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The possibility to achieve entirely frictionless, i.e., superlubric, sliding between solids holds enormous
potential for the operation of mechanical devices. At small length scales, where mechanical contacts are
well defined, Aubry predicted a transition from a superlubric to a pinned state when the mechanical load is
increased. Evidence for this intriguing Aubry transition (AT), which should occur in one dimension (1D)
and at zero temperature, was recently obtained in few-atom chains. Here, we experimentally and
theoretically demonstrate the occurrence of the AT in an extended two-dimensional (2D) system at room
temperature using a colloidal monolayer on an optical lattice. Unlike the continuous nature of the AT in 1D,
we observe a first-order transition in 2D leading to a coexistence regime of pinned and unpinned areas. Our
data demonstrate that the original concept of Aubry not only survives in 2D but is relevant for the design of
nanoscopic machines and devices at ambient temperature.
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In the expanding fields of nanoscience, where the com-
petition of length scales is of key importance, Aubry’s
theoretical concept [1,2], how to achieve frictionless sliding,
is one of the most challenging topics in nanotribology [3],
with immediate technological applications. The nowadays
pervasive tribological concept of superlubricity was origi-
nally inferred from the one-dimensional (1D) Frenkel-
Kontorova (FK) class of models [4], describing a chain of
interacting particles subject to a periodic substrate potential.
Aubry showed that, in the thermodynamic limit and at zero
temperature, the 1D incommensurate chain-substrate inter-
face may undergo a second-order transition between an
unpinned and a pinned state at a critical value of the substrate
corrugation, i.e., contact strength,U0. In the unpinned state,
theminimum force required to achieve sliding, i.e., the static
friction, should vanish: The interface incommensurability
can indeed prevent asperity interlocking and collective

stick-slip motion of the interface atoms, with a consequent
negligibly small frictional force.
After remaining locked away for several decades, Aubry-

type signatures were recently observed experimentally in
finite 1D linear laser-cooled ion chains on corrugated
potentials [5–8]. In contrast, the demonstration and char-
acterization of the Aubry transition in extended and
mismatched two-dimensional (2D) monolayers at finite
temperature, corresponding to more realistic conditions, is
still lacking. Previous experimental work on 2D systems
including telescopic dynamics [9] and water flow [10] in
carbon nanotubes, sliding of graphite flakes [11–13] and
mesas [14–16], graphene nanoribbons [17], cluster nano-
manipulation [18,19], or rare-gas island inertial motion
[20] has demonstrated superlubricity, i.e., an ultralow static
friction, scaling sublinearly with the contact size. However,
without the possibility of tuning interaction parameters, the
nature of the Aubry transition at 2D interfaces cannot be
unraveled and does not disclose how a change from a
superlubric to a pinned state occurs.
Here, we report the first microscopically resolved exper-

imental study of the Aubry transition by investigating an
extended colloidal layer driven over a laser-generated peri-
odic potential. Unlike conventional substrates, here all
relevant physical parameters, such as the lattice periodicity
and the contact strength, can be controlled in situ [21]. Unlike
1D, a sliding 2D crystal will develop a misalignment angle
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relative to the optical lattice, which is crucial for its frictional
properties. Our results demonstrate that, around the critical
contact strength, the 2D Aubry transition brings about the
occurrence of a novel phase separation with a coexistence
region between pinned and free-sliding colloidal patches. The
frictional rheology of the monolayer is especially interesting
and heterogeneous in this two-phase region, which we also
characterize by means of molecular-dynamics (MD) simu-
lations mimicking the experimental conditions.
Our experiments were performed at T0 ≃ 298 K, with a

suspension of micron-sized polystyrene particles interact-
ing via a repulsive screened Coulomb potential (see
Methods section in the Supplemental Material [22]). The
colloids form a 2D hexagonal crystal with lattice constant
aC at the bottom of the sample cell. A periodic substrate is
created by interfering three partial laser beams, as sketched
in Fig. 1(a). This optical landscape provides a hexagonal
substrate potential, Fig. 1(b), whose amplitude U0 can be
tuned by the laser intensity. The laser lattice constant aL is

set by the intersection angle of the laser beams and allows
us to adjust the mismatch ratio ε ¼ aL=aC. Particle
positions are tracked by video microscopy with a resolution
of about 50 nm [Fig. 1(b)]. A controlled driving force F of
the monolayer is exerted by viscous Stokes forces, which
arise when the sample cell is translated horizontally relative
to the (resting) interference pattern [22].
Figure 1(c) shows experimental mobilities μ of an

incommensurate (ε ¼ 0.84) colloidal monolayer vs F
and for different values of U0 ¼ 17–102kBT0. For large
U0, the monolayer is strongly pinned to the substrate and
remains immobile until F exceeds the static friction force
Fs, defined by the value where μ exceeds 10% of a free
sliding (dashed line). Below U0 ≤ 38kBT0, however, the
monolayer becomes mobile already at a minute driving
force Fmin ≃ 1 fN. This indicates a transition from a pinned
to a superlubric state, in agreement with one of the
signatures of the Aubry transition. Figure 1(d) shows the
static friction force as a function of the corrugation
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FIG. 1. Driving a colloidal monolayer across a periodic laser potential. (a) Schematic view of the experimental setup.
(b) Corresponding simulated model. (c) Measured mobility of an incommensurate (ε ¼ 0.84) monolayer vs driving force for different
corrugation amplitudes U0 in the superlubric (red and orange symbols), coexistence (green symbols), and statically pinned phase (blue
and black symbols). The dashed line shows the maximum mobility (U0 ¼ 0), while the dotted line shows the minimum threshold
mobility to detect sliding. The pink arrow points at the crossing of this threshold mobility, defining the value of Fs for this value of U0.
(d) Static friction force Fs vs U0 obtained from experiments (solid symbols) and simulations (open symbols); the shaded area shows
the coexistence region, across which Aubry transition takes place. (e) The monolayer mobility under the action of the smallest
experimentally accessible driving force Fmin ≃ 1 fN; the critical corrugation Uc ¼ 34kBT0 is defined by the sharp drop in the
mobility (arrow).
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amplitude. To obtain system-independent quantities, Fs is
normalized to that of a single colloid in the same corru-
gation potential F1s, and U0 to the critical corrugation
amplitude Uc, where the monolayer becomes pinned at
Fmin [Fig. 1(e)]. In agreement with the predictions by
Aubry, our data show the disappearance of static friction
below U0=Uc ≃ 1. Above this transition, Fs increases
almost linearly and eventually saturates. The open symbols,
which were obtained by numerical simulations with
parameters adjusted to our experimental conditions [22],
show excellent agreement with our data.
Because the Aubry transition is a structural phase tran-

sition, it must affect the monolayer microstructure. For stiff
monolayers, minimization of the free energy is achieved by
rotation of the lattice relative to the substrate by the Novaco

angle θNov [23–24]. Because most particles are slightly
displaced from substrate minima after rotation, they become
superlubric (unpinned). Contrary to very stiff monolayers,
where θNov has a sharp-defined value that depends on the
mismatch ratio (for ε ¼ 0.84, one obtains θNov ≃ 5°) [25],
for deformable monolayers, the misfit angle θ locally varies
across the monolayer. Such behavior is confirmed by our
experiments as seen by typical particle configurations for
different substrate amplitudes [Figs. 2(a)–2(c)]. Red or blue
colored particles belong to superlubric domains, which
are rotated by jθj > ½θNov ¼ 2.5°, while grey particles
correspond to pinned regions (see Methods section in
Ref. [22]). With increasingU0, the colloidal lattice becomes
increasingly locally alignedwith the substrate, as seen by the
grey (aligned) domains that proliferate at the expense of
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FIG. 2. Structural response and emergence of coexistence region. (a)–(c) Configurations representative of (a) the superlubric phase,
(b) the coexistence region, and (c) the pinned phase. The color scheme follows the local bond-orientation angle θi relative to the
crystalline directions of the corrugation potential (S.M.). (d)–(f) The local-angle distribution, obtained for corrugation (d) U0 ¼ 0.63Uc
(unpinned, i.e. superlubric configuration), (e) U0 ¼ 1.25Uc (coexistence region), and (f) U0 ¼ 11.3Uc (statically pinned region).
(g) Corrugation dependence of the fraction ftilt of tilted (redþblue) colloids. In the simulations the presence of hysteresis, due to slow
numerical equilibration, helps identify the coexistence region, characterized by a change of slope in experiment.
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tilted regions. For U0 ¼ 11.3Uc [Fig. 2(c)] essentially only
pinned particles are observed. Figures 2(d)–2(f) show how
the misfit-angle distribution gradually changes as a function
ofU0. Simulations suggest that the Aubry transition in 2D is
of first order, which implies the coexistence of pinned and
superlubric regions [26]. The structural features of the three
phases are evident in the structure factor analysis reported in
Figs. S2 and S3 [22]. Upon ramping U0 up and down,
simulations exhibit a clear hysteresis in the fraction ftilt of
superlubric particles [Fig. 2(g)]. From the range where error
bars show no overlap, the coexistence range between the
pinned and unpinned particles can be estimated. Even if,
unlike simulations, experimental data are sufficiently well
equilibrated and do not show hysteresis, they nonetheless
show clear evidence for coexistence [Fig. 2(b)].
Within the 1D FK model, a superlubric-pinned transition

is structurally characterized by the displacement of all
particles away from the maxima of the corrugation poten-
tial [Figs. 3(a)–3(c)]. Following the disorder parameter of

Refs. [27,28], we evaluate the fraction Ψ of colloids at
positions where the local substrate potential is above that of
the saddle points, namely, the white triangles of Fig. 3(d).
This fraction should be 25% for randomly placed colloids
or for U0 ¼ 0, and it decreases with increasing U0. This
is in agreement with our experimental and simulation
data [Figs. 3(e)–3(h)]. It should be emphasized that the
U0 dependence of Ψ is in good agreement with the
corresponding ftilt behavior in Fig. 2. Both quantifiers
support the existence of a first-order Aubry transition
at U0=Uc ≃ 1.
An important novelty in 2D compared to 1D is that

depinning can occur inhomogeneously, nucleating at specific
points in the sample. This is especially expected in the phase-
coexistence region where, for a given applied force, super-
lubric patches tilted at the Novaco angle are likely to unpin
earlier than nontilted regions. To explore such behavior, we
have simulated a configuration near the right end of the
coexistence region (U0 ¼ 1.2Uc). After applying a weak
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FIG. 3. Local energetics across the Aubry transition. For increasing U0, a substrate-mismatched 1D FK chain evolves from a
configuration in which (a) minima and maxima regions are populated (superlubric), (b) no particles can be found sitting close to any
maximum (pinning threshold), and (c) only regions around the minima are occupied (strongly pinned). (d) The 2D corrugation-potential
profile (dark=light¼ low=high energy); the repulsive regions correspond to the area between the green (saddle-energy contour level)
and the black (Wigner-Seitz cell) hexagons. (e) For the 2D colloid crystal, we show the fractionΨ of colloids in the repulsive regions as a
function of U0, illustrating the statistical crossover from superlubric to pinned. (f)–(h) Experimental particle positions folded within the
Wigner-Seitz cell of the corrugation lattice.
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force F < Fs, F is abruptly increased to F ¼ 1.09 Fs. The
red line in Fig. 4(a) reports how the monolayer progressively
depins in time. This progressive depinning is understood
when examining the simulation movie (S.M.) in Ref. [22],
with the local-angle labeling showing a progressive exten-
sion of the red and blue unpinned regions. Figures 4(b) and
4(c) report two snapshots of that movie, representative of
the mostly pinned initial state and the mostly sliding steady
state, respectively. Arrows showing individual particle dis-
placements indicate that initial depinning occurs mainly at
the interface regions between the two phases.
Our experimental approach provides a versatile way of

studying the conditions under which superlubricity occurs
in extended 2D contacts. In addition, we obtain previously
unattainable insights into the microstructural changes
occurring during the Aubry transition. For example, the
observation of a first-order transition from a superlubric to a
pinned state demonstrates that, in contrast to a smooth
transition in 1D, as well as in an interesting model of a
crystal grain boundary [29], the Aubry transition may
remain sharp at finite temperatures for 2D contacts. The
first-order character in our case is boosted by the local
angular compliance coupled to the Novaco-McTague rota-
tion. In a different 2D system lacking that compliance, such

as a graphene flake on a crystal surface, the first-order
character is likely to be weakened. In particular, for
micromechanical and nanomechanical devices whose con-
tact areas are rather free from defects, asperities, and
long-range elasticity effects [30–32], this should allow
for drastic variations in the frictional behavior induced by
tiny changes of the mechanical load.
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