noise [22].

VII. COLD-ATOM IMPLEMENTATION

In this section, we discuss the possible implementation
of the ferromagnetic Heisenberg Hamiltonian Eq. (21). We
consider the system of ultracold bosons trapped in the
quasi-1D optical lattice subject to a periodic driving with
frequency fulfilling the resonance condition [94–97]

Nω ¼ ðEp − EsÞ þ d; ð30Þ
where d is a small detuning from the transition between
levels (bands) with energies Ep and Es. The dynamics of
the system is captured within the two-band Bose–Hubbard
model,

Ĥ0 ¼ −
X
hi;ji

ðJsŝ†i ŝj þ Jpp̂
†
i p̂jÞ þ

X
i

ðEsn̂si þEpn̂
p
i Þ þ Ĥint;

where Js and Jp are tunnelings in s and p bands,
respectively, and the on-site repulsive interactions are
accounted for by

Ĥint ¼
X
i

�
Uss

2
n̂si ðn̂si − 1Þ þUpp

2
n̂pi ðn̂pi − 1Þ þUsp

2
n̂si n̂

p
i

�
:

ð31Þ

The horizontal lattice shaking modifies the Hamiltonian
by the term

ĤhorðtÞ ¼ cosðωtÞK
X
i

iðn̂si þ n̂pi Þ

þ J cosðωtÞ
X
hi;ji

p̂†
i ŝj þW cosðωtÞ

X
i

p̂†
i ŝi þH:c:;

ð32Þ

where the constantsK, J,W depend on the amplitude of the
periodic driving. The modulation of the intensity of the
laser field forming the optical lattice causes the on-site
energies to oscillate with amplitudes Δs and Δp at
frequency ωv.

ĤverðtÞ ¼ cosðωvtÞ
X
i

ðΔsn̂si þ Δpn̂
p
i Þ: ð33Þ

We shall assume ωv ¼ ω in the following for simplicity.
The long-time dynamics of the system H0 þHhorðtÞ þ
HverðtÞ with N ¼ 3 is described by the effective time-
averaged Hamiltonian:

Ĥeff ¼
X
i

½Jþspðp̂†
i ŝiþ1 þ p̂iŝ

†
iþ1Þ þ J−spðp̂†

iþ1ŝi þ p̂iþ1ŝ
†
i Þ�

þ
X
hi;ji

ðJrens ŝ†i ŝj þ Jrenp p̂†
i p̂jÞ

þWsp

X
i

ðp̂†
i ŝi þ p̂iŝ

†
i Þ þ Ĥint: ð34Þ

The intraband tunneling amplitudes are effectively
Jrens;p ¼ J 0ðK=ωÞJs;p, where J 0ðxÞ is a zero-order Bessel
function [82,87,97]. Similarly, the shaking-induced inter-
band tunnelings are renormalized by factors dependent on
higher-order Bessel functions yielding J�sp and Wsp [98].
Finally, the energies of the s and p states differ only by the
detuning d. It is now assumed that K=ω ¼ x0 þ ϵ (with
jϵj ≪ x0), where x0 is the first zero of J 0, so that the
hopping within the s and p bands is strongly suppressed.
We are interested in the physics of excitations close to

the ground state of Eq. (34) with the unit filling in the
strongly interacting regime. The Hamiltonian Ĥeff , within
the second order of perturbation calculus, becomes
Ĥ ¼ −P̂gĤeffðP̂eĤeffP̂e − EÞ−1ĤeffP̂g, where P̂g projects
on the subspace of singly occupied states and P̂e ¼ 1 − P̂g.
The condition n̂si þ n̂pi ¼ 1, which holds in the low-energy
subspace, enables one to define a spin-1=2 degree of
freedom at each lattice site leading to Hamiltonian
Eq. (21) with λ ∝ Wsp ∝ ½ðΔp − ΔsÞ=ω�2 and parameter
Jz depending on the values of ϵ and d. Then the spin system
in Eq. (21) effectively describes the excitations in the Mott
space of the both laterally and vertically shaken optical
lattice.

VIII. CONCLUSIONS

Let us summarize our findings. We discuss two
approaches to quantum estimation of a parameter,
approaches that give seemingly different predictions.
This difference becomes apparent close to the critical
phase transition points. In the first approach, referred to
as a rotation scenario, the system is compared with its copy
rotated by the parameter-dependent dynamics. The ultimate
limit in this case is known as the Heisenberg limit. The
second approach relies on the overlap of ground states of
the system at slightly different values of the parameter.
Here one may often arrive at an apparent super-Heisenberg
scaling close to criticality.
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The main result of our work is to provide a unified
picture that links these two approaches. The necessary
ingredient is an observation that the physical comparison of
ground states at different parameter values can be opera-
tionally realized in an adiabatic evolution only. Under this
assumption we provide an argument that both approaches
yield essentially the same scaling, consistent with the
Heisenberg limit when this time factor is taken into
account. In effect, we obtain a straightforward generaliza-
tion of the argument of Refs. [11–15], valid for time-
independent systems, to an adiabatic evolution.
Importantly, our finding should hold for a broad class of

a quantum many-body systems (in one or more spacial
dimensions), with a particular focus on the second-order
quantum critical points. As a by-product we identify the
optimal observable that reveals the optimal scaling in the
adiabatic limit—it is identified as a part of the Hamiltonian
coupled to the parameter [i.e., H1 in Eq. (10)].
The general result has been confirmed in a detailed study

of the ferromagnetic Heisenberg Hamiltonian. On one side
it forms a “minimal” Hamiltonian that reveals an apparent
super-Heisenberg scaling with global magnetization as the
optimal observable. We show that this “super-Heisenberg”
behavior is quite robust with respect to detuning from the
critical point as well as temperature. Yet, as verified in our
numerical study, the time needed for measurement of the
overlap (i.e., performing the necessary time evolution)
leads to the recovery of the Heisenberg scaling in total
agreement with the rotation scenario.
The standard metrological approach claims that the

scaling may grow with the range of the interaction
involving the unknown parameter [10]; i.e., super-
Heisenberg behavior is in general possible if we replace
the one-body operators in Eq. (10) by multiple many-body
terms. However, that may reduce the possible gap in the
system and therefore affect the time needed to physically
realize the ground states the fidelity of which is supposed to
be measured. The viewpoint developed here is that any
super-Heisenberg claim must be accompanied by a careful
analysis not only of system size scaling but also the time
needed to prepare a given measurement.
Specifically, cold atomic systems offer direct measure-

ments of the fidelity susceptibility without necessity of the
unitary rotation by means of the Bragg spectroscopy. That
may allow one to break the “unitary rotation paradigm,”
although careful analysis of a specific experiment is
needed before giving the definite answer. In particular,
high-frequency resolution in Bragg spectroscopy and the
importance of low frequencies for fidelity susceptibility
necessitates a sufficiently long time of measurement. The
discussion of that point is beyond the scope of the present
paper. Similar remarks may be addressed to “swap meas-
urement” (see the Appendix, where this idea is developed)
that also does not involve “unitary rotation.” So, while we
have not provided all the answers, leaving some place for

future investigations, we believe that we are able to at least
understand the apparent discrepancy between the unitary
rotation approach and fidelity susceptibility behavior at
criticality.
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APPENDIX: UNIVERSAL QUADRATIC
ESTIMATOR FOR PURE STATES

Consider an arbitrary Hamiltonian ĤðλÞ and suppose
that we have significant reasons to believe that λ is critical,
but for technical reasons it is difficult to prove it. In
particular, there is no linear estimator known—like the two
observables discussed in the main text—that could provide
an accuracy close to the limit of Fisher information scaling.
The question is whether there is any way to design an
experiment that would allow one to circumvent the above
difficulty. To answer this affirmatively, we shall provide a
simple estimator, quadratic in terms of the interaction
involved, which, however, remains relatively simple and,
at least in principle, can be detected with the present state-
of-the-art technology of optical lattices.
Let us assume that apart from jΨðλþ δλÞi, experimen-

talist can also prepare the state at the critical point jΨðλÞi.
Now, it is known that F 2—the square of fidelity in Eq. (9)
between the two above states—can be detected using the
so-called universal quantum estimator [99,100], which is
measurable involving at most quadratic interaction among
elementary qubits corresponding to the series of indepen-
dent Hong-Ou-Mandel-type measurements [101]. The
main idea behind it is to measure the quantity Trðρ̂ σ̂Þ,
which is the mean value of the swap observable (defined
below) jointly measured on the product state ρ̂ ⊗ σ̂. The
first experiment of this type was performed a relatively long
time ago on two copies of the same state of the polarization-
entangled photon pairs, which aimed at estimation of
Rényi-2 entropy to show that violation of a suitable
inequality can serve as an entanglement detector [102].
Consider the swap operator Ŝ, which by definition acts as

Ŝjiijji ¼ jjijii on H ⊗ H. Alternatively, it can be repre-
sented as

Ŝ ¼ 1̂H ⊗ 1̂H − 2P̂asym
H⊗H; ðA1Þ
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where P̂asym is the projector on the antisymmetric subspace
of H ⊗ H. Then the obvious observable which measures
F 2 is

Âswap ¼ Ŝ⊗N ¼ 1̂H⊗N ⊗ 1̂H⊗N − 2P̂asym
H⊗N⊗H⊗N ðA2Þ

acting on the “quadratic” state jΦi ¼ jΨðλÞi ⊗ jΨðλþ δλÞi
composed of 2N elementary subsystems, where each Ŝ acts
on one element of, respectively, first and second pure states.
The above measurement corresponds to coupling each
elementary subsystem of the first chain of N spins with
the corresponding subsystem of the second chain and
performing the measurement by projecting it on the
antisymmetric subspace and then multiplying the results.
This gives the overall results of þ1 (−1) when the number
of successive projections is even (odd).
Now it is an elementary exercise to see that in this case

the error propagation formula of Eq. (3) takes the form

ΔδλðÂswap; λÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2χFðλÞ
p ¼

ffiffiffiffiffiffiffiffiffiffi
2

GðλÞ

s
; ðA3Þ

where we employ Eq. (8) and Â2
swap ¼ 1̂. The error

propagation formula in Eq. (A3) is then only by a factor
of 2 worse than the best possible linear estimator.
Therefore, we get a quadratic estimator that reproduces
—up to the constant factor—the scaling in N of the best
possible linear one. Note that applying the above procedure
to the original unitary perturbation scheme (like in, e.g.,
Refs. [9,27,43]) cannot surpass the Heisenberg limit, since
the whole scheme may be simulated as a measurement of
some new observable on the jΨðλÞi alone, which is known
to obey the limit as long as the part of the Hamiltonian with
unknown parameter λ is fully local; see Refs. [13,14,16].
Now the question is, can we employ the above approach

for the case of bosonic lattices considered in Sec. VII?
Fortunately, the answer is, at least in principle, affirmative.
Indeed, very recently it has been shown how to directly
perform the measurement of the swap observable on the
bosonic lattices [103–106] where the authors designed the
beam splitter type of interaction as a tunneling coupling
between two optical lattices, followed by the measurement
of the parity of the on-site occupation numbers. This
guarantees that the observable in Eq. (A2), which is crucial
for the experimental application of the formula Eq. (A3),
can be directly measured on the optical system with an
effective spin Hamiltonian having the critical parameter
introduced by lattice shaking.
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