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One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred
to as “quantum computational supremacy,” referring to the experimental realization of a quantum device
that computationally outperforms classical computers. In this work, we show that one can devise versatile
and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum
speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum
computation. In each of the schemes, an initial product state is prepared, potentially involving an element
of randomness as in disordered models, followed by a short-time evolution under a basic translationally
invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a
fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We
discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in
optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic
arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little
control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental
demonstration of a quantum speedup within reach in the near term.
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I. INTRODUCTION

Quantum devices promise to solve computational prob-
lems efficiently for which no classical efficient algorithm
exists. The anticipated device of a universal quantum
computer would solve problems for which no efficient
classical algorithm is known, such as integer factorization
[1] and simulating many-body Hamiltonian dynamics [2].
However, the experimental realization of such a machine
requires fault-tolerant protection of universal dynamics
against arbitrary errors [3–5][6,7]. However, because of a
prohibitive error-correction overheads, this requires qubit
numbers beyond reach in available quantum devices. This
does not mean, however, that the demonstration of a
computational quantum advantage is unfeasible with current
technology.
Indeed, in recent years, it has become a major milestone in

quantum information processing to identify and build a
simple (perhaps nonuniversal) quantum device that offers a

large (exponential or superpolynomial) computational
speedup compared to classical supercomputers, disregarding
the concrete practical applicability of the solved problem.The
demonstration of such an advantage based on solid complex-
ity-theoretic arguments is often referred to as “quantum
computational supremacy” [8]. This important near-term
goal still constitutes a significant challenge—as technological
advances seem to be required to achieve it—as well as
significant efforts in theoretical computer science, physics,
and the numerical study of quantum many-body systems:
after all, intermediate problems have to be identified with the
potential to act as vehicles in the demonstration of a quantum
advantage, in the presence of realistic errors.
There is already evidence that existing dynamical quan-

tum simulators [9,10] have the ability to outperform
classical supercomputers. Specifically, the experiments of
Refs. [11–14] using ultracold atoms strongly suggest such a
feature: They probe situations in which, for short times [11]
or in one spatial dimension [12,13], the system can be
classically simulated in a perfectly efficient fashion using
tensor network methods and can even be equipped with
rigorous error bounds. However, for long times [11] or in
higher spatial dimensions [12,13], such a classical simu-
lation is no longer feasible with state-of-the-art simulation
tools. Still, taking the role of devil’s advocate, one may
argue that this could be a consequence of a lack of
imagination, as there could—in principle—be a simple
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classical description capturing the observed phenomena.
Hence, a complexity-theoretic demonstration of a quantum
advantage of quantum simulators outperforming classical
machines is highly desirable [15]. Not all physically
meaningful quantum simulations can be underpinned by
such an argument, but it goes without saying that the field
of quantum simulation would be seriously challenged if
such a rigorous demonstration was out of reach.
Several settings for achieving a quantum speedup have

been proposed [16–20] based on quantum processes that
are classically hard to simulate probabilistically unless the
polynomial hierarchy (PH) collapses. These processes
remain difficult to simulate up to realistic (additive) errors,
assuming further plausible complexity-theoretic conjec-
tures. The proof techniques used build upon earlier pro-
posals giving rise to such a collapse [21,22]. However, at
the same time, they still come with substantial experimental
challenges.
This work constitutes a significant step towards identi-

fying physically realistic settings that show a quantum
speedup by laying out a versatile and feasible family of
architectures based on quenched, local, many-body dynam-
ics. We remain close to what one commonly conceives as a
dynamical quantum simulator [9–11,23], which is set up
to probe exciting physics of interacting quantum systems.
Indeed, it is our aim to remain as close as possible to
experimentally accessible or at least realistic prescriptions,
closely reminiscent of dynamical quantum simulators, while
at the same not compromising the rigorous complexity-
theoretic argument.
Our specific contributions are as follows. We focus on

schemes in which random initial states are prepared on the
2D square lattices of suitable periodicity, followed by
unitary constant-time dynamics following a quench to a
local nearest-neighbor (NN), translation-invariant (TI)
Hamiltonian. These are prescriptions that are close to those
that can be routinely implemented with cold atoms in
optical lattices [9,24–26]. Since evolution time is short,
decoherence will be comparably small. In a last step, all
qubits are measured in a fixed identical basis, producing an
outcome distribution that is hard to classically sample from
within constant l1-norm error, requiring no postselection.
Technically, our results implement sampling over new
families of NNTI 2-local constant-depth [21] IQP circuits
[17,22,27] (IQP circuits standing for instantaneous quan-
tum polynomial time circuits, instances of commuting
quantum circuits). We build upon and develop a type of
setting [28] in which resource states for measurement-
based quantum computation are prepared (MBQC) [29]
but subsequently nonadaptively measured. We lay out the
complexity-theoretic assumptions made, detail how they
are analogous to those in Refs. [16–20], and present results
on anticoncentration.
By doing so, we arrive at surprisingly flexible and simple

NNTI quantum simulation schemes on square lattices,
requiring different kinds of translational invariance in the

preparation. Interestingly, and possibly counterintuitively,
our schemes share the feature that the final state before the
readout step can be efficiently and rigorously certified in its
correctness. This is further achieved via simple protocols
that involve on-site measurements and a number of samples
of the resource state that scales quadratically in the system
size. The possibility of certification is unique to our
approach. In fact, from the quadratically many samples
of the prepared state, one can directly and rigorously infer
about the very quantity that is used in the complexity-
theoretic argument. We believe that the possibility of such
certification is crucial when it comes to unambiguously
arguing that a quantum device has the potential to show a
true quantum speedup.
Based on our analysis, we predict that short-time certifi-

able quantum-simulation experiments on as little as 50 × 50
qubit square lattices should be intractable for state-of-the-art
classical computers [18,30]. It is important to stress that this
assessment includes the rigorous certification part, and no
hidden or unknown costs have to be added to this. Our
proposed experiments are particularly suited to qubits
arranged in two-dimensional lattices, e.g., cold atoms in
optical lattices [9,24–26] with qubits encoded in hyperfine
levels of atoms. When assessing feasible quantum devices,
it is crucial to emphasize that system sizes of the kind
discussed here are not larger but generally smaller than what
is feasible in present-day architectures [9,11,13,26].

II. BASIC SETUP OF THE QUANTUM
SIMULATION SCHEMES

We present a new family of simple physical architectures
that cannot be efficiently simulated by classical computers
with strong evidence (cf. Theorem 1 below). All of them
share the basic feature that they are based on the constant-
time evolution (quench) of a NNTI Hamiltonian on a
square lattice. Each architecture involves three steps:
Q1 Preparations. Arrange N ≔ μmn qubits side by side

on an n-row, m-column square lattice L, with
vertices V and edges E, initialized on a product state

jψβi¼ ⊗
N

i¼1
ðj0iþeiβi j1iÞ; β∈f0;θgN; ð1Þ

for fixed θ ∈ fðπ=4Þ; ðπ=8Þg, which is chosen uni-
formly or randomly with probability pβ (e.g., as a
ground state of a disordered model). We consider
standard square primitive cells. In one scheme, we
allow each vertex to be equipped with an additional
qubit, named the “dangling bond qubit.” For this
scheme, μ ¼ 2; otherwise, μ ¼ 1.

Q2 Couplings. Let the system evolve for constant time
τ ¼ 1 under the effect of a NNTI Ising Hamiltonian

H ≔
X

ði;jÞ∈E
Ji;jZiZj −

X
i∈V

hiZi: ð2Þ
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This amounts to what is usually referred to as a
quench. Local fields fhigi and couplings fJi;jgi;j are
set to implement a unitary U ≔ eiH, giving rise to a
final ensemble Ψ ≔ fpβ; jΨβigβ, jΨβi ≔ Ujψβi.

Q3 Measurement. Measure primitive-cell qubits on the
X basis and (if present) dangling-bond qubits on
the Z basis. Since the latter can be traded for a
measurement in the X basis by a uniform basis
rotation, one can equally well measure all qubits in
the same basis.

As we will discuss later, all individual steps have been
realized with present technology. Note also that Q2
amounts to a constant-depth quantum circuit [31].

A. Physical desiderata and concrete schemes

Before we present the concrete schemes, let us lay out
some desiderata of “feasibility in a physical setting” as
motivated by a cold-atom setup. Our schemes are con-
structed along the lines of these desiderata. We require the
implementation of each step Q1–Q3 to be as simple as
possible. For preparations, couplings, and measurements,
we desire the periodicity, as measured by the 2D periods
ðkx; kyÞ in the xy axes of the TI symmetry, to be small.
Coupling strengths should further not scale with the system
size and lie within feasible regimes. Last, we want the final
measurement to be translationally invariant.
We now present three concrete quantum architectures

of the form Q1–Q3 that live up to the above desiderata.
We label them Q1–Q3 and illustrate them in Fig. 1:

I A disordered (DO) product state is prepared on a
squared lattice, followed by a quench with an Ising
Hamiltonian with couplings Ji;j ¼ hi ¼ π=4—
which implements controlled-Z (CZ) gates on
edges—and a final measurement in the X basis.

II The initial state is TI with period 1 in one lattice
direction and uniformly random in the other
(TIð1;∞Þ); couplings and measurements are picked
as in I.

III Qubits are prepared on a dangling-bond square
lattice. The initial state is TI with period 1 in all

directions (TIð1;1Þ). We pick Ji;j, hi as in I and II on
bright edges and Ji;j ¼ hi ¼ π=16 on dark ones—
the latter implement controlled-e−iπ=8Z (CT) gates on
dangling bonds. Measurements are in the Z basis for
dangling qubits and elsewhere in the X basis.

(See Appendix A for full Hamiltonian specifications.) The
resources needed in each architecture are summarized in
Table I. It is worth noting that, in all architectures I–III,
the state prepared after Q2 is a resource for postselected
measurement-based quantum computation postselecting
w.r.t. the measurements in Q3 (Sec. VI B) but as such
does not amount to universal quantum computation. In fact,
architectures I–III require neither adaptive measurements
(which are key in MBQC [29]) nor physical postselection:
Our result states that if three plausible complexity-theoretic
conjectures hold, a single-shot readout cannot be classically
simulated.

III. MAIN RESULT

We now note that, while the above three architectures
I–III are physically feasible, the output distributions of
measurements cannot be efficiently classically simulated
on classical computers, based on plausible assumptions and
standard complexity-theoretic arguments.
Theorem 1 (Hardness of classical simulation) If

Conjectures 1–3 below are true, then a classical computer
cannot sample from the outcome distribution of any
architecture I–III up to error 1=22 in l1 norm in time
O(polyðn;mÞ).
As in previous works [16,17,20–22,32,33], Theorem 1

relies on plausible complexity-theoretic conjectures. The
first, originally adopted in Ref. [21], is a widely believed
statement about the structure of an infinite tower of
complexity classes known as “the polynomial hierarchy”
(PH), the levels of which recursively endow the classes P,
NP, and coNP with oracles to previous levels.
Conjecture 1 (Polynomial hierarchy) The polynomial

hierarchy is infinite.
The claim generalizes the familiar P ≠ NP conjecture in

that P ¼ NP would imply a complete collapse of PH to its
zeroth level. Furthermore, if two levels k, kþ 1 coincide,
then all classes above level k collapse to it. The available
evidence for P ≠ NP makes Conjecture 1 plausible, for it
would be surprising to find a collapse of PH to some level k
but not a full one [34] (cf. Ref. [35] for further discussion).
Similarly to the Riemann hypothesis in number theory,
many theorems in complexity theory have been proven
relative to Conjecture 1, probably most notably the Karp-
Lipton theorem NP ⊈ P=poly [36].
We highlight that, assuming Conjecture 1 only, a

classical computer would still not be able to sample from
our experiments either exactly or within any constant
relative error (cf. Sec. VI D). However, such a level of
accuracy is physically unrealistic because it cannot be

FIG. 1. Architectures I–III. Colors illustrate the rotation angle
of the initial state (1): βi ¼ 0 (blue), βi ¼ π=4 (yellow), and βi ¼
π=8 (crimson). Solid lines between qubits represent Ising-type
interactions (2) with coupling constants Ji;j ¼ π=4 (gray) and
Ji;j ¼ π=8 (black). X and Z label the basis in which the respective
qubits are to be measured.
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achieved by a quantum computer. A goal of this work is to
understand how unlikely it is for architectures I–III to be
classically intractable under realistic errors.
Our second conjecture, adopted from Ref. [17], is a qubit

analog of the “permanent-of-Gaussians” conjecture [16]. It
states that partition functions of (unstructured) random
Ising models should be equally difficult to approximate
in average- and worst-case scenarios. Now, let ða; bÞ ≔
ða1;…; aNX

; b1;…; bNZ
Þ be the outcomes of the X and Z

measurements in our architectures, with bi ¼ 0 for I and II.
In Appendix B, we show that

probða; bjβÞ ¼ jha; bjUjψβij2 ¼
jZ½πa;ðπ=4Þbþβ�j2
2NXþðNZ=2Þ ; ð3Þ

where Zðα;ϑÞ ≔ trðeiHðα;ϑÞ Þ is the partition function of a
random Ising model on an n ×m square lattice Lsq:

Hðα;βÞ ≔
X

ði;jÞ∈Esq

π

4
ZiZj −

X
i∈Vsq

hðα;ϑÞi Zi;

hðα;ϑÞi ≔ hi −
�
αi þ ϑi

2

�
; αi ∈ f0; πg; ϑi ∈ f0; θg;

ð4Þ

where θ ∈ fðπ=4Þ; ðπ=8Þg is chosen as in step Q1 and α
(resp. ϑ) is random and DO (resp. either DO or TIð1;∞Þ)
distributed.
Conjecture 2 [Average-case complexity] For random

Ising models as in Eq. (4), approximating jZðα;βÞj2 up to
relative error 1

4
þ oð1Þ for any 0.3 fraction of the field

configurations is as hard as in the worst-case scenario.
We complement Conjecture 2 with the following lemma.
Lemma 2 (#P-hardness). Let Hðα;βÞ be the Ising

model (4) on the n ×m square lattice with either (i) DO-
distributed ϑ and θ ∈ f0; ðπ=4Þg or (ii) TIð1;∞Þ-distributed ϑ
and θ ∈ f0; ðπ=8Þg. Then, for m ∈ Oðn2Þ, approximating
jZðα;βÞj2 with relative error 1

4
þ oð1Þ is #P-hard.

Thus, accepting Conjecture 2 implies that approximating
jZðα;βÞj2 for these models is as hard, on average, as any
problem in #P [37]. The proof (Sec. VI C) applies MBQC
methods [38] to show that I–III are computationally
equivalent to an encoded n-qubit 1D nearest-neighbor
circuit comprising random gates of the form

�Yn−1
i¼1

CZi;iþ1

��Yn
i¼1

Zci
i e

−iθdiZiHi

�
; ci;di∈f0;1g; ð5Þ

where ci (resp. di) is DO (resp. DO-or- TIð1;∞Þ) distrib-
uted and H is the Hadamard gate. Postselecting such
circuits, we can implement two known universal schemes
of quantum computation [39,40]. We then exploit the fact
that universal quantum-circuit amplitudes are #P-hard to
approximate. As a remark, we discuss that the bound
m ∈ Oðn2Þ in Lemma 2 might not be optimal. In fact,
we believe the result should still hold for m ∈ OðnÞ
(possibly for a different constant error) based on two
pieces of evidence.

(i) On the one hand, our anticoncentration numerics
(Appendix C) indicate that OðnÞ-depth universal
random circuits of gates of form (5)—whose output
probabilities are in on-to-one correspondence via
Eq. (6) with the instances of jZðα;βÞj2—are Porter-
Thomas distributed: The latter is a signature of
quantum chaos and of our quantum circuits being
approximately Haar random [18,41–45]. Hence, our
numerics suggest that our n × n-qubit lattices effi-
ciently encode chaotic, approximately Haar-random,
n-qubit unitaries.

(ii) On the other hand, we analytically show that #P-
hardness arises for m ∈ OðnÞ and slightly different
choices of input states (resp. dangling bonds) in
architectures I and II (resp. III) (cf. Appendix D).

Last, we claim that random circuits of gates of the form
(5) anticoncentrate.
Conjecture 3 (Anticoncentration). Let C be an n-qubit

OðnÞ-depth random circuit of gates of the form (5); then,

TABLE I. Resource requirements of our hard-to-simulate quantum architectures. Architectures that employ
simpler (more ordered) initial states require lattices of higher periodicity and finer controlled rotations. The degree
of symmetry of the preparation, evolution, and measurement steps is quantified by the 2D periods indicated by
vector subscripts ða; bÞ. We compare our results to the simplest, previously known, quantum simulation architecture
on a planar graph showing a quantum speedup. The underlying complexity-theoretic assumptions needed for these
speedups are compared in Sec. III. Above, Xθ ≔ e−iðθ=2ÞZXeiðθ=2ÞZ.

Scheme Geometry Preparations Couplings Measurements

I Square lattice DO fπ=4gð1;1Þ fXgð1;1Þ
II Square lattice TIð1;∞Þ fπ=4gð1;1Þ fXgð1;1Þ
III Dangling-bond square lattice TIð1;1Þ fðπ=4Þ; ðπ=16Þgð ffiffi2p

;
ffiffi
2

p Þ fX; Zgð ffiffi2p
;
ffiffi
2

p Þ
Previous work

Reference [19] Seven-fold brickwork graph TIð1;1Þ fπ=4gð56;2Þ fX; X�ðπ=4Þ; X�ðπ=8Þgð7;1Þ
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probx

�
jhxjCj0i⊗nj2 ≥ 1

2n

�
≥
1

e
ð6Þ

for a uniformly random choice of x ¼ ðx1;…; xnÞ.
In Sec. VI D, we show that Eq. (6) is a sufficient

condition for the output distribution of architectures I–III
to display anticoncentration. Analogous numerically sup-
ported conjectures have been made in Refs. [16,18,46].
Here, we ran exact simulations of random circuits with up
to 20 logical qubits to test Conjecture 3 (Appendix C); we
observed, first, that the anticoncentration ratio of Eq. (6)
quickly converges to 1=e with the system size and, second,
that measurement outcomes are Porter-Thomas [41] (i.e.,
exponentially) distributed, which is a signature of chaotic
Haar-random unitary processes [18,42–45].
Previously, Refs. [17,20,47] argued that anticoncentra-

tion of measurement outcomes on an n × n lattice should
require ΩðnÞ physical depth on 2D NN layouts in order not
to induce a violation of the counting exponential time
hypothesis [48,49]. This contrasts with the constant-depth
nature of our proposal. To clarify this discrepancy, we note
that our numerical evidence for anticoncentration is for
logical n-qubit 1D circuits (5) of depthOðnÞ (Fig. 6), which
implies anticoncentration of the corresponding constant-
depth evolution on a lattice of size n ×OðnÞ. Because this
encoding introduces a linear overhead factor OðnÞ, there is
no contradiction with Refs. [20,47]. More critically, the
observed signatures of anticoncentration rule out a potential
efficient classical simulation of our schemes via sparse-
sampling methods [20,50].
We end this section with a remark: Closest to our

work is the approach of Ref. [19], which is also a NNTI
nonadaptive MBQC proposal, albeit with larger resource
requirements (see Table I for a comparison).
What is more, it requires a stronger hardness assumption

with regards to the required level of approximation in
that it introduces a variation of Conjecture 2 with a less-
natural inverse-exponential additive error (cf. Appendix F).
Furthermore, Refs. [18,20,46] gave non-TI schemes based
on time-dependent NN random circuits acting on square
lattices: The latter approaches require less qubits but also
circuits of polynomial depth. In our approach and in that of
Ref. [19], circuit depth is traded with ancillas and kept
constant, and efficient certification protocols also exist and
can be used to determine if the experiment has actually
worked, as discussed below.

IV. EFFICIENT CERTIFICATION
OF FINAL RESOURCE STATES

It is key to all schemes proposed that the correctness
of the final resource-state preparation in the quantum
simulation can be efficiently and rigorously certified.
Since the prepared state is the ground state of a gapped
and frustration-free parent Hamiltonian Hparent ¼

P
ihi,

Ref. [51] gives a scheme—involving local measurements

only—that certifies the closeness of the prepared state ρ to
the anticipated state jΨβihΨβj immediately before meas-
urement in terms of an upper bound on the trace distance
∥jΨβihΨβj − ρ∥1 [51] (see also Ref. [52]). This directly
yields an upper bound on the l1-norm distance between the
respective measurement outcome distributions.
The key idea of the protocol of Ref. [51] is to estimate

the energy Eρ ¼ tr½ρHparent�. This yields a fidelity witness
Fðρ; jΨβihΨβjÞ ≥ 1 − Eρ=Δ, where Δ is the gap of Hparent.
This can be done, for example, by measuring the local
Hamiltonian terms hi, which are five- (six-) body observ-
ables for architectures I and II (III). Reference [51] showed
that this approach requires OðN2 logNÞ samples of the
state preparation ρ to estimate a single term hhii with
polynomial accuracy. Hence, the full certification protocol
requires O(N3 logðNÞ) independent preparations of ρ and
five- (six-) body measurements. Though this scaling is
efficient, its supra-cubic time scaling and the complexity
of the local measurements could render it impractical for
near-term experiments with thousands of atoms.
We now introduce three optimizations to the protocol of

Ref. [51], analyzed in Appendix E (Lemmas 8–12). First,
for any nondegenerate gapped local Hamiltonian with
known ground-state energy E0 ∈ Oð1Þ and known gapΔ ∈
Ωð1Þ (but not necessarily frustration free), we show that the
sample complexity of the protocol can be reduced toOðN2Þ
by exploiting parallel measurement sequences of commut-
ing Hamiltonian terms. Second, we show how to implement
this more resource-economical protocol, using only on-site
measurements, by expanding the latter terms in a local
product basis. Third, we introduce a few setting-dependent
optimizations for the architectures I–III (Lemma 10),
tailored to their underlying square lattice geometry, the
explicit tensor product structure of the parent Hamiltonian
of their premeasurement states (Appendix E 1), and their
translation-invariant symmetry. We emphasize that, as in
the sampling measurement step Q3 of our architectures,
the optimized certification protocol relies on on-site mea-
surements only.
In the three aforementioned cases (Appendix E), the

certification measurement pattern inherits the initial
symmetry of the preparation step (Table I), i.e., DO for
architecture I, TIð1;∞Þ for architecture II, and TIð ffiffi2p

;
ffiffi
2

p Þ for
architecture III. For architectures I and II, our setting
resembles a certification protocol for preparing a family
of hypergraph states given in Ref. [53], though states and
measurements therein are asymmetric.
The above certification measurement is a slightly more

difficult prescription than the experiments as such, yet it is
as simple as one could hope since we need to measure
additional albeit single-qubit bases. However, it is key to
see that the correctness of the final-state preparation of an
experiment can be certified even in the absence of a known
classical algorithm for sampling its output distribution.
This is also in contrast to other similar schemes, where no
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efficient rigorous scheme for certification of the final state
before measurement is known [16–18,20,46].
Note that the certification protocol of Ref. [51] is stated

in terms of noise-free measurements. Nevertheless, for
certain noise models, it can be shown that rigorous
certification is still possible [19]. Moreover, it is not an
unreasonable assumption that local measurements can be
benchmarked to a very high precision. Most importantly,
the protocol readily accepts imperfect measurements: The
imperfect measurements can be seen as perfect measure-
ments, preceded by a quantum channel reflecting the noise.
This quantum-channel noise can equally well be seen as
acting on the quantum state, reducing the trace-norm
closeness to the anticipated state. Hence, certifying ϵ
closeness of the state preparation under the assumption
of ideal measurements is equivalent to certifying ϵ0 < ϵ
closeness of the state preparation using measurements
preceded by a noise channel with ⋄ norm at most ϵ − ϵ0.
Setting up a detection scheme living up to the required error
bounds (that scales inversely with the system size for each
on-site measurement) is demanding but not unrealistic.
Last, we highlight that the certifiability of the final-state

preparation is rooted in the fact that the states prepared are
ground states of gapped local Hamiltonian models. At the
same time, they are injective projected entangled pair states
(PEPS) of constant bond dimension [54,55]. The protocols
discussed here can hence be seen as PEPS sampling
protocols that generate samples from local measurements
on PEPS.
Certification protocol.—Let us now outline the precise

certification protocol (analyzed in Appendix E) including
the required quantum measurements and the postpro-
cessing of the measurement outcomes. We do so in three
steps: First, we find the parent Hamiltonians for state
preparations jΨβi in architectures I–III. Second, we
show how on-site measurements are sufficient to obtain
a rigorous certificate. Finally, we comment on the reduced
sampling complexity OðN2Þ of the protocol. We refer the
reader to Lemmas 8–12, Appendix E, for proofs of the
results described below.
Observing that the resource states jΨβi are stabilizer

states, all we need to do is find the appropriate stabilizers.
The sum of the stabilizers is then a parent Hamiltonian
of jΨβi. For architectures I and II, this yields
(cf. Appendix E 1)

HI;II ¼ −
X
i∈V

�
Xβi;i

Y
j∶ði;jÞ∈E

Zj

�
; ð7Þ

where Xβi;i ¼ e−iðβi=2ÞZXieiðβi=2ÞZ is a rotated Pauli-X oper-
ator acting on site i and βi is distributed as described in Q1.
Hence, the Hamiltonian consists of N terms that are 5-local
except at the boundary of the lattice, where their locality is
reduced to 4- or 3-local. In the specific case of architecture

III, a dangling-bond qubit is attached to each qubit via a CT
interaction. This yields a two-body term that replaces the
Xβi;i term in Eq. (7) (see Appendix E 1).
The stabilizers hi ¼ Xβi;i

Q
j∶ði;jÞ∈EZj in architectures I

and II can be measured using on-site measurements in a
demolition fashion, by first measuring their tensor compo-
nents and then multiplying their outcomes using classical
postprocessing. (This procedure is reminiscent of the
syndrome measurement of subsystem codes [56], and its
correctness can easily be seen by decomposing each
stabilizer into an eigenbasis. These act on distinct sites
and can therefore be measured simultaneously. For the
specific case of architecture III, the local Hamiltonian terms
have on-site Z factors as well as a two-body component
CTXCT†. However, the purpose of measuring these
stabilizers in the certification protocol of Ref. [51] (see
Appendix E) is to estimate the average energy of the
relevant parent Hamiltonian. To this end, we can, without
loss of generality (w.l.o.g.), expand CTXCT† as a sum of
product operators [Eq. (E3)], measure the on-site factors
appearing in this sum, and infer the target expected value
using efficient classical postprocessing. Hence, for our
three architectures, on-site measurements suffice.
Finally, the sampling complexity can be reduced from

supra-cubic to quadratic OðN2Þ by simultaneously meas-
uring commuting stabilizers (directly or by reducing them
to on-site measurements as outlined above) on the same
state preparation, following a specific pattern (Fig. 2).
Precisely, we can define a lattice 2-coloring V ¼ Vodd ∪
Veven and simultaneously measure Z on all sites i ∈ Vodd
and Xβj;j on every site j ∈ Veven (or vice versa). Since our
Hamiltonian is commuting, each measurement round
allows us to sample from the output distribution of Hodd ≔P

i∈Vodd
hi (Heven ≔

P
i∈Veven

hi), as shown in Fig. 2. Hence,
roughly N=2 terms of the form hi can now be measured in

FIG. 2. Certification protocol. We illustrate how our scheme
works for architecture I. Qubits with thick (thin) borders denote
odd (even) sites in Vodd (Veven). The figure illustrates a pattern
of on-site measurements for one execution of the certification
protocol that measures the energy of Hodd ¼

P
i∈Vodd

hi for the
configuration of initial states in Fig. 1. On-site measurements are
of type Z, X, and Xπ=4. Three Hamiltonian terms whose joint
measurement can be simulated from these single-qubit measure-
ments are singled out by the depicted dashed diamonds.
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parallel. A simple application of Hoeffding’s bound then
shows that we can estimate the expected energy of Hodd

(Heven) using OðN2; Þ samples. Our proof concludes by
noting that trðHρÞ ¼ trðHoddρÞ þ trðHevenρÞ.

V. CONCEIVABLE PHYSICAL ARCHITECTURES

We now discuss how the above assumptions are plau-
sible in several physical architectures close to what is
available with present technology. What we are considering
are large-scale quantum lattice architectures on square
lattices L with a quantum degree of freedom per lattice
site. On the level of physical implementation, the most
advanced family of such architectures and the most
plausible for the anticipated system sizes is that provided
by cold atoms in optical lattices [9]. In an optical lattice
architecture, internal degrees of freedom are available
with hyperfine levels. Also, the encoding in spatial
degrees of freedom within double wells is, in principle,
conceivable. Large-scale, translationally invariant, con-
trolled-Z interactions—precisely of the type required for
the preparation of cluster and graph states [38,57]—are
feasible via controlled collisions [25,58]. Actually, the
discussion of controlled collisions [58]—and hence the
theoretical underpinning of such quenched dynamics—
triggered work on cluster states and measurement-based
quantum computing and predates this development.
Other interactions to nearest neighbors are also conceiv-
able. Interactions such as spin-changing collisions for
87Rb atoms have been experimentally observed [59].
Controlled-T gates require a more sophisticated interaction
Hamiltonian. The dangling bonds seem realizable, making
use of optical superlattices [11,60]. Single sites—
specifically of the sampling type considered here—can
be addressed in optical lattice architectures via several
methods. In general, quantum-gas microscopes allow for
single-site resolved imaging [61,62], even though the type
of single-site addressing required here remains a significant
challenge. Optical superlattices [11,60] allow us to address
entire rows of sites in the same fashion. Sequences of rows
where every site is either empty or contains a fixed particle
number (following patterns as in Fig. 1 II) can already be
routinely prepared [63]. Disordered initial states can also be
prepared [12,14,64].
Other architectures are quite conceivable as well. This

includes, in particular, large arrays of semiconductor
quantum dots allowing for single-site addressing—a setting
that has already been employed to simulate the Mott-
Hubbard model in the atomic limit [65]—or polaritons or
exciton-polariton systems in arrays of microcavities [66]. In
this type of architecture, addressing entire rows is also
particularly feasible. Superconducting architectures also
promise to allow for large-scale array structures of the type
anticipated here [67–69]. Trapped ions can also serve as
feasible architectures [70]. None of the physical architec-
tures realizes all elements required to the necessary

precision, but at the same time, the prescriptions presented
here are comparably close to what can be done.

VI. PROOF OF HARDNESS RESULT

In this section, we prove Lemma 2 and Theorem 1, and
develop the main techniques of the paper. The section is
organized as follows:

(i) In Sec. VI A, we use MBQC techniques to develop
mappings that allow us to recast architectures I–III
as (computationally equivalent) MBQCs on 2D
cluster states (as introduced in Ref. [29]).

(ii) In Sec. VI B, we show that enhancing architectures
I–III with the ability (or an oracle) to postselect
the outcomes of random variables makes them as
powerful as a postselected universal quantum com-
puter (as defined in Ref. [72]).

(iii) In Sec. VI C, we prove Lemma 2 using earlier
findings and a new parallelization technique to
implement the 2-local “dense” IQP circuits of
Ref. [17] in linear depth on a 1D nearest
architecture.

(iv) In Sec. VI D, we give the proof of our main result,
Theorem 1. The proof makes use of Lemma 2 and
Stockmeyer’s Theorem [73]. The latter is applied in
an analogous way as in the boson-sampling and
IQP-circuit settings [16,17] to show that if an
efficient classical algorithm can approximately
sample from the output distribution of architectures
I–III, then an FBPPNP algorithm can approximate a
large fraction of the amplitudes in Eq. (3), if the
latter are also sufficiently anticoncentrated. By
Conjectures 2 and 3, the latter algorithm can solve
any problem in P#P, which contains PH via Toda’s
theorem [74]. This implies a collapse of the poly-
nomial hierarchy to its third level.

A. Mapping architectures I–III
to cluster state MBQCs

We show that any architecture I–III can be mapped via a
bijection to a computationally equivalent sequence of X-Y-
plane single-qubit measurements on the 2D cluster state
[29]. Below, T ≔ diagð1; eiπ=4Þ and

ffiffiffiffi
T

p
≔ diagð1; eiπ=8Þ.

First, note that (via teleportation) the effect of measuring a
dangling qubit (if present) is equivalent to generating a
uniformly random classical bit b ∈ f0; 1g and, sub-
sequently, implementing the gate Tb onto its neighbor;
we can thus replace all dangling-bond qubits by introduc-
ing a uniformly random measurement of X or X−ðπ=4Þ ¼
T†XT ∝ X − Y on every primitive qubit. Furthermore, we
can rewrite the input jψβi in Q1 as

jψβi ¼ ⊗
N

i¼1

ffiffiffiffi
T

p
kbi jþi⊗N; ð8Þ
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where jþi ∝ j0i þ j1i, k ∈ f1; 2g and b ¼ ðb1;…; bNÞ
is a random bit string defined via bi ≔ βi=θ, with β, θ
as in Q1. Since

ffiffiffiffi
T

p
gates in Eq. (8) commute with the

Hamiltonian (2) and their effect is unobserved by Z
measurements, they can be propagated out of the experi-
ment by measuring X−ðπ=8Þ ¼

ffiffiffiffi
T

p
bi†Xi

ffiffiffiffi
T

p
bi instead of X

on every primitive qubit i ∈ V. Combining these facts, we
obtain the following mappings:
(C1) Architectures I and III are computationally equiv-

alent to a quantum circuit that prepares a 2D cluster
state on their underlying primitive square lattice and
measures fX;X−ðπ=4Þg randomly on each vertex.

(C2) Architecture II is computationally equivalent to an
analogous circuit of random fX;X−π=8g single-qubit
measurements, which chooses the latter measure-
ments to be identical along the columns of the 2D
cluster state.

B. Universality of architectures I–III for postselected
measurement-based quantum computation

For each of our architectures I–III, we prove that the
ensemble fpβ; jΨβigβ is a universal resource for postse-
lected MBQCw.r.t. the measurements in step Q3. Precisely,
this means that if the ability to postselect the outcomes of
the experiment’s random variables (the qubit outcomes in
step Q3 and the random vector β) is provided as an oracle
[21,72], then it is possible to implement any poly-size
quantum circuit [75] with arbitrarily high fidelity in a
subregion of the lattice using (at most) polynomially
many qubits. Our proof is constructive and shows how
to simulate universal circuits of Cliffordþ T gates [76] via
postselection.
Below, we call a quantum circuit “1D homogeneous” if it

consists of 1D nearest-neighbor gates and all nontrivial
concurrent operations in a single time step are identi-
cal modulo a translation. The latter do not need to be
translation invariant, e.g., an arbitrary S-size 1D nearest-
neighbor circuit can be serialized to be 1D homogeneous in
depth OðSÞ. In Fig. 5, we give an example of an S-size IQP
circuit that can be implemented in depth Oð ffiffiffi

S
p Þ (by

bringing single-qubit gates to the end). The 1D homo-
geneous circuits, as defined here, can be regarded as
examples of quantum cellular automata [77].
Lemma 3 (Postselected universality) Let V be an

n-qubit D-depth 1D homogeneous circuit of Cliffordþ
T gates. Then, for any architecture I–III, it is possible to
prepare the rightmost primitive qubits of an OðnÞ×
OðDnÞ-qubit lattice on a state jψi ≔ ðVj0i⊗nÞj0i⊗r,
r ∈ OðnÞ, using postselection.
We highlight that the complexity of the simulation in

Lemma 3 scales with the depth of the input circuit (not the
size), allowing us to parallelize concurrent nearest-neighbor
gates. To prove this result, we assume basic knowledge of
MBQC on cluster states [29,38]. Additionally, we make use
of two technical lemmas.

Lemma 4 (Efficient preparation via MBQC) Let V be
an n-qubit D-depth 1D homogeneous Clifford+T circuit.
Then, the state vector jψi ≔ ðVj0i⊗nÞj0i⊗3n−2 can be
efficiently prepared exactly via a MBQC of single-qubit
fX;X�π=8g measurements on a ð4n − 2Þ ×OðDnÞ-qubit
2D cluster state, and even if measurements are constrained
to act “quasiperiodically” as follows: For every column,
each of its qubits is measured in either the X basis or in one
of the X�π=8 bases (where the sign can be picked freely on
distinct sites).
Lemma 5 (On-site efficient preparationviaMBQC)LetV

be an n-qubitD-depth 1D homogeneous Cliffordþ T circuit.
Then, the state vector jψi ¼ Vj0i⊗n can be efficiently
prepared exactly via a MBQC of single-qubit fX;X�π=4g
measurements on an n ×OðDnÞ-qubit 2D cluster state.
Lemma 4 is a MBQC implementation of a 1D quantum-

computation scheme given in Ref. [39]. Lemma 3 follows
from Lemma 3 in Ref. [40] by using the fact that
commuting-gate measurement patterns can be applied
simultaneously in MBQC.
Proof of Lemma 4.—We first show how to implement

a universal set of gates that can be converted to the
Cliffordþ T gate set. We begin by picking a translationally
invariant gate set with the desired property [39]�
E ≔

�YM−1

i¼1

CZi;iþ1

��YM
j¼1

Hi

�
; Yall ≔

YM
j¼1

Yi;

UAðαÞ ≔
YN
j¼1

e−iðα=2ÞAi ; where A ∈ fX; Zg
�
: ð9Þ

Above, gates act on a one-dimensional chain of M ≔
4n − 2; H is the Hadamard gate; CZi;iþ1 is the CZ gate on
qubits i, iþ 1; E is a global entangling gate; and EMþ1

implements a “mirror” permutation i → ī ≔ M þ 1 − i
of the qubits. The computation is encoded on n logical
qubits with physical positions ½i� ≔ 2i − 1, 1 ≤ i ≤ n. The
remaining qubits are kept in the state j0i. Reference [39]
shows how to implement generators for the Cliffordþ T
gate set using the following sequences of (9) operations:

(S1) fEMþ1−iYallEYallEi−1UZ½∓ ðπ=8Þ�g
fEMþ1−iYallEYallEi−1UZ½�ðπ=8Þ�g,

(S2) fEM−iYallEYallEiUX½∓ ðπ=8Þ�g
fEM−iYallEYallEiUX½�ðπ=8Þ�g,

(S3) fEM−2−½i�YallEYallE½i�þ1UX½∓ ðπ=8Þ�Eg
fEM−2−½i�YallEYallE½i�þ1UX½�ðπ=8Þ�Eg.

Sequence (S1) implements an e∓iðπ=8ÞZi gate; (S2), a
e∓iðπ=8ÞXi gate; and (S3), a logical e∓iðπ=8ÞX½i�X½iþ1� gate
[39]. We now show that any of the above gate sequences
can be implemented directly on a MBQC on a
ð4n − 2Þ ×OðnÞ-qubit 2D cluster state with quasiperiodic
fX;X�π=8g measurements. We make E (resp. nonentan-
gling unitaries), w.l.o.g., act on even steps (resp. odd ones)
by introducing identity gates when necessary. We now
reorder operations in the creation and measurement of the
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cluster state as indicated in Fig. 3: Therein, balls denote
qubits prepared in jþi, steps Fig. 3 (1) and Fig. 3 (2)
implement CZ gates for the preparation of the cluster state,
and Fig. 3 (3) implements a round of measurements.

In MBQC, Yall gates can be treated as by-product Pauli
operators and do not need to be enacted [38]. Furthermore,
performing a periodic measurement of X in Fig. 3 (3)
implements the E gate in (9). In turn, a quasiperiodic X�π=8

measurement, where observables’ signs are chosen adap-
tively to counteract random by-product operators, can be
used to implement E followed by a UZð�π=8Þ gate.
Similarly, we can implement EUXð−π=8Þ by delaying
the measurement to the next step and propagating a
UZð−π=8Þ backwards: This works because UZ and UX
never occur in subsequent odd steps in sequences (S1)-
(S2)-(S3). We thus have a MBQC simulation of the
translation-invariant computation in Ref. [39].
Last, we show that an n-qubit D-depth homogeneous

circuit of e∓iπZ½i�=8, e∓iπX½i�=8, e∓iπX½i�X½iþ1�=8 gates can be
implemented on a ð4n−2Þ×OðDnÞ-qubit cluster-state
MBQC using the above protocol. Here, we suggest that
measurement patterns on disjoint regions of a cluster-
state MBQC can be simultaneously applied for commuting
logical gates (hence, also concurrent ones): The latter
fact is easily verified in the MBQC’s logical-circuit
picture [38,78]. □

Proof of Lemma 5.—Lemma 3 in Ref. [40] shows that
performing an X�π=4 measurement on a boundary qubit of
an n × ðnþ 2Þ one can selectively implement any logical
gate of the form e∓iπZi=8, e∓iπXi=8, e∓iπZjXjþ1=8, e∓iπXjZjþ1=8,
1 ≤ i ≤ n, 1 ≤ j ≤ n − 1 on an n-qubit 1D chain. As in the
proof of Lemma 5, measurement patterns associated with
commuting gates can be implemented simultaneously. The
result of Ref. [40] thus yields an exact n × ðnþ 2Þ cluster-
state MBQC implementation of any circuit of the formYn

i¼1

e−i½ðπbiÞ=8�XiC
Yn
i¼1

e−i½ðπaiÞ=8�Zi ; bi; ai ∈ 0; 1

for any n-qubit 1D commuting circuit C of e−iðπ=8ÞZjXjþ1 ,
e−iðπ=8ÞXjZjþ1 gates. The proof follows the one of
Lemma 4. □

We now proof the main claim of this section.
Proof of Lemma 3.—Recall that our architectures can be

recast as a nonadaptive cluster-state MBQC via mappings

(C1) and (C2). Hence, it suffices to show how to prepare
jψi ¼ ðVj0i⊗nÞj0i⊗r exactly for some r ∈ OðnÞ using two
kinds of operations:
(D1) Postselected random fX;X−ðπ=4Þg measurements on

an ðnþ rÞ ×OðDnÞ-qubit cluster state.
(D2) Postselected fX;X−ðπ=8Þg measurements, chosen

identically (at random) in the vertical (horizontal)
direction of an ðnþ rÞ ×OðDnÞ-qubit cluster state.

Statement (D1) [resp. (D2)] covers the case for I and III
(resp. architecture II). To prove (D1) and (D2), we
show that if a MBQC scheme on a cluster state is universal
w.r.t. a family of X-Y-plane measurements fXθigi, Xθi ¼
e−iðθi=2ÞZXeiðθi=2ÞZ, then the reduced negative-angle sub-
family fX−jθijgi is universal for post-MBQC; in combina-
tion with Lemmas 4 and 5, the claims follow. Recall
that any nonfinal measurement in cluster-state MBQC
[29,38] produces a uniformly random outcome s ∈
f0; 1g [cf. Sec. VI C, Eq. (12) for an explicit formula],
whose effect in the logical circuit is to introduce a random
by-product Pauli operator Xs on its associated qubit line. If
not accounted for (e.g., by adapting the measurement basis)
and an Xθ is subsequently performed, the latter effectively
implements an Xð−1Þsθ measurement: This can be seen by
propagating Xs forward in the circuit using conjugation
relationships, and it is illustrated in Fig. 4. □

C. #P-hardness of approximating output
probabilities (proof of Lemma 2)

In this section, we prove Lemma 2. Our proof below
shows that the ability to approximate the given Ising
partition function can be used to approximate the output
probabilities of the “dense” 2-local long-range IQP circuits
of Ref. [17]. The proof further exploits a new technique
(Lemma 6) to implement Oðn2Þ-size long-range IQP
circuits in OðnÞ depth in a 1D nearest-neighbor architec-
ture, which is asymptotically optimal. We regard Lemma 6
of independent interest since the latter dense IQP circuits
were argued in Ref. [17] to exhibit a quantum speedup, but,
to the best of our knowledge, linear-depth 1D implemen-
tations were not previously known. On the other hand,
recently, it has been shown that a “sparse” subfamily of the

FIG. 3. Mapping the TI quantum computation scheme of
Ref. [39] to a cluster-state MBQC.

FIG. 4. (i) Measurement of Xθi , Xθj on an edge of a 1D cluster
state: The outcomes si, sj ∈ f0; 1g are uniformly random. (ii) The
associated logical circuit: The by-product operator Xsi can be
propagated forward in the circuit by substituting θj with ð−1Þs1θj.
The argument extends to the full cluster by induction, choosing
the first qubit to be measured in the X basis (this fixes the input of
the logical circuit and does not change its universality properties).
The 2D cluster-state case is analogous [29,38].
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latter IQP circuits can be implemented in depth Oðn log nÞ
in a 2D nearest-neighbor architecture [20].

1. A 1D linear-depth implementation
of dense IQP circuits

We first derive our intermediate result for IQP circuits.
For any positive n, we let C be any “dense” random n-qubit
IQP circuit whose gates are uniformly chosen from the set

feiθi;jXiXj ; eiθiXi∶ i; j ∈ f1;…; ng; ð10Þ

θi; θi;j ∈
�
πk
8
; k ¼ 0;…; 7

��
; ð11Þ

which contains arbitrary long-range interactions in a fully
connected architecture.
Lemma 6 (Dense IQP circuits) Dense n-qubit IQP

circuits of Eq. (10) gates can be implemented in ΘðnÞ
depth in a 1D nearest-neighbor architecture.
Proof.—It is easy to see that n2-size 2-local quantum

circuits require ΩðnÞ depth to be implemented. Our proof
gives a matching upper bound for the given IQP circuits.
Recall that IQP gates can be performed in any order (as

they commute). Hence, by reordering gates and redefining
the θi;j angles, any given IQP circuit C can be put in a
normal form C0 that contains at most one single-qubit gate
per qubit and one two-qubit gate per pair of qubits. Our
approach now is to introduce additional layers of nearest-
neighbor SWAP gates following layers of two-qubit gates
(Fig. 5). To illustrate the algorithm, we regard qubits as
“particles” moving up or down the line by the action of
the SWAP gates. At a given step t, we apply a two-qubit
IQP gate followed by a SWAP to all pairs of the form
ð2i − 1; 2iÞ for 1 ≤ i ≤ ⌊n=2⌋ when t is even [resp.
ð2i; 2iþ 1Þ for 1 ≤ i ≤ ⌊ðn − 1Þ=2⌊ when t is odd]. By
iterating this process n times, the qubit initially in the ith
position in the line (with arbitrary i) travels to the
n − iþ 1th position, meeting every other qubit exactly
one time along the way because of the intermediate value

theorem; each two-qubit gate of C0 is implemented in one
of these crossings. Furthermore, each qubit spends one step
without meeting any qubit when it reaches the line’s
boundary; at these points, single-qubit gates can be
implemented. □

2. Proof of Lemma 2

Below, we denote with Γ ≔ fβ ∈ f0; θgmn∶pβ ≠ 0g the
set of allowed configurations for β in step Q1. Let x ∈
f0; 1gn (resp. y ∈ f0; 1gN−n, N ¼ μmn) be the measure-
ment outcomes of the n rightmost primitive qubits (resp.
remaining ones) after step Q3, and let qðx; y; βÞ be the final
total probability of observing the values x, y, β.
As in Sec. VI B, it will be convenient to recast our

architectures as nonadaptive using mappings (C1) and
(C2). In this picture, the following identity readily follows
from standard properties of X-teleportation circuits [78,79]:

qðx; y; βÞ ¼ qðx; yjβÞpβ ¼ qðxjy; βÞ 1

2N−n
1

jΓj ;

for any x ∈ f0; 1gn; y ∈ f0; 1gN−n; β ∈ Γ: ð12Þ

Above, we used that pβ is uniformly supported over Γ (by
design) as well as qðyjβÞ ¼ 1=2N−n, which follows from
standard properties of X-teleportation circuits [78,79].
Note that probða; bjβÞ in Eq. (3) and qðx; yjβÞ as above
are identical probability distributions up to a relabeling
ðx; yÞ ¼ lða; bÞ of the random variables. Thus, if
~qðlða; bÞjβÞ approximates qðlða; bÞjβÞ up to relative error
1=4þ oð1Þ, then j ~Z½πa;ðπ=4Þbþβ�j2 ≔ ~qðlða; bÞjβÞ2NXþNZ=2

approximates jZ½πa;ðπ=4Þbþβ�j2 with the same error. Hence,
the proof reduces to showing that approximating qðx; yjβÞ
for architectures I–III is #P-hard for the given error and
m ∈ Oðn2Þ.
Next, recall that the output probabilities az ¼

jhz1;…; zkjCj0i⊗kj2 of arbitrary k-qubit dense IQP circuits
C as in Eq. (10) are #P-hard to approximate up to relative
error 1=4þ oð1Þ [80,81]. Via Lemmas 3 and 6, the latter
can further be implemented in our architectures using
lattices with n ×Oðn2Þ qubits for some n ≔ kþ r with
r ∈ OðkÞ; to apply Lemma 3, we can either decompose C
exactly as a 1D homogeneous Cliffordþ T circuit [82] or
use the gadgets in the proofs of Lemmas 4-5 to directly
implement the IQP gates. Now, let jψiy;β denote the
state vector of the n rightmost primitive qubits after
observing y, β. It follows from our discussion that jψiy;β ¼
ðCj0i⊗kÞj0i⊗r for some efficiently computable value of y,
β. Defining z̄ ≔ ðz1;…; zk; 0kþ1;…; 0kþrÞ, it follows that
ax ¼ qðz̄jy; βÞ. Furthermore, if ~qðz̄; yjβÞ approximates
qðz̄; yjβÞ up to relative error η > 0, then ~qðz̄jy; βÞ ≔
~qðz̄; yjβÞ2N−n approximates qðz̄jy; βÞ with the same error.
Hence, approximating qðz̄jy; βÞ up to relative error 1=4þ
oð1Þ is #P-hard. □

FIG. 5. Linear-depth implementation of dense IQP circuits
(10). We illustrate our algorithm for four qubits. Yellow (resp.
blue) blocks implement the two- (resp. one-) qubit gates in
Eq. (10). The circuit consists of four single-qubit gates (resp. six
two-qubit ones), which coincides with the number of vertices
(resp. edges) of the complete graph K4.
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D. Hardness argument (proof of Theorem 1)

Finally, we prove Theorem 1. Similarly to Refs. [16,17],
we apply Stockmeyer’s Theorem [73] to relate the problems
of approximately sampling from output distributions of
quantum circuits to approximating individual output prob-
abilities. Our proof is by contradiction: Assuming that the
worst-case #P-hardness of estimating the partition functions
of the Ising models (4) extends to the average case
(Conjecture 2) and that the output probabilities of architec-
tures I–III are sufficiently anticoncentrated (Conjecture 3),
we show that the existence of a classical algorithm for
sampling from the latter within a constant l1 norm implies
that a FBPPNP algorithm can solve #P-hard problems; this
leads to a collapse of the polynomial hierarchy to its third
level, in contradiction with Conjecture 1.
Let Γ ≔ fβ ∈ f0; θgmn∶ pβ ≠ 0g be the set of

allowed β configurations in step Q1, let x ∈ f0; 1gn (resp.
y ∈ f0; 1gN−n,N ¼ μmn) be the measurement outcomes of
the n rightmost primitive qubits (resp. remaining ones) after
step Q3, and let qðx; y; βÞ be the final total probability of
observing the values x, y, β. As a preliminary, we prove that
if Conjecture 3 holds, then the probability distribution
qðx; y; βÞ associated with random input states and meas-
urement outcomes of architectures I–III is anticoncen-
trated. We first note that qðxjy; βÞ in Eq. (12) coincides
with the output distribution of some n-qubit OðmÞ-depth
circuit Cy;β of gates of the form (5): This is easily seen
from mappings (C1) and (C2) and standard properties
of X teleportation [38,78,79] (cf. also the next section
and Fig. 6). For arbitrary y ∈ f0; 1gN−n, β ∈ Γ, let us
now define

γy;β ≔
jfx ∈ f0; 1gn∶qðxjy; βÞ ≥ 1=2ngj

2n
; ð13Þ

α ≔
jfy ∈ f0; 1gN−n; β ∈ Γ∶γy;β ≥ 1=egj

2N−njΓj : ð14Þ

Here, γy;β is the fraction of Cy;β output probabilities larger
than 1=2n, and α is the fraction of Cy;β circuits that fulfill
Eq. (6). Conjecture 3 states that γy;β ≥ 1=e for m ∈ OðnÞ.
Consequently, for n ×OðnÞ lattices, Eq. (12) implies that

probx;y;β

�
qðx; y; βÞ ≥ 1

2N jΓj
�

≥ 1=e: ð15Þ

Furthermore, since qðy; βÞ is uniformly distributed over
its support, it also follows from Eq. (12) that

probx;y;β

�
qðx; y; βÞ ≥ 1

2N jΓj
�

¼
X
y;β

γy;β
2N−njΓj

¼ Ey;βðγy;βÞ ≥
α

e
; ð16Þ

for a uniformly random x, y ∈ f0; 1gN , β ∈ Γ.
Equation (16) tells us that the robustness of the anti-
concentration inequality (15) can be tested by computing
the average value Ey;βðγy;βÞ of γy;β or by estimating the
fraction α. As it is discussed further in Appendix C,
γy;β × e and α are expected to converge to 1 for universal
1D nearest-neighbor circuits as n grows asymptotically
[43–45,83] in the regime m ∈ OðnÞ [84–86]. In
Appendix C, Fig. 7, we present numerical evidence that
Ey;βðγy;βÞ → 1=e, α → 1 in the asymptotic limit and a
tight agreement for n ≥ 9; more strongly, we also find
that γy;β is nearly 1=e for almost every uniformly
sampled instance for n ≥ 9 and that qðxjy; βÞ is Porter-
Thomas distributed, which is a signature of Haar-random
chaotic unitary processes [18,41–45].
We are now ready to prove Theorem 1. For any archi-

tecture I–III, we let a denote an element of f0; 1gN × Γ and
assume that the output distribution pcðaÞ of a classical BPP
algorithm fulfills X

a∈f0;1gN×Γ
jpcðaÞ − qðaÞj ≤ ε; ð17Þ

for a constant ε ≥ 0. By Stockmeyer’s Theorem [73] and
the triangle inequality, there exists a FBPPNP algorithm that

computes an estimate gpcðaÞ such that

j gpcðaÞ − qðaÞj

≤
qðaÞ

polyðNÞ þ jpcðaÞ − qðaÞj
�
1þ 1

polyðNÞ
�
;

where we used log jΓj ∈ OðNÞ to remove dependencies on
jΓj. From Markov’s inequality and Eq. (17), we get that

proba

�
jpcðaÞ − qðaÞj ≥ ε

2N jΓjδ
�

≤ δ; ð18Þ

for any constant 0 < δ < 1, where a ∈ f0; 1gN × Γ is
picked uniformly at random. Hence,

j gpcðaÞ − qðaÞj ≤ qðaÞ
polyðNÞ þ

εð1þ oð1ÞÞ
δ2N jΓj ð19Þ

with probability of at least 1 − δ over the choice of a.
We now claim that Eqs. (19) and (15) simultaneously

hold for a single qðaÞ with probability ð1=eÞð1 − δÞ since a
classical description of I–III does not reveal to a classical
sampler which output probabilities are #P-hard to approxi-
mate: Hence, the latter cannot adversarially corrupt the
latter. This is manifestly seen at the encoded random circuit
level because of the presence of random by-product
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operators of the form
Q

iX
yi
i (with random yi), which

obfuscate the location of the #P-hard probabilities from the
sampler [17,47]. Hence, setting ε ¼ γ=8, δ ¼ γ=2, γ ¼ 1=e,
we obtain

j gpcðaÞ − qðaÞj ≤
�
1

4
þ oð1Þ

�
qðaÞ; ð20Þ

with probability of at least γð1 − γ=2Þ > 0.3 over the
choice of a. Setting ε ¼ 1=22 < γ=8, the above procedure

yields an approximation gpcðaÞ of qðaÞ up to relative error
1=4þ oð1Þ. Using Eqs. (3) and (12), we obtain a FBPPNP

algorithm that approximates jZα;βj2 with relative error
1=4þ oð1Þ for at least a 0.3 fraction of the instances.
This yields a contradiction.
As final remarks, note that the above argument is

robust to small finite-size variations to the threshold γ ¼
1=e in Conjecture 3, Eq. (6), since the constants ε ¼ γ=5,
δ ¼ γ=2, and γð1 − γ=2Þ have only linear and quadratic
dependencies on γ. Also, notice that Conjectures 2 and 3
enter the above argument in order to allow for a constant
additive error ε, which is key for a real-life demonstra-
tion of a quantum speedup. Additive errors give rise to
demanding, but not unrealistic prescriptions. However,
in the ideal case where one assumes no sampling errors,
or multiplicative sampling errors, our result holds
even without these conjectures via the arguments in
Refs. [21,22].

VII. CONCLUSION

In this work, we have established feasible and
simple schemes for quantum simulation that exhibit a
superpolynomial quantum speedup with high evidence,
in a complexity-theoretic sense. As such, this work is
expected to significantly contribute to bringing notions
of quantum devices outperforming classical supercom-
puters closer to reality. This work can be seen as an
invitation towards a number of further exciting research
directions: While the schemes presented may not quite
yet constitute experimentally realizable blueprints, it
should be clear that steps already experimentally taken
are very similar to those discussed. Hence, it seems
interesting to explore detailed settings for cold atoms or
trapped ions in detail, requiring little local control and
allowing for comparably short coherence times. What is
more, it appears obvious that further complexity-theo-
retic results on intermediate problems are needed to fully
capture the potential of quantum devices outperforming
classical computers without being universal quantum
computers. It is our hope that the present work can
contribute to motivating such further work, guiding
experiments in the near future.
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APPENDIX A: FULL HAMILTONIAN (2)

For any architecture I–III (Fig. 1), let LP ¼ ðVP; EPÞ be
the sublattice of L containing all primitive qubits (i.e.,
the square lattice subgraph of L). Furthermore, let LDB ¼
ðVDB; EDBÞ be L’s sublattice containing all dangling bonds
for architecture III and the empty graph otherwise. For any
i ∈ V, let degPðiÞ [resp. degDBðiÞ] be the number of
primitive (resp. dangling-bond) qubits connected to i in
L. Then, the full Hamiltonian (2) of the experiment reads

H ¼
X

ði;jÞ∈EP

π

4
ZiZj −

X
i0∈VP

π

4
degPði0ÞZi0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HCZ

þ
X

ðk;lÞ∈EDB

π

16
ZkZl −

X
k0∈VDB

π

16
degDBðk0ÞZk0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HCT

: ðA1Þ

Above, the Hamiltonian HCZ (resp. HCT) implements a
CZ (resp. CT) gate on every edge of the bright (resp.
dark) sublattice in Fig. 1. Note that HCT is not present
in architectures I and II. Also, realize that degPðiÞ takes
value 4 on bulk qubits, 2 on the corners, and 3 elsewhere
on edges; for architecture III, degDBðiÞ takes value 1
everywhere.

APPENDIX B: MAPPING OUTPUT
PROBABILITIES TO ISING
PARTITION FUNCTIONS

Let LX ¼ ðVX; EXÞ [resp. LZ ¼ ðVZ;∅Þ] be the primi-
tive-qubit square sublattice of L (resp. the disjoint union of
all dangling-bond qubits), and pick LX to be the lattice Lsq

in Sec. III, Eq. (4). Let α ≔ πa, ϑ ≔ β þ ðπ=4Þb, where we
let b be the string of outcomes of the Z measurements in
architecture III, and define bi ≔ 0; i ¼ 1;…; NZ, by con-
vention, for architectures I and II. Furthermore, let θ ¼ π=8
for architecture II and θ ¼ π=4 otherwise. We now prove
Eq. (3) using formula (A1):
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jha; bje−iHjψβij ¼



ha; bje−i½Hþ

P
i∈V

ðβi=2ÞZi�jþi⊗N



 ¼


ha; bje−ifPði;jÞ∈EJi;jZiZj−

P
i∈V

½hi−ðβi=2Þ�Zigjþi⊗N





¼ 1ffiffiffi
2

p
NZ




haje−ifPði;jÞ∈EX
ðπ=4ÞZiZj−

P
i∈VX

P
ði;kÞ∈EZ [hi−ðβi=2Þ−½ðπbiÞ�=8]Zigjþi⊗NX





¼ 1ffiffiffi

2
p

NZ




hþje−i
P

i∈VX
ðαi=2ÞZie

−if
P

ði;jÞ∈EX
ðπ=4ÞZiZj−

P
i∈VX

P
ði;kÞ∈EZ

½hi−ðϑi=2Þ�Zigjþi⊗NX





¼ 1ffiffiffi

2
p

NZ




ðh0jHÞ⊗NXe−iH
ðα;βÞ ðHj0iÞ⊗NX




 ¼ 1ffiffiffi
2

p
NZ2NX





 X
x;y∈f0;1gNX

hxje−iHðα;βÞ jyi






¼




 trðe−iHðα;βÞ Þffiffiffi

2
p

NZþ2NX





 ¼ jZðα;βÞjffiffiffi
2

p
NZþ2NX

;

where we have defined jþi ≔ ðj0i þ j1iÞ= ffiffiffi
2

p
in the

second step and used that Hðα;βÞ is diagonal in the final
one. We obtain Eq. (3) by squaring; therein, αi ∈ f0; πg,
ϑ ∈ f0; θg follows from the definition.

APPENDIX C: NUMERICAL EVIDENCE
FOR ANTICONCENTRATION OF THE

OUTPUT DISTRIBUTION

In this appendix, we present numerical evidence for the
validity of Conjecture 3, which is exploited in the proof
of Theorem 1 as discussed in Sec. VI D. Therein, we
discussed that for any architecture I–III, given an initial
n-row, m-column square lattice, there exists an n-qubit
D-depth circuit family fCβ;ygy;β of gates of the form (5),
with D ∈ OðmÞ, such that qðxjy; βÞ ¼ jhxjCβ;yj0ij2. If the
circuits fCβ;ygy;β exhibit anticoncentration as in Conjecture
3, then qðx; y; βÞ is anticoncentrated as in Eq. (15). This is
used in Sec. VI D to turn an approximate classical sampler
into a FBPPNP algorithm to approximate single output
probabilities with high accuracy.
The concrete circuit families associated with each

architecture are derived below and depicted in Fig. 6. To
numerically test Conjecture 3, we have performed simu-
lations of randomly generated circuits of gates of the form

(5) (for each circuit family) in LIQUiD [87] with up to 20
logical qubits. For each system size, we generated 100
random instances for circuits associated with n × n and
n × n2 lattices. For each instance, we evaluated exactly the
fraction γy;β [Eq. (13)] of output probabilities fulfilling
Eq. (6). Our results are summarized in Fig. 7: Therein,
one can see that for circuits associated with both n × n and
n × n2 lattices, this fraction quickly approaches a constant
γ ¼ 1=e with rapidly decreasing variance with respect
to the choice of circuits. We can conclude that, with very
high probability, in a realization of the proposed experi-
ment, the amplitude of the final state of the computation
anticoncentrates.
As discussed in Refs. [17,20,47], it might seem a priori

counterintuitive that constant-depth nearest-neighbor archi-
tectures anticoncentrate. However, the above connections
between our architectures and random circuits shed key
insights into why this behavior is actually natural. As
shown in Sec. VI B, the random logical circuits of gates of
the form (5) encoded in our architectures are universal for
quantum computation. Universal random quantum circuits
of increasing depth are known to approximate the Haar
measure under various settings [43–45,83,86]. For 1D
nearest-neighbor layouts, the latter are expected to reach
a chaotic Porter-Thomas-distributed regime [41–43] in

FIG. 6. We show the logical circuit corresponding to architectures I and III (left) and II (right) for 5-row, 2-column lattices
prepared with uniformly random βi ∈ f0; π=4g (blue, yellow) (I and III) and column-random βi ∈ f0; π=8g (blue, magenta) (II). At
those qubits that have been prepared with βi ¼ 0, an identity gate is applied; on those with βi ¼ π=4, a T gate; and on those with
βi ¼ π=8, a

ffiffiffiffi
T

p
gate.
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depth D ∈ OðnÞ [84–86] (cf. Ref. [18] for further dis-
cussion). As an additional piece of supporting evidence for
anticoncentration, we numerically confirmed that our out-
put probabilities are close to being Porter-Thomas distrib-
uted in the l1 norm (Fig. 8). Furthermore, our numerics are
in agreement with prior numerical works on MBQC
settings [45] and other gate sets in 2D layouts [18,46].
Circuit families.—For the sake of completeness, we spell

out the logical circuits that are effectively implemented in
architectures I and II. The latter are derived via mappings
(C1) and (C2) and X-teleportation properties [78,79].
Examples for 4 × 2 lattices are depicted in Fig. 6. The
logical circuit family corresponding to I and III (resp. to II) is
denoted FDO (resp. F col). Let us now label primitive-lattice
sites by row-column coordinates ½i; j�. The circuits are
generated inductively, starting from the left column j ¼ 1.
Measurements are ordered from left to right. The computa-
tion begins on the jþi⊗n state and proceeds as follows:
(1) Apply the gate exp ðiβ½i;j�Z½i;j�Þ to qubit ½i; j�, with

β½i;j� chosen as in step I for II and III; for III, we let
β½i;j� ≔ s½i;j�π=4, where s½i;j� is the outcome after
measuring the dangling neighbor of ½i; j�.

(2) If j < m, apply a random Z
a½i;j�
½i;j� gate to every qubit

½i; j�, where a½i;j� is the outcome of the measurement
at site ½i; j�.

(3) Apply CZ on all neighboring qubits.
(4) Apply a Hadamard gate to each qubit.

(5) If j ¼ m, measure in the standard basis and termi-
nate; otherwise, increase j ≔ jþ 1.

a. Convergence to the chaotic regime. It is an interesting
detail that the value of γ ¼ 1=e, which we observe above,
is a signature of the exponential distribution (also known as
Porter-Thomas distribution) that is known to emerge in
chaotic quantum systems for large system sizes [18,41–43,
45,46]. This distribution is given by

PPTðpÞ ¼ 2n expð−2npÞ ðC1Þ
and thus anticoncentrates in precisely the fashion observed
here. Note that the same behavior was observed in previous
work investigating random MBQC settings [45], as well as
recently in Ref. [18], which investigated random universal
circuits on a 2D architecture. Notably, the finite and
universal gate sets considered in these works are very
similar to the ones considered here. Likewise, convergence
to the exponential distribution was observed in Ref. [46] for
approximately Haar-random two-qubit unitaries in a
2D setup.
In Fig. 8, we show the total variation distance between

the empirical distributions of output probabilities of the
random circuits generated in our numerical experiments
and the discretized Porter-Thomas distribution. We can see
that as the number of qubits increases, the output distri-
butions of random circuits approach Porter-Thomas
distribution.

FIG. 7. Fraction of output probabilities larger than 1=2n of random circuits drawn from the families FDO (l.h.s.) and F col (r.h.s.)
for both linear (top) and quadratic (bottom) circuit depth in the number of qubits the circuit acts upon n, i.e., lattices of size n × n (top)
and n × n2 (bottom). For each n, we draw 100 i.i.d. realizations ðβ; yÞ, thus of the circuit Cβ;y, and plot the resulting distribution in the
form of a box plot. The red dashed line shows the value of 1=e, which is precisely the value to be expected if the output probabilities are
Porter-Thomas distributed.
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To calculate the total variation distance to the exponen-
tial distribution (C1), we discretized the interval [0, 1] into
m bins, each of which contains probability weight 1=m. In
other words, the discretization ðp0; p1;…; pmÞ is defined
by given p0 ¼ 0, pm ¼ 1 andZ

piþ1

pi

PPTðpÞdp ¼ 1

m
: ðC2Þ

Denote by QðpÞ the numerically observed distribution
of output probabilities p ¼ jhxjCj0ij2 over the set Ω ¼
f½pi; piþ1�gi¼0;…;m. The total variation distance between P
and the exponential distribution is then given by

∥P −Q∥TV ¼ 1

2

X
X∈Ω

jPðXÞ − 1=mj: ðC3Þ

Since the number of samples we obtain in each run is given
by 2n, we choose the number of bins m depending on n.
Specifically, we choose m ¼ minf⌈2n=5⌉; 100g to allow
fair comparison for small n.

APPENDIX D: #P-HARDNESS FROM
n × OðnÞ LATTICES

In this appendix, we show that #P-hardness of approxi-
mating output probabilities in Lemma 2 arises already for
n ×m-qubit lattices with m ∈ OðnÞ. Specifically, we prove
this by introducing two slight modifications in architectures

I and II (cf. Fig. 4) without changing the fundamental
structure of the basic layout of steps Q1–Q3.
The key idea is to introduce different types of input states

(with different βi’s) in the preparation step Q3: Specifically,
we pick βi ∈ f0; θg for qubits on odd-row sites, βi ∈
f0; π=2g on even-row ones; additionally, we perform a
local Hadamard rotation on even-row sites before the Ising
Hamiltonian evolution in step Q2 begins. This is shown in
Fig. 9. The net effect is to initialize even-site qubits on
either j0i (theþ1 eigenstate of Z) or j − ii ≔ j0i − ij1i (the

FIG. 8. Total variation distance to the Porter-Thomas distribution of the empirical distribution of output probabilities of random
circuits from the families FDO (l.h.s.) and F col (r.h.s.) for both linear (top) and quadratic (bottom) circuit depths in the number of qubits
the circuit acts on n, i.e., lattices of size n × n (top) and n × n2 (bottom). For each n, we draw 100 i.i.d. realizations ðβ; yÞ, thus of the
circuit Cβ;y, and plot the resulting distribution in the form of a box plot.

FIG. 9. Modified architectures I and II, named “MI” and
“MII” in the figure. Changes are introduced on the even rows
with respect to Fig. 1. On even rows, we pick βi ∈ f0; π=2g
(black stands for 0, white stands for π=2) and perform a local
Hadamard rotation. In architecture MI, βi is uniformly random.
In architecture MII, βi is translation invariant on columns with a
period less than or equal to 4 (i.e., TIð4;∞Þ in the notation of the
main text).
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−1 eigenstate of Y) at random. Qubits initialized in j0i are
invisible to the Ising evolution Q2 and effectively become
unentangled from the computation. Furthermore, preparing
a qubit in j − ii, evolving Q2 and measuring X is equivalent
to preparing jþi and measuring Y instead at the end of
the computation. Again, we choose the jψβi to be fully
disordered (DO) for architecture I. For architecture II,
we pick jψβi to be TI in one direction with a period of at
most 4, i.e., TIð4;∞Þ symmetric in our notation.
The full experiment can now be mapped to the non-

adaptive MBQC analogue to Eq. (C1) with two differences:
First, the MBQC acts on a graph-state vector jGi [88],
instead of a cluster state, whose underlying graph G is
derived from the 2D lattice by deleting j0i-state vertices
(the output probabilities of the computation can be mapped
to an Ising model on G using the tools of Appendixes A
and B); second, the remaining vertices on even columns are
measured on the Y basis. We now pick n ¼ 2k − 1 and
study the logical circuit of the MBQC in two scenarios:

(i) All even-row qubits are initialized in j0i. TheMBQC
acts on a graph-state vector jG0i that is the product of
k disconnected 1D cluster states. Modulo by-product
operators, the local measurements drive a random
logical k-qubit circuit of single-qubit gates fRai

i ðθÞ≔
HieiðaiθÞZi ;ai∈f0;1gg and depthm − 1 (information
flows on odd rows). For architecture II, the latter
circuit inherits a TIð2;∞Þ symmetry from the TIð4;∞Þ
one of the input-state vector jψβi.

(ii) Even-column, even-row qubits are initialized in j0i;
even-column, odd-row ones are left unspecified. The
MBQC acts on a cluster state with “holes” jG00i as in
Refs. [89,90]. Information flows again on odd rows.
If an even-column, odd-row qubit i is prepared in
j − ii and measured in the X basis (or, equivalently,
in jþi and measured in the Y basis), we obtain a

reduced graph-state vector jG000i whose graph G000 is
obtained from G00 by contracting the edges incident
to i [89,90]. Thus, j − ii state vectors between the
odd qubit lines let us implement logical entangling
gates of the form

Eb;cðθÞ ≔
�Yk

i¼1

Hi

��Yk−1
i¼1

CZbi
i;iþ1

��Yk
i¼1

e−iðciθÞZi

�
;

bi; ci; ∈ f0; 1g;

where bi ¼ 1 if the qubit between lines 2i; ð2i − 1Þ
is in j − ii and zero otherwise; and ci indicates
whether we measure X or X−θ on the (2i − 1)th line.
Postselecting bi gives us the ability to implement
nontranslation-invariant two-qubit entangling gates
between qubit lines at will. Again, for architecture II,
the gate Eb;cðθÞ inherits a TIð2;∞Þ symmetry.

Combining the above facts, it follows that we can simulate
arbitrary k-qubit, nearest-neighbor, Cliffordþ T circuits in
the modified architecture I via postselection, using lattices
with ð2k − 1Þ × ð2k − 1Þ qubits. The latter can efficiently
implement the #P-hard IQP circuits of Lemma 6 with a
constant-overhead factor.
In the modified architecture II, observation (i) and

postselection of by-product operators (Fig. 4) yields
TIð2;∞Þ-symmetric circuits of fHi; e�iðπ=16ÞZi ; e�iðπ=16ÞXig
gates. In combination with the gadgets in the proof
of Lemma 4, this lets us implement k-qubit, TIð2;∞Þ-
symmetric, nearest-neighbor circuits of e∓iðπ=8ÞXiXiþ1 gates.
Furthermore, by-product operators also let us break the
TIð2;∞Þ symmetry via the identities below and allow us to
implement non-TI arbitrary, nearest-neighbor, Cliffordþ T
circuits as in the previous case with constant overhead:

Y⌊k=2⌋
i¼1

eiaiðπ=4ÞX½i�X½iþ1� ¼
 Y⌊k=2⌋

i¼1

eiðπ=8ÞX½i�X½iþ1�

! Y⌊k=2⌋
i¼1

Zai
½i�

! Y⌊k=2⌋
i¼1

e−iðπ=8ÞX½i�X½iþ1�

!
; ½i� ≔ 2i − x0; x0 ∈ f0; 1g; ai ∈ f0; 1g;

Y⌊k=2⌋
i¼1

eibiðπ=8ÞX½i� ¼
 Y⌊k=2⌋

i¼1

eiðπ=16ÞX½i�

! Y⌊k=2⌋
i¼1

Zbi
½i�

! Y⌊k=2⌋
i¼1

e−iðπ=16ÞX½i�

!
; ½i� ≔ 2i − x0; x0 ∈ f0; 1g; bi ∈ f0; 1g:

Again, this yields an efficient and exact postselected
implementation of the desired IQP circuits on k logical
qubits.

APPENDIX E: CERTIFICATION PROTOCOL

In this appendix, we describe an efficient parallelizable
certification protocol for ground states of gapped local
Hamiltonians. The protocol is an optimization of the
algorithm presented in Ref. [51] featuring a reduced sample
complexity. A direct implementation of the algorithm of

Ref. [51] requires a supercubic number OðN3 logNÞ of
prepare-and-measure experiments, where N is the system
size. Our protocol brings this complexity down to OðN2Þ
by combining parallel sequences of local measurements
and efficient classical postprocessing. Additionally, it relies
on on-site single-qubit observables only, as opposed to few-
body Hamiltonian terms, which are needed in Ref. [51].
These improvements render the protocol of Ref. [51] faster
and more suitable for, e.g., near-term quantum speedup
experiments. However, our optimized algorithm can be
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used for verifying ground states of arbitrary nondegenerate
gapped local Hamiltonians and may also be of independent
interest.

1. Parent Hamiltonians

As a preliminary, we derive nondegenerate gapped local
parent Hamiltonians for the premeasurement state vectors
jψβi of our architectures. To find the stabilizer operators
corresponding to jψβi in architectures I–III, we note that
jψβi can be prepared by applying the tensor-product unitary
Uβ ¼

Q
i∈Ve

−βiZi=2 followed by the local quench unitary U
to the initial state jþiV¼

Q
i∈V jþii, where jþi¼ðj0iþj1iÞ=ffiffiffi

2
p

as jΨβi ¼ UUβjþiV . Since jþi is a þ1 eigenvector of
X, the parent Hamiltonian of jΨβi is given by
−UUβð

P
i∈VXiÞU†

βU
†. For architectures I and II, this

evaluates to

HI;II ¼ −
X
i∈V

�
Xβi;i

Y
j∶ði;jÞ∈E

Zj

�
: ðE1Þ

For the specific case of architecture III, let us partition the
vertices of the lattice L into two sets V1 and V2, such that
V1 contains all qubits on the square primitive sublattice
and V2 the remaining dangling-bond qubits. Furthermore,
let E1 contain those edges where Ji;j ¼ π=4, and E2 the
dangling bonds where Ji;j ¼ π=16. We find the corre-
sponding parent Hamiltonian to be

H ¼ −
X

i∈V1
k∶ði;kÞ∈E2

�
CTði;kÞXiCT

†
ði;kÞ

Y
j∶ði;jÞ∈E1

Zj

�
−

X
k∈V2

i∶ði;kÞ∈E2

ðCTði;kÞXkCT
†
ði;kÞÞ; ðE2Þ

where the two-body terms evaluate to

CTði;kÞXiCT
†
ði;kÞ ¼ ðXi − TXiT†ÞZk þ ðXi þ TXiT†ÞIk:

ðE3Þ
The Hamiltonian terms of HIII are 6-local except at the
boundary where its locality is reduced.

2. Energy estimation of G-local Hamiltonians

An N-qubit nondegenerate gapped local Hamiltonian
H ¼Pi∈Vhi with τ-body interactions on a (simple con-
nected) interaction graph G ¼ ðV; EÞ is called “G-local” if
each qubit is located at a vertex i ∈ V and each term hi is
supported on the neighborhood ∂ðiÞ of i,

suppðhiÞ ⊆ ∂ðiÞ ≔ fj∶ði; jÞ ∈ Eg; ∀ i ∈ V: ðE4Þ

Though we consider arbitrary interaction graphs G in our
analysis, we are particularly interested in constant-degree

ones in our applications: i.e., those with maximum vertex
degree degðGÞ upper bounded by a constant, independently
of the number of qubits. Because, w.l.o.g., we can pick
τ ¼ degðGÞ, the latter graphs model physical systems
with geometrically constrained connectivity, which are
ubiquitous both in condensed matter physics and quantum
information processing. Examples of such graphs are
lattices of constant geometric dimension D and fixed-size
primitive cells. In particular, the Hamiltonians of the main
text are L local and have degðLÞ ¼ 4 (degðLÞ ¼ 5) for
architectures I and II (III).
The key ingredient of our result below is a subroutine for

estimating average energies of G-local Hamiltonians using
parallelized measurement circuits with time complexity
dominated by chromatic number Gð2Þ ¼ ðVð2Þ; Eð2ÞÞ of the
next-neighbor interaction graph of Gð2Þ. The latter has with
same vertices Vð2Þ ¼ V as G and edges between all pairs of
neighbors and next neighbors of G [ðv1; v2Þ ∈ Eð2Þ iff v1,
v2 ∈ V and have graph distance dðv1; v2Þ ≤ 2]. The exist-
ence of such parallel circuits relies on the existence of
certain decompositions of local Hamiltonians into com-
muting terms, named (κ, α, τ) (“cat”) decompositions
below. In short, a Hamiltonian is ðκ; α; τÞ if it can be
decomposed as small sum Hermitian operators that admit
parallel measurement circuits that use single-shot τ-body
operators.
Definition 7 ((κ, α, τ) decomposition) A G-local N-

qubit Hamiltonian H on a graph G ¼ ðV; EÞ is ðκ; α; τÞ
decomposable if there exist constants α ∈ ð0; 1�, κ, τ,
χ ∈ N, a partition V ¼ ⋃χ

i¼1Vi, χ ≤ κ, and a map
f∶½κ� → ½χ�, such that

H¼
Xκ
i¼1

Hi; Hi≔
X
j∈VfðiÞ

hðiÞj ; suppðhðiÞj Þ⊂∂ðjÞ; ðE5Þ

where (a) maxijVij ≤ αN, (b) the terms hðiÞj are Hermitian,
and (c) the energy distribution of Hi can be sampled from
parallel measurements of τ-body observables and efficient
classical postprocessing.
A sufficient condition for Definition 7 (c) to hold is that

i ∈ ½κ� and that all terms in fhðiÞj gj are τ local and have
nonoverlapping support. Then, one can simply measure all

hij in parallel, obtain the outcomes feðiÞj gj, and sample the
output distribution of Hi by classically computing the sum
ei ≔

P
j∈VfðiÞe

i
j. The fact that Hamiltonians of this form

admit parallel measurement circuits is formalized by the
following lemma, which generalizes Lemma 1 in Ref. [51].
Lemma 8 (Estimation of the energy) Let H be an

N-qubit Hamiltonian with a given ðκ; α; τÞ decomposition
(E5). Let Pi;μ be the μth ei;μ eigenprojector of Hi, for

i ∈ ½κ�, and XðjÞ
i be the random variable that takes the

value ei;μ with probability trðρðjÞp Pi;μÞ, modeling a
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measurement of Hi on the jth copy of ρp. Moreover, let

hHii�ρp ¼ ð1=mÞPm
i¼1 X

ðjÞ
i be the estimate of hHii on ρp by

a finite-sample average of m measurement outcomes, and
hHi�ρp ¼

P
κ
i¼1hHii�ρp the resulting estimate of hHiρp . Last,

let J ¼ maxλ∥hλ∥. Then, for any perr ∈ ½1=2; 1Þ and ϵ > 0,
it holds that

P½jhHi�ρp − hHiρp j ≤ ϵ� ≥ perr; whenever

m ≥
�
α2κ2J2

2ϵ2
ln

�
κ þ 1

lnð1= ¯perrÞ
��

N2: ðE6Þ

Proof.—Since the random variables fXðjÞ
i gj are inde-

pendent and 0 ≤ XðjÞ
i ≤ ∥Hi∥, Hoeffding’s inequality

implies

∀i ∈ ½κ�∶ P½jhHii�ρp − hHiiρp j ≤ ϵ� ≥ 1 − 2e−½ð2mϵ2Þ=ð∥Hi∥2Þ�;

and since all measurements are independent,

P½jhHi�ρp − hHiρp j ≤ ϵ�

≥ P
�
∀i ∈ ½κ�∶ jhHii�ρp − hHiiρp j ≤

ϵ

κ

�
≥
Yκ
i¼1

ð1 − 2e−½ð2mϵ2Þ=ðκ2∥Hi∥2Þ�Þ

≥ ð1 − 2e−½ð2mϵ2Þ=κ2ðαNJÞ2�Þκ ≥ perr:

The latter identity holds whenever m ≥ mopt, with

mopt ≔
α2κ2J2

2ϵ2
ln

�
2

1 − perr
1=κ

�
N2

≤
½91��α2κ2J2

2ϵ2
ln

�
κ þ 1

lnð1=perrÞ
��

N2: ðE7Þ

□

The next result states that any G-local Hamiltonian
admits a ðκ; α; τÞ decomposition.
Lemma 9 (Local decompositions). Let H be an N-qubit

τ-body local Hamiltonian on a graph G ¼ ðV; EÞ, and
let τ ∈ Oð1Þ. Let χðGð2ÞÞ and ιðGð2ÞÞ denote the chromatic
and independence numbers of Gð2Þ [91]. Then, H admits a
ðκ; α; τÞ decomposition with κ ≤ χðGð2ÞÞ ≤ τ2 þ 1, α ≤
ιðGð2ÞÞ=N < 1. Furthermore, any ðκ; α; τÞ decomposable
Hamiltonian admits an on-site ðκ4τ; α; 1Þ decomposition.
The bounds in Lemma 9 are not necessarily tight for

commuting Hamiltonians. For instance, the fully connected
Ising Hamiltonian H ¼ −

P
i;jJi;jZiZJ − μ

P
khkZk admits

a (1,1,1) decomposition, though χðGð2ÞÞ ¼ N, because it
can be measured directly via single-shot on-site Zi mea-
surements and classical postprocessing (as it is a poly-
nomial of the latter commuting observables). For the
Hamiltonians in architectures I–III, we also find much
tighter bounds.

Lemma 10 (Local decompositions in the architectures)
Let Ha be the N-qubit Hamiltonian in architecture
a ∈ fI; II; IIIg. Then,

(i) HI admits a ð2; 5
9
; 1Þ decomposition of the form (E5),

where every Hi has on-site terms and DO symmetry.
(ii) HII admits a ð2; 5

9
; 1Þ decomposition of the form (E5),

where every Hi has on-site terms and TIð1;∞Þ
symmetry.

(iii) HIII admits a two-body ð2;5
9
;2Þ and an on-site

ð32;5
9
;1Þ decomposition, where every Hi has

TIð ffiffi2p
;
ffiffi
2

p Þ symmetry.
Proof of Lemma 9.—We prove the existence of the

ðκ; α; τÞ decomposition by constructing a partition V ¼
⋃κ

i¼1Vi such that

H ¼
Xκ
i¼1

Hi; Hi ≔
X
i∈Vi

hi; ðE8Þ

where the terms in fhi ∈ Hig are τ-body terms by con-
struction and have nonoverlapping support for all i ∈ ½1; κ�
(and, hence, can be simultaneously measured). First,
χðGð2ÞÞ is the minimal number of classes in any vertex
coloring of Gð2Þ (i.e., a vertex partition where no pair of
adjacent vertices falls in the same class). Furthermore, two
vertices v1, v2 ∈ Vð2Þ are adjacent in Gð2Þ iff they are

neighbors or next neighbors in G. Letting V ¼ ⋃χðGð2ÞÞ
i¼1 Vi

be a minimal vertex coloring of Gð2Þ, we obtain a decom-
position of the form (E8) with κ ≤ χðGð2ÞÞ. Last, picking
α ≔ maxijVij=N, we get α ≤ ιðGð2ÞÞ=N since Gð2Þ is
connected.
The existence of the ðκ4degðGÞ; α; 1Þ decomposition now

follows by expanding each term hi in every Hi in Eq. (E8)
in a product basis

Ai ≔ f ⊗
j∈∂ðiÞ

AðxjÞjAðxjÞ ∈ Ag; ðE9Þ

where A ¼ fAðμÞg4μ¼1 is some Hermitian single-qubit
operator basis (e.g., the standard Pauli matrices). By
picking a fixed ordering of every set ∂ðjÞ, this lets us
write each Hi as a sum of 4τ Hermitian operators
fHi;x; x ¼ ðx1;…; xτÞ; xi ¼ ½1; 4�gx,
Hi;x ≔

P
j∈Vi

αj;x ⊗
k∈∂ðjÞ

AðxkÞk, the energy distribution of

which can be sampled from on-site AðxiÞ measurements.
Finally, we upper bound χðGð2ÞÞ. Let degðGÞ denote

the maximum vertex degree of G. Since every vertex
v ∈ Vð2Þ has at most degðGÞ neighbors and at most
degðGÞðdegðGÞ − 1Þ next neighbors, it follows that
degðGð2ÞÞ ≤ degðGÞ2. By Brook’s theorem [91], χðGð2ÞÞ ≤
degðGÞ2 þ 1. Last, we use that τ ¼ degðGÞ since the τ is,
by definition, the maximum vertex degree of the interaction
graph. □
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Proof of Lemma 10.—For HI;II, we first split the
Hamiltonian terms in Eq. (E1) into two groups (“even”
and “odd”), using a bicoloring of the N-site square lattice,
and set H ¼ Heven þHodd. The terms fhigi of Heven (Hodd)
are products of Xτi;i, Zj on-site factors. Because we use a
2-coloring, the on-site factor list associated with two
distinct hi, hj terms contains at most two overlapping on-
site pairs of the form ðZk; ZkÞ; ðZ0

k; Z
0
kÞ. Hence, overlapping

terms are identical and can be measured jointly. This allows
us to measureHeven (Heven) via a parallel measurement of all
on-site factors and classical postprocessing. This yields a
ðκ; α; τÞ decomposition with κ ¼ 2 and τ ¼ 1. Furthermore,
the largest component Vmax of a square lattice 2-coloring has
N=2 vertices for even N, and ðN þ 1Þ=2 otherwise. Hence,
we can pick α ¼ jVmaxj=N ≤ 1=2ð1þ 1=NÞ ≤ 5=9, where
we use the fact that the smallest odd value of N is 9. The
same approach leads to a ð2; 5=9; 2Þ decomposition for HIII,
Eq. (E2), where Heven, Hodd are sums of products of on-site
terms supported on the primitive lattice and two-body terms
acting on dangling bonds. This leads to a ð32; 5=9; 1Þ
decomposition by expanding the two-body terms on a local
basis, as in the proof of Lemma 9. Finally, all new
Hamiltonians inherit the symmetry of their corresponding
parent Hamiltonian by construction. □

3. Certification protocol

Finally, we describe a quadratic-time weak-membership
certification protocol for ground states of nondegenerate,
gapped, G-local, τ-body Hamiltonians with constant τ
and, in general, any ðκ; α; τÞ-measurable Hamiltonians
(Definition 7). By virtue of Lemma 10, the protocol can
be applied to efficiently certify the final-state preparation of
our proposed quantum architectures I–III. We describe the
protocol for the latter class since we know any G-local
Hamiltonian is of that form (Lemmas 9 and 10). The
protocol is simply a parallelized version of the one
in Ref. [51].
Definition 11 (Weak-membership quantum-state certif-

ication [92]). Let FT > 0 be a threshold fidelity and
0 < perr < 1 a maximal failure probability. A test that
takes as an input a classical description of ρ0 and copies of a
preparation of ρp, and outputs “reject” or “accept” is a
weak-membership certification test if, with high probability
psucc ≥ 1 − perr, it rejects every ρp for which Fðρp; ρ0Þ ≤
FT and accepts every ρp for which Fðρp; ρ0Þ ≥ FT þ δ for
some fidelity gap δ > 0.
Protocol 1 (Certification of ðκ; α; τÞ-decomposable

Hamiltonians) The protocol receives a description of a
nondegenerate gapped Hamiltonian H that admits a
ðκ; α; τÞ decomposition of the form (E5), which is given
to us, and performs the following steps:
(1) Arthur chooses a threshold fidelity FT < 1, maximal

failure probability 1 > perr > 0, and an error
ϵ ≤ ð1 − FTÞ=2.

(2) Arthur asks Merlin to prepare a sufficient number of
copies of the ground state ρ0 of H.

(3) Arthur performs m energy measurements for each
Hamiltonian term Hi on distinct copies of the state
ρp to determine an estimate E� of the expectation
value

P
itr½ρpHi�, with m given by expression (E6).

Each Hi is measured by a single-shot circuit of
τ-local observables and classical postprocessing.

(4) From the estimate E�, he obtains an estimate F�
min

of lower bound Fmin ¼ 1 − hHiρp=Δ [51] on the
fidelity F ¼ Fðρp; ρ0Þ such that F�

min ∈ ½Fmin − ϵ;
Fmin þ ϵ� with probability of at least 1 − perr.

(5) If F�
min < FT þ ϵ, he rejects; otherwise, he accepts.

Lemma 12 (Weak-membership certification). Let H be
an N-qubit, nondegenerate, gapped ðκ; α; τÞ-decomposable
Hamiltonian with known ground-state energy E0, gap Δ,
and interaction strength J ¼ maxλ∥hλ∥, and let E0, Δ−1, J
be upper bounded by a constant. Then, Protocol 1 is a
weak-membership certification test, in the sense of
Ref. [51], with fidelity gap

δ ¼ ð1 − FTÞ
�
1 −

Δ
∥H∥

�
þ 2ϵΔ
∥H∥

; and requires

m ≥
�
α2κ2J2

2Δ2ϵ2
ln

�
−

κ þ 1

lnð1 − perrÞ
��

N2 ðE10Þ

repetitions to determine the expectation value hHiρp ¼
tr½Hρp�.
In combination with Lemma 10, it follows that one

can efficiently certify the final-state preparation of our
architectures I–III, if the latter are at least 1=N close to the
target state in fidelity since ∥H∥ ∼ N and Δ is larger than a
constant by construction of the parent Hamiltonians HI–III.
Proof of Lemma 12.—The proof is analogous to that of

Proposition 1 in Ref. [51] if we substitute Protocol 1
(Lemma 1) therein with our Protocol 1 (our Lemma 1)
in this appendix. We refer the reader to Ref. [51] for
details. □

APPENDIX F: ALTERNATIVE WEAKER FORMS
OF CONJECTURES 1 AND 2

In this appendix, we briefly discuss how our main
result, Theorem 1, holds given even weaker versions of
Conjectures 1 and 2. First, in Conjecture 1, it suffices for
our purposes that the polynomial hierarchy does not
collapse to its third level, instead of being infinite.
Second, in Conjecture 2, we do not need the problem of
approximating Ising partition functions to be #P-hard on
average. Instead, it is enough that this problem is not in the
complexity class BPPNP, which is contained in the third
level of the polynomial hierarchy (and would be in the
second if the widely believed conjecture P ¼ BPP [34]
holds). Note how this would be in striking contrast with our
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hardness Lemma 2 since the latter says that an oracle to
solve the worst-case version of the same problem would
allow us to solve all problems in all levels of the
polynomial hierarchy. Third, if this weaker form of
Conjecture 2 holds, then Conjecture 1 is obviously not
needed in the proof of Theorem 1. We have also mentioned
in the main text that stating Conjecture 2 in terms of relative
errors—which is the approach followed here and in
Refs. [16,18,20,22]—is somewhat more natural than stat-
ing it in terms of additive ones, as in Ref. [19]. To illustrate
the difference, note that there exist quantum algorithms for
approximating (normalized) Ising partition functions up to
polynomially small additive errors [93,94], while the latter
are #P-hard to approximate up to polynomially small and
even constant relative ones.
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