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We investigate the spin of a multielectron GaAs quantum dot in a sequence of nine charge occupancies,
by exchange coupling the multielectron dot to a neighboring two-electron double quantum dot. For all nine
occupancies, we make use of a leakage spectroscopy technique to reconstruct the spectrum of spin states in
the vicinity of the interdot charge transition between a single- and a multielectron quantum dot. In the same
regime we also perform time-resolved measurements of coherent exchange oscillations between the single-
and multielectron quantum dot. With these measurements, we identify distinct characteristics of the
multielectron spin state, depending on whether the dot’s occupancy is even or odd. For three out of four
even occupancies, we do not observe any exchange interaction with the single quantum dot, indicating a
spin-0 ground state. For the one remaining even occupancy, we observe an exchange interaction that we
associate with a spin-1 multielectron quantum dot ground state. For all five of the odd occupancies, we
observe an exchange interaction associated with a spin-1=2 ground state. For three of these odd
occupancies, we clearly demonstrate that the exchange interaction changes sign in the vicinity of the
charge transition. For one of these, the exchange interaction is negative (i.e., triplet preferring) beyond the
interdot charge transition, consistent with the observed spin-1 for the next (even) occupancy. Our
experimental results are interpreted through the use of a Hubbard model involving two orbitals of the
multielectron quantum dot. Allowing for the spin correlation energy (i.e., including a term favoring Hund’s
rules) and different tunnel coupling to different orbitals, we qualitatively reproduce the measured exchange
profiles for all occupancies.
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I. INTRODUCTION

Spins in semiconducting nanostructures offer a wide
variety of approaches to quantum computing. These
include approaches based on gate-defined single-electron
quantum dots realized in GaAs=AlGaAs heterostructures
[1–7], Si=SiGe quantum wells [8–12], or in MOS nano-
devices [13,14], as well as spins localized on crystal defects
such as phosphorus donors in silicon [15,16]. Along with
this range of material choices, spins trapped in quantum

dots offer a myriad of possible qubit encodings, including
single-dot [11–13], double-dot [8,9,17,18], and triple-dot
[10,19,20] schemes, each with distinct advantages.
In contrast to a large body of experimental work on single

qubit devices, there are only a handful of demonstrations of
two-qubit entangling operations [2,21–24], despite their
necessity for quantum computing. Approaches to two-
qubit entangling gates based on direct exchange interaction
between neighboring tunnel-coupled quantumdots [1,22,23]
offer fast, high-fidelity operation [25,26]. Although
exchange plays a prominent role in many theoretical pro-
posals [27–40] (see Ref. [41] for a review on spin-based
quantum computing in quantum dots), these approaches
require dots that are closely spaced next to each other,
which makes fabrication and cross-coupling between qubits
a challenge for multiqubit systems [42,43]. In contrast,
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approaches based on direct charge dipole-dipole interaction
can offer longer ranges, but suffer from weak coupling (and
thus slow gate times) and comparatively lower fidelities
[2,21]. Such dipole-dipole interactions could bemediated by
superconducting cavities [44–51], thereby providing a
mechanism to couple over even longer ranges, similar to
what is commonly used for superconducting qubits.
However, the small dipole moments and susceptibility to
charge noise make it unclear whether these approaches
will lead to improvements in gate speed and fidelity for
spin qubits.
An attractive alternative that has recently been proposed

[52,53] and demonstrated [54,55] is to base two-qubit
coupling on exchange interactions, using an intermediate
quantum system as a mediator. This approach makes use of
the high speed associated with exchange processes, without
the need to arrange quantum dots in direct contact with
each other, and is therefore attractive for current fabrication
techniques. In particular, a mesoscopic multielectron quan-
tum dot [56–61] could serve as both coupling mediator and
spacer [55,62], providing a pathway for scalability to
multiqubit systems.
To serve as a mediator and spacer, the multielectron

quantum dot needs to fulfill several requirements.
(1) The physical size of the multielectron dot should be

such that qubit dots can be spaced by at least a few hundred
nanometers. This distance facilitates the fabrication of gate
electrodes necessary for qubit control and readout. A large
size may also allow the coupling of multiple qubits to the
same mediator.
(2) The ground-state spin of themultielectron quantumdot

must bewell defined, to enable the interaction between qubits
without entangling with the mediator [63]. Conceptually, a
multielectron quantum dot with a nondegenerate spinless
ground state appears to be the most straightforward imple-
mentation of such a coupler [52,53].
(3) The level spacing of the multielectron quantum

dot and the relevant tunnel couplings must be larger than
both the energy of the thermal fluctuations (kBT ≈ 10 μeV
for T ¼ 100 mK) and the excitation spectrum of the control
voltage pulses (≈20 μeV for 5 GHz bandwidth). This
condition is necessary to guarantee that the mediator will
be prepared in the ground state and to avoid its accidental
excitation.
(4) The ground-state spin, level spacing, and tunnel

coupling of the multielectron quantum dot must be tunable
with high yield. These parameters depend on mesoscopic
details of the multielectron dot, and hence cannot be easily
controlled by the choice of geometry alone.
(5) The strengthof the exchange interactionmust provide a

competitive time scale for two-qubit gates. Taking 100 ns as
an upper target for viable two-qubit gates, this puts a lower
bound on the coupling strength of roughly 0.01 μeV.
In this article, we demonstrate that these requirements

can be fulfilled by a multielectron quantum dot (except the

final requirement, which we address elsewhere [55]). To do
this we investigate a linear array of quantum dots in GaAs
and configure gate voltages such that an elongated multi-
electron quantum dot is populated right next to a two-
electron double quantum dot [Figs. 1(a) and 1(b)]. Our
approach is based on the fact that the two-electron spin state
of the double dot, which can readily be prepared in a singlet
state, is sensitive to any spin exchange processes with the
neighboring multielectron dot. By pulsing gate voltages
towards the charge transition between the right well of the
double dot (also referred to as the middle dot) and the
multielectron dot, we can systematically induce such spin
exchange processes and detect them by subsequent single-
shot readout of the double dot. (One may view the double
dot as a singlet-triplet qubit, and the presence of spin
exchange processes with the multielectron dot as leakage
out of the qubit space.) In this way, the double quantum
dot serves as a spin-sensitive probe of the multielectron
quantum dot.
By employing this double-dot spin probe technique, we

study the properties of the multielectron dot in nine
subsequent charge occupancies. We are able to identify
even and odd occupancy of the dot, and find the following
sequence for the ground-state spin of the multielectron dot:
With increasing occupancy of the dot, the ground states
form a sequence of alternating spin-0 (even occupancy) and
spin-1=2 (odd occupancy) states, interrupted once by a
spin-1 ground state for a particular even occupancy.
Moreover, we discover a peculiar behavior of the

exchange interaction at the charge transition for the cases
of spin-1=2 multielectron-dot ground states. Namely, the
exchange interaction changes sign when changing dot-
defining gate voltages by only a few millivolt. A Hubbard
model that includes two orbitals of the multielectron dot as
well as a triplet-preferring spin correlation energy enables
us to reproduce the energetics associated with the total
spin of the multielectron quantum dot. From that model
we derive a “phase diagram” that reveals four regimes with
qualitatively distinct energy spectra and associated
exchange interaction dependencies.
This article is organized as follows. In Sec. II, we

describe in detail the studied sample and the sequences
of voltage pulses used to induce interactions between the
probe electron in the middle dot and the multielectron
quantum dot. In Sec. III, we present the observed sequence
of ground states as the occupancy of the multielectron
quantum dot is increased one electron at a time. Based on
this phenomenology we propose a Hubbard model for the
description of the multielectron quantum dot. In Sec. IV, we
present the experimental evidence for a spin-0 ground state
for three of the studied electron occupancies. Section V
contains an in-depth study of the interaction between the
probe electron and a spin-1=2 state of the multielectron
quantum dot, for five different electron occupancies. In
Sec. VI, we present data supporting the observation of a
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spin-1 ground state. Finally, in Sec. VII, we summarize our
results.

II. EXPERIMENTAL SETUP AND TECHNIQUES

The quantum dots are defined in a GaAs=AlGaAs two-
dimensional electron gas (2DEG), with electron density
2.5 × 1015 m−2 and mobility 230 m2=V s. The 2DEG is
located 57 nm below the heterostructure surface. A layer of
HfO2 with 10 nm thickness is deposited on top of the
heterostructure, followed by the patterning of gold electro-
des by electron-beam and lift-off lithography. The oxide
layer has a double purpose: first, it allows the application of
negative and positive gate voltages without resulting in
large leakage currents that would appear through the

Schottky barrier at the GaAs surface; second, it blocks
even minute tunneling events between the gate electrodes
and the donor layer in the GaAs heterostructure, which
would cause effective charge noise and sample switching
behavior [64]. The experiment is performed in a dilution
refrigerator with the mixing chamber at 20 mK.
A scanning-electron micrograph of the active part of the

device is presented in Fig. 1(a). The gray and colored
structures are metallic gates that are used to define the
quantum dot confining potential. The green colored accu-
mulation gate is operated at a small positive voltage of
þ40 mV. The remaining gates are operated at negative
voltages to deplete the 2DEG and to tune the device. The
accumulation gate in this design was introduced to increase
the quantum dot potential depth and to improve the

 

VM VRVL

B T

B ||

100 nm

Sensor

 (b)

 (a)

  

-750

-730

-710

V
M

)
V

m( 

-600 -570 -540

V
-1220-1180

VL (mV) R (mV)

(2
,0,

K )

(1,1,K )

SK-1

K-1

SK SK+1

 (c)

P  /RK

K

SK

(1,1,K )

(1,0,K+1)

K K+1

(1,1,K-1)

(1,0,K )

(1,1,K+1)

K IK-1 IK

VRF (arb. units)

 (d)

K

t

K K

|S Preparation (P)

Interaction (I)

Read out (R)

 (e)

t

Separation (S)

J

FIG. 1. (a) Scanning-electron micrograph of the device, colored in gray and red to indicate metallic gate electrodes that deplete the
2DEG below the surface (negative voltages). Accumulation gates (colored in green, positive voltages) steepen the resulting confining
potential of the quantum dots that form underneath. Voltage pulses applied to the gates VL;M;R control individual electrons in the triple-
dot array on a nanosecond time scale. (b) Illustration of the electron configuration in the resulting triple quantum dot. We refer to the left
and middle dot as the double dot, and to the right dot as the multielectron dot. The precise single-particle level structure and occupation
number of the right dot determine the spin properties of the multielectron dot, and are the focus of this experiment. (c) Charge diagrams
of the triple quantum dot in the absence of voltage pulses. The left-hand panel shows the interdot charge transition of the two-electron
double quantum dot. The right-hand panel presents the charge transition at which the middle electron transfers to the multielectron
quantum dot, for different initial occupations of the multielectron dot (K − 1, K, and K þ 1) depending on VR. Labels PK , RK , and SK
indicate positions in gate-voltage space at which the electron pair is, respectively, prepared, read out, and separated, if appropriate time-
dependent voltage pulses are applied. In particular, arrows labeled ζK and εK indicate axes in gate-voltage space used to define the
voltage pulses in this experiment. For example, gate voltages associated with the interaction step (IK) are varied systematically (see
Sec. II), but always remain on the ζK or εK axis. (d) Operating principle of probing the multielectron spin state by the two-electron
double dot. First, a pair of electrons is prepared in a singlet state on the left dot. Next, one of these electrons is transferred to the middle
dot, allowing a spin-sensitive interaction (J) with the multielectron dot. In the last step, the spin of the middle electron is measured
relative to the reference electron in the left dot by means of Pauli blockade. (e) Implementation of (d) by voltage pulses along ζK and εK .
The outcome of each interaction cycle depends on pulse amplitude (ε) and duration (τ), and, crucially, on the occupation and spin of the
multielectron dot.
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tunability of the device. The resulting distance between
single-electron dots, nominally 150 nm center to center, is
approximately 30% smaller than in typical designs without
the accumulation gate [20,21,65]. The device was located
in the bore of a superconducting vector magnet. Except for
the data presented in Fig. 13(g), the external magnetic field
was always applied in plane of the 2DEG, in the direction
indicated in Fig. 1(a).
Under the accumulation gate [indicated in Fig. 1(a) by a

dashed rectangle], two single-electron quantum dots next to
a multielectron quantum dot are tuned up, as schematically
indicated in Fig. 1(b). Based on the 2DEG density and the
device geometry (dot size roughly 120 × 250 nm), we
estimate the electron occupancy of the multielectron
quantum dot to be between 50 and 100. The narrow gap
in the accumulation gate allows the application of different
voltages to different parts of the accumulation gate, but in
this study we apply the same (positive) voltage to both
parts. A selected number of depletion gates, labeled VL;M;R

and shaded in red, are connected to high-bandwidth coaxial
lines in the dilution refrigerator, with an associated rise time
of 0.8 ns. To perform submicrosecond charge and spin
manipulations, time-varying voltage pulses are applied to
these gates, while dc voltages (applied to all gates) can
be modified slowly to explore various occupancies and
tunings of the multielectron dot.
In Fig. 1(c), we present typical charge stability diagrams

of the double-dot multielectron-dot system. On the left we
present the charge diagram with respect to gate voltages VL
and VM. These gate voltages are dedicated to control the
state of the double quantum dot. Indeed, this diagram
reveals the interdot charge transition of the double dot,
occurring between the ð2; 0; KÞ and ð1; 1; KÞ regions. Here,
(L,M,R) indicates the number of electrons in the left,
middle, and multielectron dot, respectively, and K is an
unknown but fixed integer between 50 and 100, which we
can vary by changing the dc tuning of the device. By
adjusting the voltages VL and VM in such a way that these
gate voltages follow the detuning axis ζK [Fig. 1(c), left-
hand panel], the charge configuration of the two electrons
within the double dot can be controlled without affecting
the number of electrons on the multielectron dot.
On the ζK axis we define point PK (RK) that serves as the

preparation (readout) point of the double-dot spin state. We
also define a separation point SK at which the two electrons
within the double dot do not interact via exchange with the
multielectron quantum dot and only very weakly interact
via exchange with each other. Having chosen the separation
point SK , we can map out the charge stability diagram of
the multielectron dot as a function of voltages VM and VR,
as illustrated in the right-hand panel of Fig. 1(c). In this
charge diagram we identify the point SK in the gate-voltage
space, and use it to define the εK axis that runs from SK
through the interdot charge transition between the ð1; 1; KÞ
and ð1; 0; K þ 1Þ regions. By controlling the position of

gate voltages along this axis (i.e., point IK), we can induce
the interaction between the single electron in the middle dot
and the multielectron dot, while preserving the reference
electronic spin in the left dot. By slightly changing the dc
tuning of the quantum dots (in particular VR), we can
change the occupancy of the multielectron dot one by one,
and define analogous control axes for different charge
states. In Fig. 1(c) these are schematically illustrated by
axes labeled εK−1 and εKþ1.
Having defined the points PK=RK , SK , and detuning axes

ζK and εK for each occupancy K of the multielectron
quantum dot, we can apply gate-voltage pulses that quickly
change the charge configuration from ð2; 0; KÞ to ð1; 1; KÞ
to ð1; 0; K þ 1Þ and back, thereby allowing the study of
interactions between the middle electron with the multi-
electron quantum dot [illustrated in Figs. 1(d) and 1(e)].
Specifically, the first pulse initiates the system at point PK ,
resulting in a pair of electrons prepared in the singlet state
jSi on the leftmost quantum dot. From there, a pulse to
point SK separates these two entangled electrons while
maintaining their spin-singlet correlation. At point SK we
pause for one clock cycle of the waveform generator, which
varies between 0.83 and 2.5 ns in this study. This
precaution ensures that we indeed transfer the electron
through the middle dot to the multielectron dot, instead of
ejecting it into one lead followed by injection of another
electron to the multielectron dot from the other lead.
Because one clock cycle is shorter than the dephasing
time due to interaction with the nuclear spins [66–68],
T�
2 ≈ 10 ns, this waiting time does not significantly affect

the singlet correlation of the two electrons. The next step of
the pulse cycle jumps to a point along the εK axis and
remains there for time τ. It is during this stage that the
interaction between the electron and multielectron quantum
dot occurs. We then return to SK for another clock cycle of
the waveform generator. Finally, we pulse back to the
ð2; 0; KÞ charge configuration at point PK=RK. The system
reaches this charge configuration only if the pair of
electrons on the double quantum dot forms a spin-singlet
state, otherwise the system is Pauli blocked and remains in
the metastable ð1; 1; KÞ charge state. The reflectometry
readout of the conductance through the neighboring sensor
dot (VRF) allows us to distinguish these charge states, thereby
yielding a single-shot spin readout (“singlet” or “triplet”) for a
reflectometry integration time between 5 and 20 μs. Both
parameters εK and τ are varied within a sequence of pulse
cycles. Using this pulsed-gate technique, coherent spin
dynamics and incoherent spin mixing can both be detected,
by choosing τ sufficiently short or long, respectively.

III. MULTIELECTRON QUANTUM DOT

In this section, we present and discuss a theoretical
model that describes the multielectron quantum dot and its
tunnel coupling to the double quantum dot. It is used in
subsequent sections to understand the experiments that
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systematically induce exchange interactions between the
single electron residing in the middle dot and the multi-
electron quantum dot.
Appropriate for a semiconductor with negligible spin-

orbit coupling (but allowing for nontrivial electron-electron
correlations), we model the multielectron quantum dot with
the Hamiltonian:

ĤR ¼ URn̂2R þ
X
λ∈N
α¼↑;↓

ελĉ
†
λ;αĉλ;α −

ξ

2
Ŝ2 þ gμBBkŜz; ð1Þ

where UR is the dot charging energy, n̂R is the operator

counting the total number of electrons, ĉð†Þλ;α are the
annihilation (creation) operators for an electron on the
single-particle level λ with spin α, ελ are the energies of
the single-particle levels, Ŝ is the total spin operator, ξ is the
spin correlation energy, g ¼ −0.4 is the electronic g factor,
μB is the Bohr magneton, Bk is the amplitude of the applied

magnetic field, and Ŝz is the total spin projection on the
direction of the magnetic field. The subscript R in this
formula refers to the multielectron dot as the right dot,
whereas L andM denote the left and middle single-electron
dots. The influence of the applied magnetic field on the
quantum dot orbitals is neglected in this model.
The relative strength of the three terms present in this

Hamiltonian determines the spin properties of the multi-
electron quantum dot. The charging energy of the multi-
electron quantum dot, UR ≈ 1 meV, is estimated from the
distance between the multielectron-dot charge transitions
[ΔVR ≈ 20 mV; Fig. 1(c)] and the typical lever arm
between the gates and the dots in devices of similar design
(≈0.05e). The charging energy may vary slightly as a
function of the dot occupancy, as additional electrons may
increase the effective size of the quantum dot (soft con-
fining potential). For the results presented here it is only
relevant that the charging energy is much larger than the
other energy scales, discussed below.
From the lithographic size of the device we estimate

the typical level spacing [69] to be hΔEi ¼ πℏ2=m�A≈
0.12 meV, where ℏ is the reduced Planck constant, m� is
the effective electron mass in GaAs, and A is the area of the
two-dimensional quantum dot. However, the lack of
symmetry causes the level spacings to vary. The determi-
nation of level spacings ΔE and correlations between them
for a particular mesoscopic quantum dot is a formidable
theoretical task. Their distributions are typically described
using random matrix theory with the orthogonal ensemble
[56,59,70–72], which by itself neglects interaction effects.
Interaction effects can be introduced by means of random-
phase approximation [73], mean-field approximation [72],
density-functional theory [74,75], the Anderson model
[76], or by an on-site Hubbard interaction term [70]
(for a review, see Ref. [60]). Modeling a large two-
dimensional quantum dot with up to 200 electrons using
density-functional theory revealed that the emerging

electron-electron interaction effects are substantially
stronger than those predicted by subjecting the random-
phase approximation to the rules of random matrix theory,
evidenced by a relatively large probability for high-spin
ground states (S ≥ 1) [75].
For nonmesoscopic (elliptical) few-electron dots, recent

full configuration interaction calculations indicate that
negative exchange energies at zero magnetic field are
possible for as few as four electrons in GaAs (and similarly
in silicon), depending on the dot’s size and ellipticity [77].
The possibility of singlet-triplet inversions, negative
exchange, and potential use in spin-based quantum infor-
mation applications was already pointed out in prior
theoretical studies that always invoked orbital coupling
to magnetic fields [28,33,37], supported by experimental
indications for such orbital-coupling effects in circular and
elliptical few-electron dots [78,79].
For the results presented here, we consider the case

where the width of the level-spacing distribution σΔE is
comparable to ΔE and ξ, allowing for the emergence of
mesoscopic magnetism already at zero magnetic field
[71,80]. Also, we assume that the single-particle energies
do not depend on the occupancy of the dot, consistent with
earlier experiments that found that the excitation spectra of
(few) subsequent charge states are highly correlated [58].
The spin correlation energy ξ is the most difficult

quantity to estimate due to the lack of data in the literature.
This energy favors parallel spin configuration in the case of
nearly degenerate orbitals, and in that sense can be viewed
as a mesoscopic analogue of Hund’s multiplicity rule [81].
We make the assumption that ξ=2 is comparable but smaller
than hΔEi, based on two experimental observations. First,
we observe no significant polarization of the electronic
spins, which would be expected from the Stoner instability
for the case ξ=2 > hΔEi [60,71,84]. Second, we observe
the occurrence of ground states with spin > 1=2, which
indicates that the single-particle energy of the first excited
state sometimes becomes smaller than ξ. This excludes
the possibility ξ ≪ hΔEi. Throughout the paper we use
UR ¼ 1 meV and ξ ¼ 0.1 meV, while we use different ΔE
for different occupancies of the multielectron quantum dot
(justified by level filling of a mesoscopic spectrum). This
choice is consistent with the occasional observation of spin-
1 ground states in similar quantum dots with moderate
correlation effects (see below).
Our study involves modeling of the interaction between

the spin occupying the middle dotM [Fig. 1(b)] and one or
two lowest empty or partially occupied orbitals of the
multielectron quantum dot. The occupancy of the multi-
electron quantum dot will determine the nature of this
interaction. We consider three cases, ordered by increasing
complexity.
(i) All levels of the multielectron quantum dot are either

empty or doubly occupied, and the total spin is zero. In this
case, the interaction of the double quantum dot with the
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multielectron quantum dot can be modeled as an effective
interaction of the spin of the middle dot M tunnel coupled
to one unoccupied orbital in the right dot R (Sec. IV).
(ii) There is exactly one unpaired spin in the multi-

electron quantum dot, giving rise to a total spin of 1=2
(Sec. V). In this case, the interaction of the double quantum
dot with the multielectron quantum dot can be modeled as
an effective interaction of the spin of the middle dot M
tunnel coupled to a single spin in the right dot R.
Depending on the details of the spin interaction terms of
the multielectron quantum dot, we must consider both the
partially occupied orbital of the multielectron quantum dot
as well as the lowest unoccupied orbital.
(iii) Several unpaired spins in the multielectron quantum

dot form a nonzero total spin, e.g., spin 1 (Sec. VI). This
requires the modeling of two closely spaced orbitals in the
right dot, R1 and R2, in conjunction with a sufficiently large
spin correlation energy ξ relative to the orbitals’ spacingΔE.
In our experimental data, which we discuss in detail in

Secs. IV–VI, we find that all three cases do occur as we
explore different occupation numbers of the multielectron
dot. Table I provides an overview of the observed sequence
of alternating spin-0 and spin-1=2 ground states. This
sequence is interrupted once by a spin-1 ground state
instead of spin-0 (with profound implications for the
associated exchange profiles). The occurrence of a non-
minimal ground-state spin in our experiments corroborates
earlier findings in GaAs quantum dots by Folk et al. [59]
and Lindemann et al. [85], who identified ground-state
spins by studying the change of the Coulomb peak spacings
with magnetic field.

IV. SPIN-0 BEHAVIOR FOR EVEN OCCUPANCIES
(K = 2N − 4, 2N − 2, 2N)

We first focus on even occupancies of the multielectron
dot, specifically 2N − 4, 2N − 2, and 2N, and show

experimental evidence that these have a spin-0 ground state.
(Here, 2N indicates a specific even number of electrons,
estimated to lie between 50 and 100.) Provided that the spin
correlation term is smaller than the level spacing between the
ground and the first excited state, the model introduced in
Sec. III suggests that the ground state of the multielectron dot
can be thought of as an effective vacuum state; i.e., all single-
particle states below the Fermi energy are occupied by
singlet pairs of electrons [Figs. 2 and 3(a)]. We therefore
expect that the double dot will interact with the multielectron
dot as if it was an unoccupied dot, and the spin of an electron
tunneling into an unoccupied orbital of the multielectron dot
would not experience any exchange dynamics. In this sense,
the double dot coupled to the multielectron dot with even
occupancy should be qualitatively similar to a two-electron
triple dot.
We describe this situation using a phenomenological

model based on the Hamiltonian for the multielectron
dot detailed in Sec. III, augmented by terms for the
neighboring tunnel-coupled two-electron double quantum
dot. Appropriate for spinless even-occupancy ground
states, we neglect orbitals of the multielectron dot below
the Fermi energy (these are occupied by spin-singlet
electron pairs). We also neglect all but the lowest unoccu-
pied orbital, arriving at a Hubbard model for the three dots,
each having a single orbital, labeled L, M, and R:

Ĥspin-0 ¼
X

i¼L;M;R

�
εin̂i þ

Ui

2
n̂iðn̂i − 1Þ

�
þ
X
i≠j

Kij

2
n̂in̂j

þ gμBBk
2

ðn̂↑ − n̂↓Þ
− tDD

X
α¼↑;↓

ðĉ†L;αĉM;α þ ĉ†M;αĉL;αÞ

− t
X
α¼↑;↓

ðĉ†M;αĉR;α þ ĉ†R;αĉM;αÞ; ð2Þ

TABLE I. Summary of the inferred ground-state spin for 9
subsequent charge occupancies of the multielectron quantum dot.
A sequence of alternating spin-0 and spin-1=2 states is inter-
rupted once by a spin-1 ground state. To emphasize the role of
electron parity, we have arbitrarily chosen one even dot occu-
pation as a reference, labeled 2N, and specify other dot
occupations relative to that occupation.

Multielectron-dot
occupancy

Inferred ground-state
spin

Experimental
evidence

2N − 5 1=2 Fig. 10
2N − 4 0 Fig. 4(a)
2N − 3 1=2 Fig. 7
2N − 2 0 Fig. 4(b)
2N − 1 1=2 Fig. 8
2N 0 Fig. 3
2N þ 1 1=2 Fig. 9
2N þ 2 1 Fig. 13
2N þ 3 1=2 Fig. 11

tDD
t

L

2 *

M
R

FIG. 2. Schematic of the even-occupied spinless multielectron
dot, coupled to the two-electron double dot. Symbols εL=M=R
indicate the single-particle energies of the lowest orbitals in the
double dot and the lowest unoccupied orbital in the multielectron
dot. Arrows indicate tunnel couplings within the double dot (tDD)
and between the middle and the multielectron dot (t). For
simulations, the detuning of the right dot relative to the left
dot is varied (ε�), which allows the generation of energy spectra
[as in Fig. 3(b)] and comparison to experimental leakage
spectroscopy data [see discussion of Figs. 3(c) and 3(d)].
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where n̂i is the operator counting the number of electrons
on each dot. As illustrated in Fig. 2, the term εi describes
the gate-tunable chemical potential of the left L, middleM,
and the right multielectron R dot. Ui and Kij represent,
respectively, on- and off-site Coulomb interaction energies.
In the second line, describing the Zeeman splitting, n̂↑=↓
indicates the number of electrons with spin parallel and
antiparallel to the external magnetic field. The third and last
line incorporate the tunnel coupling tDD within the double
dot and the tunnel coupling t between the middle and
right dot.
This effective Hamiltonian can be solved in the two-

electron configuration to yield the energy of all possible
spin states, using input parameters motivated by experi-
ment. For simplicity we plot in Fig. 3(b) the eigenenergies
as a function of electrostatic detuning between the right
and left dot, ε� ≡ ðεR − εLÞ=2. Qualitatively, the depend-
ence on ε� (which has units of energy) can be compared
with the observed dependence on the experimental detun-
ing parameters ζK and εK in Fig. 3(c) (which have units of
voltage). For the calculated energy spectrum in Fig. 3(b),
we used t ¼ 30 μeV and tDD ¼ 15 μeV. For clarity, we
also assumed a finite magnetic field, Bk ¼ 0.07 T, which
shifts the energy of the fully polarized spin states (remain-
ing parameters, fixed throughout the paper, are specified in
the Appendix). Recall that the “unoccupied” state of the
multielectron dot is assumed to be an effective “vacuum”
state with 2N electrons in a spin-0 configuration; i.e., the
evolution of charge states from ð2; 0; 2NÞ via ð1; 1; 2NÞ to
(1,0,2N þ 1) in the experiment should be compared to the
evolution from (2,0,0) via (1,1,0) to (1,0,1) in the model
[indicated by the colored background shading in Fig. 3(b)].
Specifically, we are interested in the evolution of the singlet
double-dot state jSi and the unpolarized triplet double-dot
state jT0i, as their splitting is a witness of exchange effects.
Their calculated dependence on ε� in Fig. 3(b) can be
understood as follows. In the ð2; 0; 2NÞ charge state (i.e.,
towards negative ε�), the singlet and triplet states of the
two-electron double dot are split by the well-known intra-
dot exchange energy. This splitting arises from the Pauli
exclusion principle and the finite single-particle level
spacing of the left dot (modified by small corrections
arising from weak correlation effects), although in our
model it diverges because we consider only one orbital in
each dot. Towards the ð1; 1; 2NÞ tuning, i.e., ε� ¼ 0, the
exchange splitting gradually decreases as the overlap of
the electronic wave functions decreases. Finally, in the
ð1; 0; 2N þ 1Þ tuning, the exchange splitting reduces even
further, as the two electrons occupy distant dots and interact
only via superexchange. In this large-ε� limit, we assume
that superexchange is negligible and label the two degen-
erate states by basis states j↑↓i and j↓↑i (rather than singlet
and triplet), as these states are known to become the correct
energy eigenstates if differences between the total effective
magnetic field in each dot are taken into account (caused,
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FIG. 3. Spin-0 ground-state behavior of the 2N occupied
multielectron dot. (a) Schematic representation of the electron
configuration for even-occupied multielectron dot with spin-0
ground state. Electrons below the Fermi energy in the multi-
electron dot are assumed to pair up into spin singlets. (b) Eigen-
states of a two-electron triple dot system for fixed applied
magnetic field, calculated as a function of ε�. For suitable input
parameters the resulting spin states (labeled) are a useful model
for comparison with experimental data obtained from multi-
electron-dot charge states ð2; 0; 2NÞ, ð1; 1; 2NÞ and ð1;0;2Nþ1Þ
(see main text). (c) Experimental leakage spectroscopy for
K ¼ 2N, revealing strong exchange coupling in ð2; 0; 2NÞ,
i.e., within the double dot, and vanishing exchange interaction
in ð1; 0; 2N þ 1Þ. We associate the sharp feature of suppressed PS
(white triangle) with the S − Tþ crossing and the overall
suppression of PS above ε ≈ 45 mV with S − T0 oscillations
arising from Overhauser gradients. (d) Leakage spectrum ex-
pected from the S − Tþ crossing within the Hubbard model
(white triangle in panel (b)). (e) Time-resolved measurement of
coherent oscillations between jSi and jT0i two-electron spin
states in ð1; 0; 2N þ 1Þ charge state, for Bk ¼ 700 mT and
ε ¼ 60 mV. The observed fluctuations of precession frequencies
with laboratory time T are characteristic of fluctuating Over-
hauser field gradients arising from nuclear spin dynamics within
the GaAs sample.
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for example, by uncontrolled Overhauser fluctuations,
which are omitted in our effective Hamiltonian). In
Fig. 3(b), we also label the fully polarized spin states as
j↑↑i and j↓↓i. For negative ε� they correspond to the well-
known fully polarized triplet states within a two-electron
double-dot system.
Using spin leakage spectroscopy (which can be viewed

as an extension of the “spin funnel” measurement of a
double quantum dot [8,66]), we experimentally map out the
exchange profile across the three charge configurations
ð2; 0; KÞ, ð1; 1; KÞ, and ð1; 0; K þ 1Þ. By applying the
pulse sequence introduced in Sec. II, we prepare the double
dot in a singlet state jSi, and then pulse to the various
interaction points IK along the ζK and εK axes using a fixed
interaction time τ. By choosing τ sufficiently long (here,
150 ns), incoherent mixing between the middle spin and
other spin states can be detected, as any such processes
reduce the probability PS of detecting a spin-singlet state
when pulsing back to the readout configuration of the
double dot. We repeat this procedure for various values of
the in-plane magnetic field, up to Bk ¼ 200 mT, and
associate any significant decrease in PS with leakage from
the singlet state.
The result is shown in Fig. 3(c) for one particular even

occupation of the multielectron dot, K ¼ 2N. Clearly, there
is a sharp feature of reduced PS, marked by a white triangle,
that depends on the applied magnetic field. We associate it
with the crossing of the singlet state jSi and the fully
polarized triplet state jTþi ¼ j↑↑i. (At negative magnetic
field, mixing between jSi and jT−i ¼ j↓↓i causes an
analogues feature, leading to a leakage spectrum that is
symmetric with respect to Bk ¼ 0.) Indeed, at such cross-
ings rapid mixing due to uncontrolled Overhauser gradients
is expected to occur, changing electronic spin projections
by 1 on a time scale of T�

2 ≈ 10 ns [66]. This leakage
feature diverges to high field in the ð2; 0; 2NÞ configura-
tion, indicating that the exchange interaction between the
two electrons within the double dot, i.e., the single-particle
spacing in the left dot, is relatively large. (Here, we use that
for this particular crossing, the associated external magnetic
field Bk can be converted into energy using the Zeeman
shift associated with j↑↑i, i.e., gμBjBkj, where g ≈ −0.4 is
the electronic g factor for GaAs and μB is the Bohr
magneton [66,86].) Towards the ð1; 1; 2NÞ configuration
the leakage feature gradually moves towards Bk ¼ 0,
indicating a decrease of the exchange interaction strength.
Finally, it converges to zero field in the ð1; 0; 2N þ 1Þ
configuration, consistent with the two electrons being
spatially separated and no longer exchange coupled. In
this configuration, we also observe a decreased singlet
return probability that is independent of the applied
magnetic field and ε. We associate this decrease with the
mixing between jSi and the unpolarized triplet state jT0i,
driven by the Overhauser field gradient between the left and
the multielectron dot. Similar features for the 2N − 4 and

2N − 2 occupation of the multielectron dot are presented in
Fig. 4, and are reminiscent of analogues S − T0 mixing in
two-electron double dots with sufficiently small exchange
coupling [66].
The observed leakage spectrum in Fig. 3(c) can be

reproduced qualitatively from our Hubbard model, even
though it does not take into account Overhauser fields.
First, we calculate the energy spectrum of the Hamiltonian
of Eq. (2) using the same parameters as above, but at
varying magnetic fields. We then identify the ground state
associated with preparation of the double dot in the singlet
state, and plot those values of ε� and Bk for which this state
crosses the fully polarized state jTþi. (For Bk < 0, we plot
the crossing of the ground state with jT−i.) The state
crossing in our model indicates where spin mixing due to
Overhauser gradients is expected [Fig. 3(d)], in qualitative
agreement with experimental data [Fig. 3(c)].
To confirm the origin of the decreased singlet probability

in the ð1; 0; 2N þ 1Þ configuration, we perform a time-
resolved measurement of the Overhauser field gradient
[17,87–91] between the leftmost dot and the multielectron
dot. For that purpose, we fix the interaction point in the
ð1; 0; 2N þ 1Þ charge configuration and cyclically vary the
waiting time τ from 0 to 100 ns. The cycle is repeated
continuously, keeping track of both the waiting time (τ) and
laboratory time stamp (T ) associated with each single-shot
readout. When plotting all individual single-shot readouts
(singlet or triplet) versus their associated τ and T values
[Fig. 3(e)], coherent oscillations between the singlet jSi and
triplet jT0i state become apparent within each column, with
an oscillation frequency that slowly changes from column to
column. This fluctuating behavior (shown here over a 30-s-
long laboratory time interval) is the hallmark of two-electron
spin coherence interacting with the (diffusive) dynamics of
the GaAs nuclear spin bath, and has been characterized in
detail for two-electron double dots [67,87,90,91]. The high
visibility of oscillations in Fig. 3(e)—here with frequencies
fluctuating around approximately 50 MHz—confirms that
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the typical splitting between j↑↓i and j↓↑i states due to
uncontrolled gradients of the Overhauser field—here
approximately 0.2 μeV—dominates over the residual super-
exchange interactions in this regime. Amore stringent bound
for the strength of superexchange interactions between the
unpaired spins in the ð1; 0; 2N þ 1Þ configuration can be
obtained from the Hubbard model: by evaluating the energy
splitting in the vicinity of the transition to the ð1; 1; 2NÞ
configuration, we obtain 0.09 μeV as an upper bound. The
strength of superexchange can be enhanced by increasing the
tunnel couplings [54], or by replacing the empty central dot
by a multielectron quantum dot [52,53,55].

V. SPIN-1=2 BEHAVIOR FOR ODD OCCUPANCIES

For odd occupation number the multielectron ground
state must be spinful (all cases we study are consistent with
spin-1=2), and accordingly, the resulting coupled spin
system is more complex compared to the spinless case
discussed in Sec. IV. To put our double-dot spin probe
technique into context of previous experiments, we begin
this section by reviewing a triple quantum dot in the three-
electron regime, before we turn to multielectron effects.
The three-electron regime (1,1,1) is difficult to realize in the
geometry shown in Fig. 1(a). Therefore, on the same chip
we activate another triple dot in which the lithographic size
of the right dot is the same as the left and middle one-
electron dot, and present measurements for the (1,1,1)
regime of that device.
After describing the relevant physics of this tunnel-

coupled (1,1,1) system, using control parameters ζ and ε as
introduced in Fig. 1(c), we present multielectron effects for
the ð1; 1; KÞ system, where K is large and odd. From
measurements associated with each individual choice of K
alone, we find it difficult to distinguish a spin-1=2 ground
state from spin-3=2 or higher, due to the similarity between
the expected behaviors. However, in the context of the
observed behavior of the next higher or lower even
occupation, we find that assigning spin-1=2 to the ground
state of all odd-occupied multielectron cases gives full
consistency between the interpretations of all occupancies
[92]. Therefore, in our analyses below we assume spin-1=2
ground states for all odd-occupied multielectron quantum
dots. This choice is consistent with theoretical models for
large two-dimensional quantum dots in GaAs, which for a
realistic range of occupation numbers (K ¼ 80–200) and
interaction strength parameters (rS ¼ 1.4–2.5, based on
experimental results from Refs. [76,93,94]) predict that the
probability to observe spin-3=2 ground states is signifi-
cantly reduced relative to the occurrence of spin-1=2
ground states [75]. Our measurements involve several
odd occupancies of the multielectron dot and reveal that
associated exchange profiles fall into characteristically
distinct categories, which we reproduce and discuss further
within a Hubbard model (see Sec. V E).

A. Review: Three-electron triple quantum dot (K = 1)

The (1,1,1) charge state of a triple quantum dot,
schematically illustrated in Fig. 5(a), allows for 23 distinct
spin states. The energy of these 8 three-electron states at
finite external magnetic field are shown in Fig. 5(b). For
ε� ¼ 0, all degeneracies are removed by a combination of
linear Zeeman coupling (independent of ε�) and finite
interdot tunneling (charge hybridization, ε� dependent). In
particular, the state plotted in blue transforms (smoothly
due to interdot tunneling) into a (2,0,1) charge state when
reducing ε�. Accordingly, the spin state in this limit
becomes equivalent to a spin singlet in the left dot, and
a spectator spin in the right dot, represented as jS; ↑i.
Unlike this “singletlike state,” the state marked in red
displays “tripletlike” behavior [95]: due to Pauli blockade it
retains its (1,1,1) charge character when reducing ε�, and
smoothly turns into a T0-like state in the left double well
and a spectator spin in the rightmost dot, represented as
jT0; ↑i. Many features of the spectrum in Fig. 5(b) have
been studied previously in the context of exchange-only
triple-dot spin qubits [3,20,96,97], resonant exchange
qubits [19,98], and theoretical work on triple-dot spin
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FIG. 5. (a) Schematic of the three-electron triple dot, which
serves as a reference for discussing the odd-occupied multi-
electron dot tunnel coupled to the double dot. (b) Energy diagram
of the three-electron triple-dot spin states for a finite external
magnetic field. (c) Measured leakage spectrum for the three-
electron triple dot. Markers indicate leakage features attributed to
the level crossings marked in (b). (d) Measured exchange
oscillations reveal a monotonically increasing frequency, corre-
sponding to monotonically increasing JRðεÞ in (b).
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qubits [34,35,39,48,49,99–102] (for a review, see
Ref. [103]).
Of interest here is the exchange energy between the

singletlike and tripletlike state. In the vicinity of the (2,0,1)-
(1,1,1) charge transition we label this energy JL, to indicate
that it predominantly arises from tunneling across the left
barrier (tunneling across the right barrier is suppressed, as
the right dot is in deep Coulomb blockade at this detuning).
Conversely, in the vicinity of the (1,1,1)-(1,0,2) charge
transition, exchange processes across the left barrier are
negligible, while JR > 0 is significant. Accordingly, each
eigenstate is labeled by its approximate spin texture, which
in this region is a tensor product of the spin in the left dot,
j↑i or j↓i, and the two-electron spin state of the right double
quantum dot, jSi or jTii (where i ¼ 0;þ;−).
The splitting between the singletlike state and the

tripletlike state [colored, respectively, blue and red in
Fig. 5(b)], with respect to the difference ε of gate voltages
controlling occupancy of the left and right quantum dot,
can be mapped out using leakage spectroscopy [97]
[Fig. 5(c)] with a procedure similar to the one employed
in Sec. IV. In this case, the system is prepared in the jS; ↑i
state, and the sharp feature of reduced PS indicates leakage
from this singletlike state to the fully polarized j↑↑↑i state
[white and black triangles in Figs. 5(b) and 5(c)]. We
observe that this feature diverges to high magnetic field for
large positive and negative values of ε, consistent with
the decrease of the energy of the singletlike state jS; ↑i or
j↑; Si in the (2,0,1) or (1,0,2) electron configuration,
respectively.
As a side note, we mention that four of the 23 triple-dot

spin states form an S ¼ 3=2 quadruplet. An external
magnetic field splits these according to spin projections
Sz ¼ �3=2, labeled as j↑↑↑i and j↓↓↓i, and Sz ¼ �1=2,
labeled as Q and Q0.
The background of the leakage spectrum in Fig. 5(c) also

shows an overall drop of PS with increasing ε, independent
of the applied magnetic field. This indicates that the
eigenstates on the left side (ε < 0) differ from the right
side (ε > 0) of the spectrum. Once again, insight can be
gained by reducing the interaction time τ, which for ε > 0
reveals coherent exchange oscillations between the middle
spin and the right dot [Fig. 5(d)]. The frequency of the
oscillations increases for larger values of ε, quantifying the
increasing exchange coupling JR between the middle and
the right quantum dot. This precession was previously
exploited for the operation of the exchange-only qubit
[10,20,96]. For this article, it serves the purpose of
exemplifying that the spin of the right dot can be probed
coherently using a proximal two-electron double dot.
This concludes our review of the three-electron triple

dot. In the following sections we extend the same exper-
imental concepts, namely leakage spectroscopy and meas-
urement of exchange oscillations, to the system consisting
of the two-electron double quantum dot coupled to the

multielectron dot with an odd-occupancy spin-1=2 ground
state. The role of JL and JR is played, respectively, by
exchange coupling within the double dot JDD and exchange
coupling between the middle spin and the multielectron dot
J [compare Figs. 5(b) and 7(b) discussed below].

B. Negative exchange interaction at the charge
transition (K = 2N − 3, 2N − 1)

We now focus on two particular odd occupancies of the
multielectron quantum dot, 2N − 3 and 2N − 1, that turn
out to behave similarly to each other but strikingly different
than the (1,1,1) system considered in Sec. VA. In these two
cases the multielectron quantum dot has a single unpaired
spin on the highest occupied orbital, while remaining
electrons are paired up on lower-lying orbitals as spin
singlets (see schematic in Fig. 6). The data we describe
below [Figs. 7(c), 7(d), and 8] are interpreted within the
Hubbard model associated with Fig. 6.
We first discuss leakage spectroscopy measurements for

the multielectron quantum dot with 2N − 3 occupancy. The
left-hand part of Fig. 7(c) corresponds to a configuration in
which the multielectron quantum dot is not significantly
exchange coupled to the double quantum dot (i.e., J ≈ 0).
As expected from a conventional two-electron double dot,
we observe in this regime a sharp feature of suppressed PS
with a shape similar to the “spin funnel” presented in the
left half of Fig. 3(c). Assuming that the multielectron dot
simply constitutes a spectator spin in this regime (which
can be representated as j↑i anticipating the following
analysis), we can associate this feature with the crossing

t1

t2

E*

tDDL

2

M

R1

R2

FIG. 6. Schematic of a two-electron double quantum dot
coupled to an odd-occupied spin-1=2 multielectron dot. Symbols
εL=M=R1=R2 indicate single-particle energies of the lowest orbitals
in the double dot and the two lowest orbitals above the effective
vacuum in the multielectron dot. Arrows indicate tunnel cou-
plings between the left and middle orbital (tDD) and between the
middle orbital and each of the two orbitals in the multielectron
dot (t1=2). The single-particle energy difference between the two
orbitals on the multielectron dot is indicated by ΔE ¼ εR2 − εR1.
Detuning ε� ¼ ðεL − εR1Þ=2 is varied when calculating the
energy diagram and leakage spectrum presented in Figs. 7(b),
7(e), 9(b), and 9(e). Within the range of relevant parameters, low-
lying orbitals in the right dot remain doubly occupied (i.e.,
spinless) and can be ignored when solving Eq. (3), thereby
yielding a three-electron Hubbard model. [Similarly, a four-
electron Hubbard model is solved to model the spin-1 case in
Figs. 13(b) and 13(e)].
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between states jS; ↑i and j↑↑; ↑i (¼ j↑↑↑i). In this inter-
pretation, the curvature of the spin funnel (marked
by a white triangle) reflects the gradual transition of
the associated charge configuration from ð2; 0; 2N − 3Þ
to ð1; 1; 2N − 3Þ occupancy.
For intermediate values of ε the multielectron spin results

in a leakage pattern that differs from the leakage spectrum

of a conventional three-electron triple quantum dot (dis-
cussed in Sec. VA). Namely, the line associated with
the crossing between jS; ↑i and j↑↑↑i [white triangle in
Fig. 7(c)] converges towards Bk ¼ 0. Meanwhile, a second
sharp feature emerges. With increasing ε, it first shifts
towards larger values of Bk (gray square), then reaches a
maximum (blue star) before returning towards Bk ¼ 0

(green circle). At the point where this feature crosses
Bk ¼ 0, we observe two additional sharp leakage features.
The position of one of them is approximately independent
of Bk (pink diamond) while the other feature diverges
towards large Bk for increasing values of ε (black triangle).
This nontrivial leakage spectrum occurs at a detuning
(ε≳ 30 mV) where the charge state of the ground state
transitions into ð1; 0; 2N − 2Þ.
To explain this peculiar leakage pattern, we modify the

Hubbard model of Eq. (2) that successfully described the
even-occupancy spin-0 case. Specifically, we now assume
that the gate voltage of the multielectron quantum dot has
been tuned such that the ground state is odd occupied, and
is effectively described by a single unpaired spin on orbital
R1 (illustrated in Fig. 6). Lower-lying orbitals are assumed
to be occupied by spinless electron pairs and are ignored.
However, we found it necessary to include a higher-lying
empty orbital R2, ΔE higher compared to R1. Therefore,
the operator counting the number of relevant electrons in
the right dot is now n̂R ¼ n̂R1 þ n̂R2.
Including the spin correlation term ξ of Eq. (1), this

generalizes Eq. (2) to the following Hamiltonian, appro-
priate for the system illustrated in Fig. 6:

Ĥspin-1=2 ¼
X

i¼L;M;R1;R2

�
εin̂iþ

Ui

2
n̂iðn̂i − 1Þ

�
þ
X
i≠j

Kij

2
n̂in̂j

−
ξ

2
Ŝ2þ gμBBk

2
ðn̂↑ − n̂↓Þ

− tDD
X
α¼↑;↓

ðĉ†L;αĉM;αþ ĉ†M;αĉL;αÞ

− t1
X
α¼↑;↓

ðĉ†M;αĉR1;αþ ĉ†R1;αĉM;αÞ

− t2
X
α¼↑;↓

ðĉ†M;αĉR2;αþ ĉ†R2;αĉM;αÞ: ð3Þ

The first line of this equation captures the gate-tunable
chemical potentials and the Coulomb interactions, and
hence, it is diagonal in terms of the spin occupancy
numbers. As shown in Table II, we assume that the
Coulomb interactions within a single orbital and between
two orbitals of the multielectron quantum dot are equal. In
the second line, the term proportional to ξ captures the spin
correlation energy: it is a phenomenological term that
favors a S ¼ 1 triplet configuration when both levels R1
and R2 are occupied. Here, the operator of the multi-
electron quantum dot spin in orientation j ¼ x, y, z is
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Bk ¼ 330 mT. The markers indicate crossings revealed by the
leakage spectroscopy measurement presented in (c). Energies are
measured relative to the energy of the state jQi ∝ j↑↑↓iþ
j↑↓↑i þ j↓↑↑i. (d) Time-resolved measurement of exchange
oscillations between the 2N − 3 occupied spin-1=2 multielectron
dot and the middle electron, obtained at zero magnetic field. The
dashed line indicates pulse parameters for which the resulting
quantum state is to first order insensitive to fluctuations in ε.
(e) Leakage spectrum expected from the Hubbard model.
(f) Exchange profile JðεÞ extracted from the pattern of exchange
oscillations in (d).
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Ŝj ¼ 1
2

P
λ;α;α0 ĉ

†
λ;ασ

j
α;α0 ĉλ;α0 , where λ ¼ R1, R2. This term is

important when the single-particle spacing ΔE≡ εR2 − εR1
is relatively small. The term proportional to Bk describes
the Zeeman splitting. The remaining terms proportional to
tDD, t1, and t2 are chosen to be real and positive. They
describe, respectively, tunnel couplings within the double
quantum dot, between the middle dot M and R1, and
between M and R2.
In Fig. 7(b), we present the energy diagram of the double

quantum dot coupled to the spin-1=2multielectron quantum
dot, calculated from the three-electron spectrum of Eq. (3)
using t1 ¼ 12 μeV, t2 ¼ 48 μeV, tDD ¼ 12 μeV, and
ΔE ¼ 160 μeV. All plotted energies are measured relative
to the energy of the state jQi ∝ j↑↑↓i þ j↑↓↑i þ j↓↑↑i,
which appears at E ¼ 0. In such a plot, tripletlike states
display constant energies, whereas singletlike states depend
on detuning.
Again, we have inspected two relevant states (marked

blue for a singletlike state and red for a tripletlike state) in
more detail, and indicate their spin states in the limit of very
negative and very positive detunings. Further, for negative
ε�, we have labeled their energy splitting by JDD, to indicate
that this exchange coupling arises predominantly from
interdot tunneling within the double dot (discussed in
the next paragraph). For positive ε�, interdot tunneling
within the double dot is negligible, but tunneling between
the middle dot and the multielectron dot is important. The
resulting exchange coupling, labeled J, reflects nontrivial
spin-correlation effects arising from the orbitals within the
multielectron dot (discussed below).
The left-hand part of Fig. 7(b), characterized by finite

JDD and negligible J, has an interpretation very similar to
the left-hand part of Fig. 5(b), i.e., a three-electron triple dot
with finite JL and negligible JR. In particular, the crossing
between jS; ↑i and j↑↑↑i states (white triangle) is expected
to result in a spin-funnel-like feature in this regime, for the
same reasons as in Sec. VA.
For increasing values of ε�, however, the singletlike state

jS; ↑i continuously changes its spin texture from j↑↓↑i −
j↓↑↑i to j↑↓↑i þ j↑↑↓i, becoming a tripletlike state j↑;T0i
(we omit normalization). Concurrently, the tripletlike state
jT0; ↑i continuously changes its spin texture from j↑↓↑i þ
j↓↑↑i to j↑↓↑i − j↑↑↓i, becoming a singletlike state j↑; Si

for large ε�. In the model, this transition is driven by the
negative exchange interaction arising from ξ ¼ 0.1 meV in
conjunction with large tunneling t2 to the second orbital
[cf. Eq. (3)], which increases the energy of the singletlike
state j↑; Si relative to the tripletlike state j↑;T0i. However,
for even larger ε� [i.e., in the ð1; 0; K þ 1Þ charge con-
figuration], the tunneling effects become suppressed, and
hence, the singletlike state j↑; Si becomes the ground state
due to a relatively large level spacing ΔE > ξ.
The negative sign of the exchange interaction J for

intermediate values of ε� explains why for Zeeman split-
tings smaller than the maximum energy (blue star) two
additional crossings are expected [marked in Fig. 7(b) by
gray square and green circle], consistent with features
observed in the leakage spectrum of Fig. 7(c). For both
crossings we expect leakage from j↑; Si into j↑;T−i, as this
state has total spin projection Sz ¼ −1=2 and is accessible
via electron-nuclear flip-flop processes.
In the context of these results from the Hubbard model

[Fig. 7(b)], we are able to return to the measurements
[Figs. 7(c), 7(d), and 8] and discuss a few more details.
For sufficiently large values of ε� in Fig. 7(b), the energy

of the singletlike state j↑; Si decreases and becomes lower
than the energy of the tripletlike state j↑;T0i. For the
crossing of these two states we expect a leakage feature
(indicated by the pink diamond), at a detuning value that is
independent of the magnetic field (since the two involved
states have the same spin projection). For higher detuning
the energy of the j↑;Si state further decreases, and crosses
the j↑↑↑i state, resulting in the leakage feature indicated by
a black triangle. Indeed, both leakage features are clearly
observed in the experiment, as indicated by the pink
diamond and black triangle in Fig. 7(c). In particular,
the divergence of one leakage feature for increasing ε
(black triangle) implies that the multielectron quantum dot
in 2N − 2 occupancy has a spin-0 ground state, consistent
with the evidence presented in Sec. IV.
The measured leakage spectrum does not reveal the

crossing between j↑; Si and the fully polarized j↓↓↓i state.
This is expected, as leakage into the j↓↓↓i state

TABLE II. Summary of parameters used in the Hubbard model
for all presented simulations.

Fixed parameters Value (meV)

UL ¼ UM 5
UR ¼ UR1 ¼ UR2 ¼ KR1;R2 1
KLM ¼ KMR ¼ KMR1 ¼ KMR2 0.1
KLR ¼ KLR1 ¼ KLR2 0.02
ξ 0.1
εM 2
ε̄ 0
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FIG. 8. Leakage spectroscopy (a) and time-resolved measure-
ment of exchange oscillations (b) for the multielectron dot
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(Sz ¼ −3=2) would require a change of the electronic spin
projection by 2 (which is not expected for weak spin-orbit
interaction and typical Overhauser field gradients).
An identical analysis of the leakage spectroscopy mea-

surements for the 2N − 1 occupancy of the multielectron
quantum dot [Fig. 8(a)] yields the same conclusion. In
particular, it indicates that the multielectron dot with 2N
occupancy has a spin-0 ground state, in agreement with the
evidence presented in Sec. IV.
Similar to our procedure in Sec. IV, we extract the

relevant state crossings from calculations as in Fig. 7(b) for
varying external magnetic fields, and thereby generate the
leakage spectrum expected for the system of Fig. 6. The
resulting leakage map, shown in Fig. 7(e), qualitatively
reproduces all features of the leakage spectroscopy mea-
surements. This calculation also predicts leakage between
the tripletlike state jT0; ↑i and a state with S ¼ þ3=2,
Sz ¼ þ3=2, which we plot in gray color. This leakage
feature is not apparent in the measured data, as our
initialization pulses were designed to prepare the jS; ↑i
state, which is orthogonal to the states that anticross.
The interpretation of the maximum in Fig. 7(c) (blue

star) as an extremum in JðεÞ can be confirmed directly in
the time domain, by reducing the interaction time τ and
inspecting coherent oscillations between the singletlike and
tripletlike state at intermediate values of ε. In this tech-
nique, the oscillation frequency observed at detuning ε is a
quantitative measure for jJðεÞj [96]. The experimental data
for 2N − 3 and 2N − 1 occupancy of the multielectron dot
are presented in Figs. 7(d) and 8(b), respectively. In both
cases, an increase followed by a decrease in oscillation
frequency with increasing detuning is clearly observed.
For comparison, the exchange energy extracted from the
leakage spectroscopy pattern for 2N − 3 occupancy is
presented in Fig. 7(f). We observe that the minimum of
JðεÞ in Fig. 7(f) occurs at that value of ε for which the
oscillation frequency in Fig. 7(d) shows a maximum (for
large τ this agreement is good, whereas for small τ pulse
distortions arising from finite-rise-time effects associated
with our cryostat wiring become significant). The overall
agreement between maxima in leakage spectra [blue star in
Figs. 7(c) and 8(a)] and maxima in oscillation speed
[Figs. 7(d) and 8(b)] confirms that the exchange interaction
strength has an extremum as a function of ε. Although the
oscillations in Figs. 7(d) and 8(b) do not reveal the absolute
sign of the exchange coupling, these measurements do
confirm its change of sign [61].
The presence of an extremum in the exchange profile

JðεÞ, indicated by a blue star in Fig. 7, implies that the
exchange splitting is to first order insensitive to detuning
fluctuations. For low-frequency ε noise, symmetric operat-
ing points that take the finite experimental pulse rise time
into account, indicated with a dashed line in Fig. 7(d), can
then be exploited to perform high-fidelity exchange gates
[25,26]. Although the residual sensitivity to fluctuating

tunnel barriers remains to be investigated, coherent spin
exchange processes demonstrated across a multielectron
dot already showed an improvement at such noise-robust
operating points [55].
To summarize, the qualitative agreement between

observed and expected features leads us to accept the
physical inspection of the Hubbard model results
[Fig. 7(b)] as the correct interpretation of the measurement
results [Figs. 7(c), 7(d), and 8]. This allows us to conclude
that for intermediate values of ε, the tripletlike configura-
tion associated with j↑;T0i has a lower energy than the
singletlike state associated with j↑; Si. We refer to this
inversion as negative exchange coupling. For both the
2N − 3 and 2N − 1 occupancy of the multielectron quan-
tum dot we observe this negative (i.e., triplet-preferring)
exchange coupling to the proximal electron spin, as long as
the proximal spin resides in the middle dot, i.e., for charge
configurations ð1; 1; 2N − 3Þ or ð1; 1; 2N − 1Þ. Once a
sufficiently large detuning voltage transfers the proximal
electron onto the multielectron dot, i.e., resulting in a
ð1; 0; 2N − 2Þ or ð1; 0; 2NÞ charge configuration, the
exchange interaction becomes positive, consistent with a
spin-0 ground state for the even-occupied multielectron
quantum dot (studied in Sec. IV).

C. Negative exchange within the
multielectron dot (K = 2N + 1)

Next, we focus on the 2N þ 1 occupation of the
multielectron dot. Similarly to the odd occupancies
2N − 3 and 2N − 1 (Sec. V B), we expect that a single
unpaired electron occupies the highest occupied orbital of
the multielectron dot [Fig. 9(a)]. However, the leakage
spectroscopy measurement [Fig. 9(c), discussed below]
implies that the exchange interaction with the neighboring
middle electron is qualitatively different. By changing the
model parameters associated with Fig. 6 slightly (in
particular, the relative magnitudes of t1, t2, ΔE, and ξ),
the calculated spectrum can be made to match the
experimental data.
The left-hand side of Fig. 9(c) presents an experimental

leakage spectrum similar to that observed for 2N − 3 and
2N − 1, and hence, we tentatively associate the sharp
funnel-like leakage feature (white triangle) with the cross-
ing between singletlike state jS; ↑i and the fully polarized
state j↑↑↑i. In contrast to the previous cases, this feature
does not converge to B ¼ 0 for increasing ε, but increases
to high magnetic fields (gray square) for intermediate
values of ε. This increase occurs within the ð1;1;2Nþ1Þ
charge state, indicating that the singletlike state j↑; Si has a
lower energy than the tripletlike state as long as the
proximal electron resides on the middle dot. For larger
detuning, around a charge transition to ð1; 0; 2N þ 2Þ
charge state, this leakage feature reaches a (sharp) maxi-
mum and then crosses through Bk ¼ 0 (pink diamond),
along with two sharp leakage features appearing.
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This leakage spectrum can be reproduced within our
model (Fig. 6) using t1 ¼ 30 μeV, t2 ¼ 6 μeV, tDD ¼
20 μeV, and ΔE ¼ 30 μeV. The calculated energy dia-
gram, obtained from the Hamiltonian Eq. (3), is presented

in Fig. 9(b). For these parameters, the spectrum reveals
a positive (singlet-preferring) exchange interaction for
the ð1; 1; 2N þ 1Þ configuration and a negative (triplet-
preferring) exchange interaction for ð1; 0; 2N þ 2Þ. More-
over, we can associate all leakage features observed in
Fig. 9(c) with specific crossings in the calculated spectrum.
In particular, the three sharp leakage features converging
towards Bk ¼ 0 correspond to the crossings between j↑; Si
and states with total spin S ¼ 3=2 and spin projection,
respectively, Sz ¼ þ3=2 (black triangle), þ1=2 (pink
diamond), and −1=2 (green circle).
Following the reasoning from Sec. V B, we come to the

conclusion that the 2N þ 2 occupied multielectron dot has a
spin-1 ground state. Indeed, in Sec. VI we present exchange
effects in the ð1; 1; 2N þ 2Þ system that are consistent with a
spin-1 ground state of the multielectron dot.
In Fig. 9(d), we present time-resolved exchange oscil-

lations measured for the same configuration as for the
leakage spectroscopy in Fig. 9(c). As for the 2N − 3 and
2N − 1 occupancies, we find that the oscillation frequency
reaches a maximum for the same value of ε as the local
maximum in the leakage spectrum (blue star). [Deviations
appear for short values of τ, due to finite-rise-time effects as
in Figs. 7(d) and 8(b).] For the highest values of τ we
additionally observe a suppression of PS at ε ≈ 21 mV,
which we attribute to the onset of incoherent leakage from
the singletlike state into the j↑; Si state (pink diamond).
As in Sec. V B, we note the appearance of extrema in the

exchange profile of Fig. 9, which possibly are useful for the
execution of charge-noise-insensitive exchange gates. More
details about the charge occupancy presented in this section
(K ¼ 2N þ 1), including tunability of the exchange profile,
can be found in Ref. [61].

D. Other odd occupancies of the multielectron
quantum dot (K = 2N − 5, K = 2N + 3)

We now present the results of leakage spectroscopy and
exchange-oscillation measurements for the 2N − 5 and
2N þ 3 occupancies of the multielectron dot. These are
the most extreme occupancies studied in this work. Further
addition or removal of electrons is possible, but would
require significant changes of several tuning voltages to
maintain a useful tunnel coupling between the middle and
multielectron dot, presumably due to considerable changes
of the quantum dot area. The observed behavior is con-
sistent with the ground states found for the other odd
occupations, namely a spin-1=2 multielectron dot, but the
reduced quality of data did not allow an analysis as detailed
as that in Secs. V B and V C.
In Fig. 10(a), we present leakage spectroscopy for the

2N − 5 occupancy of the multielectron quantum dot. We
attribute the two funnel-like features in the left half of the
panel with the usual exchange coupling within the two-
electron double quantum dot, decreasing in strength with
increasing ε. However, at ε ≈ 20 mV each feature appears
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FIG. 9. (a) Schematic of the odd-occupied multielectron quan-
tum dot with spin-1=2 ground state, tunnel coupled to the two-
electron double quantum dot. (b) Calculated energy diagram at
the transition between ð2; 0; 2N þ 1Þ, ð1; 1; 2N þ 1Þ, and
ð1; 0; 2N þ 2Þ charge configurations, for a finite magnetic field
Bk ¼ 900 mT and input parameters motivated by the observed
spectrum in (c). Markers indicate crossings revealed by the
leakage spectroscopy measurement presented in (c). Energies
are measured relative to the energy of the state jQi ∝ j ↑↑ ↓iþ
j ↑ ↓ ↑i þ j↓ ↑↑i. (d) Time-resolved measurement of exchange
oscillations between the 2N þ 1 occupied spin-1=2 multielectron
quantum dot and the middle electron, obtained at zero magnetic
field. Color scale as in (c). The dashed line indicates pulse
parameters for which the resulting quantum state is to first order
insensitive to fluctuations in ε. (e) Leakage spectrum expected
from the Hubbard model. (f) Exchange profile JðεÞ extracted
from the pattern of exchange oscillations in (d).
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to split into two features. One converges towards B ¼ 0
while the other quickly increases and possibly reaches
a maximum at ε ≈ 28 mV before returning and crossing
B ¼ 0 at about ε ¼ 30 mV. On the one hand, this may
indicate that the exchange interaction strength between the
middle electron and the spin-1=2 multielectron dot has a
negative sign for small wave function overlap [i.e., in the
ð1; 1; 2N − 5Þ charge configuration] and positive for large
wave function overlap [i.e., in the ð1; 0; 2N − 4Þ charge
configuration]. On the other hand, the opposite behavior
(i.e., exchange sign going from positive to negative) would
also be consistent with the leakage pattern, although we
dismiss this possibility based on the spin-0 behavior
presented for K ¼ 2N − 4.
Exchange oscillations for 2N − 5 occupancy are pre-

sented in Fig. 10(b). Notably, there is no indication for a
local maximum in the oscillation frequency, in contrast to
an extremum in the exchange interaction strength that we
inferred from the leakage spectrum in Fig. 10(a). We do not
understand the absence of an extremum in Fig. 10(b), but
note that the presence of exchange oscillations by itself is
evidence for a spinful ground state of the 2N − 5 occupied
multielectron dot.
Leakage spectroscopy performed for the 2N þ 3 occu-

pation, presented in Fig. 11(a), reveals characteristics
similar to those of the conventional three-electron triple
quantum dot (Sec. VA). This similarity, and the absence
of unusual leakage features at the ð1; 1; 2N þ 3Þ to
ð1; 0; 2N þ 4Þ charge transition, suggests that the multi-
electron quantum dot with this occupancy behaves as an
ordinary spin-1=2 dot. However, we cannot fully exclude
the possibility that at high ε the exchange interaction
reaches a maximum and possibly changes sign, as such
a behavior is hard to detect for large tunnel couplings [61].
In addition, the observed pattern of exchange oscillations
in Fig. 11(b) is not quite clear enough to support the
presence or absence of an extremum in the exchange
profile, due to an increased dephasing rate at the interdot
charge transition [104].

E. Different exchange profiles for a spin-1=2
multielectron dot expected from the Hubbard model

According to our phenomenological model, the effective
exchange coupling between a spin-1=2 ground state of
the multielectron dot and the middle spin depends on the
precise choice of the various input parameters. However,
the general behavior of the exchange profile falls into four
main regimes, as shown schematically in Fig. 12.
In regime I, the effective exchange coupling is always

positive (singlet preferring) as ε� is tuned towards the
charge transition from ð1; 1; KÞ to ð1; 0; K þ 1Þ, where an
additional electron moves onto the multielectron dot. The
behavior is qualitatively similar to that of a three-electron
triple dot (K ¼ 1, Sec. VA), and is possibly that observed
for K ¼ 2N þ 3 (Sec. V D).
In regime II, the effective exchange coupling is negative

(triplet preferring) in the ð1; 1; KÞ charge configuration but
becomes positive as the charge transition to ð1; 0; K þ 1Þ is
approached. Consequently, the exchange profile includes a
maximum and a zero crossing. This is the regime observed
for 2N − 3 and 2N − 1 occupancies (Sec. V B).
Regime III is similar to regime I for low detuning in the

ð1; 1; KÞ charge configuration, with positive exchange, but
the exchange reverses sign and becomes a negative exchange
very close to the charge transition to the ð1; 0; K þ 1Þ state,
as observed for 2N þ 1 occupancy (Sec. V C).
Regime IV is characterized by a negative exchange

coupling in the ð1; 1; KÞ configuration close to ð1; 0;
K þ 1Þ, and the exchange coupling remains negative for
higher detuning. Note that there is no zero crossing in the
exchange profile, even though the exchange coupling for
low detuning (corresponding to exchange between middle
dot and left dot) is positive, and exchange and high
detuning (corresponding to exchange between middle
dot and the multielectron dot) is negative. This is because
in the charge configuration ð1; 1; KÞ, tunneling across the
left and right barrier are both present, and hence, eigen-
states cannot be decomposed into a product state of one
spectator spin (in either left or right dot) and a remaining
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spin-singlet (or spin triplet) state. In other words, the energy
spitting between eigenstates is nonzero at this detuning, but
cannot be classified as positive or negative because the
eigenstates themselves are superpositions of singletlike
(blue) and tripletlike (red) states. Although the measure-
ments of K ¼ 2N − 5 share some properties of regime IV,
this regime has not been clearly observed.
In Figure 12 we intentionally omit units on the four

insets, to emphasize that our simple theoretical model
predicts four qualitatively different regimes of exchange
profiles. However, only regimes II and III have been
observed unambiguously in our multielectron device
(regime I has been observed only for K ¼ 1). To gain
insight into the physics that—within the theoretical model
—gives rise to these four regimes, we can inspect the
crossover between these regimes in more detail. In par-
ticular, we can estimate the location of the boundaries
between these four regimes by analyzing the role of two
dimensionless quantities.
The first parameter is ðΔE − ξÞ=t1, and constitutes the

vertical axis of Fig. 12. This parameter can be positive or
negative, depending on the relative strength of the spin
correlations. When positive, i.e., ΔE > ξ, the energy
separation of the two relevant single-particle levels 1 and
2 in the multielectron dot is larger than the spin correlation
energy, thereby suppressing the formation of a high-spin
ground state. Accordingly, if the middle electron is trans-
ferred into the right dot (large detuning), its lowest energy
state in the ð1; 0; K þ 1Þ charge configuration will be a

singlet configuration with level 1 doubly occupied. When
this parameter is negative, i.e., ΔE < ξ, the spin correlation
energy is larger than the kinetic energy required to form a
high-spin state, and hence, a triplet configuration with an
electron in both level 1 and level 2 is energetically preferred
in the ð1; 0; K þ 1Þ charge configuration. In the limit
ΔE ≪ ξ, and ignoring the low spatial symmetry of the
mesoscopic multielectron dot, such a high-spin filling of
the “shell” spanned by levels 1 and 2 can be viewed as the
manifestation of Hund’s rule in a 2DEG-based artificial
atom [72,77,105].
Near the charge transition from ð1; 1; KÞ to ð1; 0; K þ 1Þ,

the effective exchange coupling between the multielectron
dot and the double quantum dot results from a competition
between a positive (singlet-preferring) contribution and a
negative (triplet-preferring) contribution. These contribu-
tions arise from virtual transitions to the two doubly
occupied configurations of the multielectron dot. The
relative size of these contributions depends on the tunnel
couplings t1 and t2, and consequently, the second parameter
we use to describe the spectrum is the ratio t2=t1. This
parameter forms the horizontal axis of Fig. 12.
For large detuning, i.e., when the charge configuration of

the ground state is ð1; 0; K þ 1Þ, the exchange splitting is
simply the energy difference between the doubly occupied
triplet and singlet states set by the Hubbard model: ΔE − ξ.
Therefore, the line ðΔE − ξÞ=t1 ¼ 0 represents the crossover
from regimes I and II, which have singlet ground states at
large detuning (ΔE − ξ > 0), to regimes III and IV, which
have triplet ground states at large detuning (ΔE − ξ < 0).
At small detuning, i.e., when the charge configuration of

the ground state is predominantly ð1; 1; KÞ, the Hubbard
model can be analyzed perturbatively. In this regime the
positive contribution to the exchange is approximately
JS ¼ 2t21=ΔES, where ΔES is the difference in energy to
the doubly occupied singlet state. ΔES changes with ε�
and decreases as the system is tuned towards the
charge transition. The negative contribution is approxi-
mately JT ¼ −t22=ΔET, where ΔET is the difference in
energy to the doubly occupied triplet state. (Note that
ΔET − ΔES ¼ ΔE − ξ).
We focus first on the region where ðΔE − ξÞ=t1 > 0, so

that ΔES < ΔET and the system is in either regime I or II.
Consider the exchange in the ð1; 1; KÞ charge configuration
not too far from the charge transition to ð1; 0; K þ 1Þ, so
that the exchange is dominated by coupling to the multi-
electron dot and the effect of the left dot can be neglected.
When t2=t1 >

ffiffiffi
2

p
and ΔE − ξ is not too large, we expect

that JS ≲ jJT j, and so the ground state is a triplet and the
effective exchange is negative. Consequently, the ground
state must change from triplet to singlet as ε� is tuned
through ð1; 1; KÞ towards ð1; 0; K þ 1Þ. This places the
system in regime II. For larger values of t1 and smaller
values of t2, the ground state in ð1; 1; KÞ is a singlet
throughout the charge transition and the system is in regime
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FIG. 12. Illustration of qualitatively different exchange profiles
arising from the interplay between the level spacing in the
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I. An approximate location for the crossover between
regime I and regime II is the locus of points where JS ¼
jJT j when ΔES ≃ t1. This choice ensures that regime II is
characterized by a triplet ground state until ε� is tuned close
enough to the charge transition that the tunneling starts to
strongly mix the two charge configurations and perturba-
tive expressions for exchange are no longer valid. This
boundary is indicated in Fig. 12, and we verified that
spectra of the full Hubbard model are in agreement with
this choice.
The boundary between regime III and regime IV sits in

the region where ðΔE − ξÞ=t1 < 0, and so ΔET < ΔES.
Following the same reasoning as for the boundary between
I and II, the crossover between regime III and regime IV
lies near the locus of points where JS ¼ jJT j when
ΔET ≃ t1. This boundary is likewise indicated in Fig. 12.
As pointed out at the beginning of this section, regimes II

and III have clearly been observed in our experiment. This
may hint at electrons occupying orbitals at a higher energy
(i.e., with larger kinetic energy) having an increased
tendency to penetrate the potential barrier between the
dots (i.e., resulting in t2 > t1). The behavior for K ¼ 1 is
clearly that of regime I, whereas the observed behaviors for
K ¼ 2N þ 3 and K ¼ 2N − 5 are less clear (possibly
regime I and IV). Overall, the number of occupancies
studied in this work is too small to draw any general
conclusions. To resolve this question, it would be beneficial
to investigate more devices or to use distorting gates [56] to
change the quantum dot potential and thereby gather
meaningful statistics.

VI. SPIN-1 BEHAVIOR FOR K = 2N + 2

Our final case concerns the 2N þ 2 occupancy of the
multielectron quantum dot, which showed different char-
acteristics than the other even occupancies presented. From
the behavior of the 2N þ 1 occupancy (Sec. V C), we
conclude that the addition of one electron to the spin-1=2
ground state results in a triplet configuration that has a
lower energy than the singlet configuration. Our expect-
ation, therefore, is that the 2N þ 2 ground state of the
multielectron dot shows spin-1 behavior [Fig. 13(a)].
Indeed, the leakage spectroscopy data, featuring a

prominent U-shaped leakage feature in Fig. 13(c), is more
similar to that of a three-electron triple dot [Fig. 5(c)] than
to that associated with other even occupations [Figs. 3(c)
and 4]. This points towards the presence of a nonzero spin
in the multielectron quantum dot, which we associate with
spin-1 in this case. We note that the sharp leakage feature
diverges to large Bk for increasing ε, indicating a positive
sign of the exchange interaction (i.e., preferring the low-
spin state). Further, measurement of exchange oscillations
clearly shows the presence of coherent exchange inter-
actions [Fig. 13(d)]. These observations lead us to the
following conclusions. First, the 2N þ 2 occupied multi-
electron dot carries a nonzero spin. Second, the exchange
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FIG. 13. (a) Schematic of the even-occupied multielectron
quantum dot with spin-1 ground state, tunnel coupled to the two-
electron double quantum dot. (b) The inferred energy diagram
at the transition between ð2; 0; 2N þ 2Þ, ð1; 1; 2N þ 2Þ, and
ð1; 0; 2N þ 3Þ electronic configurations, for a finite magnetic
field. The markers indicate the crossings revealed by leakage
spectroscopy presented in (c). (d) Time-resolved measurement of
exchange oscillations between the 2N þ 2 occupied spin-1=2
multielectron quantum dot and the middle electron. (e) Calcu-
lated leakage spectrum, extracted from the calculated energy
diagram as described in Sec. IV. (f) Dependence of the exchange
energy extracted from the leakage spectroscopy in (c). (g) Leak-
age spectroscopy in a magnetic field applied perpendicular to the
2DEG plane, B⊥.
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interaction with the middle spin has a positive sign, and
therefore the transfer of the middle electron to the multi-
electron dot would result in a reduction of the ground state
spin (from spin-1 to spin-1=2).
Insight into this regime can be gained from the Hubbard

model, by calculating the energy spectrum associated with
four electrons using Eq. (3). Figure 13(b) shows the result for
a choice of input parameters that mimics the phenomenology
of the multielectron device (t1 ¼ 26 μeV, t2 ¼ 12 μeV,
tDD ¼ 30 μeV, and ΔE ¼ 40 μeV). As before, inspection
of this energy diagram allows us to associate spin states with
all eigenstates and infer the expected leakage spectrum from
various state crossings. In particular, we associate the field-
dependent state crossings arising in this energy diagram
(marked by awhite and black triangle)with the sharp leakage
features observed in Fig. 13(c).
On the left-hand side of the diagram the multielectron

dot is decoupled from the double dot by a large negative
detuning voltage, and can be viewed as a spin-1 spectator
spin. Thus, the eigenstates are tensor products of double-
dot states (jSi, jTii with i ¼ þ;−; 0) and spin-1 states with
different spin projections in the direction of the magnetic
field (j0i or j � 1i). The three states that diverge towards
small energies for large negative ε� all involve the double-
dot singlet state (jSi), whereas the other states involve the
double-dot triplet states. Therefore, the state plotted in blue
can be viewed as a singletlike state, whereas the state in red
is tripletlike.
In contrast, for large ε�, the left dot decouples and

becomes a spin-1=2 spectator, while the middle dot (with
spin-1=2) hybridizes with the multielectron dot (spin-1)
due to tunnel coupling. Accordingly, each eigenstate is the
tensor product of a spin-1=2 state and one out of six
“molecular states” formed by the middle and right dot. In
terms of spin, these six “molecular states” comprise four
quadruplet states (jQ�3=2i, jQ�1=2i) with a total spin 3=2,
and two doublet states (jD�1=2i) with a total spin of 1=2
(the subscript in our notation indicates the spin projection
in the magnetic field direction). For doublet states the
middle electron can relocate into the multielectron dot for
large positive ε�. Therefore, all four tensor products that
involve doublet states diverge towards low energy in this
regime. In contrast, spin-3=2 states within the multielectron
dot would be costly in terms of single-particle energies, and
hence, tensor products that involve the quadruplet states
have associated with them a relatively stiff ð1; 1; KÞ
charge distribution, and transition into ð1; 0; K þ 1Þ only
for larger ε�.
We believe that in the experiment we initialize the triple

dot in the jS;þ1i state (in analogy to jS; ↑i for the spin-1=2
multielectron dot). With increasing detuning this eigen-
state continuously changes into j↑;D1=2i [blue line in
Fig. 13(b)]. This change of eigenstates explains the presence
of exchange oscillations when pulsing ε diabatically
[Fig. 13(c)]. Meanwhile, the sharp features in the leakage

spectrum correspond to the crossing of this blue colored state
with a fully polarized jTþ;þ1i≡ j↑;Q3=2i state [black and
white triangles in Figs. 13(b) and 13(c)]. Indeed, the leakage
spectrum inferred from the calculated energy spectrum
confirms this analysis [Fig. 13(e)].
Finally, we present leakage spectroscopy measurements

for the out-of-plane magnetic field B⊥ [Fig. 13(e)].
Curiously, in this case we observe an additional leakage
feature with a weaker dependence on detuning. At
ζ ≈ 18 mV, i.e., near the boundary between ð2;0;2Nþ2Þ
and ð1; 1; 2N þ 2Þ, this feature appears to cross the primary
feature (which we associate with the S − Tþ crossing
within the double dot) without any sign of interaction. On
the other hand, at the transition between ð1; 1; 2N þ 2Þ and
ð1; 0; 2N þ 3Þ (higher detuning of themultielectron dot), the
primary leakage feature ends at exactly the point where the
additional feature crosses (ε ≈ 13 mV, B⊥ ≲ 180 mT). We
speculate that the additional feature arises from the strong
coupling of multielectron-dot orbitals to the out-of-plane
magnetic field, which breaks the near degeneracy between
two orbitals [106] and drives a transition of the ground-state
spin from 1 (B⊥ ≲ 180 mT) to 0 (B⊥ ≳ 180 mT). This
would explain the termination of the primary leakage
feature at ε ≈ 13 mV (since we know from Sec. IV that
the primary leakage feature is absent when the multielectron
quantum dot has a spin-0 ground state) as well as the absence
of any interaction near ζ ≈ 18 mV (since the double dot
in this low detuning is essentially decoupled from the
multielectron dot).

VII. SUMMARY AND OUTLOOK

We apply two methods developed for spin qubits to study
the spin properties of a mesoscopic multielectron quantum
dot, namely, spin leakage spectroscopy and measurement
of coherent exchange oscillations. Both methods rely on
fast gate-voltage pulses, single-shot charge detection, and
spin-to-charge conversion, and provide complementary
information about the multielectron dot (namely, incoher-
ent spin leakage and coherent spin exchange processes).
This allows us, for the first time, to study the spin spectrum
associated with the multielectron dot (containing of order
100 electrons) and its dependence on the parity and
charge occupation of the multielectron dot. By studying
in detail the interaction of the multielectron dot with a
neighboring electron (which we entangle with an unpaired
reference electron prior to each pulse cycle), we discover a
counterintuitive exchange profile between the neighboring
electron and the odd-occupied multielectron quantum dot.
Specifically, we observe that the exchange interaction
rapidly varies with detuning voltages applied to the multi-
electron dot, resulting in local maxima and sign changes
of the exchange interaction that can be controlled by
few-millivolt changes in gate voltages. We also study
even occupations of the multielectron dot, including a
configuration with spin-1 ground state. We explain our
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observations using a Hubbard model, and classify its
predicted exchange profiles into four distinct regimes.
Using realistic parameters, we show that this model quali-
tatively reproduces the observed diverse behavior of the
multielectron dot.
The key conclusion of this work is that a multielectron

quantum dot possesses properties that may be exploited as a
mediator of exchange interactions for spin qubit applica-
tions. We observe a spin-0 ground state, most desirable for
long-range exchange coupling, for 3 out of 4 of the studied
even occupancies. This should provide sufficient reliability
for use in a scalable quantum dot system—accidental
spin-1 ground states of the multielectron mediator can
be avoided by adding or removing two electrons. A first
demonstration towards long-range exchange coupling was
recently demonstrated in the same device [55].
Several other findings may also benefit spin qubit

applications. First, the appearance of extrema in the
observed exchange profiles may be suitable to increase
gate fidelities, by reducing the sensitivity of exchange
oscillations to charge noise [25,26]. Second, access to both
signs of the exchange lifts constraints for the construction
of dynamically decoupled gates. Previous theoretical work
assumed an exchange coupling that can only assume zero
and positive values, and the resulting gate sequences can be
quite complex [107,108]. Third, since the large quantum
dot is characterized by a reduced level spacing, it may be
possible to define a singlet-triplet rotating frame on the
multielectron dot that is charge-noise insensitive (as dem-
onstrated in Ref. [104]) but does not suffer from impracti-
cally high operating frequencies (analogous to the quantum
dot hybrid qubit [5,9]). Fourth, a larger size of the multi-
electron quantum dot implies a reduction of the Overhauser
field experienced by the electrons, and therefore a reduced
dephasing rate [109]. Fifth, the addition of the single electron
to the spin-0 quantum dot preserves the spin of the electron.
Therefore, it should be possible to subsequently eject this
electron to another quantum dot, yielding a method for the
coherent shuttling of spin states between distant quantum
dots [110].
From a fundamental physics point of view, several

aspects of the multielectron quantum dot can be studied
further. For example, the distribution of level spacings and
the strength of the spin correlation energy are likely
characterized by mesoscopic fluctuations, and were not
studied here. Their dependence on the dot size is of
fundamental and practical importance. Further, our obser-
vation of spin-1 ground states suggests that spin-3=2
ground states should also occur, arguably with even higher
probability [70,75]. Another curiosity is that for all three
spin-1=2 ground states for which the quality of the data
allowed a full analysis (i.e., K ¼ 2N − 3; 2N − 1; 2N þ 1),
we observe extrema in the exchange strength, both for
positive and negative exchange strengths. This may hint
towards a correlation between the level spacing and the
ratio of the tunnel couplings.

Finally, for the first time we apply leakage spectroscopy
and exchange-oscillation measurements of a spin qubit to
study the spectrum of a more complicated, largely
unknown object (the multielectron dot). The same principle
could be applied to study numerous other systems and
poorly understood phenomena. Examples include quantum
dots coupled to quantum Hall or fractional quantum Hall
edge states [111,112], or to hybrid super-semiconducting
quantum dots such as Majorana islands [113,114]. Going
beyond one multielectron dot, we note that the combination
of spin-1 states with the possibility to control the sign
of exchange coupling between them may allow the
exploration of exotic physics in multidot systems:
Antiferromagnetically interacting spin-1 particles in a
one-dimensional spin chain exhibit an energy gap and
fractionalized edge mode degrees of freedom associated
with the Haldane phase [115], which constitutes a canoni-
cal example of a symmetry-protected topologically ordered
material [116,117]. Engineering such a spin chain in a
system with the control and readout of quantum dots opens
the possibility of exploring the long-range entanglement
[118] of this topological phase and its potential use in
quantum computing applications [119]. A scanning probe
version of our technique, in which a spin qubit is scanned
over surfaces as in a scanning tunneling microscope, would
open the study of exchange interactions to an even larger
class of quantum materials.
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APPENDIX: PARAMETERS USED TO
CALCULATE THE PRESENTED

ENERGY SPECTRA

The Hamiltonians Eqs. (2) and (3) contain parameters
that were not measured directly, but which were estimated
based on realistic experimental assumptions. These include
the on- and off-site Coulomb interaction energies Ui
and Kij and the spin correlation energy ξ. To reduce
the number of parameters in our modeling, we also fix
certain combinations of single-particle energies, namely,
ε̄ ¼ ðεL þ εM þ εRð1ÞÞ=3 and εM ¼ εM − ðεL þ εRð1ÞÞ=2.
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All energy diagrams presented in this paper were calculated
using identical sets of parameters, summarized in Table II,
but differed in the assumed number of occupied orbitals
appropriate for the different charge occupations of the
multielectron dot.
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