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How are granular details of stochastic growth and division of individual cells reflected in smooth
deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial
growth dynamics by formulating a data-validated theoretical framework that accounts for observables at
both single-cell and population scales. We derive exact analytical complete time-dependent solutions
to cell-age distributions and population growth rates as functionals of the underlying interdivision time
distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising
implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric
division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-
competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can
spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For
C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth
condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean
(single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution,
and the quiescence timescale.
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I. INTRODUCTION

Several decades ago, the earliest quantitative microbiol-
ogy experiments revealed that microbial population sizes
increase exponentially under favorable growth conditions
[1]. However, direct quantification of the underlying growth
and division dynamics at the level of the individual cell
has only recently become possible, following advances in
quantitative single-cell technologies [2–10]. While popula-
tion growth of cells is typically a deterministic process,
which follows a smooth exponential function under favor-
able conditions, single-cell growth and division dynamics
are highly stochastic. For instance, there is significant
stochasticity in the division times (also known as generation
times, cell lifetimes, interdivision times, or waiting times).

Typically, the coefficient of variation (COV, defined as the
ratio of the standard deviation to the mean) of division times
is 10%–30% [2–14]. Using recent advances in single-cell
technologies, it is possible to characterize these fluctuations
with exquisite precision for large ensembles of statistically
identical cells [2].
In this paper, we take advantage of the availability of

high-quality quantitative single-cell data sets and develop
an integrated perspective of microbial growth dynamics
under balanced conditions. We formulate a data-driven
theoretical framework that takes into account observables at
both single-cell and population scales, and we derive exact
analytical complete time-dependent solutions to cell-age
distributions and population growth rates as functionals
of the underlying interdivision time distributions, for
symmetric and asymmetric cell division. These results
provide insights into the surprising implications of sto-
chastic single-cell dynamics for population growth.
Exponential growth dynamics are also observed (to a

good approximation) in the population growth of other
species, the spreading of pandemics, the polymerase
chain reaction for amplification of DNA fragments, global
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Internet traffic increase, multiplication of viruses in T cells,
and tumor growth [15]. There are unifying themes in the
quantitative characterizations of exponential growth in these
different contexts, codified in general results of the theory
of branching processes [16,17]. The idiosyncrasies of each
experimental system determine the important dynamical
variables and measurables in that specific context. For
instance, in demographic studies, the age structure of the
human population in a region at a given time can be well
characterized. However, typically there is a paucity of data
for the total population number over multiple human life
spans. Thus, indirect estimation of the Malthusian parameter
(the exponential growth rate) from the observed age struc-
tures is a focus of these studies [18].
In contrast, in standard bulk-culture bacterial growth

studies, the dynamical range in the population number of
cells can be readily made to span multiple logarithmic
decades in a day or two, since the typical timescales
involved are of the order of minutes. Thus, precise
estimation of the exponential growth rate k, defined to
be the inverse of the time taken for the numbers of cells to
increase by a factor of e, is feasible in this context [15].
Since many kinds of cells divide precisely into two cells at
each division, the bulk growth rate is often used to infer the
cell doubling time, i.e., the time it takes for a single cell to
fission into two daughter cells, using the formula ðln 2Þ=k
[15]. However, the extrapolation from the observed growth
rate of the population [typically involving Oð108Þ cells per
mL] to the inferred dynamics at the single-cell level is often
inaccurate because all cells do not divide at precisely the
same time after birth. There is significant stochasticity in
the division times, as previously noted. One must account
for this variability in relating the stochastic single-cell
division dynamics to the population growth; even the mean
population growth rate depends on the shape of the division
time distribution.
A technical challenge in developing an exact theoretical

framework for predicting population level behaviors, con-
sistent with underlying stochastic single-cell dynamics, is
that the aging dynamics of individual cells are non-
Markovian or history dependent. This is reflected in the
nonexponential shape of typical interdivision time distri-
butions (waiting-time distributions for duration between
successive divisions). Since standard techniques for finding
exact solutions to stochastic processes are only applicable
to Markovian or memoryless dynamics, we have used first
principles to derive a non-Markovian description of the cell
division process, including exact analytical time-dependent
solutions. These results represent a significant advance in
the general theory of non-Markovian dynamics.
A unique advantage of studying balanced exponential

growth in the microbial context is that high quality data are
accessible at multiple scales of observation (subcellular,
organismal, and population level). In particular, the tech-
nology that we have recently developed for C. crescentus

cells has the advantage that isolated single cells in highly
reproducible and unlimiting balanced-growth conditions
can be observed with unprecedented statistical precision
[2]. Complementary approaches have been introduced by
others for other organisms [4,7,10,11,19]. In the past, it was
difficult to collect large data sets for statistically identical
cells in uncrowded conditions even with these single-cell
technologies; these challenges are now being overcome
[20]. Thus, direct comparison between these single-cell
experiments and bulk-culture measurements under the
same growth conditions is possible.
A special feature of C. crescentus cells is that they

divide asymmetrically. A replication-competent stalked cell
(referred to here as a normal cell) grows and divides into
two distinct daughter cells: another stalked cell and a
reproductively quiescent swarmer cell, which must undergo
an additional differentiation step before transitioning into a
stalked cell. The division and differentiation steps are thus
controlled by distinct stochastic waiting-time distributions
(see Fig. 1). Therefore, we generalize the theory to include
asymmetric division.
It has been challenging to directly quantify the quies-

cence timescale, i.e., the time for a swarmer to differentiate
into a stalked cell (labeled Tq in Fig. 1). The single-cell
technology has allowed direct visualization of growth and
division dynamics of stalked cells [2], but the growth and
division dynamics of individual swarmer cells have yet to
be directly observed. Indeed, it is unknown how individual

(a) (b)

FIG. 1. Schematic representation of model and experimental
system. In (a), we summarize the general model considered.
Upon division, a normal (yellow) cell divides into ν normal cells
and νq reproductively quiescent (blue) cells. Division occurs after
a stochastic waiting time τ, drawn from a distribution PðτÞ. The
quiescent cells transition into normal cells with a waiting-time
distribution PqðTqÞ. Model specification requires knowledge of
ν, νq, PðτÞ, and PqðTqÞ. By setting νq ¼ 0, one obtains a model
of symmetric division (dotted cyan box). In (b), we show a
schematic of the relevant timescales in the C. crescentus life
cycle: the stalked (normal) cell division time τ and the swarmer
(quiescent) cell to stalked cell transition time Tq. Upon division, a
stalked cell gives birth to a stalked and a swarmer cell. Thus,
the C. crescentus cell cycle reduces to the model in (a) with
ν ¼ νq ¼ 1. The single-cell technology introduced in Ref. [2]
corresponds to a model with ν ¼ 1 and νq ¼ 0 (dotted cyan box).
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swarmer cells grow between division and differentiation,
i.e., whether they grow exponentially in size, like stalked
cells, or if there is a rapid growth spurt at a specific phase of
differentiation. Population growth measurements typically
involve mixed populations of stalked and swarmer cells and
obscure details of swarmer cell dynamics. Knowledge of
the quiescence timescale is essential for any quantification
involving the full cell cycle of the organism. We address
this gap in understanding by using the theoretical machi-
nery developed herein to provide a prescription for esti-
mating the quiescence timescale. For C. crescentus cells,
we also show that a simple measurement of the population
growth rate, for a given growth condition, is sufficient to
characterize the condition-specific cellular unit of time and,
thus, it yields the mean (single-cell) growth and division
timescales, fluctuations in cell division times, the cell-age
distribution, and the quiescence timescale.

II. RESULTS

A. System characterization and notation

Since the number of cells per mL in typical bulk-culture
measurements is very large [e.g., Oð108Þ], we can treat the
total number of cells in the population at a time t, NðtÞ, as a
continuous variable. Moreover, it is reasonable to assume
that the fluctuations in NðtÞ relative to its mean value are
negligible. In asymptotic balanced growth,NðtÞ is expected
to grow exponentially, i.e., NðtÞ ¼ Nð0Þ exp ðktÞ.
Here, k denotes the exponential growth rate of popula-

tion size; it can be experimentally obtained from standard
bulk-culture measurements. We denote the age of the cell,
i.e., the time since the last division, by τ; PðτÞdτ is the
probability that a cell lives to age τ and then divides
between ages τ and τ þ dτ. In contrast, the division
propensity, αðτÞ, is defined as follows: αðτÞdτ is the
probability that a given cell of age τ divides between τ
and τ þ dτ. One might be tempted to equate it to PðτÞ,
but the two are distinct and related as follows: αðτÞ ¼
PðτÞ=½1 − R

τ
0 dτ

0Pðτ0Þ� (see the Appendix for details). We
note that in balanced growth, the division time distribution
PðτÞ is independent of the time of observation, t.
In microbial systems, the number of progeny per cell is

typically a constant number (a positive integer, such as 1 or
2); we denote it by ν. We define the age-dependent number
density nðt; τÞ as follows: nðt; τÞdτ is the number of cells
present at t, with ages between τ and τ þ dτ. In this paper,
we consider growth conditions in which the probability
of cell mortality is negligible. Thus, the total number of
cells (and so the number of cells of each age) increases
indefinitely. Mathematically, being in the balanced growth
state means that the fraction of cells of each age at any time
t is time invariant. Therefore, the cell-age distribution,
Gðt; τÞ≡ nðt; τÞ=NðtÞ, is time independent in the long time
(balanced growth) limit. We denote this steady-state age
distribution byG�ðτÞ. It is a normalized probability density,

since the sum of fractions of cells at each age is unity. In
practice, single-cell measurements yield PðτÞ, from which
the division propensity, αðτÞ, can be computed (see above).
Thus, the question then becomes how, given PðτÞ and ν,
the corresponding population exponential growth rate k
and the age distribution G�ðτÞ are to be self-consistently
determined.

B. General solution for symmetric cell division

To place the general solution in context, it is useful to
first consider two familiar limiting cases of the problem.
(i) In the deterministic limit, cells divide exactly at age τo,
i.e., PðτÞ ¼ δτ;τo . Therefore, NðtÞ ¼ Nð0Þνðt=τoÞ. Here,
when ν ¼ 2, the doubling time is equal to the division
time, τo. (ii) When the dynamics is Markovian or mem-
oryless, the division time distribution is an exponential,
PðτÞ ¼ κe−κτ. The dynamics in this case is identical to
that of a one-step stochastic Hinshelwood cycle [21] or,
equivalently, an age-dependent Galton-Watson process
with an exponential waiting-time distribution [16]. The
full solution is known; in particular, NðtÞ ¼ Nð0Þeκt. Thus,
the population growth rate k is equal to the single-cell
exponential waiting-time distribution parameter κ. Note
that, even for this simple case, the mean division time of
single cells, μτ ¼ 1=k, is not equal to the mean doubling
time of the population, ðln 2Þ=k.
In general, the propensity of a cell to divide depends on

its age; i.e., α varies with τ. Consequently, the time
evolution is non-Markovian, and PðτÞ is nonexponential.
This significantly increases the complexity of the problem
of finding the population growth rate k as a functional of
PðτÞ; for symmetric division, the process falls in the
category of a Bellman-Harris branching process [16].
Typically, the division time distribution is a unimodal
distribution with a peak at a finite time and a positive
skew; i.e., it has a long right tail. Thus, it is qualitatively
different from the monotonically decreasing exponential
distribution (Markovian limit). Therefore, solving the
general non-Markovian case is important. We derive the
time evolution equations for the age-dependent number
density nðt; τÞ and the age distribution Gðt; τÞ for a
general PðτÞ and solve them exactly (see the Appendix
for details).
In the general case, the population’s exponential growth

rate k is related to the single-cell division time distribution
PðτÞ through the integral

he−kτiP ≡
Z

∞

0

dτe−kτPðτÞ ¼ 1

ν
: ð1Þ

In words, k is the point at which the Laplace transform of
the division time distribution PðτÞ is equal to 1=ν. The
expressions for the age distribution and the total population
number, for a given initial condition Nð0Þ, are
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G�ðτÞ ¼ νk
ðν − 1Þ e

−kτ
�
1 −

Z
τ

0

dτ0Pðτ0Þ
�
;

NðtÞ ¼ Nð0Þekt;

nðt; τÞ≡ NðtÞG�ðτÞ ¼ Nð0Þ νk
ðν − 1Þ e

−½
R

τ

0
dτ0αðτ0Þ�: ð2Þ

Together, Eqs. (1) and (2) constitute the complete analytical
solution to the problem for symmetric cell division. We
note that the solution for ν ¼ 2, the case of symmetric
binary fission, has been studied in detail in classic ecology
literature [22,23].
From the general solution, it follows that there is a

unique steady-state age distribution G�ðτÞ, corresponding
to a given division time distribution PðτÞ and progeny
number ν. Conversely, if the (population) cell-age dis-
tribution and the bulk exponential growth rate are
observed, Eq. (2) can be used to infer the single-cell
division time distribution. We note that the growth rate k
is itself a functional of PðτÞ for a given ν and is thus
not an independent parameter of the solution for G�ðτÞ
in Eq. (2).
Since the shape of the age distribution reveals features

of the division time distribution, its qualitative features
are of interest. Briefly, they are as follows. (See Fig. S1
in [24] for a graphical summary of these results.) First,
the age distribution monotonically decreases with τ. To
see this, note that, in Eq. (2), the cumulative integralR
τ
0 dτ

0Pðτ0Þ increases with τ since PðτÞ > 0. Next, since
PðτÞ ∝ dðekτG�Þ=dτ, the most probable division time is
determined by where the curvature of ekτG�ðτÞ changes
sign, i.e., its point of inflection. Also note that the slope
of this function at its point of inflection estimates the
width of the division time distribution. For ν ¼ 1, a case
considered in detail below, the mean division time is given
by the point of inflection of the age distribution and the
slope at this point estimates the width of the division time
distribution. Finally, for a given PðτÞ, a greater value of ν
(number of progeny per cell) will increase the growth rate
and skew the age distribution towards smaller ages (i.e., to
the left).

C. Comparison with single-cell experiments:
Measured and predicted cell-age distributions

We compare our theory to recent single-cell data for
C. crescentus [2]. C. crescentus divides into two morpho-
logically and functionally distinct daughter cells: an adher-
ent stalked cell that is replication competent and a motile
swarmer cell that cannot divide further but can differentiate
into a stalked cell. In these microfluidic experiments [2],
stalked cells are retained and swarmer cells are removed
after each division (see Fig. 1). Therefore, the stalked-cell
dynamics (in these experimental conditions) is equivalent
to cells being simply “renewed” after each division, i.e.,
ν ¼ 1. Also, the total number of stalked cells in the

experiment NðtÞ is constant. These features simplify the
problem, and we can use the analytical results for the
symmetric-division model. However, the growth dynamics
is still non-Markovian and hence nontrivial. For ν ¼ 1, the
relation between the division time and age distributions
becomes

G�ðτÞ ¼ 1

μτ

�
1 −

Z
τ

0

dτ0Pðτ0Þ
�
; ð3Þ

where μτ is the mean division time, μτ ≡ R∞
0 dττPðτÞ. See

the Appendix for details and Fig. S1 in [24] for a graphical
interpretation.
We use the measured time courses of single-cell growth

and division to validate the theory as follows. We obtain the
measured cell-age distribution by building a histogram
of the duration between the time of observation and the
recorded time of the previous division for each cell. From
the same experiment, we also measure the division time
distribution, and we insert it into Eq. (3) to compute the
predicted age distribution. For experiments spanning the
physiological temperature range of the organism, we find
excellent agreement between the measured and predicted
cell-age distributions with no fitting parameters [Fig. 2(a)],
confirming the model.
When rescaled by their condition-specific means, cell-

age distributions from all temperatures collapse onto a
single curve [Fig. 2(b) symbols]. The underlying physical
principle encoded in this universal behavior is that a single
temperature-dependent scale of time, proportional to the
mean division time (or, equivalently, the mean age),

(a) (b)

FIG. 2. Cell-age distributions, measured and predicted, from
different temperatures. In (a), we show the age distributions from
different temperatures (light green, 34 °C; dark green, 31 °C;
cyan, 24 °C; and blue, 17 °C). The data from single-cell experi-
ments are shown with circular symbols, and the predictions
from the theory (with no adjustable parameters) are shown with
corresponding dashed lines. In (b), we show the same age
distributions as in (a), rescaled by their respective temperature-
dependent mean ages. G̃�ðτ=μaÞ≡ μaG�ðτÞ is the mean-rescaled
probability density of cell ages. Evidently, once mean rescaled,
the probability densities undergo a scaling collapse, consistent
with a single condition-specific timescale dominating stochastic
growth and division statistics (see text). For the measured cell
division time, distributions corresponding to these age distribu-
tions; see Fig. 3B of [2].
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governs stochastic growth and division dynamics [2,21].
For the scaling collapse of the corresponding mean-
rescaled division time distributions, see [2].
We note that the mean age μa and mean division time

μτ are not equal. For ν ¼ 1, using Eq. (3), the two are
related by

μa ¼
μτ
2
ð1þ η2τÞ; ð4Þ

where ητ is the COV of the PðτÞ distribution. [See
Appendix, Eqs. (A15)–(A17), for a detailed derivation.]
Using Eqs. (3) and (4), we find the predicted mean-rescaled
age distribution; this also agrees excellently with the
observed distribution [Fig. 2(b) line]. Equation (4) shows
that when there is no stochasticity in division times [i.e., the
deterministic case PðτÞ ¼ δτ;τo], then the mean age is half
the mean division time since cell age is uniformly distrib-
uted from 0 to τ. Interestingly, this provides a lower bound
for the mean age (for a specified mean division time) since
any stochasticity in PðτÞ can only increase ητ and, thus, the
mean age. We note that, in practice, even if there is sizable
noise in division times, the second term is negligible
compared to the first (for 20% noise in division times,
the ratio of the two terms is 0.04). Thus, μa ≈ μτ=2.
Once the age distribution (for a specific balanced growth

condition) has been determined, it can be used to decon-
volve cell-cycle phase dependence from a population of
asynchronous cells, since it predicts the probability weight
to associate with cells of each age. This obviates the need
for less precise bulk-synchronization experiments, in which
it is also unclear how the synchronization procedure may
itself alter the balanced growth state. For instance, if the
initial population has only swarmer cells, then the numbers
of stalked and swarmer cells in the population oscillate with
time and the culture is far from being in balanced growth
(Fig. 6). We note that an early empirical algorithm for cell-
cycle phase deconvolution was given in Ref. [25].

D. Generalization to asymmetric division

Motivated in part by the C. crescentus data discussed
above, we now generalize the theory to allow for asymmetric
divisions (see Fig. 1). There are two distinct cell types in the
population: normal division-capable cells and reproductively
quiescent cells, which take an additional stochastic waiting
time Tq to differentiate (transition) to normal cells before
being able to divide. Each normal cell divides into ν normal
cells and νq quiescent cells. The waiting time Tq has
probability distribution PqðTqÞ. Normal cells divide with
a division time distribution PðτÞ, as before. With the
inclusion of asymmetric division, the process is no longer
a standard branching process, since different cells in the
population are not statistically identical [26]. This signifi-
cantly increases the complexity of the problem. However, we
have found exact analytical solutions (see the Appendix for

details). We denote the (steady-state) age distributions of
normal and quiescent cells by G�ðτÞ and G�

qðTqÞ, respec-
tively. In the νq ¼ 0 limit, the problem becomes equivalent
to the symmetric division case.
A key physical insight is that the ratio of normal to

quiescent cells should be a constant for balanced growth
conditions. Consequently, both kinds of cells must increase
exponentially in numbers, with the same growth rate, k.
See the Appendix for details. The exact solution for k,
for specified functional forms of PðτÞ and PqðTqÞ,
when ν normal and νq quiescent progeny are born at each
division, is

he−kτiP ¼ 1

νþ νqhe−kTqiPq

: ð5Þ

In this solution, he−kτiP ≡ R
∞
0 dτPðτÞe−kτ and he−kTqiPq

≡R
∞
0 dTqPqðTqÞe−kTq . For the complete solution, including
expressions for G�ðτÞ, G�

qðTqÞ, and the fixed ratio of
stalked to swarmer cells, see the Appendix.

E. Comparison with population level experiments:
Scaling of timescales in the C. crescentus life cycle

For C. crescentus cells, the “normal” cells correspond to
stalked cells, and “quiescent” cells correspond to swarmer
cells. Each stalked cell divides into a stalked cell and a
swarmer cell. The swarmer differentiates into a stalked cell
after a time Tq. Thus, for bulk-culture experiments with
C. crescentus cells, ν ¼ νq ¼ 1, and Eq. (5) becomes

he−kτiP ¼ 1

1þ he−kTqiPq

: ð6Þ

From our bulk-culture experiments, we are able to deter-
mine the population growth rate k. Population growth data
were obtained using standard optical density measure-
ments. For each experimental condition, 12–20 growth
curves were obtained under dilute growth conditions; for
each growth curve, we recorded 6–10 data points in the
“log phase.” The exponential growth rate of the population
was determined by averaging the growth rates obtained
from the log phase data of each growth curve. Moreover,
PðτÞ is also known, since it is directly observed in our
single-cell experiments [2]. Thus, the timescale that
remains to be determined is the swarmer-to-stalked cell
transition time Tq and the corresponding distribution
PqðTqÞ. There are several technical reasons why direct
experimental characterization of Tq is challenging (see
[27]). Yet, knowledge of this timescale could provide an
important clue to many fundamental biological questions.
For example, it is not known precisely what fraction of the
C. crescentus life cycle is spent in the swarmer stage.
Determining this may in turn indicate how the additional
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differentiation step in the life cycle confers flexibility to the
fitness of C. crescentus cells in different growth conditions.
Also, the results in Ref. [2] imply that there must be cell
size growth at the swarmer stage, since the average size of
a newborn swarmer is only approximately 80% of the
average size of a newborn stalked cell, and the newborn
stalked cell size distribution has been shown to be invariant.
But whether swarmer cell sizes increase linearly, exponen-
tially, or in a rapid growth spurt during differentiation
remains to be determined.
Here, we estimate the swarmer-to-stalked transition time

for different balanced growth conditions using Eq. (6). The
results are shown in Fig. 3. At each growth condition,
we invert the (integral) equation to estimate Tq, using the
experimentally determined k (the bulk growth rate) and
PðτÞ (the stalked cell division time distribution). The mean
value of this timescale μTq

is insensitive to the particular
functional form assumed for PqðTqÞ. Therefore, we use
PqðTqÞ ¼ δðTq − μTq

Þ and find μTq
using Eq. (5), after

numerically evaluating the Laplace transform for PðτÞ at k
for each growth condition. Remarkably, the fraction of the
cell cycle spent in the swarmer stage is a constant, as
temperature is varied (and the duration of the life cycle
itself changes by a factor of approximately 4). Specifically,

we find that μτk ¼ 0.6 and μTq
¼ 0.4μτ (Fig. 3). This result

is consistent with the indirect measurements in Ref. [27].
Moreover, using this ratio, we can predict the ratio of
swarmer to stalked cells in the population during balanced
growth (see the Appendix for details). We find that
NqðtÞ=NðtÞ ≈ 0.2, also consistent with previous estimates
[27], further validating our approach.
In Ref. [2], we showed that the single-cell exponential

growth rate (of stalked cell sizes) ksc determines a
condition-specific cellular unit of time. Thus, it governs
all aspects of the stochastic dynamics of stalked-cell growth
and division; in particular, its inverse is proportional to
the mean division time μτ, and it also determines the full
distribution PðτÞ. Since we now find that μTq

=μτ is also a
constant, the implication is that the single-cell exponential
growth time scale k−1sc , proportional to the population
growth rate k, governs all relevant timescales for growth,
division, and differentiation. Thus, all timescales rescale
proportionally, when external conditions are changed (see
Fig. 3). The remarkable implication is that for any balanced
growth condition of interest, a simple measurement of the
population growth rate k, when used to rescale the universal
mean-rescaled distributions we have found (Fig. 2 and [2]),
together with the model, yields distributions of cell division
times, cell ages, and cell sizes.
Moreover, we find that the population and single-cell

exponential growth rates are approximately equal to
each other for all temperatures in Fig. 3: ksc ≈ k. The
surprising implication of this observation is that the
duration of the swarmer-to-stalked cell transition time is
accounted for by the fact that cell numbers double in
the time that cell sizes increase by a factor of 1.8. This
observation is consistent with swarmer cell sizes also
increasing exponentially with time, with the same growth
rate. However, validation of this interpretation requires
further experimentation.

F. Transient dynamics and oscillations
in population numbers

To extend the results to time-dependent scenarios, i.e.,
to account for transient behaviors before a steady state
is attained, we have derived the exact analytical time-
dependent solution to the general problem of asymmetric
division (see the Appendix for derivation and analytical
expressions). Steady-state solutions and results for sym-
metric division are obtained as straightforward limits of the
general solution.
Surprisingly, in the transient regime, population num-

bers of both normal and quiescent cells may oscillate with
time. As previously noted, in the steady state, the numbers
of normal and quiescent cells grow exponentially, with the
same exponential growth rate. However, in the short time
limit, depending on the initial conditions, the numbers
of normal and quiescent cells may oscillate with time.

(a) (b)

FIG. 3. Scaling of timescales in the C. crescentus life cycle.
(a) The population growth rate k (orange circles) and the single-
cell mean division rate from [2] (cyan squares) are shown as
functions of temperature on an Arrhenius plot. The measurement
precision is better than the sizes of the plot markers. The dotted
(dashed) line is the best fit Ratkowsky curve [2] for the single-cell
(population) data. Both fits are found to be proportional to each
other, with the Ratkowsky temperature 269 K; by finding the ratio
of the two curves, we find that μτk ¼ 0.6. (b) Combining the
results from (a) with Eq. (6) and results from [2], we are able to
characterize all timescales in the C. crescentus life cycle as
fractions of mean single-cell division time or, equivalently, the
inverse of the population growth rate (see the accompanying
text). At different temperatures, all timescales change propor-
tionally; the proportions are shown in (b). Single-cell measure-
ments sample the dynamics of stalked cell division (cyan
rectangle), whereas population growth measurements sample
the dynamics of stalked cell division and swarmer cell differ-
entiation (orange rectangle).
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See Figs. 4(b) and 6(a) for typical instantiations of these
oscillations.
We elucidate the physics of oscillatory transients through

a simple example [see Fig. 4(a)]. Consider deterministic
division and differentiation: a normal cell divides into a
normal and a quiescent cell after time τ, and the quiescent cell
transitions into a normal cell after time Tq. In other words,
PðτÞ andPqðTqÞ are delta functions peaked at times τ andTq,
respectively, and ν ¼ νq ¼ 1. For brevity, let us assume that
τ > Tq and that, initially, N ¼ N0 normal cells and Nq ¼ 0

quiescent cells are present.We denote the lineage of a cell at a
given generation by the sequence of reproductively normal
(N) and quiescent (Q) stages in its ancestry, beginning from
t ¼ 0, and including its current stage.
Nothing occurs until t ¼ τ, when all cells of lineage

N simultaneously divide, causing Nq to increase by N0

[event E1 in Fig. 4(a)]. The next event occurs at t ¼ τ þ Tq,
when all quiescent cells of lineage NQ differentiate into
normal cells, causing Nq to decrease to 0, and N to increase
to 2N0 [event E2 in Fig. 4(a)]. Following this event, the
normal cell population consists of two subpopulations,
each consisting of N0 cells of lineages NN and NQN,
respectively. The second subpopulation is Tq younger in
age than the first. Next, at t ¼ 2τ [event E3 in Fig. 4(a)], the
older generation of normal cells, NN, divide, causing Nq to
jump to N0 again because of the birth of cells of lineage
NNQ. Subsequently, at time t ¼ 2τ þ Tq, all N0 normal
cells from generation NNQ divide. At the same time, all
quiescent cells of lineage NNQ differentiate into normal
cells. The net result of these processes is that NðtÞ jumps
from 2N0 to 3N0. Thus, periodic jumps and dips in
population numbers continue to occur at times that are
various integer combinations of τ and Tq, resulting in the
oscillatory behavior of population numbers. In this manner,
population oscillations arise when the initial population is
highly synchronized, i.e., when the initial age distributions
of normal and quiescent cells (if present) are narrow. The
persistence of distinct lineage identities in subsequent
generations, reflected in narrow age distributions of sub-
populations grouped by lineages, causes distinct fractions
of the population to undergo division or differentiation
synchronously. This dynamic results in transient population
oscillations.
In a realistic model with finite widths for PðτÞ and

PqðTqÞ, division and differentiation do not occur synchro-
nously for the entire population. Thus, even when the initial
population is perfectly synchronized, each subsequent
event increasingly broadens the normal and quiescent
cell-age distributions. This desynchronization effect even-
tually wipes out population number oscillations, and the
steady-state age distributions retain no signatures of lineage
identities of subpopulations of cells. In the presence of
stochasticity, population oscillations are no longer as
sharply defined as in the deterministic case discussed
previously [contrast the oscillations in Fig. 4(b) with those
in Fig. 4(a)]. Instead, the time distribution for each event
is given by the convolution of time distributions corre-
sponding to the elementary processes (cell divisions and
quiescent-normal transitions) leading up to that event.
Consequently, later events desynchronize such that they
are washed out in the population average. This is illustrated
in Fig. 4(b), in which we have shown the time-dependent
normal and quiescent cell population numbers, calculated
using our exact analytical time-dependent solution.
However, the first few events can still be distinguished
in the oscillations, allowing estimation of the timescales
corresponding to the elementary processes. For example,
the first division and differentiation events can be identified
in Fig. 4(b), as the rise and fall of the first bump in NqðtÞ,
yielding estimates of the mean timescales of cell division
(μτ) and differentiation (μTq

) times. This provides a

(a) (b)

FIG. 4. The physics of transient oscillations. In (a), we sketch a
simple example that illustrates how transient oscillations in
population numbers arise. See the accompanying text for notation
and definition of variables. Initially, N0 normal cells are present,
and population numbers increase as these cells divide and
differentiate. The possible lineages of cells present in each
demarcated interval are shown as the appropriate sequence of
normal (N) and quiescent (Q) stages in their ancestry, starting at
t ¼ 0, and including their current state. At t ¼ τ, all cells of
lineage N divide, causing an increase by N0 in NqðtÞ, while NðtÞ
remains equal to N0. At t ¼ τ þ Tq, the quiescent cells differ-
entiate synchronously, creating the lineage NQN. This results in a
simultaneous decrease in NqðtÞ and increase in NðtÞ, each by N0.
The next change in numbers occurs with the division of all cells
of NN lineage at t ¼ 2τ. In this manner, the persistence of distinct
lineage identities causes distinct fractions of the population to
undergo division or differentiation synchronously, resulting in the
observed population oscillations. In (b), we show the correspond-
ing transient oscillations in population numbers for a realistic
model where division and differentiation occur probabilistically.
See the Fig. 6 legend for the parameter values used; for these
parameter values, we find that μτ ¼ 1 and μTq

¼ 0.4. From the
times at which the first oscillation in quiescent cell populations
begins and ends, we can deduce the mean cell division (μτ) and
differentiation (μTq

) times [compare with panel (a)]. The age
distributions at the transient times (i)–(iii), corresponding to
stages 2–4 in (a), are shown in Fig. 5. All curves were calculated
from our exact analytical time-dependent solutions (see the
Appendix for details).
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prescription for inferring underlying timescales of division
and differentiation from transient population oscillations
obtained by using initially synchronized populations.
Experimental observation of these oscillations requires
highly synchronized initial populations for the reasons
discussed above. This presents a technical challenge that
may be overcome by using “baby machines” to collect cells
born within a small interval of time [28,29].
The transition from oscillatory to smooth steady-state

behavior, because of the broadening of the age distributions
of later generations, is also reflected in the temporal
evolution of shapes of the normal and quiescent age
distributions. This effect is evident in Fig. 5, where we
have visualized the time evolution of the age distributions
of normal and quiescent cells, calculated using the exact
analytical time-dependent solution. Moreover, the separa-
tion between the different modes of the multimodal time-
dependent age distributions contains information about the
underlying timescales of division and differentiation. For
instance, in Fig. 5(a), curve (ii) shows a bimodal normal

cell-age distribution observed at t ¼ 1.6. The separation
between the two modes (corresponding to the lineages NN
and NQN, as marked in the figure) is approximately equal
to the differentiation timescale, μTq

¼ 0.4. Thus, the time
evolution of age distributions of an initially synchronized
population provides another route to infer the underlying
timescales of division and differentiation.

G. Scaling of fluctuations in population numbers

Since population growth studies typically involve very
large numbers of cells, fluctuations in population numbers
are negligible, and our analytical results average over these
fluctuations. However, in experiments with small popula-
tions (at the intermediate scale between single-cell and
population growth studies), these fluctuations may be non-
negligible. We have used numerical simulations to extend
analytical results and investigate these fluctuations. We
performed stochastic simulations for population growth for
different waiting-time distributions and progeny numbers
for both symmetric and asymmetric division by developing
an exact algorithm for simulating this non-Markovian
population growth dynamics. We note that the standard
Gillespie algorithm [30] cannot be used, since it assumes
exponential waiting-time distributions.
Our simulation results are summarized in Fig. 6.

Remarkably, the fluctuations in population sizes show
the following scaling behavior: Once balanced growth is

(a) (b)

FIG. 5. Time evolution of age distributions of normal and
quiescent cells. The solid curves in (a) and (b) show transient
normal and quiescent cell-age distributions, respectively. We
have plotted these distributions at t ¼ 1.2, 1.6, and 2.05,
corresponding to times labeled (i), (ii), and (iii), respectively,
in Fig. 4(b). See the Fig. 6 legend for the parameter values used;
for these parameter values, we find that μτ ¼ 1 and μTq

¼ 0.4.
The initial population consists of newborn normal cells. Each
mode of a time-dependent age distribution corresponds to a
specific lineage, as labeled above. The separations between
different modes of multimodal time-dependent age distributions
contain information about underlying timescales of division and
differentiation. For instance, in (a), curve (ii) shows a bimodal
normal cell-age distribution observed at t ¼ 1.6. The separation
between the two modes (corresponding to the lineages NN and
NQN) is approximately equal to the differentiation timescale,
μTq

¼ 0.4. The broadening of age distributions of each new
lineage, because of fluctuations in division and differentiation
times, results in steady-state age distributions (dashed curves) in
which contributing lineages can no longer be distinguished. All
curves were calculated from the exact analytical time-dependent
solutions, which are presented in the Appendix. The δ-function
corresponding to the initial age distribution has not been shown
in (a). See Supplementary Videos 1 and 2 in [24] for the full time
evolution of the age distributions corresponding to panels (a) and
(b), respectively.
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FIG. 6. Scaling of number fluctuations during stochastic
population growth. In (a), we show analytical results for the
time evolution of population sizes of normal (yellow) and
quiescent (blue) cells. In the steady state, they have the same
exponential growth rate. Oscillations in the numbers of normal
and quiescent cells are observed during the transient phase. The
bold curves show the mean behavior of population numbers,
calculated using our exact analytical solution. Also shown are
representative stochastic trajectories that account for fluctuations
in population numbers. The stochastic trajectories were computed
using exact numerical simulations (see the accompanying text).
In (b), we show that the mean-rescaled population number
distributions of normal and quiescent cells [from t ¼ 9 in panel
(a)] undergo a scaling collapse. Here, ÑðtÞ ¼ NðtÞ=hNðtÞi and
ÑqðtÞ ¼ NqðtÞ=hNqðtÞi. The parameter values used for these
simulations are ν ¼ νq ¼ 1; Nð0Þ ¼ 10; andNqð0Þ ¼ 0. PðτÞ is a
gamma distribution with mean¼ 1 and COV ¼ 0.13, and PqðTqÞ
is a gamma distribution with mean ¼ 0.4 and COV ¼ 0.1. All
timescales are measured in units of μτ.
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reached and transients die out, mean-rescaled distributions
of numbers of normal and quiescent cells undergo a striking
scaling collapse. Moreover, mean-rescaled distributions
from different times (after the transients die out) are also
identical. Thus, the shape of the population number
distributions, in a balanced growth state, is time invariant.
This scaling collapse is reminiscent of the scaling collapse
observed for the general stochastic Hinshelwood cycle
model [21]. The phenomenological model of stochastic
exponential growth that yields the observed scaling col-
lapse was discussed in Ref. [31].

III. CONCLUDING REMARKS

In this paper, we have introduced an exact theoretical
framework for predicting population level behaviors that
are consistent with underlying stochastic single-cell
dynamics. Therefore, using this framework, future studies
can use population level data to infer characteristics of
stochasticity at the single-cell level (such as mean and
variance of the single-cell interdivision time distributions),
without making ad hoc assumptions. This is a useful
prescription, since population growth measurements are
relatively straightforward even for systems for which
single-cell dynamics is experimentally inaccessible. We
have related single-cell division to population growth by
introducing an analytical framework that takes dynamics at
both scales into account. We have validated this framework
by matching predicted and observed age distributions for
C. crescentus cells in balanced growth at different con-
ditions. We have also used this framework to show how
timescales characterizing this dynamics scale with external
conditions (different temperatures), and we have shown
that a single timescale governs all aspects of this dynamics.
This framework is applicable to other microorganisms in
balanced growth conditions, including those that divide
asymmetrically. Moreover, for C. crescentus, a model
organism, we provide a route for determining the
swarmer-to-stalked cell timescale, an important timescale
in its life cycle, which was experimentally inaccessible for
cells in balanced growth.
The results in Refs. [2,21] indicated that a single

condition-specific timescale, which could be characterized
by an exponential growth timescale of individual cell sizes,
governed the statistics of growth and division at the single-
cell level. Taken together with the scaling results in Figs. 2
and 3, they reveal the emergence of a cellular unit of time,
which can be calibrated for each growth condition of
interest by performing a simple measurement of the
population growth rate. Thus, at each growth condition
of interest, a simple measurement of the population growth
rate reveals the distributions of cell ages and cell divi-
sion times.
In this work, we have identified the time-dependent cell-

age distribution Gðt; τÞ as an important “order parameter”
for describing the far-from-equilibrium state of cells under

time varying growth conditions. The analytical framework
introduced here could provide a starting point for examin-
ing stochastic transient responses to changes in external
conditions in different contexts: for instance, following
a temperature change, a nutritional shift, or a chemical
perturbation to molecular regulators of cell cycle progres-
sion. Evidently, the functional change of the age distribu-
tion characterizes the transient dynamics following the
perturbation. Our framework also provides a route to
characterizing essentially non-Markovian time-dependent
cellular phenomena, such as the aging dynamics of indi-
vidual cells under time varying growth conditions.
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APPENDIX: ANALYTICAL METHODS

1. Case 1: Symmetric division

a. Definitions

(i) t denotes the observation time.
(ii) τ denotes the age of the cell measured from the time

since it last divided.
(iii) nðt; τÞdτ≡ number of cells at time t with ages

between τ and τ þ dτ.
(iv) NðtÞ≡ R∞

0 dτnðt; τÞ≡ total number of cells present
at time t.

(v) Gðt; τÞ≡ nðt; τÞ=NðtÞ. Thus, Gðt; τÞdτ≡ the frac-
tion of cells at time twith ages between τ and τ þ dτ.

(vi) αðτÞ, the division propensity, is the probability that
a cell of age between τ and τ þ dτ will divide in
the interval dτ. Note that, by construction, αðτÞ is
independent of t.
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(vii) PðτÞdτ≡ the probability that a cell does not divide
up until τ and then divides between τ and τ þ dτ.
Therefore, PðτÞdτ ¼ [the probability that a cell does
not divide until τ] ×αðτÞdτ¼½1−R

τ
0 dτ

0Pðτ0Þ�αðτÞdτ.
Thus, αðτÞ ¼ PðτÞ=½1 − R

τ
0 dτ

0Pðτ0Þ�.

b. Time evolution equations for the age distribution

The aging of cells and cell-division events result in the
temporal evolution of nðt; τÞ:

nðtþdt;τÞdτ¼ nðt;τ−dtÞdτ−αðτÞdtnðt;τ−dtÞdτ:
⇒ nðtþdt;τÞ−nðt;τÞ
¼−nðt;τÞþnðt;τ−dtÞ−αðτÞdtnðt;τ−dtÞ:
⇒ ∂tnðt;τÞ ¼−∂τnðt;τÞ−αðτÞnðt;τÞ: ðA1Þ

The products of cell division, ν per cell, appear as
new “just-born” τ ¼ 0 members of the cell population.
Accounting for this contribution to the age group
0 < τ < dt, between times t and tþ dt, one has

nðt; 0Þ ¼ ν

�Z
∞

0

dτnðt; τÞαðτÞ
�
≡ νρðtÞNðtÞ: ðA2Þ

ρðtÞ, as defined above, is the cell-averaged rate at which
newborn cells result across the entire cell population, while
αðτÞ is the propensity of birthing new cells at time τ.
In classic ecology literature, Eq. (A1) is known as the
McKendrick–von Foerster equation [32,33].
Now, for ν > 1, cell numbers will increase exponentially

and, thus, will not reach a “steady state.” However, we
expect the age distribution, Gðt; τÞ ¼ nðt; τÞ=NðtÞ, to have
a steady state in all realistic cases. Therefore, the goal is to
find its time-evolution equation. In order to achieve this,
we first find the total population growth rate, using
Eqs. (A1) and (A2):

∂tNðtÞ ¼
Z

∞

0

(∂tnðt; τÞ)dτ

¼ nðt; 0Þ − nðt;∞Þ −
Z

∞

0

dτnðt; τÞαðτÞ

¼ ðν − 1ÞρðtÞNðtÞ: ðA3Þ

The time evolution equation for Gðt; τÞ is obtained by
differentiating both sides of the identity nðt; τÞ ¼
Gðt; τÞNðtÞ with respect to t and then using Eqs. (A1),
(A2), and (A3):

∂tnðt; τÞ ¼ NðtÞ∂tGðt; τÞ þGðt; τÞ∂tNðtÞ:
⇒ −∂τnðt; τÞ − αðτÞnðt; τÞ
¼ NðtÞ∂tGðt; τÞ þ Gðt; τÞðν − 1ÞρðtÞNðtÞ: ðA4Þ

Dividing throughout by NðtÞ, we obtain the time evolution
equation of the age distribution:

∂tGðt;τÞþ∂τGðt;τÞþαðτÞGðt;τÞþðν−1ÞρðtÞGðt;τÞ¼ 0:

ðA5Þ

We can account for newborn daughter cells by dividing
Eq. (A2) by NðtÞ:

Gðt; 0Þ ¼ ν

�Z
∞

0

dτGðt; τÞαðτÞ
�
≡ νρðtÞ: ðA6Þ

c. Steady-state solution

In the steady state, the age distribution Gðt; τÞ and,
consequently, the birth rate ρðtÞ, will both be time inde-
pendent. These steady-state quantities, denoted by the
superscript *, satisfy t-independent versions of Eqs. (A5)
and (A6):

∂τG�ðτÞ þ ½αðτÞ þ ðν − 1Þρ��G�ðτÞ ¼ 0; ðA7aÞ

G�ð0Þ ¼ ν

�Z
∞

0

dτG�ðτÞαðτÞ
�
≡ νρ�: ðA7bÞ

From Eq. (A3), we have

∂tNðtÞ ¼ ðν − 1Þρ�NðtÞ≡ kNðtÞ;
⇒ NðtÞ ¼ Nð0Þekt: ðA8Þ

Thus, as expected, the total cell population grows expo-
nentially with the rate

k ¼ ðν − 1Þρ�: ðA9Þ

Defining AðτÞ≡ R
τ
0 dτ

0αðτ0Þ and using the above relation
between k and ρ�, Eq. (A7) becomes

d
dτ

½G�ðτÞekτþAðτÞ� ¼ 0: ðA10Þ

Integrating both sides from τ0 ¼ 0 to τ0 ¼ τ, and using
Eq. (A6),

G�ðτÞekτþAðτÞ ¼ G�ð0Þ ¼ νρ� ¼ kν
ν − 1

: ðA11Þ

Thus, the steady-state age distribution is

G�ðτÞ ¼ kν
ν − 1

e−kτe−AðτÞ: ðA12Þ

When ν > 1, the only unknown number in this expression,
k, may be found from the normalization of the probability
density G�ðτÞ:
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1 ¼
Z

∞

0

dτG�ðτÞ ¼ kν
ν − 1

Z
∞

0

dτe−kτe−AðτÞ: ðA13Þ

Using the relation PðτÞ ¼ αðτÞe−AðτÞ, which follows from
the definitions of αðτÞ and AðτÞ, the normalization equation
for G� becomes

Z
∞

0

dτPðτÞe−kτ ≡ he−kτiP ¼ 1

ν
: ðA14Þ

When ν ¼ 1, the system is closed, since the total number of
cells is conserved. For this case, since NðtÞ is a constant, ρ
is a constant, and a simplification of the previous general
derivation is obtained. Therefore, Eq. (A7) can be directly
integrated to compute the normalized steady-state age
distribution for ν ¼ 1:

G�ðτÞ ¼ 1 −
1

μτ

Z
τ

0

dτ0Pðτ0Þ≡ 1

μτ

Z
∞

τ
dτ0Pðτ0Þ; ðA15Þ

where the mean value μτ is evaluated with respect to the
division time distribution PðτÞ.
Using this expression, the mean age μa for the case ν ¼ 1

can be evaluated:

μa ¼
Z

∞

0

dτG�ðτÞ ¼ 1

μτ

Z
∞

0

dτ
Z

∞

τ
dτ0Pðτ0Þ: ðA16Þ

The double integral is over the shaded region in the τ − τ0
plane, as shown in Fig. 7, and the order of integrals may be
interchanged as follows:

μa ¼
1

μτ

Z
∞

0

dτ0Pðτ0Þ
Z

τ0

0

dττ

¼ 1

μτ

Z
∞

0

dτ0Pðτ0Þ ðτ
0Þ2
2

¼ σ2τ þ μ2τ
2μτ

¼ μτ
2
ð1þ η2τÞ: ðA17Þ

In this equation, σ2τ denotes the variance of τ, while
ητ ¼ στ=μτ is the corresponding coefficient of variance.
This is the derivation of Eq. (4) in the main text.

2. Case 2: Asymmetric division

a. Time evolution equations for the age distributions
of normal and quiescent cells

The cell population now has two distinct cell types:
normal reproducing cells and quiescent cells that transition
to normal cells before they can divide. The normal cells
divide with propensity αðτÞ at age τ, creating ν normal
and νq quiescent cells. Their division time distribution
is PðτÞ ¼ αðτÞe−AðτÞ, where AðτÞ ¼ R

τ
0 αðτ0Þdτ0. Thus,

these terms are defined just as we did for the symmetric
case. The quiescent cells are similarly defined, transitioning
to normal cells with propensity αqðTqÞ and with a
corresponding waiting-time distribution PqðTqÞ ¼
αqðTqÞe−AqðTqÞ, where AqðTqÞ ¼

R Tq

0 αqðT 0
qÞdT 0

q. Using
the subscript q to denote the quantities defined for the
quiescent cells, the time evolution equations for the number
density of cells with age τ are

∂tnðt; τÞ ¼ −∂τnðt; τÞ − αðτÞnðt; τÞ; ðA18aÞ

∂tnqðt; TqÞ ¼ −∂Tq
nqðt; TqÞ − αqðTqÞnqðTqÞ: ðA18bÞ

Newborn cells result from cell division of normal cells,
as well as from the conversion of quiescent to normal cells:

nðt; 0Þ ¼ νNðtÞρðtÞ þ NqðtÞρqðtÞ; ðA19aÞ

nqðt; 0Þ ¼ νqNðtÞρðtÞ: ðA19bÞ

Analogous to the symmetric case, the per-cell division
and conversion rates, ρ and ρq, are defined as follows:

ρðtÞ ¼
Z

∞

0

dτ
nðt; τÞ
NðtÞ αðτÞ ¼

Z
∞

0

dτGðt; τÞαðτÞ; ðA20aÞ

ρqðtÞ ¼
Z

∞

0

dTq
nqðt; TqÞ
NqðtÞ

αqðTqÞ

¼
Z

∞

0

dTqGqðt; τqÞαqðτqÞ: ðA20bÞ
FIG. 7. Region of integration for Eq. (A16). The shaded area
corresponds to the region of integration in the τ − τ0 plane, for the
expression on the right-hand side of Eq. (A16).
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Combining these equations yields the time evolution
equations for total population numbers NðtÞ and NqðtÞ:

∂tN ¼ ðν − 1ÞNρþ Nqρq; ðA21aÞ

∂tNq ¼ νqNρ − Nqρq: ðA21bÞ

b. Steady-state solution

After a sufficiently long time, we expect the age
distributions G and Gq and, thus, the cell-averaged division
and conversion rates ρ and ρq, respectively, to stabilize and
become time independent. Below, we consider only this
long time steady-state limit of these quantities, and as such
we discard the previous use of the superscript * in this
context. For later use, we define the following (constant)
ratio in the steady state:

γ ¼ ρq
ρ
: ðA22Þ

In the steady state, we expect both cell population numbers
to grow exponentially with the same rate k:

∂tNðtÞ
NðtÞ ¼ ∂tNqðtÞ

NqðtÞ
¼ k;⇒ NðtÞ; NqðtÞ ∝ ekt: ðA23Þ

From this, it is clear that the following ratio must become
time independent:

ϕ ¼ NqðtÞ
NðtÞ : ðA24Þ

Equations (A21), (A22), and (A24) can be combined to
yield the following steady-state equations:

∂tNðtÞ
NðtÞ ¼ ρðνþ ϕγ − 1Þ; ðA25aÞ

∂tNqðtÞ
NqðtÞ

¼ ρ

�
νq − ϕγ

ϕ

�
: ðA25bÞ

Comparing these with Eq. (A23), we find

k
ρ
¼ νþ ϕγ − 1 ¼ νq − ϕγ

ϕ
: ðA26Þ

Combining Eqs. (A18), (A19), and (A23), we can write
down the equations satisfied by the age distributions G and
Gq in a steady state:

∂τGðτÞ þ ½kþ αðτÞ�GðτÞ ¼ 0; ðA27aÞ

∂τGqðτÞ þ ½kþ αqðτÞ�GqðτÞ ¼ 0: ðA27bÞ

The initial conditions are, respectively, Gð0Þ ¼ ρðνþ ϕγÞ
and Gqð0Þ ¼ ρνq=ϕ. These equations are then solved to
obtain the expressions

GðτÞ ¼ ρðνþ ϕγÞe−kτe−AðτÞ;

AðτÞ ¼
Z

τ

0

αðτ0Þdτ0; ðA28aÞ

GqðTqÞ ¼
ρνq
ϕ

e−kTqe−AqðTqÞ;

AqðTqÞ ¼
Z

Tq

0

αqðT 0
qÞdT 0

q: ðA28bÞ

Normalizing the two distributions G and Gq, analogous to
the symmetric case above, we find

he−kτiP ¼ 1 −
k

ρðνþ ϕγÞ ¼
1

νþ ϕγ
; ðA29aÞ

he−kTqiPq
¼ 1 −

kϕ
ρνq

¼ γϕ

νq
: ðA29bÞ

To derive these equations, we have used Eq. (A26).
Eliminating γϕ from these equations, we find the equation
[analogous to Eq. (A14) for the symmetric case] that
determines the growth rate k:

he−kτiP ¼ 1

νþ νqhe−kTqiPq

: ðA30Þ

Using this in Eq. (A29), one can determine the value of ϕγ.
These, combined with Eq. (A26), yield the individual
values of ρ, ϕ, and γ, thus solving the full steady-state
problem.

c. General time-dependent solution

We have obtained the complete time-dependent solution
to the asymmetric cell division process specified by
Eqs. (A18), (A19), and (A20), in terms of the initial
population distributions,

nð0ÞðτÞ ¼ nð0; τÞ; nð0Þq ðTqÞ ¼ nqð0; TqÞ: ðA31Þ

To derive the solution we proceed as follows. Using the
method of characteristics, we obtain from Eq. (A18)

nðt; τÞ ¼
� nðt − τ; 0ÞfðτÞ τ < t

nð0Þðτ − tÞ fðτÞ
fðτ−tÞ τ ≥ t

; ðA32aÞ

nqðt; TqÞ ¼
� nqðt − Tq; 0ÞfqðTqÞ Tq < t

nð0Þq ðTq − tÞ fqðTqÞ
fqðTq−tÞ Tq ≥ t

; ðA32bÞ

where fðτÞ and fqðTqÞ are defined as
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fðτÞ ¼ e−
R

τ

0
αðτ0Þdτ0 ; ðA33aÞ

fqðTqÞ ¼ e−
R

Tq
0

αqðT 0
qÞdT 0

q : ðA33bÞ

fðτÞ and fqðTqÞ, respectively, represent the probabilities
that a normal (quiescent) cell will not divide (differentiate)
by age τ (Tq). These equations imply the following.

(i) When τ < t (Tq < t), the number of normal (quies-
cent) cells of age τ (Tq) at time t is given by the
number of cells of age 0 at time t − τ (t − Tq),
multiplied by the probability that they have not
divided (differentiated) by age τ (Tq);

(ii) When τ ≥ t (Tq > t), the number of normal (quies-
cent) cells of age τ (Tq) at time t is given by the
initial number of cells of age τ − t (Tq − t), multi-
plied by the probability that they have not divided
(differentiated) between the ages of τ − t (Tq − t)
and τ (Tq).

These expressions still involve populations of cells with
age equal to 0 on the right-hand side. We can eliminate
them using Eqs. (A19) and (A20). Defining these pop-
ulations as

nNBðtÞ≡ nðt; 0Þ; nNB
q ðtÞ≡ nqðt; 0Þ; ðA34Þ

and combining Eqs. (A32), (A19), and (A20), we obtain

nNBðtÞ ¼ νðnNB � PÞðtÞ þ νn1ðtÞ þ ðnNB
q � PqÞðtÞ þ n2ðtÞ;

ðA35aÞ

nNB
q ðtÞ ¼ νqðnNB � PÞðtÞ þ νqðnNB � PÞðtÞn1ðtÞ: ðA35bÞ

In these expressions, we have used the notation g � f to
denote a convolution between functions gðtÞ and fðtÞ:

ðg � fÞðtÞ ¼
Z

t

0

gðt − t0Þfðt0Þdt0: ðA36Þ

The functions n1;2 are defined in terms of the initial
population as follows:

n1ðtÞ ¼
Z

∞

t
nð0Þðτ − tÞ fðτÞ

fðτ − tÞ αðτÞdτ; ðA37aÞ

n2ðtÞ ¼
Z

∞

t
nð0Þq ðTq − tÞ fqðTqÞ

fqðTq − tÞ αðτÞdTq: ðA37bÞ

Using the Laplace transform, Eq. (A35) can be inverted
to obtain the time-dependent populations with age 0
[Eq. (A34)], in terms of quantities that are explicit functions
of the initial cell populations:

nðt; 0Þ ¼ L−1
�
ñ2ðsÞ þ ñ1ðsÞðνþ νqPqðsÞÞ

1 − P̃ðsÞðνþ νqP̃qðsÞÞ
�
ðtÞ; ðA38aÞ

nqðt; 0Þ ¼ L−1
�
νq

ñ2ðsÞP̃ðsÞ þ ñ1ðsÞ
1 − P̃ðsÞðνþ νqP̃qðsÞÞ

�
ðtÞ: ðA38bÞ

In these expressions, L−1 denotes the inverse Laplace
transform. Finally, these expressions can be substituted
in Eq. (A32) to obtain the complete time-dependent
solution for the population age distributions for any initial
population distribution.
Integrating this solution over all ages, we find expres-

sions for the total population numbers of normal and
quiescent cells at any time t:

NðtÞ ¼ L−1
�
f̃ðsÞ ñ2ðsÞ þ ñ1ðsÞðνþ νqPqðsÞÞ

1 − P̃ðsÞðνþ νqP̃qðsÞÞ
�
ðtÞ

þ
Z

∞

t
nð0Þðτ − tÞ fðτÞ

fðτ − tÞ dτ; ðA39aÞ

NqðtÞ ¼ L−1
�
f̃qðsÞνq

ñ2ðsÞP̃ðsÞ þ ñ1ðsÞ
1 − P̃ðsÞðνþ νqP̃qðsÞÞ

�
ðtÞ

þ
Z

∞

t
nð0Þq ðTq − tÞ fqðTqÞ

fqðTq − tÞ dTq: ðA39bÞ

The time-dependent age distributions for normal and
quiescent cellsGðt; τÞ andGqðt; TqÞ, respectively, are equal
to the ratio of their corresponding number densities nðt; τÞ
and nqðt; TqÞ, with the corresponding total numbers NðtÞ
and NqðtÞ. Thus, they can be computed using the expres-
sions in Eqs. (A32), (A38), and (A39).
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