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The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by
nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption
cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate
per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality
and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium
between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction
band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model
(i) thermal emission by nonisothermal finite-size bodies, (ii) thermal emission by bodies with carriers at
different temperatures, and (iii) spontaneous emission by semiconductors under optical (photolumines-
cence) or electrical pumping (electroluminescence). Finally, we show that the reciprocity relation
connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local
Kirchhoff law.
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I. INTRODUCTION

Thermal emission can be conveniently described using
Kirchhoff law, which states that the emissivity is equal to
the absorptivity for isothermal bodies. It has been used to
analyze and design novel thermal sources with unprec-
edented properties. The emission spectrum can be tailored
for different types of applications, such as infrared sources
or sources for thermophotovoltaics [1–7]. The directivity of
a source can also be controlled by taking advantage of the
spatial coherence due to surface waves [8,9]. This has been
observed experimentally for many systems based on the
interplay between surface waves and gratings [10–16].
Many other schemes have been subsequently implemented
using planar interfaces [17–20], guided waves and gratings
[21], photonic crystals [22], and magnetic polaritons [23].
Following the pioneering work by the group of Hasman
[24], the polarization of thermal radiation has been inves-
tigated [25–27]. Finally, it has become possible to modulate
at high frequency the intensity emitted by thermal sources
by modulating the emissivity [28]. A proof of principle has
been reported in Ref. [29] and a very effective source
operating up to 600 kHz has been reported [30]. All these

developments can be analyzed using Kirchhoff law [31],
which expresses the equality of absorptivity and emissivity.
This law is valid provided that the emitter is in local
thermodynamic equilibrium at a uniform temperature T and
provided that the emitting medium is reciprocal. The fate of
Kirchhoff law for nonreciprocal materials has been studied
recently [32,33].
Despite all these applications,Kirchhoff law suffers froma

number of limitations. It cannot be used to predict emission
by a nonisothermal body. It cannot be used to predict thermal
emission by systems where different temperatures can be
defined (e.g., systemswith hot electrons). It cannot be used to
predict emission in the presence of quasi-Fermi levels for
electrons in the conduction and valence band of a semi-
conductor. Its validity has also been questioned by some
authors. In its original form [31], Kirchhoff law was derived
using geometrical optics. The purpose of this paper is to
clarify the validity conditions of Kirchhoff law and to extend
it to all these nonequilibrium situations. With this aim, we
use the local form of Kirchhoff law first derived by Rytov
et al. [34] and extend it to the case of subsystems in local
thermodynamic equilibrium.
An important issue regarding thermal emission is the

case of anisothermal bodies with a temperature field that can
vary in space and time Tðr; tÞ. Kirchhoff law cannot be used
to deal with these situations. Here, we introduce a local
Kirchhoff law establishing the equality between the local
absorption rate and the local emission rate in any finite-size
body with arbitrary shape, orientation, and structure.
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Another limitation of Kirchhoff law is the case of
bodies where different subsystems (e.g., electrons, excitons,
phonons) are at different temperatures at a given position.
This is, for instance, the case of hot electrons in a transistor
under a strong driving field or in a metallic nanosphere after
the absorption of a 100-fs pulse. The local form of Kirchhoff
law will be extended to provide a rigorous framework to
analyze and optimize light emission by these systems.
Another interesting application of Kirchhoff law is

electroluminescence by light-emitting diodes (LEDs).
While the brightness and spectral properties of a thermal
source and an electroluminescent source are significantly
different, electroluminescence is due to the same electron-
hole recombination processes as thermal radiation. Once
photons are emitted, their extraction from the emitting body
is the same in both cases. It is known that electrolumines-
cence (and photoluminescence) by a semiconductor slab is
given by a modified Kirchhoff law including a chemical
potential for the photons. More explicitly, it is given by the
product of the absorptivity by IbðT;ω − μ=ℏÞ [35,36],
where Ib is the blackbody radiance, T is the body temper-
ature, ω the emitting frequency, μ the (uniform) difference
between quasi-Fermi levels, also called photon chemical
potential, and ℏ is the Planck constant. Here, we use the
local form of Kirchhoff law to extend the result to
inhomogeneous chemical potentials and to an arbitrary
geometry of the emitter so that resonant cavities or antennas
can be accounted for. Finally, we show that an important
reciprocity property introduced by Rau [37] connecting
light-emitting diodes and photovoltaics detectors [38,39]
follows naturally from the local Kirchhoff law.
The paper is organized as follows. The Sec. II presents

the local form of Kirchhoff law. While the derivation can be
found in Ref. [34], we provide an alternative self-contained
derivation in the Appendix for the sake of completeness.
In Sec. III, we explore the implications of the derivation
discussing the validity conditions of Kirchhoff law, the
concept of super-Planckian emission, and the extension to
anisotropic media. Section IV addresses the issue of non-
equilibrium systems, both in terms of nonisothermal bodies
and in terms of different subsystems with different temper-
atures. In Sec. V, we extend Kirchhoff law to deal with
electroluminescence and photoluminescence by using the
concept of photon chemical potential.

II. LOCAL FORM OF KIRCHHOFF LAW

The aim of this section is to provide a local model of
thermal emission by a body of arbitrary shape in the
framework of fluctuational electrodynamics [34,40]. The
key result is to express the spontaneous emission in a given
mode (direction u, frequency ω, and polarization l) as an
integral over the volume of the emitting body. The emission
rate of each volume element will be given in terms of the
power absorbed by that volume element when it is
illuminated by the reciprocal mode (−u, ω, l). The equality

between a local emission rate and a local absorption rate is
called hereafter the local form of Kirchhoff law. Let us
provide some physical insight on the origin of the con-
nection between emission, which is a thermodynamic
phenomenon dependent on temperature, and absorption,
which is computed in the framework of coherent electro-
magnetic optics. It results essentially from two reciprocity
relations. Any emission process corresponds to a transition
between an excited state and an unoccupied lower-energy
state. The corresponding matrix element is the same for
emission and absorption. This first reciprocity property
shows up in the fluctuation-dissipation theorem which
connects the cross-spectral density Wjn;jm of the current
density fluctuations and the material absorption spectrum
proportional to Im½ϵðr;ωÞ�:

Wjn;jm ¼ 2ωϵ0Im½ϵðr0;ωÞ�Θ½Tðr0Þ;ω�δðr − r0Þδnm; ð1Þ

where Θ½Tðr0Þ;ω� ¼ ℏω=fexp½ℏω=kBTðr0Þ� − 1g and
Tðr0Þ is the temperature at point r0. This quantity is defined
for positive and negative frequencies. The Fourier ampli-
tude conventions are specified in the Appendix. Assuming
the material to be local and isotropic, we get the terms
δðr − r0Þδnm. This fluctuation-dissipation relation is the key
step connecting thermodynamic fluctuations and linear
response theory. The second key reciprocity property is
the reciprocity of the fields obeying Maxwell equations.
This is better understood by looking at Fig. 1.
The basic idea is that a dipole moment p1 located at r0

generates a field E1 at r. Conversely, a dipole moment p2

located at r generates a field E2 at the position r0. It follows
from reciprocity that these two fields satisfy p1 ·E2 ¼
p2 · E1 [40,41]. In others words, by exchanging pointlike
sources and detectors, the amplitudes delivered by the
detectors are unchanged. By considering a source inside a
body and a pointlike detector outside the body, the
reciprocity theorem implies that the presence of the body
modifies in the same manner emission and absorption. For
instance, if we consider light emitted or absorbed by some

FIG. 1. Illustration of two reciprocal situations (1) and (2) ob-
tained upon exchanging source and detector positions. The cavity
is an example of an optical system made of reciprocal media.
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absorbing gas filling a Fabry-Perot cavity, Kirchhoff law
will be the result of two facts: (i) the same transitions are
involved in emission and absorption and (ii) the cavity
satisfies reciprocity so that the cavity has the same enhance-
ment (for molecules located at an antinode) or inhibition
(for molecules located at a node) effect for absorption and
emission. It is important to realize that Kirchhoff law deals
with the absorptivity and emissivity of a body. It results
from the interplay between microscopic properties of the
material (e.g., the gas) and macroscopic properties of the
body (e.g., the cavity).
When dealing with bodies much larger than the wave-

length, it is possible to use locally the concept of flat
interface between two homogeneous media and use locally
Fresnel reflection factors. However, this geometrical
approach breaks down for subwavelength bodies so that
the original derivation is no longer applicable. In electro-
magnetic optics, the general concept to characterize the
absorption of a linearly polarized monochromatic plane
wave by any finite-size body with volume V is the concept

of absorption cross section σðlÞabs [42]. It connects the
absorbed power Pabs with the incident Poynting vector
flux as follows:

PðlÞ
absðωÞ ¼ σðlÞabsðuinc;ωÞ

ϵ0cjEðlÞ
incðωÞj2
2

; ð2Þ

where uinc is the incident direction (see Fig. 2), ω is the
circular frequency, and the superscript (l) specifies the
polarization state l ¼ s, p. We note that this concept does
not provide any information about the position where
absorption takes place in the body. An alternative form
of the absorbed power is given by the integral over volume
V of the dissipation rate per unit volume [40]:

PðlÞ
absðωÞ ¼

Z
V
Im½ϵðr0;ωÞ�ωϵ0

2
jEðlÞðr0;ωÞj2d3r0; ð3Þ

where EðlÞðr0Þ is the field in the body illuminated by an

l-polarized plane wave with incident field amplitude EðlÞ
inc

and ϵðr0;ωÞ is the permittivity. This form describes

explicitly where the absorption takes place but is not
related explicitly to the incident field so that it cannot be
expressed in terms of cross section. We now seek a
connection between the incident field Einc and the field
in the absorber Eðr0Þ. We show in the Appendix that the
existence of a linear relation allows one to cast the
absorption cross section in the form:

σðlÞabsðuinc;ωÞ ¼
Z
V
d3r0αðlÞabsðuinc; r0;ωÞ; ð4Þ

where αðlÞabs appears as an absorption cross-section density
so that it has the dimension of the inverse of a length. If we
are interested in the absorption of a beam in a homogeneous
absorbing medium, the absorption cross-section density

αðlÞabs is nothing but the usual absorption coefficient given by
4πImðnÞ=λ, where n is the refractive index. However, if we
are interested in the absorption in a resonant microstructure,
such a simple form cannot be used. The absorption cross-
section density is no longer a material intrinsic property but
depends on the body shape and orientation.
We now turn to the power emitted by the body in the

solid angle dΩ (see Fig. 2). Using the fluctuational electro-
dynamics framework, we show in the Appendix that it can
be cast in the form:

PðlÞ
e ¼

Z
∞

0

dω
Z
V

Z
4π
ηðlÞður; r0;ωÞ

Ib½Tðr0Þ;ω�
2

d3r0dΩ;

ð5Þ

where we have introduced the blackbody radiance
Ib½Tðr0Þ;ω�¼½ω2=ð4π3c2Þ�fðℏωÞ=½expðℏω=kBTÞ−1�g and
the local polarized emissivity density ηðlÞður; r0;ωÞ. Note
that we have introduced the polarized blackbody radiance
Ib=2, which is half the blackbody radiance. Both quantities,
the absorption cross-section density αðlÞ and the emissivity
density ηðlÞ, are polarized, directional, and monochromatic.
It has been shown that these quantities are equal [34]. This
result is the local form of Kirchhoff law:

ηðlÞður; r0;ωÞ ¼ αðlÞð−ur; r0;ωÞ: ð6Þ

For the sake of completeness, we provide an alternative
derivation of this result in the Appendix, where we
emphasize the role of reciprocity.

III. DISCUSSION

A. Kirchhoff law, absorption cross section,
and super-Planckian emission

The original derivation [31] by Kirchhoff is based on
geometrical optics and on a budget of the energy exchanged
by the body with its environment at the same temperature.
It is worthwhile to point out that Helmholtz reciprocity is

(a) (b)

FIG. 2. Sketch of the system. A finite-size volume V radiates in
the solid angle dΩ subtended by the surface dA.
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explicitly invoked by Kirchhoff, but is often omitted in
subsequent derivations which then require further assump-
tions. A proof of Kirchhoff validity was derived in the
framework of electrodynamics for a sphere with arbitrary
size and material by Kattawar and Eisner [43], thereby
removing the geometrical assumption for this particular
case. It has also been proven without invoking geometrical
optics within the scalar approximation for any planar
interface separating vacuum from any complex medium
satisfying reciprocity [44,45]. Many works have compared
a direct calculation of the emission based on the fluctua-
tional electrodynamics and a direct calculation of the
absorption. So far, all these numerical calculations per-
formed for many different systems were found to agree
with Kirchhoff law [46–49]. Yet, as we discuss, there are
some reports suggesting that Kirchhoff law might not be
valid, so that it is important to clarify its validity domain.
Here, we use the local form of Kirchhoff law to recover

the usual form. An immediate consequence of Eqs. (4)–(6)
is that the total power emitted by an isothermal body in the
solid angle dΩ is given by

dPðlÞ
e ¼

Z
∞

0

dωσðlÞabsð−ur;ωÞ
IbðT;ωÞ

2
dΩ: ð7Þ

This result provides all the required information about the
emission of the body and shows that it is entirely charac-
terized by the knowledge of its absorption cross section

σðlÞabsð−ur;ωÞ. Hence, although Kirchhoff law was origi-
nally introduced in the framework of geometrical optics, it
has been extended to any body size in the framework of
fluctuational electrodynamics. We note that the definition
of the absorption cross section given by Eq. (2) shows that
the body can be modeled by an effective disk with area

equal to σðlÞabsð−ur;ωÞ and totally absorbing (i.e., black in
Kirchhoff sense). We see from Eq. (7) that the emission can
also be viewed as the emission by a totally absorbing

(black) body with area σðlÞabsð−ur;ωÞ. In summary, while
geometrical optics fails for subwavelength bodies, the
(geometrical optics-based) radiometry formalism can still
be used provided that one uses the absorption cross section
to deal with absorption and emission by the body.
There have been experimental reports and theoretical

claims that thermal emission exceeding blackbody radia-
tion in the far field is possible by using emitting materials
with large density of states. Emission by a photonic crystal
beyond the blackbody limit has been reported [50]. This
result was refuted [51] and subsequent work [52] reported
an experimental bias. More recently, it has been suggested
that hyperbolic metamaterials could be used to increase
thermal emission in vacuum in far field above the black-
body limit [53,54]. These arguments have also been refuted
[55]. It should be noted that a large density of states
produces a large density of energy inside the emitting body
but not necessarily a larger emission. As seen in the

derivation of Kirchhoff law, what matters is the coupling
between the fields in the emitter and the vacuum modes
outside the emitter. In order to clarify this issue, it may be
useful to discuss a simple example. We consider the
emission in vacuum by a lossy dielectric half-space.
Assuming a refractive index n ¼ n0 þ in00, the local density
of electromagnetic states is given (for low losses and
nondispersive media) by n03ω2=ðπ2c3Þ. It is seen that it
increases as the refractive index increases and may be much
larger than in vacuum. Yet, the emission is limited to modes
that are not reflected by total internal reflection. Increasing
the density of the states increases the number of modes in
the emitting body but does not increase the number of
modes transmitted by the interface between the emitter and
vacuum. In the previous example, the factor limiting the
emitted power is the number of modes in vacuum, namely,
in the medium where emission takes place. The power
emitted by a finite-size body with area A can be increased
up to n2AσT4 by placing the emitter in a medium of
refractive index n. This is in full agreement with standard
radiometry, as the radiance in a medium with refractive
index n is given by n2IbðT;ωÞ. This feature can be used
to extract more energy from a finite-size body by using a
solid immersion lens type of geometry as discussed in
Refs, [56,57].
It has been pointed out in Ref. [55] that for finite-size

objects, the flux emitted could exceed the flux emitted by a
blackbody with the same geometrical area. This so-called
super-Planckian emission is a simple consequence of two
facts well covered in textbooks [34,42]: (i) the emitted
power is given by Eq. (7), (ii) the absorption cross section
of a body can exceed its geometrical area. In particular, it is
well known that the absorption cross section of a sub-
wavelength sphere can be much larger than the geometrical
cross section [42] due to the resonant excitation of a dipolar
electric mode. For a sphere, many other modes can be
resonantly excited by a plane wave leading to absorption
cross sections larger than the geometrical area [6,55]. In
summary, as already discussed by Bohren and Huffman
[42], if the absorption is described using the absorption
cross section and not the geometrical area, there is no far-
field emission larger than blackbody radiation.

B. Emission in a nonequilibrium situation

In this section, we note that the original derivation of
Kirchhoff law was performed by energy conservation when
considering a body in equilibrium with its environment. In
this section, we define the local thermodynamic equilib-
rium and we point out where it is used in the derivation of
the emission.
The body is in local thermodynamic equilibrium if it is

possible to define locally a temperature Tðr; tÞ and a
chemical potential μðr; tÞ. This assumption is valid provided
that the typical timescale and length scales of the variations
of Tðr; tÞ and μðr; tÞ are much larger than the thermalization
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time and scattering mean free paths, namely, that the
dimensionless Knudsen number is much smaller than 1.
Under these conditions, it is possible to use the fluctuation-
dissipation theorem to characterize the current density.
Once the current density is known, the radiated fields

can be computed in any environment provided that the
optical properties are known. There is no need to have
thermodynamic equilibrium between the sources and the
environment.

C. Anisotropic media

In this section, we extend the derivation of the local
Kirchhoff law to the case of anisotropic media. It is known
that some anisotropic materials may display unusual optical
properties associated to hyperbolic dispersion relations. It
has been suggested that these features may have implica-
tions for heat transfer [53,54]. This point was criticized in
Ref. [55]. Here, we stress that the local Kirchhoff law is
valid for anisotropic media provided that the system is
composed of materials with symmetric permittivity tensors
ϵnm ¼ ϵmn as required for reciprocal media. Using the
relevant form of the fluctuation-dissipation theorem,

hjnðr;ωÞjmðr0;ω0Þi ¼ 2πδðωþ ω0ÞWjn;jmðr; r0;ωÞ;
Wjn;jm ¼ 2ωϵ0Im½ϵnmðr0;ωÞ�

× δðr − r0ÞΘ½Tðr0Þ;ω�; ð8Þ

and reproducing the derivation given in the Appendix A 1,
we find

ηðlÞður; r0;ωÞ ¼ αðlÞð−ur; r0;ωÞ ¼ 16π2r2k

× Im½ϵpq�ðr0;ωÞeðlÞn Gnpðr; r0;ωÞ
× eðlÞm G�

mqðr; r0;ωÞ: ð9Þ
It can be checked that the equality ϵnm ¼ ϵmn entails the
equality Im½G�

npGnqϵpq� ¼ G�
npGnqIm½ϵpq�. It follows that

the total emitted power is also given by the absorption cross
section.

IV. EMISSION BY NONISOTHERMAL SYSTEMS

We now consider two types of nonequilibrium bodies.
We first consider systems such that a local temperature can
be defined but neither isothermal nor stationary. We then
consider systems where it is possible to assign different
temperatures to different carriers at the same position in
the body.
Emission by nonisothermal bodies can be performed by

a direct calculation using the fluctuational electrodynamics
framework. This type of calculation has been reported in
Refs. [46–49,58–61], for instance. It can be used to deduce
the temperature field from the emitted radiance by a
nonisothermal system. This has been used in microwaves
to recover the temperature gradient in soils or in optics to

measure the temperature of shock waves in plasma.
Another application consists of controlling the emitted
radiance. It has been proposed [62] to emit at different
wavelengths or in different directions or polarizations by
heating different parts of a body. Finally, we also note that it
has been shown that incandescent sources can be modu-
lated at frequencies larger than 1 MHz when heating
objects with a size smaller than 100 nm surrounded by
antennas designed to increase the absorption cross section
[63]. The usual Kirchhoff law, which is valid for isothermal
bodies, cannot be used to deal with all these applications.
Instead, the local Kirchhoff law can be used to compute the
power emitted by a body with any spatial and temporal
temperature distribution using the absorption cross-section
density:

dPðlÞ
e ¼

Z
∞

0

dω
Z
V
d3r0αðlÞð−ur; r0;ωÞ

Ib½Tðr0; tÞ;ω�
2

dΩ:

ð10Þ

Finally, we push the generalization of Kirchhoff law to
anisothermal systems one step further by considering the
case where different excitations (e.g., electrons, excitons,
phonons) are at different temperatures at the same position.
A typical example is a system of hot electrons in a metal or
in a semiconductor. It is possible to define a temperature for
the electrons and a temperature for the lattice. This is the
so-called two-temperatures model. In that case, we have
two different temperatures at the same point but for
different subsystems. Thermal emission by hot electrons
has been observed in a variety of systems, such as tunneling
tips [64,65], graphene [66,67], and quantum wells [68].
These issues are of particular importance for transient
regimes with different relaxation times for different car-
riers. It is possible to include these effects in a Kirchhoff-
based model of emission if we know the contribution of the
different subsystems to the absorption. Let us consider a
system composed of electrons and a lattice at temperatures
Tel and T la, respectively. Assuming that the imaginary part
of the permittivity can be written as ImðϵÞ ¼ ImðϵelÞþ
ImðϵlaÞ, we obtain the following form of the cross-spectral
density of the current Wjn;jm :

hjnðr;ωÞjmðr0;ω0Þi¼2πδðωþω0ÞWjn;jm ;

Wjn;jm ¼2ωϵ0fIm½ϵelðr0;ωÞ�Θ½Telðr0;tÞ;ω�
þIm½ϵlaðr0;ωÞ�Θ½T laðr0;tÞ;ω�gδðr−r0Þ:

ð11Þ
This form can be used for timescales larger than the

carrier thermalization time so that Tel and T la can be
defined and shorter than the electron relaxation time so that
Tel and T la are not equal. In summary, it is seen that if one
can assign to each type of excitation (electrons, excitons,
phonons) both a temperature and a contribution to the
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imaginary part of the permittivity, it is possible to use the
generalized Kirchhoff law to account for thermal radiation
by nonequilibrium systems.

V. ELECTROLUMINESCENCE AND
PHOTOLUMINESCENCE OF

A SEMICONDUCTOR

We now turn to the modeling of electroluminescence
and photoluminescence using the local form of Kirchhoff
law. While the usual picture associated to these processes
involves the radiative recombination of an electron-hole
pair, it is important to recognize that thermal emission at the
same frequency is also related to the same microscopic
process. The difference between thermal radiation, on one
hand, and electroluminescence and photoluminescence, on
the other hand, stems from the process promoting electrons
to the conduction band. After thermalization, the band
states are occupied according to a Fermi-Dirac distribution
both in the conduction and in the valence band. Yet, each
band has its own chemical potential called quasi-Fermi
level to account for the modification of carrier density.
This is possible because the thermalization takes place in
typically 1 ps whereas radiative electron-hole recombina-
tion takes place in typically 1 ns. This two quasi-Fermi
levels situation is the typical regime of electroluminescence
for light-emitting diodes. Knowing the occupation of the
conduction and valence bands, it is possible to compute the
recombination processes and therefore to derive the emitted
power. This procedure has been outlined in detail byWurfel
[35] for a homogeneous medium. He introduced a gener-
alized form of Kirchhoff law to model electroluminescence
by a slab of semiconductor. This form has been exper-
imentally verified [36].
In this section, we extend the local form of Kirchhoff law

to nonequilibrium bodies in cases corresponding to electro-
luminescence and photoluminescence in semiconductors.
We first introduce a model of the current density fluctua-
tions accounting for the quasi-Fermi levels. We then derive
a general form of the emitted power that can be used for any
geometry including, for instance, resonant antennas or
cavities. Finally, we derive a reciprocity relation connecting
photovoltaic cells with LEDs.

A. Current density fluctuations

In this section, we derive the emitted power by a
semiconductor from the knowledge of the fluctuating
currents. Such an approach has already been used to deal
with near-field heat transfer between two semiconductors
[69,70]. The starting point is the cross-spectral density
of the current density due to the electrons and holes [71]
given by

Wjn;jmðr;r0;ωÞ¼2ωϵ0Im½ϵibðr0;ω;μÞ�Θ½T;ω;μ�δðr−r0Þδnm;
ð12Þ

where we have introduced the photon chemical potential,
which is the difference of quasi-Fermi levels μ ¼ μc − μv,
where the subscripts c, v stand for conduction band and
valence band, respectively, and ϵib denotes the contribution
of the interband transitions to the permittivity. Two quan-
tities depend on the difference of the quasi-Fermi levels and
on the temperature: the imaginary part of the permittivity
and Θ. The imaginary part of the permittivity involved in
the formula is proportional to the losses and therefore
depends on the population of the conduction band and
valence bands. It is proportional to n̄v − n̄c, where n̄c;v ¼
fexp½ðEc;v − μc;vÞ=ðkBTÞ� þ 1g−1. The Bose-Einstein term
is modified as follows:

Θ½Tðr0Þ;ω; μðr0Þ� ¼ ℏω

expðℏω−μkBT
Þ − 1

: ð13Þ

It is seen that μ plays the role of chemical potential for
photons [35]. Finally, we stress that the model can be
extended beyond semiconductors. The only requirement is
the possibility of defining two quasi-Fermi levels for two
bands. This approach is also used when dealing with dye
molecules where two bands can also be defined with fast
internal relaxation processes and slower radiative recombi-
nations. We note that the temperature and the quasi-Fermi
levels can be time dependent and spatially dependent, as
discussed previously.

B. Emission by a nonequilibrium semiconductor

We now move to the general form of the polarized
emission of a body characterized by a temperature field
TðrÞ and a chemical potential μðrÞ, omitting a possible time
dependence for brevity:

dPðlÞ
e ¼ dΩ

Z
∞

0

dω
Z
V
d3r0αðlÞib ð−u; r0;ωÞ

×
ω2

8π3c2
ℏω

expðℏω−μkBT
Þ − 1

; ð14Þ

where the absorption cross section αðlÞib ð−u; r0;ωÞ accounts
for the absorption by the interband transition. We note that
this formula is written for a type of carriers so that the
corresponding temperature, chemical potential, and per-
mittivity is used. If needed, it is possible to sum over
different carriers. The limiting cases μ ¼ 0 and μ ≫ kBT
correspond to thermal emission and electroluminescence or
photoluminescence depending on the pumping mechanism.
Note that this formula contains two types of information:
(i) the nonequilibrium excitation of the emitting material,
which is accounted for by the temperature and the photon
chemical potential, and (ii) the efficiency of the coupling
between plane waves and local sources mediated by the
emitting body structure, which is accounted for by the local
absorption cross section.
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C. Reciprocity relation between LEDs and PV cells

We now use this formulation to discuss an important
connection between LEDs and PV cells. It has been shown
by Rau [37] that there exists a reciprocity relation con-
necting light emitted by diodes and their quantum effi-
ciency when they operate as PV cells. More precisely, if a
device is optimized to emit light, then it is also optimized to
absorb light and generate carriers [38,39]. Let us be more
specific by recalling the definition of the external quantum
efficiency of a PV cell. It is defined as the number of
electrons collected by the cell divided by the number of
incident photons with a given frequency. In other words, it
is given by the product of the monochromatic absorptivity
by the probability that the absorbed photon generates a
collected charge. To compute this quantity, we need to
compute the fraction of the absorption due to electron-hole
pair generation processes. To proceed, we start from Eq. (3)
and restrict the volume integral over the junction volume
V junct and we consider only the contribution of interband
transitions in the imaginary part of the semiconductor
permittivity ϵib:

dPðlÞ
abs ¼

Z
V junct

d3r0
ϵ0ω

2
Im½ϵibðr0;ωÞ�jEðlÞðr0;ωÞj2: ð15Þ

After normalizing this quantity by the incident Poynting
vector as in Eq. (A16), we find the polarized external
quantum efficiency EQEðlÞ:

EQEðlÞ ¼
Z
V junct

d3r0αðlÞib ð−u; r0;ωÞ: ð16Þ

Turning now to the emitted power as given by Eq. (14),
we see that the integral is restricted to regions where the
chemical potential is nonzero, namely, the junction. If we
consider the case of a uniform chemical potential μ and a
uniform temperature T, the emitted power can be cast in the
form

dPðlÞ
e ðωÞ ¼ EQEðlÞ Ib½T;ω − μ=ℏ�

2
dΩ; ð17Þ

which is Rau’s reciprocity relation. In summary, we see that
the reciprocity relation derived by Rau [37] between the
EQE and the emitted power is a particular case of the local
form of Kirchhoff law applied to the interband transi-

tions ηðlÞib ðu; r0;ωÞ ¼ αðlÞib ð−u; r0;ωÞ.
Finally, we conclude by discussing possible applications

of the local Kirchhoff law. The majority of the best emitters
and detectors have been developed using bulk materials. As
far as detectors are concerned, using nanoantennas can be
useful to funnel light in smaller detectors with reduced
noise. For all these applications, it is required to optimize
the external quantum efficiency. The previous analysis

shows that the figure of merit to be optimized for both
LED and PV cells is αðlÞib ðr0;ωÞ.

VI. CONCLUDING REMARKS

We give a derivation of a local form of Kirchhoff law
valid for any finite-size body in local thermodynamic
equilibrium. In particular, the model can account for
systems where different temperatures or quasi-Fermi levels
can be defined for different subsystems. This approach
provides a common framework to model emission proc-
esses, such as thermal emission, electroluminescence, or
photoluminescence. We emphasize that the model accounts
for all electromagnetic features of the emitting body such as
modified density of states (e.g., photonic crystal, resona-
tors, metamaterials) or resonances. We now discuss some
possible applications.
We start with the implications for harnessing thermal

radiation. It has been known for applications such as
bolometers that absorption by a small volume of absorbing
material can be increased using antennas [72]. Indeed, an
antenna can capture more efficiently the incident power and
funnel it into the absorber volume. This absorbed power in
the presence of the antenna is then proportional to an
effective absorption cross section denoted σant. In addition,
the antenna can be directional and frequency selective [72].
It follows from the local Kirchhoff law that if the absorption
in the absorber volume is enhanced by the antenna, then its
thermal emission is also enhanced. The total emitted power
can be increased by the same factor σant=σabs, which can be
larger than 3 orders of magnitude [63]. Furthermore, the
emission can be directional and frequency selective. We
anticipate that a metasurface consisting of a periodic array
of subwavelength hot objects connected to antennas could
be optimized to behave as a blackbody antenna with unity
emissivity while using only a very reduced amount of hot
material.
Similarly, a small active region with quasi-Fermi levels

can be inserted in nanoantennas. The local Kirchhoff law
provides a model that accounts for both these effects and
the nanoantenna effects. A potential application is the
development of nanoantennas to reduce the electron-hole
recombination time paving the way toward ultrafast modu-
lation of LEDs [73]. Inasmuch as the thermalization time
remains shorter than the electron-hole recombination time,
the local Kirchhoff model can be used. As far as detectors
are concerned, using nanoantennas can be useful to funnel
light in smaller detectors with reduced noise. For both
applications, it is required to optimize the absorption rate
αib integrated over the volume, or, in other words, the
external quantum efficiency. We stress that this condition
differs from the condition of the maximum Purcell factor
and from the condition of maximum field enhancement by
the antenna discussed in Ref. [74].
We point out that quasi-Fermi levels can also be defined

for ensembles of organic molecules. Hence, the formalism
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we describe in the paper can be used to analyze molecular
fluorescence. If we consider an assembly of molecules in an
optical cavity at frequency ωcav, it is seen from Eq. (14) that
the emitted power will diverge as the chemical potential μ
approaches ωcav. This is what occurs in the Bose-Einstein
condensation of photons reported in Ref. [75], so that the
local Kirchhoff law appears to be an appropriate tool to
model photon condensation. The effect of the cavity is
included in the external quantum efficiency. The photon
condensation bears some resemblance to a laser regime as
(i) it has a threshold in the excitation (μ is an increasing
function of the pumping power) and (ii) all the radiation
goes through the cavity mode after threshold so that there
is a spectral narrowing only due to cavity filtering.
Nevertheless, as opposed to a laser, the formula was derived
under the assumption of local thermodynamic equilibrium
so that photons are in local thermodynamic equilibrium
with the medium which plays the role of a grand canonical
reservoir [35,76].
An important feature of the local Kirchhoff law is to

account for time dynamics of hot carriers on timescales
larger than the thermalization time (time needed to define a
carrier temperature T and a chemical potential μ) but that
can be much shorter than relaxation times (decay times of T
and μ). Hence, it can be very useful to study the dynamics
of hot electrons. In metals, this should be useful to analyze
luminescence induced by absorption of short pulses [77]. In
semiconductors, the possibility of increasing the efficiency
of PV cells using hot electrons has motivated many studies
of ultrafast dynamics using photoluminescence [78]. Here,
the key idea is to extract hot electrons before they relax to
the Fermi level.
In summary, the local Kirchhoff law is a practical tool

to design and analyze a large class of light emission
processes including thermal emission, photoluminescence,
and electroluminescence when the emitter is in local
thermodynamic equilibrium. It provides a simple model
of light emission that accounts for the interplay between
the electromagnetic properties of the emitter (resonances,
antenna effect, etc) and the matter excitations which are
included in the model through the imaginary part of the
permittivity of the material and the subsystem’s temper-
ature and chemical potential.
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APPENDIX: DERIVATION OF THE LOCAL
KIRCHHOFF LAW

In this appendix, we proceed to derive the local form
of Kirchhoff law using the reciprocity of a Green tensor
and the fluctuation-dissipation theorem. In the first part, we
derive the emission cross-section rate. In the second part,
we derive the absorption cross-section rate. Both are given
in terms of the Green tensor and the imaginary part of the
dielectric permittivity. From a practical point of view, the
explicit forms of ηðlÞ and αðlÞ are rather cumbersome. In
practice, it is possible to compute numerically αðlÞðu; r0;ωÞ
and insert it in Eq. (10) to derive the emitted power.

1. Emission

We begin by calculating thermal emission from a local
point r0 toward a point r. To proceed, we consider that
thermal fields are radiated by stationary random currents as
discussed in Refs. [34,40]. It follows from the stationarity
that the random radiated field is not square integrable so that
its Fourier transform cannot be defined in the usual sense.
However, it is known from Wiener-Khinchin theorem that
the power spectral density is the Fourier transform of the
correlation function. In what follows we use the notation of
Ref. [40] for the spectral analysis of stationary random
processes. This notation uses formally the Fourier transform
of the fields:

Eðr; tÞ ¼
Z

∞

−∞

dω
2π

Eðr;ωÞ expð−iωtÞ;

jðr; tÞ ¼
Z

∞

−∞

dω
2π

jðr;ωÞ expð−iωtÞ: ðA1Þ

The correlation function of the Fourier transform of the
current density components is then given by

hjnðr;ωÞjmðr0;ω0Þi ¼ hjnðr;ωÞj�mðr0;−ω0Þi
¼ 2πδðωþ ω0ÞWjn;jmðr; r0;ωÞ; ðA2Þ

where the brackets denote ensemble average and
Wjn;jmðr; r0;ωÞ is the cross-spectral density. It is given
by the fluctuation-dissipation theorem:

Wjn;jmðr; r0;ωÞ ¼ 2ωϵ0Im½ϵðr0;ωÞ�Θ½Tðr0Þ;ω�δðr − r0Þδnm:
ðA3Þ

for a linear and isotropic medium with permittivity ϵðr;ωÞ.
Let us note that this form of the fluctuation dissipation does
not contain zero-point fluctuations and is symmetric for
positive and negative frequencies. This is an effective form
that is an appropriate and correct form for our case as
discussed in Ref. [13]. The quantum theory of absorption
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prescribes the use of the normal order when computing
the field correlation function. It follows that we have to
compute the normally ordered correlation function of the
current density that does not contain the zero-point fluc-
tuations [13,71]. We consider a point r in the far field so
that the emission direction is specified by the unit vector
ur ¼ r=r. The electric field is transverse to the propagation
direction ur so that it can be described using only two
components. Let us introduce two orthogonal unit vectors
denoted eðsÞ and eðpÞ perpendicular to ur. The emitted
power flowing through the area dA is given by the flux of
the Poynting vector:

dPe ¼ hEðr; tÞ ×Hðr; tÞi · dAur: ðA4Þ

In the far field, the electromagnetic field has a plane wave
structure so thatHðr;ωÞ ¼ ϵ0cur ×Eðr;ωÞ. It follows that
the Poynting vector through dA can be cast in the form:

dPe ¼ dAϵ0c
Z

∞

−∞

dω
2π

Z
∞

−∞

dω0

2π
exp½−iðωþ ω0Þt�

× hEðr;ωÞ · Eðr;ω0Þi: ðA5Þ

The m component of the electric field is given by

Emðr;ωÞ ¼ iμ0ω
Z

Gmnðr; r0;ωÞjnðr0;ωÞd3r0; ðA6Þ

where Gmn is a component of the Green tensor and jn is the
n component of the current density. Throughout the paper,
we use the Einstein notation so that there is a sum over
repeated indices. The amplitude of the field along the unit
vector eðlÞ is given by

EðlÞ ¼ eðlÞ · E ¼ iμ0ω
Z

eðlÞm Gmnðr; r0;ωÞjnðr0;ωÞd3r0:

ðA7Þ

After inserting Eqs. (A1), (A3), and (A7) into Eq. (A5)
and usingGmnðr; r0;−ωÞ ¼ G�

mnðr; r0;ωÞ, we get the power
emitted in l polarization through dA:

dPðlÞ
e ¼ dA

Z
d3r0

Z
∞

−∞

dω
2π

jeðlÞm Gmkðr; r0;ωÞj2

× 2k3Im½ϵðr0;ωÞ�Θ½Tðr0Þ;ω�; ðA8Þ

where k ¼ ω=c. We have just used the fact that the power
spectral density of the current density fluctuation is related
to the absorption spectrum given by Im½ϵðr0;ωÞ�. This is the
first symmetry relation between intrinsic emission and
absorption properties. We now cast the result in a form
that can be compared to the standard radiometric approach.
We restrict the integration over positive frequencies using
Im½ϵðr0;ωÞ� ¼ −Im½ϵðr0;−ωÞ� and we introduce the solid

angle subtended by the area dA, dΩ ¼ dA=r2 and the
blackbody radiance Ib. The emitted power can be cast in
the form

dPðlÞ
e ¼

Z
∞

0

dω
Z
V
ηðlÞður; r0;ωÞ

Ib½Tðr0Þ;ω�
2

d3r0dΩ;

ðA9Þ

where we have defined the polarized spectral directional
emissivity ηðlÞður; r0;ωÞ:

ηðlÞður; r0;ωÞ ¼ 16π2r2jeðlÞm Gmkðr; r0;ωÞj2kIm½ϵðr0Þ;ω�:
ðA10Þ

Note that we define the polarized emission as propor-
tional to fIb½Tðr0Þ;ω�g=2 so that the total emitted power is
proportional to ðηs þ ηpÞfIb½Tðr0Þ;ω�g=2.

2. Absorption

The goal of this section is to derive the absorption cross
section of the body at a given frequency. To proceed, we
consider an incident electric field generated by a pointlike
deterministic monochromatic dipole with fixed complex
amplitude oscillating with a circular frequency ω. We
compute the absorbed power in the body and the incident
Poynting vector. Their ratio yields the absorption cross
section at that particular frequency for these illumination
conditions (direction and polarization). The dipole is
located at r in the far field with an l-polarized dipole
moment pinceðlÞ. The m component of the field EðlÞðr0Þ
generated at r0 is then given by

EðlÞ
m ðr0Þ ¼ Gmnðr0; r;ωÞeðlÞn pincμ0ω

2; ðA11Þ

and the amplitude of the incident field propagating in
vacuum produced by the l-polarized electric dipole at point
r is given by

EðlÞ
inc ¼

expðikrÞ
4πr

μ0ω
2pinc: ðA12Þ

It follows that

EðlÞ
m ðr0Þ ¼ Gmnðr0; r;ωÞeðlÞn 4πrEðlÞ

inc expð−ikrÞ: ðA13Þ

We now use the reciprocity theorem,

Gmnðr0; r;ωÞ ¼ Gnmðr; r0;ωÞ; ðA14Þ

which is the second key ingredient in the derivation. We
stress that this equality is valid in the presence of any
resonator, cavity, antenna, etc. provided that all the materi-
als have symmetric permittivity tensors. The absorbed
power is given by Eq. (3):
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PðlÞ
abs ¼

Z
V
Im½ϵðr0;ωÞ�ωϵ0

2
jeðlÞn Gnmðr; r0;ωÞ4πrEincj2d3r0:

ðA15Þ

This result can be cast in the form

PðlÞ
abs ¼

ϵ0c
2

jEincj2
Z
V
d3r0αðlÞðuinc; r0;ωÞ; ðA16Þ

where we have defined a polarized directional absorption
cross-section density αðlÞðuinc; r0;ωÞ:

αðlÞðu; r0;ωÞ ¼ 16π2r2jeðlÞm Gmkðr; r0;ωÞj2kIm½ϵðr0Þ;ω�:
ðA17Þ

The incident direction is characterized by uinc ¼
−r=r ¼ −ur. Upon inspection, we see that

ηðlÞður; r0;ωÞ ¼ αðlÞð−ur; r0;ωÞ;

which is the local form of Kirchhoff law.
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