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Quantum simulation of the electronic structure problem is one of the most researched applications of
quantum computing. The majority of quantum algorithms for this problem encode the wavefunction using
N Gaussian orbitals, leading to Hamiltonians withOðN4Þ second-quantized terms. We avoid this overhead
and extend methods to condensed phase materials by utilizing a dual form of the plane wave basis which
diagonalizes the potential operator, leading to a Hamiltonian representation with OðN2Þ second-quantized
terms. Using this representation, we can implement single Trotter steps of the Hamiltonians with linear gate
depth on a planar lattice. Properties of the basis allow us to deploy Trotter- and Taylor-series-based

simulations with respective circuit depths of OðN7=2Þ and ÕðN8=3Þ for fixed charge densities. Variational
algorithms also require significantly fewer measurements in this basis, ameliorating a primary challenge of
that approach. While our approach applies to the simulation of arbitrary electronic structure problems, the
basis sets explored in this work will be most practical for treating periodic systems, such as crystalline
materials, in the near term. We conclude with a proposal to simulate the uniform electron gas (jellium)
using a low-depth variational ansatz realizable on near-term quantum devices. From these results, we
identify simulations of low-density jellium as a promising first setting to explore quantum supremacy in
electronic structure.
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I. INTRODUCTION

The problem of electronic structure is to simulate the
stationary properties of electrons interacting via Coulomb
forces in an external potential. The solution to this problem
has wide implications for all areas of chemistry, condensed
matter physics, and materials science, and is of industrial
relevance in the design and engineering of new pharma-
ceuticals, catalysts, and materials. Recently, quantum
computers have emerged as promising tools for tackling
this challenge, offering the potential to access difficult
electronic structure with reduced computational complex-
ity. However, as the age of “quantum supremacy” dawns,
so has the realization that many “efficient” quantum

algorithms still require more resources than will be avail-
able in the near term.
Originally proposed by Feynman [1], the efficient

simulation of quantum systems by other, more controllable
quantum systems formed the basis for modern construc-
tions of quantum computation. This early insight has since
been refined to encompass more universal and versatile
constructions of simulation [2,3]. By combining quantum
phase estimation [4] with these techniques, Aspuru-Guzik
et al. described a quantum algorithm for solving quantum
chemistry problems [5]. This initial algorithm was based on
adiabatic state preparation combined with Trotter-Suzuki
decomposition of the unitary time-evolution operator [6,7]
in second quantization.
Many algorithmic and theoretical advances have fol-

lowed since the initial work in this area. The quantum
simulation of electronic structure has been proposed via an
adiabatic algorithm [8], via Taylor-series time evolution
[9], in second quantization, in real space [10,11], in the
configuration interaction representation [12,13], and using
a quantum variational algorithm [14,15]. Starting with
Ref. [16], researchers have sought to map these algorithms
to practical circuits and reduce the overhead required for
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implementation by both algorithmic enhancements [17–20]
and physical considerations [21–23]. As a second-
quantized formulation is generally regarded as the most
practical for near-term devices, many works have also tried
to find more efficient ways of mapping fermionic operators
to qubits [24–28].
With recent developments in quantum computing

hardware [29–33], there is an additional drive to identify
early practical problems on which these devices might
demonstrate an advantage [34,35]. Toy demonstrations of
quantum chemistry algorithms have been performed on
architectures ranging from quantum photonics and ion
traps to superconducting qubits [14,36–41]. In particular,
the variational quantum algorithm [14,15] has been shown
experimentally to be inherently robust to certain errors
[40] and is considered to be a promising candidate for
performing practical quantum computations in the near
term [42,43].
A major challenge of using such devices in the near

term is that limited qubit coherence necessitates algo-
rithms that can be executed in as little time (circuit depth)
as possible. Circuit depth refers to the number of layers of
simultaneous gates used to compose a circuit. The depth
of a circuit can be different from the size of a circuit when
gates on distinct qubits can be executed in parallel. Thus,
while circuit size measures gate complexity (limited by
gate fidelities), circuit depth measures time complexity
(limited by coherence times). Since variational algorithms
are relatively robust to systematic errors (which lower
fidelity) and tend to be bottlenecked by both intrinsic
decoherence and the number of circuit repetitions required
[40–42], circuit depth is a crucial metric for assessing
viability.
The major challenge in developing low depth quan-

tum algorithms for quantum chemistry is that electronic
structure Hamiltonians often have as many as OðN4Þ
terms, where N is the number of basis functions. This is
problematic as many algorithms for time evolution and
energy estimation have costs that scale explicitly with
the number of terms. In this paper, we introduce basis
functions, which have not been previously considered
for quantum computing, that reduce the number of
Hamiltonian terms to ΘðN2Þ. The approach we focus
on is to use a plane wave basis and its dual obtained by
a unitary rotation, which we call the “plane wave dual
basis.” The plane wave dual basis falls into the general
category of discrete variable representations, as origi-
nally introduced to describe scattering problems in
quantum chemistry [44]. We exploit special properties
of this basis to demonstrate electronic structure simu-
lation algorithms that are asymptotically more efficient
(in both circuit depth and circuit size) than any in the
prior literature. The scaling advantages of the techniques
introduced in this paper are compared to prior results in
Table I.

As argued in Appendix E, reaching the same basis set
discretization error will usually require a constant factor
more plane wave dual basis functions than Gaussian orbital
basis functions. The precise factor depends on details of the
simulation, but it is clearly larger when the goal is to
simulate nonperiodic systems (e.g., single molecules) at
low accuracies (e.g., in a minimal basis). Accordingly, our
techniques (when used with these basis functions) will not
offer an advantage for the sort of small single-molecule
simulations that have been the focus of most experimental
demonstrations to date [36–41]. However, in the context of
fault-tolerant electronic structure simulations, the total
number of gates required, rather than the number of logical
qubits required, is the most important resource.
For fault-tolerant implementation, single-qubit rotations

require approximation by a discrete set of gates, including
at least one non-Clifford gate such as the T gate.
Implementing T gates within practical schemes such as
the surface code requires a procedure called magic state
distillation, which typically requires more physical ancilla
qubits per T factory (i.e., physical qubits dedicated to the
distillation and teleportation of magic states) than the
number of physical qubits required to encode each logical
qubit [47]. The work of Ref. [48] estimates that quantum
simulating a single molecule related to fertilizer production
would require at least 108 logical qubits and 1014 T gates
with the Gaussian orbital approach. Executing these T gates
in a reasonable amount of time necessitates a number of
magic state distillation factories between 10 and 1000 times
the number of logical qubits (depending on error rate and
gate speed) [48]. Thus, because the number of physical
qubits required for error-correcting chemistry is determined
primarily by circuit size, our approach may require more
logical qubits but fewer physical qubits compared to
Gaussian orbital methods. Future numerical studies will
ultimately determine when our improved asymptotic scal-
ings confer a practical advantage for single-molecule
simulations within error correction.
In contrast to single-molecule simulation, the plane wave

dual basis is especially natural when treating periodic
systems (e.g., crystalline solids), allowing us to conven-
iently extend quantum simulation methods to condensed
phase systems of interacting electrons. In particular, the
basis is compact for uniform and near-uniform electron
gasses (realized in simple metals as well as electrons in
semiconductor wells), and there is well-developed infra-
structure (e.g., pseudopotentials) to enable compact repre-
sentations of atomistic materials [49,50]. Thus, these
methods are especially promising for extending the reach
of quantum simulations into the domain of materials. As an
example of a situation in which our methods would be
especially applicable in the near term, our paper concludes
with a proposal to simulate the uniform electron gas
(jellium) on a near-term device using planar circuits of
only linear depth.
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A. Overview of results

Section II discusses strategies for reducing the number
of terms in the second-quantized electronic structure
Hamiltonian. In Sec. II A, we show that the dual basis
diagonalizes the potential operators, leading to a
Hamiltonian with ΘðN2Þ terms and other desirable proper-
ties. In Sec. II B, we describe a generalization of the fast
Fourier transform to second-quantized systems of fermions.
We show that this can be implemented on a planar lattice of
qubits with linear depth and that it maps a quantum state
between the plane wave basis and the plane wave dual basis.
In Sec. III A, we use the fermionic fast Fourier transform

to show that single Trotter steps of the Hamiltonian can be
implemented using circuits of OðNÞ gate depth on a planar
lattice. We bound the number of Trotter steps required
within this representation at OðN5=2=ϵ1=2Þ, where ϵ is the
target precision. In Sec. III B, we show that the Taylor-
series method of time evolution has gate depth ÕðN8=3Þ

with logarithmic dependence on ϵ. In Sec. III C, we discuss
how the plane wave dual basis reduces the measurements
required when estimating the energy through Hamiltonian
averaging. We also bound the measurements required to
study materials in their thermodynamic limit.
Section IV proposes an experiment for simulating the

uniform electron gas (jellium) on a near-term quantum
device based on the techniques of Secs. II and III. We begin
by describing why jellium is an excellent test bed for these
methods, which is both scientifically important and difficult
to model classically. We then describe a quantum varia-
tional algorithm for jellium, which can be executed on a
planar lattice of qubits with OðNÞ circuit depth. We
conclude with an outlook on how to extend these simu-
lations to more general chemical problems and the potential
for jellium to serve as a setting for early demonstrations of
quantum supremacy over a problem of practical interest.
We provide various supporting technical results in the

appendixes. In Appendix A, we show how finite-difference

TABLE I. The lowest-circuit-depth algorithms for the quantum simulation of electronic structure.a Reduction in primitive depth is
typically the result of improved algorithms, whereas reduction in required repetitions is typically the result of tighter bounds. Bounds on
the primitive depth indicate the scaling of that particular implementation (which is why Θ is often used). As variational algorithms are
heuristic, the total depth is listed as a lower bound. Here, N is the number of orbitals, and η < N is the number of particles. Second-
quantized fermionic encodings including Jordan-Wigner (JW) [45] and Bravyi-Kitaev (BK) [46] haveOðNÞ spatial complexity, whereas
first-quantized encodings including configuration interaction (CI) [12] and real space [10] have Oðη logNÞ spatial complexity.
Variational quantum algorithms are abbreviated as UCC for unitary coupled cluster [14] and TASP for Trotterized adiabatic state
preparation [42]. Unlike other approaches, the Trotter and variational algorithms of this paper require no additional overhead when
restricting qubit connectivity to a planar lattice. Though asymptotically equivalent to at least second order in perturbation theory, as
discussed in Appendix E, one usually requires a constant factor more plane waves than Gaussians orbitals to achieve the same precision.

Year Reference Representation Algorithm Primitive depth Repetitions Total depth

2005 Aspuru-Guzik et al. [5] JW Gaussians Trotter O(polyðNÞ) O(polyðNÞ) O(polyðNÞ)
2008 Kassal et al. [10] Real space Trotter O(polyðNÞ) O(polyðNÞ) O(polyðNÞ)
2010 Whitfield et al. [16] JW Gaussians Trotter ΘðN5Þ O(polyðNÞ) O(polyðNÞ)
2012 Seeley et al. [24] BK Gaussians Trotter Θ̃ðN4Þ O(polyðNÞ) O(polyðNÞ)
2013 Perruzzo et al. [14] JW Gaussians UCC ΘðN5Þ Variational ΩðN5Þ
2013 Toloui et al. [12] CI Gaussians Trotter Θ̃ðη2N2Þ O(polyðNÞ) O(polyðNÞ)
2013 Wecker et al. [17] JW Gaussians Trotter ΘðN5Þ OðN5Þ OðN10Þ
2014 Hastings et al. [19] JW Gaussians Trotter ΘðN4Þ OðN4Þ OðN8Þ
2014 Poulin et al. [18] JW Gaussians Trotter ΘðN4Þ Oð∼N2Þ Oð∼N6Þ
2014 McClean et al. [22] BK Gaussians Trotter ÕðN2Þ OðN4Þ ÕðN6Þ
2014 Babbush et al. [21] JW Gaussians Trotter ΘðN4Þ Oð∼NÞ Oð∼N5Þ
2015 Babbush et al. [9] JW Gaussians Taylor Θ̃ðNÞ ÕðN4Þ ÕðN5Þ
2015 Babbush et al. [13] CI Gaussians Taylor Θ̃ðNÞ Õðη2N2Þ Õðη2N3Þ
2015 Wecker et al. [42] JW Gaussians TASP ΘðN4Þ Variational ΩðN4Þ
2016 McClean et al. [15] BK Gaussians UCC Θ̃ðη2N2Þ Variational Ω̃ðη2N2Þ
2016 Kivlichan et al. [11] Real space Taylor O(polyðNÞ) Õðη2Þ O(polyðNÞ)
2017 This paper JW plane waves Trotter ΘðNÞ Oðη1.83N0.67Þ Oðη1.83N1.67Þ
2017 This paper JW plane waves Taylor Θ̃ð1Þ ÕðN2.67Þ ÕðN2.67Þ
2017 This paper JW plane waves TASP ΘðNÞ Variational ΩðNÞ

aThroughout this paper, we use the computer science conventions that f ∈ ΘðgÞ for any functions f and g if f is asymptotically upper
and lower bounded by a multiple of g. Here, f ∈ oðgÞ implies that f=g → 0 in the asymptotic limit, O indicates an asymptotic upper
bound, and Ω indicates an asymptotic lower bound. A tilde on top of the bound notation, e.g., ÕðNÞ, indicates suppression of
polylogarithmic factors. In contrast to formally rigorous bounds, a tilde inside of a bound, e.g., Oð∼NÞ, indicates that the bound is
obtained empirically.
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discretization of theHamiltonian leads to a formwithΘðN2Þ
terms. InAppendixB,we review thewell-known formof the
Hamiltonian in the planewave basis, and in Appendix C, we
derive its representation in the plane wave dual basis.
Appendix D derives the plane wave dual Hamiltonian
mapped to qubits. In Appendix E, we discuss the discreti-
zation errors associated with Gaussian molecular orbitals
and plane wave orbitals and argue that both bases have the
same asymptotic error scaling. In Appendix F, we provide
bounds on components of the plane wave dual Hamiltonian
that are relevant to the results of Sec. III. In Appendix G, we
bound the Trotter error in the simulations of Sec. III A. In
Appendix H, we show a method for simulating the potential
operator on a planar lattice of qubits with gate depth of only
OðNÞ. In Appendix I, we prove results about the scaling of
the fermionic fast Fourier transform. In Appendix J, we
provide new circuits for evolving under a sum of commuting
Pauli strings and use that result to bound the cost of
Trotterizing Hamiltonians in the plane wave dual basis.
Finally, in Appendix K, we show an alternative implemen-
tation of the Taylor-series algorithm, which improves over
the simpler scheme explored in Sec. III B.

II. ELECTRONIC STRUCTURE HAMILTONIANS
WITH FEWER TERMS

Within the Born-Oppenheimer approximation, the prop-
erties of materials, molecules, and atoms emerge from the
behavior of electrons interacting in the external potential of
positively charged nuclei. In the nonrelativistic case, the
dynamics of these electrons are governed by the Coulomb
Hamiltonian,

H ¼ −
X
i

∇2
i

2|fflfflfflffl{zfflfflfflffl}
T

−
X
i;j

ζj
jRj − rij|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
U

þ
X
i<j

1

jri − rjj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
V

þ
X
i<j

ζiζj
jRi − Rjj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

constant

;

ð1Þ

where we have used atomic units, ri represent the positions
of electrons, Ri represent the positions of nuclei, and ζi are
the charges of nuclei. Here, T is referred to as the kinetic
term, U the (nuclear) potential term, and V the electron-
electron repulsion potential term. The electronic structure
problem is to estimate the properties of the eigenfunctions
(especially the lowest-energy eigenfunction) of the time-
independent Schroedinger equation defined by this
Hamiltonian.
To convert the differential equation into a practical

computational problem, one typically first chooses some
form of discretization. Moreover, the antisymmetry of
electrons must be enforced either in the solutions (first
quantization) [51] or in the operators (second quantization).
Most quantum computing research focuses on second
quantization, in which the Hamiltonian is formulated as

H ¼
X
p;q

hpqa
†
paq|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

TþU

þ 1

2

X
p;q;r;s

hpqrsa
†
pa

†
qaras|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V

; ð2Þ

wherea†p andap are fermionic raising and lowering operators
satisfying the anticommutation relation fa†p;aqg¼δpq, the
coefficients hpq and hpqrs are determined by the discretiza-
tion that has been chosen, and the sums now run over the
number of discretization elements for a single particle.
Specifically, if electron j is represented in a space of spin
orbitals fϕpðrjÞg, then a†p and ap are related to Slater
determinants through the equivalence

hr0;…; rη−1ja†p0
� � �a†pη−1 j∅i

¼
ffiffiffiffi
1

η!

s
������������

ϕp0
ðr0Þ ϕp1

ðr0Þ � � � ϕpη−1
ðr0Þ

ϕp0
ðr1Þ ϕp1

ðr1Þ � � � ϕpη−1
ðr1Þ

..

. ..
. . .

. ..
.

ϕp0
ðrη−1Þ ϕp1

ðrη−1Þ � � � ϕpη−1
ðrη−1Þ

������������
ð3Þ

whereη is the number of electrons in the systemand j∅i is the
vacuum. From inspection, one sees that the number of terms
in Eq. (2) may be as high asOðN4Þ, whereN is the size of the
discrete representation. This presents a major problem for
realizing quantum simulation algorithms on near-term quan-
tum devices, as most quantum algorithms have some explicit
dependence on the number of terms. For instance, the cost of
implementing a Trotter step requires a number of gates that
scales at least linearly in the number of terms. Likewise, the
number of measurements required for variational quantum
algorithms scales at least linearly in the number of terms.
The most commonly used discretization in classical

electronic structure is known as a Galerkin discretization.
The Galerkin discretization is derived from the weak
formulation of the Schroedinger equation in Hilbert space,
given by finding jϕi (spanned by the basis vectors fjϕpig)
such that hϕpjHjϕi ¼ Ehϕpjϕi for all p. This is contrasted
with the strong formulation (see Appendix A) that insists
the original differential equation hold at all points in space
r, as opposed to assessing error on the restricted subspace
spanned by fjϕpig. The Galerkin formulation leads to the
following coefficients, which define the second-quantized
Hamiltonian of Eq. (2):

hpq ¼
�
ϕp

����
�
−
∇2

2
þ U

�����ϕq

�

¼
Z

drϕ�
pðrÞ

�
−
∇2

2
þUðrÞ

�
ϕqðrÞ; ð4Þ

hpqrs ¼ hϕpjhϕqjVjϕrijϕsi

¼
Z

drdr0ϕ�
pðrÞϕ�

qðr0ÞVðr; r0Þϕrðr0ÞϕsðrÞ; ð5Þ
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where UðrÞ is the external potential Coulomb interaction,
Vðr; r0Þ is the two-electron Coulomb interaction, and
ϕpðrÞ ¼ hrjϕpi are the single-particle orbitals that define
the basis. An important feature of Galerkin discretizations
(again, in contrast to, e.g., finite-difference discretizations)
is that basis set error is variational, meaning that energies
from exact diagonalization monotonically approach the
continuum basis set limit from above.
The basis functions ϕpðrÞ are chosen in a number of

ways. Perhaps the most common choice for treating
molecular systems is atom-centered Gaussian basis func-
tions, conventionally termed an atomic orbital basis.
These functions resemble the mean-field orbitals of
single atoms and provide a computationally convenient
formulation for the evaluation of the above integrals.
Parameters of the Gaussians are optimized so that modest
numbers of such basis functions can compactly represent
the low-energy eigenstates of atomic and molecular
Hamiltonians with qualitative accuracy. However,
a drawback of these functions is that the associated
Hamiltonians contain OðN4Þ terms for modest size
systems, even though their Gaussian form leads to
OðN2Þ terms in an asymptotic limit [22]. Moreover, to
prepare a compact initial state for a molecular simulation,
it is common to rotate from the atomic orbital basis to the
molecular orbital basis, which minimizes the mean-field
molecular energy. This basis is even more delocalized
than the atomic orbital basis and contains even more
terms at all system sizes.
Gaussian bases were introduced more than half a

century ago to reduce the cost of evaluating the integrals
in Eqs. (4) and (5) for the mean-field quantum chemistry
calculations of interest at the time [52]. However, with
advances in classical computing power, the evaluation of
such integrals for systems with up to several hundred
atoms is no longer a major bottleneck. Further, the
requirements of a basis for efficient quantum algorithms
are quite different than for classical algorithms. In a
quantum algorithm, we primarily desire the computational
basis (i) to lead to a small number of terms in the
Hamiltonian, so as to minimize the circuit size and depth
of basic algorithms such as time evolution, or the number
of measurements in variational quantum algorithms, and
(ii) to allow for a simple preparation of a relevant initial
quantum state. To some extent, these are conflicting
requirements, as (i) can be obtained by locality of the
basis in real space, while (ii) implies locality of states in
energy space, or delocalization in real space. For example,
the traditional Gaussian basis satisfies (ii) but not (i) in
medium-sized molecules. We should note that while the
number of basis functions, corresponding to the number of
logical qubits, is also an important quantum resource, in
many cost models the circuit size is dominant. For
example, in a fault-tolerant architecture, the number of

physical qubits required is largely a function of the
number of non-Clifford gates in the original algorithm
and does not strongly depend on the number of logical
qubits. Further, while existing quantum hardware is
limited to a small number of qubits, the expectation is
that manufacturing more qubits will be easier in the near
future than significantly increasing coherence time.
This suggests that even in a non-fault-tolerant context,
gate depth is a more important resource than number of
qubits.
To see how one might reduce the OðN4Þ number of

terms in the Hamiltonian by a change of basis, we consider
a set of spatially disjoint functions fϕpðrÞg, which are
defined such that the intersection of the supports of ϕpðrÞ
and ϕqðrÞ is the empty set for all p ≠ q. The consequence
of this is that the product ϕpðrÞϕqðrÞ ¼ 0 for all r and all
p ≠ q. Taking this definition with Eq. (5), it is clear that
hpqrs ¼ 0 unless p ¼ s and r ¼ q; thus, there are at most
OðN2Þ elements defining the Hamiltonian. To define a
meaningful kinetic-energy operator, one would match
derivatives at the boundaries of the functions (e.g., as
in finite element methods) or, alternatively, allow for
overlapping basis functions. In either case, one achieves
a much more desirable scaling of OðN2Þ terms in the
Hamiltonian for all system sizes. Another possibility is to
use a non-Galerkin grid-based representation, as embod-
ied in finite-difference methods. In Appendix A, we
provide explicit forms for the second-quantized molecular
electronic structure Hamiltonian in such a discretization
with OðN2Þ terms. However, in this work, we focus
on a different route to reducing the number of terms in
the Hamiltonian. In particular, we use a pair of basis
sets in which the different components in the
Hamiltonian (kinetic and potential) become separately
diagonal. In these diagonal forms, the Hamiltonian has at
most OðN2Þ terms. This property is offered by the plane
wave basis and its dual representation, which we now
discuss.

A. Plane wave dual basis

Like Gaussian orbitals, plane waves have also enjoyed a
long history of use in classical approaches to electronic
structure, particularly in the simulation of materials.
While plane waves have never been studied as a basis
for quantum computation of electronic structure, they have
many desirable properties as a basis; for instance, their
periodicity makes them convenient for crystalline solids.
The plane wave basis is defined subject to periodic
boundary conditions in a computational cell of volume
Ω, and the integrals in Eqs. (4) and (5) are defined using
the Coulomb potential obtained from solving Poisson’s
equation subject to periodic boundary conditions (see
Appendix B for review),
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Vðr; r0Þ ¼ 4π

Ω

X
ν

cos ½kν · ðr − r0Þ�
k2ν

;

UðrÞ ¼ −
4π

Ω

X
j;ν

ζj
cos ½kν · ðr − RjÞ�

k2ν
; ð6Þ

where Rj are nuclei coordinates, ζj are nuclei charges, and
kν is a vector of the plane wave frequencies at the νth
harmonic of the computational cell in three dimensions,
excluding the zero mode. We assume a cubic cell for
simplicity. The zero mode gives a divergent term, but for all
charge-neutral systems, the divergence from the electron-
electron interaction cancels with the divergence from the
external potential and contributes only a constant term that
depends on the unit cell shape (for a derivation of this term,
see Appendix F in Ref. [53]).
Using a plane wave basis enforces a periodic charge

distribution, which is natural for crystalline solids. As
discussed in Appendix E, one can also represent finite
systems such as molecules using plane waves by choosing
the cell volume Ω to be sufficiently large so that the
periodic images do not interact [53] or by using a truncated
Coulomb operator, which completely eliminates periodic
images [54]. As plane waves have no knowledge of nuclei
positions, one requires more plane waves than Gaussian
orbitals in order to obtain the same level of basis set
accuracy, and this factor is larger when the simulation cell
contains much empty space (e.g., when simulating an
isolated molecule) as compared to a material. However,
as is the case in classical electronic structure simulations,
pseudopotentials, which smooth out the nuclear potentials
around the atoms, can be used to reduce the size of the
plane wave basis needed in a simulation. With standard
pseudopotentials, the ratio of the number of plane waves
needed to the number of Gaussian orbitals needed for the
same chemical accuracy is roughly a factor of 10 for first-
and second-row elemental materials such as diamond and
silicon [49,50]. More importantly, within a pseudopotential
formulation, the asymptotic rate of convergence in both
basis sets is dominated by the resolution of the electron-
electron cusp, giving a basis set discretization error that
scales as Oð1=NÞ in both cases [55,56]. Thus, the asymp-
totic scaling of algorithms for simulating electronic struc-
ture (including the single-molecule case) can be compared
directly whether N represents Gaussian orbitals or plane
wave orbitals. We describe this analysis in more detail in
Appendix E. Note that pseudopotentials are unnecessary to
treat jellium (the focus of Sec. IV), where the plane wave
basis is especially natural.
Within the plane wave basis, we can see immediately that

the two-body Coulomb operator has only OðN3Þ terms
instead of OðN4Þ terms. This reduction in the number of
terms arises because of momentum conservation, which
constrains the allowable transitions between plane waves as
they are eigenstates of the momentum operator. As we

review in Appendix B, the complete Hamiltonian in the
plane wave basis takes the well-known form

H ¼ 1

2

X
p;σ

k2pc
†
p;σcp;σ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

T

−
4π

Ω

X
p≠q
j;σ

�
ζj
eikq−p·Rj

k2p−q

�
c†p;σcq;σ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

þ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

c†p;σc
†
q;σ0cqþν;σ0cp−ν;σ

k2ν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

; ð7Þ

where σ ∈ f↑;↓g is the spin degree of freedom and we
have truncated the operators to the support of plane waves
with frequencies kν ¼ 2πν=Ω1=3 such that ν is a three-
dimensional vector of integers with elements in
½−N1=3; N1=3�. In the above summation notation, addition
of momenta is carried out modulo the maximum momen-
tum. Aliasing the momenta in this way is equivalent to
evaluating the integrals in Eqs. (4) and (5) by sampling at N
evenly spaced grid points, a common practice in electronic
structure codes sometimes called dualling [57,58]. Dualling
causes the plane wave Hamiltonian matrix elements to
deviate from a Galerkin discretization, but this discrepancy
is similar to basis error and vanishes as the number of plane
waves increases. Importantly, the dualling form of the plane
wave matrix elements is essential to give the desirable
properties of the matrix elements in the dual basis we now
discuss.
The Fourier transform of the complete plane wave basis

(i.e., in the limit of infinite volume Ω and infinite
momentum cutoff) is a basis of delta functions (a grid).
But by applying the discrete Fourier transformation to a
basis of N plane waves, one obtains a new set of basis
functions resembling a smooth approximation to a grid
with lattice sites at the locations rp ¼ pðΩ=NÞ1=3. We call
these functions the “plane wave dual basis.” In electronic
structure, the plane wave dual basis has previously been
considered in the context of reduced-scaling density func-
tional calculations [59,60]. As a basis set where each
function is associated with a real space coordinate value,
the plane wave dual basis can also be viewed as a discrete
variable representation (DVR) [44]. In particular, it is a
relative of the sinc DVR basis widely used in quantum
dynamics simulations [44,61–64]; although unlike the
standard sinc basis where the kinetic-energy operator is
approximate when using a finite basis, here the kinetic-
energy operator is always treated exactly. However, the
primary novelty about the plane wave dual basis in this
work is its use in quantum computation and the specific
properties of the basis that we exploit to enable especially
efficient quantum algorithms. We derive the closed-form
expressions for the plane wave dual basis functions and
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associated operators in Appendix C, and further elucidate
connections to DVR there.
While the plane wave dual basis functions are not strictly

localized in space, they nevertheless diagonalize the poten-
tial operators of Eq. (7) within the dualling approximation,
analogous to the conversion between the plane wave and
real space forms of the potential operators via a continuous
Fourier transform in a complete plane wave basis. As we
derive in Appendix C, by applying this Fourier transform,
the Hamiltonian in the dual basis becomes

H ¼ 1

2N

X
ν;p;q;σ

k2ν cos ½kν · rq−p�a†p;σaq;σ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T

− 4π

Ω

X
p;σ
j;ν≠0

ζj cos ½kν · ðRj − rpÞ�
k2ν

np;σ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

þ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos ½kν · rp−q�
k2ν

np;σnq;σ0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V

; ð8Þ

where np ¼ a†pap is the number operator. As one-body
operators, T and U never have more than OðN2Þ terms.
We can also see that the two-body potential operator V is
diagonal with only ΘðN2Þ terms. Because of the unitarity
of the discrete Fourier transform, the operators in Eqs. (7)
and (8) are exactly isospectral; there is no loss of
accuracy associated with using one representation instead
of the other. Thus, the plane wave dual basis offers all
advantages of the plane wave basis with ΘðN2Þ terms. As
we show in Appendix D, the plane wave dual basis
Hamiltonian can be mapped to qubits under the Jordan-
Wigner transformation as

H¼
X
p;σ
ν≠0

�
π

Ωk2ν
−
k2ν
4N

þ2π

Ω

X
j

ζj
cos½kν · ðRj− rpÞ�

k2ν

�
Zp;σ

þ π

2Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos½kν · rp−q�
k2ν

Zp;σZq;σ0

þ 1

4N

X
p≠q
ν;σ

k2ν cos½kν · rq−p�ðXp;σZpþ1;σ � � �Zq−1;σXq;σ

þYp;σZpþ1;σ � � �Zq−1;σYq;σÞþ
X
ν≠0

�
k2ν
2
−
πN
Ωk2ν

�
I; ð9Þ

where Xp, Yp, and Zp are Pauli operators acting on
qubit p.

B. Fermionic fast Fourier transform

A useful feature of the Hamiltonian representation intro-
duced in Sec. II A is that one can rotate the system from the
plane wave dual basis (where the potential operator is
diagonal) to the planewave basis (where the kinetic operator
is diagonal) using an efficient quantum circuit that is related
to the fast Fourier transform. This operation allows one
to efficiently prepare the initial state for classes of interesting
physical systems whose ground state is well approximated
by a mean-field state of delocalized electron orbitals
(Sec. IV), as well as to improve the efficiency of quantum
measurements (Sec. III C). The usual quantum Fourier
transform would be appropriate to diagonalize the
kinetic-energy operator for a binary encoding of the state
in real space, as used inRefs. [2,10,11,65–70]. However, our
second-quantized encoding of the state necessitates a special
version of the fast Fourier transform,whichwe refer to as the
“fermionic fast Fourier transform” (FFFT). Note that the
word “quantum” does not appear in this name because our
implementation of the FFFT does not offer any quantum
advantage over its classical analog.
The fast Fourier transformation was first applied to

fermionic systems for quantum computing purposes in
Ref. [71] and improved in the context of tensor network
simulations in Ref. [72]. While Ref. [72] showed that the
FFFT could be realized with OðlogNÞ depth using arbi-
trary two-qubit gates, in Appendix I, we extend the method
of Ref. [71] to show that the FFFT can be implemented for
three spatial dimensions using a planar lattice of qubits with
OðNÞ depth. While past work has focused entirely on
describing the FFFT under the Jordan-Wigner transforma-
tion [71,72], we generalize the approach to arbitrary
mappings including Bravyi-Kitaev [24,25,46] and other
modern approaches [26–28].
The essential function of the FFFT is to perform the

following single-particle rotation:

c†ν ¼ FFFT†a†νFFFT ¼
ffiffiffiffi
1

N

r X
p

a†pe−ikν·rp ;

cν ¼ FFFT†aνFFFT ¼
ffiffiffiffi
1

N

r X
p

apeikν·rp : ð10Þ

As a clarifying example, the two-dimensional FFFT that
acts on spin orbitals p and q (which are not necessarily
adjacent in lexicographical ordering) is

F†
0 ¼ e−iðπ=4Þa

†
qaqeiðπ=4Þa

†
papeiðπ=4Þfswape−iðπ=2Þa

†
qaq ; ð11Þ

where fswap generates the “fermionic swap operator,”
which has been proposed for use in quantum computer
simulations in Ref. [42]. We define fswap in a mapping-
independent way (i.e., not specific to Jordan-Wigner) as
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fswap ¼ ð1þ a†paq þ a†qap − a†pap − a†qaqÞ: ð12Þ

This operator is referred to as a fermionic swap because it
has the property that it swaps the spin orbitals p and q (up
to a global phase) while maintaining proper antisymmet-
rization. For example, fswapa

†
pfswap ¼ a†q and vice versa.

Using these definitions, it can be shown (see Appendix I)
that

F†
0a

†
pF0 ¼

a†q þ a†pffiffiffi
2

p ; F†
0a

†
qF0 ¼

a†q − a†pffiffiffi
2

p : ð13Þ

This reveals that F0 acts as a Hadamard transform, or two-
dimensional Fourier transform, on the creation operators
that define the two-dimensional subspace. Then, by com-
bining these operations together with phase shifts, one can
follow the same reasoning used in the Cooley-Tukey fast
Fourier transform algorithm [73] to construct the FFFT out
of these operations and phase shifts. We present this
argument formally in Appendix I. We also show that the
entire FFFT in three dimensions can be implemented on a
planar lattice of qubits with gate depth of OðNÞ.
Just as the quantum Fourier transform diagonalizes the

kinetic operator in real space simulations, it is shown in
Appendix B and Appendix C that

T ¼ 1

2N

X
ν;p;q;σ

k2ν cos ½kν · rq−p�a†p;σaq;σ

¼ FFFT†
�
1

2

X
ν;σ

k2νa
†
ν;σaν;σ

�
FFFT: ð14Þ

Thus, an alternative expression for the molecular electronic
structure Hamiltonian in the plane wave dual basis is

H ¼ FFFT†
�X

ν;σ

k2ν
2
a†ν;σaν;σ

�
FFFT

−
4π

Ω

X
j;p;σ
ν≠0

ζj
cos ½kν · ðRj − rpÞ�

k2ν
np;σ

þ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos ½kν · ðrp − rqÞ�
k2ν

np;σnq;σ0 : ð15Þ

We choose to write the kinetic operator using the FFFT
relation to emphasize that the Hamiltonian has the special
property that all components of it are diagonal in either the
planewave or planewave dual representations. In addition to
the advantages of having only ΘðN2Þ terms, in the sub-
sequent sections we will make frequent use of this diagonal
property. In some circumstances, we will also perform
simulation in the plane wave dual basis after preparing an
initial state that is a product state in the planewave basis; this
can be accomplished by applying the FFFT to a product

state. Finally, we note that while prior work has leveraged
the diagonality of momentum and potential operators in real
space, our use of second quantization allows us to use
dramatically fewer qubits and also avoids the challenge of
antisymmetrizing the initial state, which complicates first-
quantized methods [11,74,75].

III. IMPROVED ALGORITHMS
FOR QUANTUM COMPUTATION

We now analyze the cost of applying several types of
quantum simulation algorithms to the Hamiltonians intro-
duced in Sec. II. In Secs. III A and III B, we focus on
Trotter-Suzuki and Taylor-series algorithms for time evo-
lution, which can be used to prepare electronic structure
ground states when used in conjunction with the phase
estimation algorithm [4,5]. Specifically, the phase estima-
tion algorithm will project a simulation register into
eigenstate jji with probability jhjjψ0ij2, where jψ0i is
the “reference state” from which the phase estimation
procedure begins. The phase estimation procedure involves
taking a short-time dynamical simulation e−iHδ such that
the error in the eigenvalues of the effective Hamiltonian for
the simulated unitary is at most OðϵÞ. If the cost of this
short dynamical simulation is FðϵÞ, then the cost of phase
estimation is in OðFðϵÞ=ϵÞ. Thus, minimizing the costs of
dynamical simulation is vitally important for phase
estimation.
Typically, one is interested in projecting to the ground

state, and jψ0i is chosen to be theHartree-Fock state, defined
as the lowest-energy single Slater determinant approxima-
tion to the ground state [76]. TheHartree-Fock algorithm is a
classical self-consistent mean-field procedure for finding
this state in terms of a series of single-particle rotations. To
prepare the Hartree-Fock state from any product state, one
can evolve under the anti-Hermitian operator

P
pqθpqa

†
paq

for some amplitudes θpq ¼ −θ�qp determined by theHartree-
Fock procedure. An efficient quantum algorithm for per-
forming this evolutionwith linear gate depth on a linear array
of qubits is provided in Ref. [77]. Accordingly, the gate
complexity of state preparation is less than the cost of the
algorithms described in Secs. III A and III B. For systems of
delocalized electrons, such as jellium (the focus of Sec. IV),
state preparation can be efficiently accomplished with
logðNÞ gate depth for arbitrary two-qubit gates, or with
linear gate depth using a planar architecture, using the FFFT
of Sec. II B.
Before beginning our analysis, we make a few comments

about how the results of this paper should be compared to
prior work. Most prior quantum algorithms for electronic
structure have focused on the simulation of finite systems
consisting of a small number of atoms [5]. As discussed in
Sec. II and Appendix E, one can also use the plane wave
dual basis for such simulations by choosing the unit cell
volume Ω to be large, or by truncating the Coulomb
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operator, which exactly eliminates the periodic images.
However, we expect that the plane wave dual basis will be
most useful for simulating systems with periodicity in at
least one of the spatial dimensions, such as crystalline
wires, surfaces, and solids, similar to the main current uses
of plane wave bases in the classical electronic structure. In
either case, one is interested in the cost of simulation when
the number of basis functions N grows towards the
continuum limit. We do not expect the total energy to be
extensive in N.
One should also bound the cost of simulation as the

number of particles η grows. While it is reasonable to
wonder how the cost of simulation grows with molecule
size, molecules do not necessarily grow in a systematic
fashion. For instance, molecules can have larger η by
replacing lighter atoms with heavier ones or by adding
atoms to a molecule. When using plane waves to treat
materials, one is usually interested in the properties of an
infinite material that is periodic over some computational
cell (a collection of unit cells) of volume Ω. As with
molecules, one is sometimes interested in how the com-
plexity of a method scales as one fixes the computational
cell size and increases the number of particles (e.g., by
replacing lighter atoms with heavier ones).
But unlike when simulating molecules, the notion of

scaling towards the thermodynamic limit is well defined in
the context of periodic materials. The thermodynamic limit
is approached as one grows η by increasing the number of
unit cells in the computational cell while keeping a fixed
averaged density ρ ¼ η=Ω. Accordingly, for both mole-
cules and materials, we report the asymptotic scaling of
algorithms in terms η, N, and ρ, but we are most interested
in the fixed density scalings corresponding to molecules
growing by addition of atoms and materials growing
towards the thermodynamic limit. In Sec. III C, we report
the number of measurements required in terms of both a
fixed absolute error ϵ and a fixed relative error μ ¼ ϵη, as
one is interested in fixed relative error while scaling
towards the thermodynamic limit but in fixed absolute
error otherwise. This is because physical total energies are
extensive in η.

A. Cost of time evolution using
Trotter-Suzuki methods

Trotterization is perhaps the simplest method for simu-
lating electron dynamics in the plane wave dual basis.
Trotterization solves the problem of compiling e−iHt into
fundamental gates bynoting that ifH ¼PL

l Hl, where each
e−iHlt can be easily compiled into fundamental gates, then
e−iHt can be simulated by a time-dependent Hamiltonian
that rapidly switches each term on and then off. If the
frequency of these switches is sufficiently high, then, from
the perspective of the quantum system, the entire
Hamiltonian is active throughout the evolution; e.g., for
large r,

e−iHt ¼
	�YL

l¼1

e−iHlt=2r

��Y1
l¼L

e−iHlt=2r

�
r
þOðt3=r2Þ:

ð16Þ

Here, we have employed the second-order Trotter formula,
which is often more practical for chemistry simulations than
higher-order decompositions [18].
The value of r that is needed for this expansion depends

subtly on the terms in the Hamiltonian. If the Hamiltonian
terms commute, then the error in the simulation is zero.
Thus, the error does not depend on the norms of the
Hamiltonian terms, but rather it depends on their commu-
tators. Specifically, it was shown in Ref. [18] that

����max
ψ

hψ j
	�YL

l¼1

e−iHlt=2r

��Y1
l¼L

e−iHlt=2r

�

r
− e−iHtjψi

����
∈ O

�
max
ψ

X
β;α≤β;
γ<β

jhψ j½Hα; ½Hβ; Hγ��jψij
t3

r2

�
; ð17Þ

where jψi is a state restricted to the η-electron manifold.
Thus, once a particular ordering of the terms is chosen, then
an upper bound on the scaling of r can be found based on
the commutator norms of the terms.
The conventional approach to second-quantized simu-

lation would be to Trotterize the Hamiltonian of Eq. (9).
This approach is outlined in detail along with improved
methods for simulating evolution under the kinetic terms in
the Hamiltonian in Appendix J. However, the approach we
analyze here is to simulate evolution by switching between
the plane wave dual basis and the plane wave basis to
diagonalize the potential and kinetic operators. Using
H ¼ T þ U þ V, we write

e−iHt¼e−iðUþVÞt=2FFFT†e−iðt=2Þ
P

ν;σ
k2νa

†
ν;σaν;σFFFTe−iðUþVÞt=2

þOðt3Þ: ð18Þ

Representing the kinetic terms as diagonal operators has
two effects. First, it reduces the number of commutators in
Eq. (17), which leads to better bounds on the error.
The second advantage is that the kinetic operator only
containsOðNÞ local terms that all commute. This allows us
to simulate the kinetic operator in depth Oð1Þ after
performing this basis transformation on a quantum com-
puter that has arbitrary single-qubit rotations as a funda-
mental gate.
To understand the cost of this approach, note that

each of the r steps in the Trotter algorithm is comprised
of, from Eq. (18), two simulations of the potential
energy Hamiltonian, the FFFT and its inverse, and a
simulation of the kinetic operator in the plane wave
basis. The operator U þ V is the sum of ΘðN2Þ number
operators. Each number operator can be simulated using
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Oð1Þ CNOT gates and single-qubit rotations [16]. It
follows that e−iðUþVÞt can be simulated using OðN2Þ
gates and in depth OðNÞ if the quantum computer has
all-to-all connectivity between qubits, without the use of
ancillae. We show in Appendix H that it can also be
simulated in a planar nearest-neighbor architecture in

depth OðNÞ without ancillae. Similarly, e−i
1
2

P
ν;σ
k2νa

†
ν;σaν;σ t

requires OðNÞ gates to implement. The number of gates
required to perform the FFFT scales as OðN logNÞ
[71,72], with OðNÞ depth for the three-dimensional
transform implemented for qubits connected on a planar
lattice, which is proven rigorously in Appendix I.
Consequently, costs are asymptotically dominated by
simulation of the potential. Thus, the Trotter simulation
can be performed using a circuit of depth OðNrÞ on a
planar lattice.
In Appendix G, we show that to simulate for time t and

achieve error ϵ, it suffices to choose r such that

r ∈ Θ

0
B@η2N5=6t3=2

Ω5=6 ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηΩ1=3

N1=3

s 1
CA; ð19Þ

implying that the gate depth of our approach to Trotter-
Suzuki-based simulations is

OðNrÞ ⊆ O

0
B@η2N11=6t3=2

Ω5=6 ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηΩ1=3

N1=3

s 1
CA: ð20Þ

There are a number of ways that we can understand this
scaling depending on how the problem size grows. If we
assume we grow our simulation size without changing the
system density [i.e., ρ ¼ η=Ω ∈ Oð1Þ], then the gate depth
is in OðN5=3η11=6t3=2=ϵ1=2Þ. If we only are interested in the
scaling with N, then we can take η ∈ OðNÞ to find that the
gate depth is in OðN7=2Þ. This is more than quadratically
better than the best-known rigorous bounds on the circuit
depth for Trotter-based chemistry simulations,OðN8Þ [42].
However, just as the bounds for r in Ref. [42] proved to be
polynomially loose [18,21], we expect the empirical
performance of our approach to be better than Eq. (20)
suggests.
Despite the obvious differences in scaling, a full

comparison between prior Trotter-Suzuki work in differ-
ent bases and this result remains challenging. This is
because comparing costs for any specific system will
depend on the precise N needed in the given basis, which
will be problem specific. Nonetheless, the quadratic
difference between the two complexities strongly suggests
that for fault-tolerant applications, our simulation
method will be competitive because most of the physical
qubits required for the simulation arise from executing

single-qubit rotations fault tolerantly [48,78]. As a final
note, while we use an exact evaluation of the potential
here, it is possible to leverage the local nature of the plane
wave dual basis in order to approximate the potential on
the fly using the Barnes-Hut algorithm or other fast
multipole methods, which require ÕðNÞ gates. Thus, it
is possible, in principle, to achieve a gate complexity that
matches the cited circuit depths to within logarithmic
equivalence. However, a naive application of the fast
multipole method would require that the quantum com-
puter coherently apply the algorithm for each configura-
tion in the superposition and is likely to be impractical in
near-term quantum computers.

B. Bounding cost of time evolution using
Taylor-series methods

With the exception of Refs. [9,11,13,75,79], all prior
papers that analyze the time evolution of electronic
structure Hamiltonians use the Trotter-Suzuki decomposi-
tion. Even the most elaborate Trotter schemes scale
subpolynomially but not polylogarithmically with respect
to the reciprocal of the simulation error, 1=ϵ, [80,81].
In Refs. [82,83], Berry et al. combined the results of
Refs. [80,84,85] to show a technique for performing time
evolution of arbitrary Hamiltonians with sublogarithmic
dependence on the inverse precision. Since then, several
papers have introduced other “post-Trotter” methods with
improved dependence on ϵ [86,87]. The “Taylor-series”
techniques of Ref. [82] were first applied to chemistry in
Refs. [9,13]. The result of Ref. [9] is an algorithm with gate
complexity of ÕðN5Þ, and the result of Ref. [13] is a more
complicated algorithm that exploits the sparseness of the
configuration interaction representation of the Hamiltonian
in order to perform simulation with gate complexity
Õðη2N3Þ, where η is the number of electrons.
Using the Taylor-series method in the plane wave dual

representation, we are able to outperform both of these
bounds. In this section, we show that one can perform time
evolution of the Hamiltonian with gate complexity of
ÕðN4Þ using an approach that is much simpler than the
aforementioned Taylor-series-based algorithms. This
scheme is similar to the “database algorithm” protocol
of Ref. [9], which scaled at least as ÕðN6Þ in that work. In
Appendix K, we build on the results of this section to show
a more complicated algorithm, inspired by the “on-the-fly”
algorithms from Refs. [9,13], which in the plane wave dual
basis has gate complexity of ÕðN11=3Þ and gate depth of
ÕðN8=3Þ, making this the most efficient algorithm
for time evolution of an electronic structure system in
the literature.
We will not go into detail about how the Taylor-series

method works and instead refer readers to Ref. [83]. We
describe what is required to implement the techniques and
bound the cost of our approach. The Taylor-series method
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begins with the observation that any local Hamiltonian,
e.g., Eq. (9), can be expressed as

H ¼
XL−1
l¼0

WlHl; s:t: Wl ∈ R; H2
l ¼ I; ð21Þ

whereWl are real scalars and Hl are self-inverse operators
that act on qubits; e.g., the Hl are the strings of Pauli
operators in Eq. (9). The Taylor-series simulation technique
is described in Ref. [83] in terms of queries to two oracle
circuits. The first oracle circuit acts on an empty ancilla
register of OðlogLÞ qubits and prepares a particular
superposition state related to Eq. (21),

PREPAREðWÞj0i⊗logL ↦

ffiffiffiffi
1

Λ

r XL−1
γ¼0

ffiffiffiffiffiffiffi
Wl

p
jli;

Λ ¼
XL−1
l¼0

jWlj; ð22Þ

where Λ is a normalization parameter that has significant
ramifications for the overall algorithm complexity.
The second oracle circuit we require acts on the ancilla
register jli as well as the system register jψi and directly
applies one of the Hl to the system, controlled on the
ancilla register. For this reason, we refer to the ancilla
register jli as the “selection register” and name the oracle
accordingly,

SELECTðHÞjlijψi ¼ jliHljψi: ð23Þ

Note that the self-inverse nature of theHl operators implies
that they are both Hermitian and unitary, which means they
can be applied directly to a quantum state.
Suppose that the circuit PREPAREðWÞ can be applied at

gate complexity P and the circuit SELECTðHÞ can be
applied at gate complexity S. Then, the main result of
Ref. [83] is that one can straightforwardly perform a
quantum simulation under H for time t to unitary operator
precision ϵ at gate complexity

Õ(ðSþ PÞΛt); ð24Þ
with spatial overheads and precision costs polylogarithmi-
cally bounded in ϵ. Since the bound on the Hamiltonian
norm from Appendix F is obtained using the triangle
inequality, it also asymptotically bounds Λ at
OðN7=3=Ω1=3 þ N5=3=Ω2=3Þ. We now describe how these
two oracles can be implemented so that ðSþ PÞ ∈ ÕðN2Þ.
First, we discuss implementation of SELECTðHÞ. From

Eq. (9), it is clear that there are L ¼ ΘðN2Þ terms that can
be indexed by only two indices, p and q. For the purposes
of this section, we further suppose that p indexes both spin
and position so that even values of p correspond to spin-up
orbitals and odd values of p correspond to spin-down
orbitals. We ignore the identity term and index the local Zp

terms whenever p ¼ q. For p ≠ q, there are three terms in
Eq. (9), which we refer to as the ZZ term, the XZX term,
and the YZY term. An ancilla qubit b is introduced, and if
b ¼ 0, then the pair ðp; qÞ refers to the ZZ term, whereas if
b ¼ 1, the pair ðp; qÞ refers to the XZX and YZY terms. If
p > q, we refer to the XZX terms, whereas if q > p, we
refer to the YZY term. Accordingly, our SELECTðHÞ circuit
should have the following actions,

SELECTðHÞjpijqijbijψi ↦

8>>>>>>>><
>>>>>>>>:

jpijqijbiZpjψi p ¼ q

jpijqijbiZpZqjψi ðb ¼ 0Þ ∧ ðp ≠ qÞ
jpijqijbiðXqZqþ1 � � �Zp−1XpÞjψi ðb ¼ 1Þ ∧ ðp > qÞ ∧ ðpþ q mod 2 ¼ 0Þ
jpijqijbiðYpZpþ1 � � �Zq−1YqÞjψi ðb ¼ 1Þ ∧ ðq > pÞ ∧ ðpþ q mod 2 ¼ 0Þ
jpijqijbijψi ðb ¼ 1Þ ∧ ðpþ q mod 2 ¼ 1Þ:

ð25Þ

Note that the condition involving ðpþ qÞ mod 2 is neces-
sary when the model contains a spin degree of freedom in
order to conserve spin. This efficient encoding requires
only 2 logN ancillae for the selection register. The logic to
select a term, shown in Eq. (25), involves only the
operations >, ∧, and ¼, which can all execute with
Õð1Þ gates. Since the actual Hl contain up to N Pauli
operators, we see that SELECTðHÞ can be circuitized
with gate complexity S ∈ ÕðNÞ. For a specific implemen-
tation of how even more complex Pauli strings can be

implemented from a selection oracle with this same gate
complexity, see Sec. III of Ref. [9].
Using the notation established in Eq. (25), the prepara-

tion oracle should have the following actions:

PREPAREðWÞjpijqijbi ↦
ffiffiffiffi
1

Λ

r X
p;q;b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Wp;q;b

p jpijqijbi;

Λ ¼
X
p;q;b

jWp;q;bj; ð26Þ
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where

Wp;q;b ¼

8>>>>>>>>><
>>>>>>>>>:

P
ν≠0

�
π

2Ωk2ν
− k2ν

8N þ π
Ω
P
j
ζj

cos ½kν·ðRj−rpÞ�
k2ν

�
p ¼ q

π
4Ω
P
ν≠0

cos ½kν·rp−q�
k2ν

b ¼ 0 ∧ ðp ≠ qÞ
1
4N

P
ν
k2ν cos ½kν · rq−p� b ¼ 1 ∧ ðpþ qÞ mod 2 ¼ 0

1 b ¼ 1 ∧ ðpþ qÞ mod 2 ¼ 1:

ð27Þ

We have added a factor of 1=2 to the Z and ZZ coefficients
of Eq. (9) as those terms will execute twice; when p ¼ q,
this happens due to the b degree of freedom, and when
b ¼ 0, this happens because both p > q and p < q will
occur. To implement PREPAREðWÞ, one can use an ap-
proach that mirrors the database algorithm introduced in
Ref. [9]. The idea is based on results from Ref. [88], which
show that an arbitrary quantum state on m qubits can be
prepared using a circuit with no more than Oð2mÞ CNOT
gates. Since PREPAREðWÞ initializes a state on OðlogLÞ
qubits where L ¼ ΘðN2Þ, the techniques of Ref. [88]
would allow one to implement PREPAREðWÞ at gate
complexity P ∈ 2OðlogLÞ ∈ OðN2Þ.
We have thus shown a constructive approach to Taylor-

series simulation of Eq. (9) with total gate complexity

ÕððSþ PÞΛtÞ ∈ ÕðN2ΛtÞ ∈ Õ
�
N11=3t

Ω2=3 þ N13=3t

Ω1=3

�
: ð28Þ

If we fix the system phase at ρ ¼ η=Ω ∈ Oð1Þ and assume
that η ∈ ΘðNÞ, then we see that the algorithm scales
asymptotically as ÕðN4tÞ. Though less efficient than the
method of Sec. III A by a factor of

ffiffiffiffi
N

p
, this algorithm has

logarithmic dependence on ϵ, which is a superpolynomial
advantage in ϵ over all Trotter schemes and an exponential
advantage in ϵ over the method of Sec. III A. In
Appendix K, we extend these ideas to show a more
involved implementation of PREPAREðWÞ, which results
in overall gate complexity ÕðN11=3Þ and gate depth of
ÕðN8=3Þ. The concept of that approach is to compute the
coefficients on the fly similar to the on-the-fly algorithm
in Ref. [9].
There are several ways in which these results could be

improved. First, our bound on Λ for the database algorithm
is likely loose and should be studied numerically in order to
estimate practical scaling. Second, following the construc-
tion detailed in Ref. [13], one could simulate the plane
wave dual Hamiltonian in the configuration interaction
representation using the Taylor-series approach and, in
doing so, reduce the spatial requirement of this algorithm
from ÕðNÞ to ÕðηÞ. That improvement would be especially
meaningful in the dual basis because of the spatial overhead

associated with using plane waves instead of Gaussian
orbitals.

C. Fewer measurements for variational
quantum algorithms

Alternatives to quantum phase estimation and other
methods requiring time evolution for the study of electronic
systems are quantum variational algorithms such as the
variational quantum eigensolver [14,15,89]. These methods
have garnered significant recent attention because of their
simple experimental implementation and robustness to
control errors [40]. Variational quantum algorithms involve
a parametrized procedure (usually a parametrized quantum
circuit) for preparing quantum states (the variational
ansatz). The variational ansatz is iteratively improved by
measuring an objective function and then using a classical
optimization routine to suggest new parameters. The
bottleneck we focus on here is the measurement step.
While variational algorithms do not require long coherent
evolutions, they usually require a large number of circuit
repetitions for measurement purposes; the abstract of
Ref. [42] claims the primary challenge of these methods
is that “the required number of measurements is astronom-
ically large for quantum chemistry applications.” Here, we
show that use of the plane wave dual basis enables new
bounds and strategies that drastically reduce the number of
circuit repetitions required.
Usually (but not always; e.g., see Ref. [90]), the

measurement objective is the expectation value of the
energy on the current quantum state. The expense of this
step typically depends on the norm and form of the
Hamiltonian and the exact method that is used to evaluate
it. The simplest and most practical method of expectation
value estimation relies on a form of quantum operator
averaging that leverages the structure of these Hamiltonians
as sums of tensor products of Pauli operators. The expect-
ation value of the energy may be estimated by measuring
the individual tensor products of Pauli operators Hl on
repeated, independent state preparations and summing
the resulting estimates hHli together, weighted by their
coefficient Wl, to get an estimate of the expectation
value,
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H ¼
X
l

WlHl; hHi ¼
X
l

WlhHli: ð29Þ

This method has the advantage that negligible coherence
time is required beyond state preparation in order to
perform the required measurements, making it particularly
amenable to implementation on quantum devices without
error correction. If one assumes no additional prior infor-
mation and allows a variable number of measurements per
term, the number of repeated preparations and measure-
ments M to estimate the value of hHi to a precision ϵ is
known [23,42] to be bounded by

M ∈ O(
�
1

ϵ

X
l
jWlj

�
2

) ∈ O(
�
N7=3

ϵΩ1=3 þ
N5=3

ϵΩ2=3

�
2

)
∈ O(

N14=3

ϵ2Ω2=3

�
1þ 1

N4=3Ω2=3

�
); ð30Þ

where we have used the triangle-inequality upper bounds to
the norm of the plane wave dual Hamiltonian derived in
Appendix F. Already, this bound is significantly lower than
the best proven bound on the number of measurements
required when using a Gaussian basis,OðN8=ϵ2Þ; however,
both bounds are loose.
Hamiltonians in the plane wave dual basis have a few

special properties that allow us to make even fewer
measurements. In particular, the Coulomb operators U
and V are diagonal. A consequence of this is that the local
Hl terms from each of these operators all commute with
each other, allowing the use of a separate, unbiased
estimator for the mean of U þ V, without the use of an
ancilla qubit [90]. While the kinetic operator is not diagonal
in the plane wave dual basis representation, one can
perform the FFFT prior to measurement. This would
change to the plane wave basis and diagonalize the kinetic
operator. Thus, instead of independent wave function
preparations for each Hl within the sum for T, U, and
V, either the entire operator U þ V or the entire operator T
can be measured completely on each circuit repetition. As
variances add linearly for independent measurements, if we
were to measure T, U, and V individually by sampling bit
strings in their eigenbasis, we would require a number of
circuit repetitions scaling as

M ∈ O
�
VarjΨi½T� þ VarjΨi½U þ V�

ϵ2

�

∈ O
�hT2i − hTi2 þ hðU þ VÞ2i − hU þ Vi2

ϵ2

�
;

∈ O
�hV2i þ hT2i

ϵ2

�
⊆ O

�
η4N2=3

ϵ2Ω2=3 þ
η2N4=3

ϵ2Ω4=3

�

∈ O
�
η10=3N2=3

ϵ2
þ η2=3N4=3

ϵ2

�
; ð31Þ

where we have used bounds from Appendix F. In the final
bound, we have provided the scaling at fixed density,
consistent with scalings in other sections of this paper. We
see that for either finite molecules or bulk materials, since it
must be the case that η ∈ OðNÞ, this scaling is no worse
than OðN4=ϵ2Þ.
As discussed at the beginning of Sec. III, one is often

interested in studying the cost of converging periodic
electronic structure calculations to the thermodynamic
limit. However, simulation of the ground-state energy
within fixed absolute error is unreasonable in the thermo-
dynamic limit as the energy scale of the system grows
asymptotically as OðηÞ. Accordingly, when growing
towards the thermodynamic limit, one would be interested
in achieving a fixed relative error μ ¼ ϵη. In terms of μ, we
see that scaling towards the thermodynamic limit is

O
�
η4=3N2=3

μ2
þ N4=3

μ2η4=3

�
∈ O

�
N2

μ2

�
; ð32Þ

where in the final bound, we have made the reasonable
assumption that η4=3N2=3 grows faster than N4=3=η4=3.
A practical difficulty for simple operator averaging on

near-term devices with Pauli operators built from Jordan-
Wigner strings is the sensitivity to measurement error on
each of the individual qubits in a long Pauli string [41]. In
the plane wave dual basis, one has the advantage that the
diagonal operators are always two-local in the Jordan-
Wigner representation, thus mitigating this problem. The
kinetic operator may be treated in this way by applying the
FFFT. However, one might seek to avoid the coherent
overhead of applying the FFFT in order to diagonalize the
kinetic operator. This would be especially advisable when
using a near-term device prone to errors during the FFFT
execution. If one were to measure U þ V at once but
measure T by sampling the Hl, then the total number of
measurements would scale as

M ∈ O
�kTk2 þ VarjΨi½U þ V�

ϵ2

�
∈ O

�kTk2 þ hV2i
ϵ2

�

∈ O
�
N10=3

ϵ2Ω4=3 þ
η4N2=3

ϵ2Ω2=3

�
∈ O

�
N4

ϵ2

�
;

where kTk is the triangle-inequality upper bound on the
norm of T from Appendix F. At fixed density
ρ ∝ η=Ω ∈ Θð1Þ, this quantity also scales as OðN2=μ2Þ
for fixed relative error μ and η ∈ ΘðNÞ.
Alternative methods for evaluating the objective function

using techniques from phase estimation have been studied
in some detail [90]. These methods require a number of
initial-state preparations that scales quadratically better in ϵ
and measures fewer qubits in the process, which mitigates
the impact of measurement error. This quadratic scaling
improvement comes at the cost of requiring larger circuit
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depth, which can make these approaches impractical for
existing experimental platforms that are often limited by
coherence time. Specifically, if one prepares the state of
interest with a unitary U, then it is possible to estimate the
expectation value of the energy to a precision ϵ using
OðPljWlj=ϵÞ applications of U and U†. This implies an
asymptotic bound on the cost of energy estimation of

MU ∈ O
�
N7=3

ϵΩ1=3 þ
N5=3

ϵΩ2=3

�
: ð33Þ

For fixed density, η ∈ ΘðNÞ, and relative error μ, we can
bound this scaling atOðN=μÞ. As was shown in the original
work, this scaling is comparable up to logarithmic factors to
the application of iterative phase estimation using the best-
known Hamiltonian simulation algorithms. This makes it
feasible to use variational approaches to improve state
preparation for quantum phase estimation applications on
fault-tolerant quantum devices.

IV. PROPOSAL TO SIMULATE JELLIUM
ON A NEAR-TERM DEVICE

In this section, we discuss an experimental proposal for
near-term devices based on the advances of Sec. II. In
particular, we focus on the quantum simulation of the
homogeneous or uniform electron gas, also known as
jellium. We believe that jellium is an attractive system to
target using early quantum computers because of its
simplicity but also because of its foundational importance
for many areas of physics and materials science. Further, it
is naturally compatible with the plane wave and dual basis
simulation formalism we have described so far. The wide-
spread use of jellium as a benchmark on which to test new
classical simulation methods, as well as continuing unre-
solved physical questions in the system, positions it as an
intriguing arena in which to contrast quantum and classical
simulations.
Jellium is defined as a system of interacting electrons

with a uniform electron density ρ and a homogeneous
compensating positive background charge, such that the
overall system is charge neutral [91]. As a finite realization,
we consider a system of η electrons in a box of volume Ω
with periodic boundary conditions, where the jellium
Hamiltonian becomes exactly Eq. (9) with a constant
external potential; i.e., all ζj ¼ 0. Jellium is of interest
in different physical dimensions; both two- and three-
dimensional jellium are realized to a good approximation in
real materials. For example, two-dimensional jellium is
approximated well by electrons confined in semiconductor
wells [92], while three-dimensional jellium is a model for
the valence electron density of alkali metals such as sodium
[93]. Historically, the physics of jellium has helped
elucidate some of the most basic concepts in condensed
matter physics. For example, Wigner’s observation that
electrons in jellium must crystallize as the electron density

is decreased [94] was the first example of an interaction-
driven metal-insulator transition. Later, the ground-state
physics of jellium in two dimensions in a strong magnetic
field became the canonical setting to understand the
quantum Hall effect [95]. Simulations of jellium also play
a central role in computational applications. This is because
the energy density of jellium is the starting approximation
in density functional calculations, the most widely per-
formed calculations in quantum chemistry and materials
science. In particular, the local density approximation gives
the (exchange-correlation) energy Exc of a material with a
generic, nonuniform, electronic density ρðrÞ, as

Exc½ρ� ¼
Z

ρðrÞϵUEGxc (ρðrÞ)dr; ð34Þ

where ϵUEGxc (ρðrÞ) is the (exchange-correlation) energy
density of jellium at density ρðrÞ. For this reason, the
history of density functionals has been tied to improve-
ments in approximate simulations of the jellium energy
density [96–98].
For the above reasons, simulating the properties of

jellium with classical methods is a standard classical
benchmark. This also argues for using it as a benchmark
for quantum simulations, and in this context, we briefly
outline the current limitations of classical techniques and
the setting in which quantum simulations may be most
useful. The phase diagram of jellium is usually discussed in
terms of the Wigner-Seitz radius rs, which is related to the
density by 4πr3s=3 ¼ Ω=η ¼ ρ−1 in three dimensions.
While the ground state of jellium at high densities (metallic,
rs ∼ 1 Bohr radii per particle) and at very low densities
(insulating, rs ∼ 100 Bohr radii per particle) is well
established, the precise phase diagram in the low- to
intermediate-density regime is uncertain because of com-
peting electronic and spin phases [96,99–103]. In the high-
density regime, the system is dominated by kinetic energy,
and expansion techniques based on perturbation theory
perform well [104,105]. Outside this density regime, the
main simulation tool has been quantum Monte Carlo in the
continuum formulation [96,99–103] and, more recently, in
basis set formulations such as full configuration interaction
quantum Monte Carlo (FCIQMC) [106,107] and auxiliary-
field quantumMonte Carlo (AFQMC) [108,109]. The latter
basis set calculations use plane waves and can be directly
compared to quantum simulations in the plane wave dual
formulation. Because of the fermion sign problem, it is
difficult to obtain data with acceptable stochastic error with
exact quantum Monte Carlo methods (e.g., with released
nodes [96], FCIQMC without initiators [106], or AFQMC
without constrained phase bias [109]) for systems with
η > 50. Instead, simulations use a bias to control the sign
problem, such as the fixed node approximation. Although
much useful information can be extracted in the presence of
this bias, the systematic error is hard to estimate and is
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thought to be as large as half a percent in the energy
[99,106]. Unfortunately, this error is on a similar scale to
the energy difference between competing phases in the
intermediate-density regime. We expect quantum simula-
tions, even for modest η ≈ 50 and modest N ≈ 100, to offer
bias-free results that cannot currently be obtained by
classical techniques; beyond their role in understanding
the approximations used in classical methods and in
demonstrating “quantum supremacy,” such simulations will
provide a new way to resolve the complicated jellium phase
diagram in the low-density regime.
In the next part of Sec. IV, we consider how to use the

advances introduced in Sec. II within the specific context of
a practical quantum algorithm for jellium simulation on
near-term devices. While the Trotter and Taylor algorithms
described in Secs. III A and III B can be used for ground-
state simulation, either by simulating adiabatic state prepa-
ration [8] or by projecting to a ground state using quantum
phase estimation [4,5], such approaches are likely to require
error correction for their implementation. However, in the
case of jellium, a good initial state preparation is extremely
simple. This makes variational quantum algorithms for
jellium particularly interesting, given their additional suit-
ability for near-term devices [14,15].

A. Linear-depth quantum variational algorithm for
planar architectures

As with all variational algorithms, one prepares an ansatz
jψðθ⃗Þi for the ground state, which is described in terms of
parameters θ⃗ selected in order to minimize the expectation
value of the Hamiltonian, hψðθ⃗ÞjHjψðθ⃗Þi. Usually, one
prepares jψðθ⃗Þi by applying a parametrized quantum
circuit to a suitable reference state jψ0i so that jψðθ⃗Þi ¼
Uðθ⃗Þjψ0i. Thus, the power of a variational algorithm

depends on the quality of the reference state jψ0i and
the structure of the parametrized circuit Uðθ⃗Þ. The refer-
ence state is often chosen to be the mean-field solution to
the problem. Mean-field solutions to jellium are diagonal in
the plane wave basis and provide useful starting points for
quantum Monte Carlo simulations even at quite low
densities [103]. One can begin quantum simulation in a
product state associated with the plane wave basis and then
apply the FFFT to obtain the mean-field state of jellium in
the dual basis. As shown in Appendix I, the FFFT can be
implemented with OðNÞ gate depth on a planar lattice.
A variational strategy that is particularly practical for the

near term is based on a low-order Trotter approximation of
adiabatic state preparation. This ansatz is related to the
quantum approximate optimization algorithm [110] and has
been shown to perform well in the context of electronic
structure [42]. Following the scheme of Ref. [42], the idea
is to Trotterize the adiabatic algorithm defined by evolution
under

HðτÞ ¼ T þU þ τV: ð35Þ

Thus, the schedule is to start in the ground state of the one-
body Hamiltonian and slowly turn on the two-body terms.
Note that Hð0Þ ¼ T for jellium, which is the Hamiltonian
of a free particle. This choice of schedule further justifies
use of jψ0i ¼ FFFTj0i as the reference since this makes
jψ0i an eigenstate of T in the plane wave dual basis. One
should choose j0i to have the correct particle number and
spin symmetry to describe the target state, as an error-free
simulation would conserve these quantum numbers. We use
the fact that we can write Eq. (35) for any molecular
Hamiltonian in the Jordan-Wigner-transformed plane wave
dual basis as

HðτÞ ¼ FFFT†
�X

p

θpðτÞZp

�
FFFTþ

X
p

θppðτÞZp þ
X
p≠q

θpqðτÞZpZq ð36Þ

for scalar values of θ⃗, which should be apparent from Eq. (9). We can Trotterize the adiabatic evolution as

Uðθ⃗Þ ¼
YM
m¼1

FFFT†
�Y

p

exp ½iθmpZp�
�
FFFT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UTðθ⃗mÞ

�Y
p

exp ½iθmppZp�
��Y

p≠q
exp ½iθmpqZpZq�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

UVðθ⃗mÞ

; θ⃗m ¼ θ⃗ðm−1=2
M Þ
M

; ð37Þ

where M is the total number of repetitions of the Trotter
step. As discussed in Sec. III A, each of these Trotter
steps can be implemented with gate depth OðNÞ on
a planar lattice of qubits with no ancilla. Thus, the total
gate depth of this ansatz would be OðNMÞ. Rather than try
to variationally determine all parameters to minimize the

final Hamiltonian Hð1Þ, the suggestion of Ref. [42] is to
train the ansatz “in layers,” i.e., to train the first Trotter step
to minimize Hð1=MÞ, the second to minimize Hð2=MÞ,
and so on. The results of Ref. [42] suggest that this ansatz
may perform well for values ofM as low as ten or less. Note
that while initial states other than a product state of plane
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waves may be needed in systems other than jellium, the
variational ansatz can be used for any molecule.
Variational algorithms were experimentally demon-

strated in Refs. [40,41] using superconducting qubit plat-
forms from industrial quantum computing groups, which
are expected to reach the quantum supremacy threshold in
the near future [35]. Such platforms would have qubits
connected on a planar lattice and could only implement
shallow circuits because of limited coherence. For such an
early demonstration, we can make further simplifications to
the M ¼ 1 variational ansatz. To explain this strategy, we
notice that the expectation value of the Hamiltonian after
applying the M ¼ 1 variational ansatz can be expressed as

hψ0jUVð−θ⃗ÞH̃ðθ⃗ÞUVðθ⃗Þjψ0i;
H̃ðθ⃗Þ ¼ UTð−θ⃗ÞHUTðθ⃗Þ; ð38Þ

where we can see that H̃ðθ⃗Þ amounts to a local basis
transformation on the Hamiltonian H. Since this trans-
formation can be applied efficiently with classical post-
processing, we see that the ansatz preparation can be
simplified to

jψðθ⃗Þi¼UVðθ⃗Þjψ0i

¼
�Y

p

exp½iθppZp�
��Y

p≠q
exp½iθpqZpZq�

�
FFFTj0i:

ð39Þ

In practice, one would probably also take the rotation
angles in the FFFT as variational parameters. Thus, our
“minimal resource variational ansatz” consists of the FFFT,
a high entanglement operation known to produce a good
reference, followed by entangling gates between all pairs
of qubits, and then a single layer of phase gates on each
qubit. As a final note, the outer loop of this variational
quantum algorithm will only need to optimize over OðNÞ
distinct parameters, as opposed to OðN2Þ distinct param-
eters, because of the translational invariance of the jellium
system.
In order to resolve distinct phases in low-density jellium,

a reasonable target is to obtain energies accurate to a fixed
relative error of half of one percent. The minimal varia-
tional ansatz of Eq. (39) may be sufficient to prepare
accurate ground states of jellium in certain parts of the
phase diagram; in the high-density regime, even the mean-
field state jψ0i is a good initial description. But we also
expect that this single Trotter step ansatz will fail to resolve
the ground state in more complex regimes. Thus, this
proposal immediately raises two unresolved questions:
How many Trotter steps will we be able to implement
on a near-term device, and how many Trotter steps would
be required to surpass all classical methods in the low-
density regime? By compiling all aspects of this procedure

to a natively realizable gate set, we should be able to
estimate how many Trotter steps would be possible within
the limitations of expected coherence times and gate
fidelities. This analysis will be the subject of a future
paper. However, the second question is more difficult to
answer without a quantum device, especially because the
radix-2 decimation implementation of the FFFT requires
that problem sizes are a power of 2. Whether or not
quantum supremacy is immediately achievable using this
approach to jellium simulation, experimentally studying
this ansatz will provide important insights into the effec-
tiveness of Trotter-based variational quantum algorithms
for problems of correlated electrons.

V. CONCLUSION

In this work, we have introduced efficient techniques that
use the plane wave basis and its dual for quantum
simulations of electronic structure. The kinetic and poten-
tial operators are respectively diagonal in these bases,
providing a Hamiltonian representation with only a quad-
ratic number of terms in basis size. We also described an
efficient second-quantized fermionic fast Fourier transform
to map between the two bases, which can be implemented
with linear gate depth on a planar lattice of qubits. Using
the diagonality of the Hamiltonian components in these
dual basis sets, we showed that Trotter steps can be
implemented with linear gate depth on a planar lattice.
We use these properties to implement time evolution using
Trotter- and Taylor-series methods with lower overhead
than all prior approaches and also to reduce the number of
measurements required for quantum variational algorithms.
Compared to the commonly used Gaussian basis for-

mulation of quantum simulation, the advantages of our
approach come at the cost of a less compact basis,
necessitating a larger number of logical qubits. Within
the cost models appropriate for fault-tolerant quantum
simulations, this trade-off between circuit complexity
(asymptotically less using the plane wave dual) and spatial
complexity (less by constant factors using Gaussians) will
be an advantage to our method for large enough quantum
simulations. Within the context of near-term small-mol-
ecule simulations, the increased spatial complexity asso-
ciated with the plane wave dual basis is likely to overwhelm
the benefits. However, because of the natural representation
of periodic systems within the plane wave basis, we expect
that in the near term, our methods will be advantageous for
treating materials. As an example, we identified jellium as a
concrete system to first target for simulation on near-term
quantum devices. Jellium is attractive because of its
fundamental significance in conceptual and numerical
electronic structure theory and materials science, and
because it can be tuned into regimes where classical
simulations are currently inadequate. We proposed a
low-depth variational algorithm with reasonable measure-
ment overhead, suitable for near-term quantum hardware.
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Understanding the performance of this algorithm for
jellium will provide important insights into the near-term
feasibility of quantum supremacy in problems of electronic
structure.
We expect that these advances will have ramifications

across many different approaches to quantum simulation.
For example, the quadratic reduction in the number of
Hamiltonian terms, as well as the lower scaling bounds on
the Hamiltonian norm, will translate generally to decreased
complexity in the overhead for perturbative gadgets, or in
quantum simulations within the configuration interaction
representation. Moving beyond jellium as a physical
system, quantum simulations in the plane wave basis
may practically be extended to real materials by incorpo-
rating a single-particle pseudopotential, without essential
modifications of the results in this proposal. The plane
wave basis may then also benefit quantum simulations,
which include the nuclear dynamics, since the forces may
be computed via the Hellmann-Feynman theorem [111].
Furthermore, just as the plane wave dual basis admits low-
depth quantum algorithms while being compact for peri-
odic materials, other basis sets may exist that admit similar
scaling algorithms while being compact for single mole-
cules. Ultimately, we believe that our work illustrates the
potential of exploring fundamental reformulations of the
electronic structure problem in order to reduce the com-
plexity of quantum simulations.
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APPENDIX A: FINITE-DIFFERENCE
DISCRETIZATION WITH N2 TERMS

An alternative to the Galerkin discretization derived from
the weak form of the Schroedinger equation is a finite-
difference formulation, which is associated with the
strong formulation of the differential equation. In the past,
many works have explored the use of finite-difference
discretizations (either implicitly or explicitly) [65,66,
68–70], although never before in a second-quantized
simulation of an electronic structure system. Still, discretiz-
ing these systems in this way is straightforward and follows
from this past work. Assuming a uniform partitioning of

space, the values of position operators are assigned to a set
of grid points with values determined by the position of the
grid point. Generalizations to nonuniform grid spacings are
also possible.
One might consider this approach analogous to choosing

basis functions of the form ϕiðrÞ ¼ δðr − riÞ in the
Galerkin formulation, where δ is the Dirac delta function
and ri is the location of a grid point, but with several
important differences. In this case, the derivative operators
are discretized in an entirely different way, using a finite-
difference stencil, rather than integration over such basis
functions. This follows from the discussion of functions
with disjoint support in the main text. Moreover, while an
inner product in the Galerkin formulation between two
functions jψi ¼Pibijψ ii and jϕi ¼Picijϕii has a natu-
ral definition induced by the definition of the inner product
on the space of fjϕiig given by hψ jϕi ¼Pi;jb

�
i cjhψ ijϕji,

the same is not true in the finite-difference scheme. In this
case, one must choose a definition that is consistent with
some sensible measure on the space.
To see how these differences are formulated in practice,

we consider an example. Assume a uniform volume
partition for the system that consists of N ¼ M3 orbitals,
which are each indexed by three indices, x ∈ Z ∈ ½0;MÞ,
y ∈ Z ∈ ½0;MÞ, z ∈ Z ∈ ½0;MÞ. In this case, the kinetic-
energy operator may be expressed using a finite-difference
7-point stencil for the Laplacian,

−
∇2

2
ϕðx; y; zÞ ¼ 1

2h2
X
x;y;z

½6ϕðx; y; zÞ − ϕðx − 1; y; zÞ

− ϕðxþ 1; y; zÞ − ϕðx; y − 1; zÞ
− ϕðx; yþ 1; zÞ − ϕðx; y; z − 1Þ
− ϕðx; y; zþ 1Þ�; ðA1Þ

where h is the spacing between grid points. Central
difference stencils of this type, utilizing three points along
each axis, have errors that scale as Oðh2Þ in their repre-
sentation of the derivative operator. In this case, we can see
that the kinetic-energy operator has exactly 7N terms, and
we note that other size stencils may be used to reduce the
discretization error. The most accurate stencil, which
extends across the entire length of the simulated system,
would still only haveOðN2Þ terms. An important difference
to note between this choice and the Galerkin discretization
is that error in expressing the finite-difference formulation
of the kinetic-energy operator can lead to subvariational
energies in principle. However, this is easily managed
in practice with reasonably sized stencils and spatial
partitions.
With a uniform grid of points positioned as above

and spaced by the same distance h along each axis,
we may use the rectangular rule to define an inner
product on single-particle functions. In this scheme,
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a single-particle function jϕi is defined by its values at
the grid points ϕðx; y; z; σÞ. Note that we now also
consider the spin degree of freedom σ ¼ f↑;↓g. We can
define the inner product between two single-particle
functions jψi and jϕi explicitly as

hψ jϕi ¼ h3
X
x;y;z;σ

ψðx; y; z; σÞ�ϕðx; y; z; σÞ ðA2Þ

and label individual points jϕx;y;z;σi such that
hϕx;y;z;σjϕx0;y0;z0;σ0 i¼δxx0δyy0δzz0δσσ0 and hx;y;z;σjϕx0;y0;z0;σ0 i¼
ϕðx;y;z;σÞ. With these definitions of the kinetic energy
and inner product, we can express the second-quantized
coefficients for one-body operators in the following
way. If we define compound indices p ¼ ðxp; yp; zp; σpÞ
with corresponding Kronecker delta functions δpq ¼
δxpxqδypyqδzpzqδσpσq ,

hpq ¼
h
2

�
6δpq −

X
α∈fx;y;zg

ðδpqþα
þ δpq−α

Þ
�
þ h3UðpÞδpq;

ðA3Þ

where we have used the shorthand notation qþα to
indicate shifting the α axis by 1 lattice point. We define
the standard number operator as nx;y;z;σ ¼ a†x;y;z;σax;y;z;σ.
Similarly, the coefficients of the two-body potential
become

hpqrs ¼ δpsδqr

	
h3

jpx;y;z − qx;y;zj
ð1 − δpqþσ

− δpq−σ
Þ

þ λðδpqþσ
þ δpq−σ

Þ


; ðA4Þ

where we have separated the same-point repulsion
into a second term characterized by λ. It follows

that the two-body part of the operator may also be
written as

V¼ λ
X
x;y;z

nðx;y;z;↑Þnðx;y;z;↓Þ

þh3

2

X
ðx;y;zÞ≠ðx0 ;y0 ;z0Þ

σ;σ0

nðx;y;z;σÞnðx0;y0;z0;σ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−x0Þ2þðy−y0Þ2þðz−z0Þ2

p ; ðA5Þ

where λ scales the repulsive interaction between elec-
trons of opposite spin when they occupy the same
spatial orbital. We can see that there are N=2 terms on
the left and NðN − 1Þ=2 unique terms on the right, for a
total of N2=2 terms in the two-body potential. While the
exact value of λ does not matter in the continuum limit,
the chosen value determines the convergence of basis
set discretization error. The approximation we advocate
here is to treat λ as the mean repulsion between a
uniform charge distribution in the cell, i.e.,

λ ¼ 1

2

Z
dx1dx2dy1dy2dz1dz2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 − x2Þ2 þ ðy1 − y2Þ2 þ ðz1 − z2Þ2
p

¼ 1

h

�
1þ ffiffiffi

2
p

− 2
ffiffiffi
3

p

5
−
π

3
þ log ½ð1þ

ffiffiffi
2

p
Þð2þ

ffiffiffi
3

p
Þ�
�

≈
0.941156

h
: ðA6Þ

Note that the analytical evaluation of this integral is
provided as the main result of Ref. [114]. Note further that
one could also choose to evaluate the long-range Coulomb
interaction between orbitals p and q using integrals that
assume uniform charge density within the cell. This choice
may lead to slightly different convergence behavior,
but the results will certainly agree in the continuum
limit. Putting these results together, we arrive at the
second-quantized position space Hamiltonian in a finite-
difference representation,

H¼ h
2

X
x;y;z;σ

½6nðx;y;z;σÞ−a†ðx−1;y;z;σÞaðx;y;z;σÞ−a†ðxþ1;y;z;σÞaðx;y;z;σÞ

−a†ðx;y−1;z;σÞaðx;y;z;σÞ−a†ðx;yþ1;z;σÞaðx;y;z;σÞ−a†ðx;y;z−1;σÞaðx;y;z;σÞ−a†ðx;y;zþ1;σÞaðx;y;z;σÞ�

þh3

2

X
ðx;y;zÞ≠ðx0 ;y0 ;z0Þ

σ;σ0

nðx;y;z;σÞnðx0;y0;z0;σ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−x0Þ2þðy−y0Þ2þðz− z0Þ2

p þh3
X
x;y;z;σ

nðx;y;z;σÞUðx;y;z;σÞþ0.941156
h

X
x;y;z

nðx;y;z;↑Þnðx;y;z;↓Þ; ðA7Þ

which implicitly defines both the one-body and two-body
coefficients, hpq and hpqrs, for the second-quantized
Hamiltonian, noting that some normal ordering may be
required to bring it to its final form. This Hamiltonian
contains strictly OðN2Þ terms, as desired. While we do not

use this result for any of the algorithms of this paper,
understanding the finite-difference formulation on a grid is
helpful to appreciate differences with the plane wave dual
basis. Furthermore, it is possible that this form of the
Hamiltonian has advantages that could make it easier to
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simulate in the context of future quantum algorithms,
perhaps based on 1-sparse decompositions of the finite-
difference stencil.

APPENDIX B: ELECTRONIC STRUCTURE
HAMILTONIANS IN PLANE WAVE BASIS

In this section, we review analytical forms for the
electronic structure Hamiltonian in a basis of plane waves
of the following form in three dimensions:

φνðrÞ¼
ffiffiffiffi
1

Ω

r
eikν·r; kν ¼

2πν

Ω1=3 ; ν∈ ½−N1=3;N1=3�3 ⊂Z3:

ðB1Þ

The length scale of our basis is parametrized by the cell
volume Ω.
The kinetic-energy operator is a one-body operator. The

coefficients of the kinetic-energy operator T are

Z
Ω
dr3φ�

pðrÞ
�
−∇2

2

�
φqðrÞ ¼

p2

2
δðp; qÞ: ðB2Þ

Thus,

T ¼ 1

2

X
ν;σ

k2νc
†
ν;σcν;σ; ðB3Þ

where c†ν and cν are canonical fermionic raising and
lowering operators and σ ∈ f↑;↓g represents spin.
Clearly, this operator is diagonal since plane waves are
eigenstates of the momentum operator.
When working with plane waves, it is convenient to

define the Fourier transform of the Coulomb potential,

Vν ¼
1

Ω

Z
Ω
dr3VðrÞe−ikν·r ¼ 4π

k2νΩ
; ðB4Þ

and the inverse of this Fourier transform, a solution to
Poisson’s equation with periodic boundary conditions:

VðrÞ ¼
X
ν

Vνeikν·r: ðB5Þ

Note that there would appear to be a singularity in this
periodized representation of the Coulomb operator when

kν ¼ 0; however, whenever treating a charge-neutral sys-
tem, the singularities from interactions with the positive
and negative charges cancel to contribute only a finite
constant that depends on the cell shape. This factor can be
computed using an Ewald sum, shown explicitly in
Appendix F of Ref. [53].
The external potential arising from interactions with

nuclei can be expressed as

UðrÞ ¼ −
X
j

ζjVðr − RjÞ ¼ −
X
j;ν

ζjVνeikν·ðr−RjÞ; ðB6Þ

where nuclei j has position Rj and atomic number ζj. With
this result, we compute the external potential coefficients asZ

Ω
dr3φ�

pðrÞUðrÞφqðrÞ

¼
Z
Ω
dr3φ�

pðrÞ
�
−
X
j;ν

ζjVνeikν·ðr−RjÞ
�
φqðrÞ

¼ −
X
j;ν

ζjVνe−ikν·Rj

Z
Ω
dr3φ�

pðrÞeikν·rφqðrÞ

¼ −
X
j

ζjVp−qe−ikp−q·Rj ¼ −
4π

Ω

X
j

ζj
eikq−p·Rj

k2p−q
: ðB7Þ

Accordingly, we can write the external potential operator as

U ¼ −
4π

Ω

X
p≠q
j;σ

�
ζj
eikq−p·Rj

k2p−q

�
c†p;σcq;σ; ðB8Þ

where the conditionp ≠ q is equivalent to dropping the zero
momentamode of the external potential, which, as explained
earlier, cancels with the zero mode of the electron-electron
interaction. As explained in themain text, we choose to alias
the momenta modes so that, in this case, kp−q is always
contained within the original set of plane waves. This
introduces a slight deviation from the Galerkin formulation
and corresponds to evaluating matrix elements by N evenly
spaced samples on a real space grid.Doubling the quadrature
spacing would yield an exact evaluation, but without the
aliasing (dualling) approximation, we would not obtain the
convenient, exactly diagonal form of the potential matrix
elements in the dual basis that we rely upon.
The two-electron interaction coefficients are obtained

from the integrals

Z
Ω
dr31dr

3
2φ

�
pðr1Þφ�

qðr2ÞVðr1 − r2Þφrðr2Þφsðr1Þ ¼
Z
Ω
dr31dr

3
2φ

�
pðr1Þφ�

qðr2Þ
�X

ν

Vνeikν·ðr1−r2Þ
�
φrðr2Þφsðr1Þ

¼
X
ν

Vν

�Z
Ω
dr31φ

�
pðr1Þeikν·r1φsðr1Þ

��Z
Ω
dr32φ

�
qðr2Þe−ikν·r2φrðr2Þ

�

¼
X
ν

Vνδðν; p − sÞδðν; r − qÞ ¼ 4π

Ω

X
ν

δðp − s; r − qÞ
k2ν

: ðB9Þ
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The condition that ν ¼ p − s ¼ r − q arises from conser-
vation of momentum. From this condition, we arrive at
r ¼ qþ ν and s ¼ p − ν, which implies that the final form
of the two-electron term in momentum space is

V ¼ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

c†p;σc
†
q;σ0cqþν;σ0cp−ν;σ

k2ν
; ðB10Þ

where we can see that this summation satisfies momentum
conservation since ν ¼ p − ðp − νÞ ¼ ðqþ νÞ − q. Thus,
the total expression for H ¼ T þU þ V (up to a constant
shift that depends on the unit cell shape) is given by

H ¼ 1

2

X
p;σ

k2pc
†
p;σcp;σ −

4π

Ω

X
p≠q
j;σ

�
ζj
eikq−p·Rj

k2p−q

�
c†p;σcq;σ

þ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

c†p;σc
†
q;σ0cqþν;σ0cp−ν;σ

k2ν
: ðB11Þ

APPENDIX C: ELECTRONIC STRUCTURE
HAMILTONIAN IN PLANE

WAVE DUAL BASIS

In the prior section, we derived a closed form for the
molecular electronic structure Hamiltonian in the plane
wave basis. We now translate that Hamiltonian into the
plane wave dual basis via unitary discrete Fourier trans-
form. The unitary discrete Fourier transform of the plane
wave basis is computed in each dimension separately as

ϕpx
ðxÞ ¼

ffiffiffiffiffiffiffiffiffi
1

N1=3

r X
νx

ðe−2πipx=N1=3ÞνxφνxðxÞ

¼ 1

ðΩNÞ1=6
X
νx

exp

	
2πi

�
x

Ω1=3 −
px

N1=3

�

νx
; ðC1Þ

where ϕpx
ðxÞ is the x component of the plane wave

dual basis function ϕpðrÞ ¼ ϕpx
ðxÞϕpy

ðyÞϕpz
ðzÞ, φνxðxÞ

is the x component of the plane wave basis function

φνðrÞ¼φνxðxÞφνyðyÞφνzðzÞ, ν¼ðνx;νy;νzÞ, and r¼ðx;y;zÞ.
As the expression for ϕpx

ðxÞ in Eq. (C1) takes the form of a
geometric series, we can find the following closed form:

ϕpðrÞ ¼
ffiffiffiffiffiffiffiffi
1

ΩN

r �
sin ½πpx − πN1=3x

Ω1=3 �
sin ½ πpx

N1=3 − πx
Ω1=3�

��
sin ½πpy −

πN1=3y
Ω1=3 �

sin ½ πpy

N1=3 − πy
Ω1=3�

�

×

�
sin ½πpz − πN1=3z

Ω1=3 �
sin ½ πpz

N1=3 − πz
Ω1=3�

�
; ðC2Þ

which is a smooth approximation to a grid with lattice sites
at the locations rp ¼ pðΩ=NÞ1=3.
Basis functions of the above form (which can be

conveniently labeled by the real space coordinates of their
centers) are commonly used in quantum dynamics simu-
lations under the name of discrete variable representations
(DVR) [44,61–64]. The sinc DVR, introduced in Ref. [63],
is closely related to the plane wave dual basis. As seen from
Eq. (C1), the plane wave dual basis is obtained as a sum
over unit-weighted plane waves with reciprocal lattice
momenta up to a maximum cutoff momentum. The sinc
DVR is obtained as a continuous integral over unit-weight
plane waves up to the maximum cutoff momentum. One of
the primary weaknesses of the sinc DVR basis is the need to
approximate the kinetic-energy operator when using a finite
number of sinc functions. This need is removed in the plane
wave dual basis, as the kinetic-energy operator is repre-
sented exactly.
Rather than compute the integrals over these basis

functions by quadrature, it is more straightforward to
Fourier transform Eq. (B11) in order to obtain a represen-
tation of the electronic structure Hamiltonian in the plane
wave dual basis. Accordingly, we define raising and low-
ering operators in the plane wave basis as the Fourier
transform of their plane wave dual counterparts,

c†ν ¼
ffiffiffiffi
1

N

r X
p

a†pe−ikν·rp ; cν¼
ffiffiffiffi
1

N

r X
p

apeikν·rp : ðC3Þ

Using these relations, we can write the kinetic-energy
operator of the previous section in the dual space as

T ¼ 1

2

X
ν;σ

k2νc
†
ν;σcν;σ ¼

1

2

X
ν;σ

k2ν

� ffiffiffiffi
1

N

r X
p

a†p;σe−ikν·rp
�� ffiffiffiffi

1

N

r X
q

aq;σeikν·rq
�

¼ 1

2N

X
p;q

�X
ν;σ

k2νeikν·ðrq−rpÞ
�
a†p;σaq;σ ¼

1

2N

X
ν;p;q;σ

k2ν cos ½kν · rq−p�a†p;σaq;σ: ðC4Þ

We can transform the external potential in a similar fashion,
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U¼−
X
p≠q
j;σ

ζjVp−q exp½ikq−p ·Rj�c†p;σcq;σ

¼−
X
p≠q
j;σ

ζjVp−q exp½ikq−p ·Rj�
0
@ ffiffiffiffi

1

N

r X
p0

a†p0;σ exp½−ikp · rp0 �
1
A ffiffiffiffi

1

N

r X
q0
aq0;σ exp½ikq · rq0 �

!

¼−
1

N

X
p≠q
j;σ

ζjVp−q exp½ikq−p ·Rj�
X
p0;q0

a†p0;σaq0;σ exp½ikq · rq0−p0 �exp½−ikp−q · rp0 �

¼−
1

N

X
p0;q0

X
p≠q
j;σ

ζjVp−q exp½ikq−p · ðRj− rp0 Þ�ða†p0;σaq0;σ exp½ikq · rq0−p0 �Þ: ðC5Þ

Recognizing that p − q spans the full set of momentum vectors in our system because of aliasing (dualling), we can replace
the sum over p ≠ q and the indices p − q and q with a sum over ν ≠ 0 and q ≠ 0. This leads to a DVR-like representation
with diagonal potential operators. We find

U ¼ −
1

N

X
p0;q0

�X
ν≠0
j

ζjVν exp ½ikν · ðRj − rp0 Þ�
��X

q≠0;σ
a†p0;σaq0;σ exp ½ikq · rq0−p0 �

�

¼ −
X
p;σ

�X
ν≠0
j

ζjVν exp ½ikν · ðRj − rp0 Þ�
�
np;σ ¼ −

4π

Ω

X
p;σ
j;ν≠0

ζj cos ½kν · ðRj − rpÞ�
k2ν

np;σ; ðC6Þ

where we have used the fact that the summation grouped on the right side of the first equation is equal to zero unless
p0 ¼ q0. This is because the negative modes of kq will have exactly the opposite phase as the positive modes of kq, which
leads to the diagonal form of the final expression.
Finally, we turn our attention towards transforming the two-electron operator. The following relations are helpful:X

p

c†pcp ¼
X
p

a†pap;
X
p

c†pcp�q ¼
X
p

a†pape∓ikq·rp ; ðC7Þ

where the first relation comes from conservation of particle number and the second relation is the Fourier convolution
theorem. We can compute the interaction term in the plane wave dual basis as

V ¼ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

c†p;σc
†
q;σ0cqþν;σ0cp−ν;σ

k2ν
¼ 2π

Ω

X
ν≠0

1

k2ν

�X
p;q
σ;σ0

c†p;σcp−ν;σc
†
q;σ0cqþν;σ0 −

X
p;σ

c†p;σcp;σ

�

¼ 2π

Ω

X
ν≠0

1

k2ν

	�X
p;σ

c†p;σcp−ν;σ

��X
q;σ0

c†q;σ0cqþν;σ0

�
−
X
p;σ

c†p;σcp;σ




¼ 2π

Ω

X
ν≠0

1

k2ν

	�X
p;σ

a†p;σap;σeikν·rp
��X

q;σ0
a†q;σ0aq;σ0e

−ikν·rq

�
−
X
p;σ

a†p;σap;σ




¼ 2π

Ω

X
ν≠0

1

k2ν

�X
p;q
σ;σ0

eikν·rp−qa†p;σap;σa
†
q;σ0aq;σ0 −

X
p;σ

a†p;σap;σ

�
¼ 2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos ½kν · rp−q�
k2ν

np;σnq;σ0 : ðC8Þ

Putting these results together, we find the final expression for the total Hamiltonian in the plane wave dual basis,

H ¼ 1

2N

X
ν;p;q;σ

k2ν cos ½kν · rq−p�a†p;σaq;σ −
4π

Ω

X
p;σ
j;ν≠0

ζj cos ½kν · ðRj − rpÞ�
k2ν

np;σ þ
2π

Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos ½kν · rp−q�
k2ν

np;σnq;σ0 : ðC9Þ

As we can see, there are only OðN2Þ terms.
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APPENDIX D: PLANE WAVE DUAL BASIS
HAMILTONIAN MAPPED TO QUBITS

Whereas fermions are indistinguishable antisymmetric
particles, qubits are distinguishable and have no special
symmetries. Thus, in order to encode a fermionic system on
a quantum computer in second quantization, one must map
the operator algebra of fermions to the operator algebra of
qubits. The algebra of fermions is defined by the canonical
fermionic anticommutation relations,

fa†p; a†qg ¼ fap; aqg ¼ 0; fa†p; aqg ¼ δpq: ðD1Þ
The oldest (and simplest) mapping to qubit operators which
reproduces these commutation relations is the Jordan-
Wigner transformation [45]. A significantly more compli-
cated method is known as the Bravyi-Kitaev transformation
[24,25,46]. The Bravyi-Kitaev transform yields operators
that are logN local as opposed to the Jordan-Wigner trans-
formation, which is N local, in general. More recently, there
has been work on generalizing these transformations [26–
28]. Understanding the structure of these transformations is
important for compiling circuits efficiently. However, for our
purposes, the locality overhead is not necessarily detrimental
in terms of gate depth (although it does affect gate count on a
fully connected architecture), so we analyze the Jordan-
Wigner transformation for the sake of simplicity. The Jordan-
Wigner transformation consists of the following mapping:

a†p ↦
1

2
ðXp − iYpÞ ⊗

p−1

l¼0
Zp−l;

ap ↦
1

2
ðXp þ iYpÞ ⊗

p−1

l¼0
Zp−l; ðD2Þ

where Xp, Yp, and Zp represent Pauli operators acting on
tensor factor p. By inspection, one can confirm that the
mapping of Eq. (D2) reproduces the algebra of Eq. (D1).
To actually apply the Jordan-Wigner transformation, one

must map the fermionic orbitals specified in Eq. (C9) by the
indices ðp; σÞ to a single-qubit index; e.g.,

ðp; σÞ ↦ 1 − σ

2
þ 2ðpx þ pyN1=3 þ pzN2=3Þ;

σ ∈ f−1; 1g: ðD3Þ

The Jordan-Wigner transformation is particularly simple
for the plane wave dual basis molecular Hamiltonian.
Applying Eq. (D2) to operators that appear in Eq. (C9),
we find that

np↦
1

2
ðI−ZpÞ;

npnq↦
1

4
ðIþZpZq−Zp−ZqÞ;

a†paqþa†qap↦
1

2
ðXpZpþ1 � � �Zq−1XqþYpZpþ1 �� �Zq−1YqÞ:

ðD4Þ

We note that all of the qubit terms that come out of npnq
are diagonal (and thus commute). From Eq. (D4), we can
write the position space second-quantized Jordan-Wigner-
transformed qubit Hamiltonian as

H ¼ 1

4N

X
ν;p;q;σ

k2ν cos ½kν · rq−p�ðXp;σZpþ1;σ � � �Zq−1;σXq;σ þ Yp;σZpþ1;σ � � �Zq−1;σYq;σÞ

−
2π

Ω

X
p;σ
j;ν≠0

ζj cos ½kν · ðRj − rpÞ�
k2ν

ðI − Zp;σÞ þ
π

2Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos ½kν · rp−q�
k2ν

ðI þ Zp;σZq;σ0 − Zp;σ − Zq;σ0 Þ: ðD5Þ

Expanding these terms and recollecting the qubit operator coefficients, we find

H ¼
X
p;σ
ν≠0

�
π

Ωk2ν
−

k2ν
4N

þ 2π

Ω

X
j

ζj
cos ½kν · ðRj − rpÞ�

k2ν

�
Zp;σ þ

π

2Ω

X
ðp;σÞ≠ðq;σ0Þ

ν≠0

cos ½kν · rp−q�
k2ν

Zp;σZq;σ0

þ 1

4N

X
p≠q
ν;σ

k2ν cos ½kν · rq−p�ðXp;σZpþ1;σ � � �Zq−1;σXq;σ þ Yp;σZpþ1;σ � � �Zq−1;σYq;σÞ þ
X
ν≠0

�
k2ν
2
−

πN
Ωk2ν

�
I: ðD6Þ

APPENDIX E: COMPARING DISCRETIZATION
ERROR IN FOURIER AND GAUSSIAN BASES

In this section, we discuss convergence of basis set
discretization errors in both plane wave and Gaussian
bases. The basis set discretization error is defined with

respect to the ground-state energy in the continuum basis
ðN ¼ ∞Þ as

ΔE ¼ jmin
ψ

hψ∞jHjψ∞i −min
ψ

hψN jHjψNij; ðE1Þ
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where jψNi is a wave function limited to the support of
Slater determinants with up to N single-particle basis
functions (in our context, those functions are either plane
waves or Gaussian orbitals). Throughout this work, but
especially in Sec. III and Table I, we directly compare the
asymptotic scaling of algorithms using a plane wave basis
and algorithms using a Gaussian orbital basis. We compare
these scalings in terms of the same parameter, N, which
represents the number of plane waves for some algorithms
and the number of Gaussian orbitals for others. In order for
such comparisons to be valid, we need to establish that the
number of plane waves required for a particular calculation
is asymptotically equivalent to the number of Gaussian
orbitals required for the same calculation.
In Appendix E 1, we review results from the literature,

which establish that ΔE ∈ Oð1=NÞ regardless of the
detailed form of the single-particle basis functions. This
has been established by many numerical studies over the
years and has also been proven up to second order in
perturbation theory for Gaussians in Ref. [115] and for
plane waves in Ref. [116]. Although most of the results we
describe are standard, we gather them here for complete-
ness and also provide an intuitive explanation for this
phenomenon based on simple arguments from approxima-
tion theory.
In Appendix E 2, we describe how a plane wave basis

calculation is done in practice for systems with reduced
periodicity, e.g., for molecules or surfaces. Using the
methodology of Ref. [54], we show that one can exponen-
tially suppress errors arising from the fictitious periodic
image charges that occur when using plane waves to
describe nonperiodic systems. Taken together, these results
allow us to directly compare the asymptotic scalings of
algorithms using a plane wave basis with the asymptotic
scalings of algorithms using a Gaussian orbital basis, even
for nonperiodic systems such as single molecules. As the
dual basis is a unitary rotation of the plane wave basis, all
results presented here also hold equally for the dual basis.

1. Scaling of intrinsic discretization error

We first present an intuitive argument for the basic result
and then discuss several earlier works that establish the
result more rigorously. As is well known from approxi-
mation theory and Fourier analysis, the rate of convergence
of a basis expansion of a function is governed by its
smoothness. For example, for an infinitely differentiable
function (in any dimension), the asymptotic Fourier ampli-
tudes from a Fourier transform decay exponentially in
magnitude with respect to the number of Fourier modes,
and thus approximating the function with a cutoff in the
Fourier series (e.g., a finite basis) incurs an exponentially
small error with the size of the basis, i.e.,Oðe−κNÞ for some
finite positive κ. For nonanalytic functions, if the basis
functions themselves do not incorporate the nonanalytic
behavior, then the error of the basis expansion only

converges algebraically like OðN−αÞ, where α depends
on the particular expectation value we are interested in, as
well as the nature of the nonanalyticity.
Kato proved that the electronic wave function we are

interested in is continuous but has a discontinuous (yet
finite) first derivative at the nuclei (the electron-nuclear
cusp) and at the electron-electron coincidences (the elec-
tron-electron cusp) [117]. The asymptotic rate of conver-
gence of both the plane wave expansion and Gaussian
expansion is governed by their ability to capture these
cusplike behaviors. Around a cusp, the wave function may
be expanded as

ΨðsÞ ¼ Ψð0Þð1þ a1sþ a2s2 þ � � �Þ; ðE2Þ

where s is a radial coordinate around the cusp (e.g.,
jrp − Rjj for the electron-nuclear cusp or jrp − rqj for
the electron-electron cusp) and where we have kept the
spherical part of the wave function for simplicity. The linear
coefficient a1 is determined by the type of cusp (e.g.,
a1 ¼ −ζ for a nuclear cusp and a1 ¼ 1=2 for the electron-
electron cusp). An expansion in an analytic function basis
(e.g., plane waves or Gaussians) necessarily omits the
linear s (or it would have a discontinuous first derivative by
assumption) and, thus, asymptotically incurs error in some
volume S close to the cusp, where S is the smallest spatial
feature resolvable by the basis, which is Oð1=NÞ. While
appropriately constructed Gaussian basis sets can resolve
local features such as the electron-nuclear cusp at a rate
faster than Oð1=NÞ (see below for more details), the same
is not true of the electron-electron cusp, which occurs at all
points in configuration space where coordinates of two or
more electrons coincide. Evaluating the energy error in the
ground state as

ΔE ≈ 4π

Z
S
s2ΨðsÞHΨðsÞds; ðE3Þ

and using the leading terms in the kinetic energy and
potential energy in the Hamiltonian, proportional to
ð1=sÞðd=dsÞ and 1=s, respectively, the linear term in the
wave function gives an error, to leading order in s, as
ΔE ∈ OðSÞ. By this intuitive argument, the error in the
energy incurred by the cusp should scale asymptotically
as Oð1=NÞ.
The Oð1=NÞ scaling for the contribution of the

electron-electron cusp to the energy has long been
observed empirically using Gaussian basis sets (see, e.g.,
Refs. [118–120]), and extrapolating the so-called electron
correlation energy using this asymptotic form is a common
practice in electron structure theory [76]. The complicated
form of molecular Gaussian basis sets prevents a more
rigorous derivation of this form beyond arguments similar
to the ones we presented above. However, for the case of
two-electron atoms (the simplest electronic structure
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system demonstrating an electron-electron cusp), a rigorous
partial wave analysis is possible at the level of a perturba-
tive treatment of the electron-electron interaction [115].
This analysis finds that at second-order perturbation theory,
the energy convergence of each partial wave goes like
ðlþ 1=2Þ−4, where l is the angular momentum of the
partial wave. Adding up the contributions of each partial
wave to a maximum cutoff l ¼ L gives a convergence like
Oð1=L3Þ, and the total number of angular functions up to
the cutoff L is also OðL3Þ; thus, the convergence in this
case is againOð1=NÞ [115]. In the case of plane waves, the
Oð1=NÞ scaling for the contribution of the electron-
electron cusp has been shown under both the random-
phase approximation [121] and second-order perturbation
theory [116]. In Ref. [116], there is also a comprehensive
numerics study that demonstrates the Oð1=NÞ plane wave
convergence.
In practice, when using a Gaussian basis, one includes

basis functions that are centered on the nuclei. Then,
although the Gaussians are formally analytic around the
nucleus, one can choose a series of Gaussians with
increasingly large exponents such that they effectively
mimic the sharp features of the electron-nuclear cusp.
For an optimally chosen set of coefficients, one can thus
improve on the algebraic convergence for the electron-
nuclear cusp, and it has been shown that the convergence of
the Gaussian basis for the electron-nuclear contribution
scales as Oðe−κ

ffiffiffi
N

p
Þ [122,123]. However, this improvement

is not possible using a single-particle basis alone for the
electron-electron cusp, as this is a cusp in the interelectron
coordinate. In the case of plane waves, an equivalent
acceleration of convergence for the electron-nuclear cusp
can be obtained if one uses pseudopotentials, which
restores the analyticity of the wave function around the
nucleus. In this case, as argued above using arguments from
Fourier analysis, the smoothness of the wave function
means that neglecting electron-electron interaction effects
(e.g., as is done in density functional theory), the plane
wave error scales as Oðe−κNÞ. In real materials, pseudo-
potentials are a mainstay of plane wave calculations. It is
also possible to introduce a second set of functions to
augment the plane wave description of the wave function
around the nuclear region [124–126], and such augmented
basis sets allow for exponential convergence in the elec-
tron-nuclear cusp without pseudopotentials. Thus, the
convergence of both Gaussian and plane wave calculations
is limited by resolution of the electron-electron cusp, which
scales as Oð1=NÞ, as discussed earlier.
Since the asymptotic convergence of the Gaussian basis

and plane wave basis is the same, the asymptotic complex-
ity of algorithms designed using either the plane wave basis
or the Gaussian basis may be directly compared for real
molecules and materials. However, it is also useful to have
an idea of the relative prefactors in the convergence. The
precise prefactor depends on the system and accuracy

required. As a concrete example, the cubic diamond and
cubic silicon density functional energies using the Perdew-
Burke-Ernzerhof exchange-correlation functional and the
Goedecker-Teter-Hutter pseudopotential can be converged
to an accuracy of 10 milli-eV per atom using approximately
150 plane waves per atom and 250 plane waves per atom,
respectively; the same accuracy in a Gaussian basis with the
same pseudopotential requires a quadruple-zeta double-
polarization basis or larger, which, for these systems, has
26 Gaussian basis functions per atom, a factor of 6–10.
While this example is for a density functional calculation, it
serves to illustrate the relative spatial resolution of the two
bases, which is the main factor in resolving the electron-
electron cusp in correlated calculations. In Ref. [50], an
analysis carried out at the correlated wave function level
found that the number of Gaussians needed to reproduce a
plane wave calculation of fixed dimension (for a surface
adsorption problem) to chemical accuracy is approximately
less by a factor of 20–30, although this is a significant
overestimate since the number of plane waves used is
substantially more than is required for chemical accuracy.
In summary, a rough estimate for the plane wave basis size
versus Gaussian basis size for the same accuracy is
approximately 10–20.
Within the context of performing quantum simulation

experiments on the most advanced hardware platforms
(specifically, industrial transmon platforms being designed
at Google, IBM, Intel, Rigetti, and elsewhere) in the next
few years, gate count (not qubit count) is the primary
concern. While most expect that more qubits can be
manufactured in a scalable fashion, there is no clear path
to substantially improve the gate fidelities already achieved
by the most advanced transmon platforms. And the total
fidelity of a circuit decreases exponentially in the number
of gates. Less obvious is the fact that gate count (not logical
qubit count) also determines the primary overhead in
quantum error correction. This is because a very large
number of physical qubits (often hundreds of times more
than the number of qubits required for a logical bit) are
required to perform state distillation in order to implement
nontransversal gates (e.g., T gates in the toric or surface
code). Thus, we expect the scaling advantages of our
approach to translate into practical gains for a variety of
interesting quantum simulations, both in the near term and
in the distant future.

2. Modeling nonperiodic systems
with a periodic basis

Plane waves are often used as a basis for systems with
reduced periodicity, e.g., surfaces (periodic in two dimen-
sions), nanowires (periodic in one dimension), or even
single molecules (periodic in zero dimensions) [127]. The
main concern to address with plane waves in such simu-
lations is that they enforce a periodic charge density
and thus produce fictitious image interactions between
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computational cells. A simple way to avoid this is to
make the computational cell volume Ω sufficiently large so
that periodic images of the cells do not interact. This is
typically what is done for surface calculations, where it is
necessary only to extend the cell volume in one or two of
the spatial directions. However, a more efficient and
rigorous procedure, particularly for systems that are peri-
odic in zero dimensions such as single molecules, is to use a
truncated Coulomb operator with a slightly larger cell size
[128–130].
To see how this works, we consider an isolated molecule.

The total density of a molecule decays exponentially
quickly away from its center, and thus the molecule may
be inscribed in a box of volume Ω ¼ D3 with only
exponentially small parts of the density (and contributions
to the energy) outside of the box. By using a Coulomb
operator truncated at distance D [54], such that

Vðr; r0Þ ¼
� 1

jr−r0j jr − r0j ≤ D

0 jr − r0j > D;
ðE4Þ

and by carrying out the simulation in a box of size
8Ω ¼ ð2DÞ3, we ensure that there is no Coulomb inter-
action at all between the repeated images of the molecule,
up to exponentially small terms in Ω arising from the
density of the molecule outside of the box. While the
Fourier amplitudes of the normal Coulomb operator are
4π=k2, the Fourier amplitudes of the truncated Coulomb
interaction become 4πð1 − cos½jkjD�Þ=k2. The exact ana-
lytical form of this correction gives the following Coulomb
operators in the plane wave basis:

V ¼ 2π

Ω

X
ν≠0

ðp;σÞ≠ðq;σ0Þ

ð1 − cos ½jkνjD�Þ
c†p;σc

†
q;σ0cqþν;σ0cp−ν;σ

k2ν
;

U ¼ 4π

Ω

X
p≠q
j;σ

ðcos ½jkνjD� − 1Þ
�
ζj
eikq−p·Rj

k2p−q

�
c†p;σcq;σ: ðE5Þ

These operators follow straightforwardly from the deriva-
tion in Appendix B if the Fourier-transformed potentials of
Eq. (6) are convolved with the ð1 − cos½jkνjD�Þ correction
inside of the sum over ν.
In the dual basis, the truncated Coulomb operator can be

implemented even more straightforwardly: One simply
drops all npnq terms for which jrp − rqj > D. As with
the plane waves, to maintain resolution, we increase the
number of basis functions by exactly a factor of 8. Taken
together with the prior arguments in this appendix, this
concludes our argument that electronic structure simula-
tions of systems of reduced periodicity can be carried out
using plane wave (and dual) orbitals with the same
asymptotic scaling as Gaussian orbitals.

APPENDIX F: OPERATOR NORM BOUNDS

In this appendix, we bound the norms of the Hamiltonian
components H ¼ T þ U þ V in the plane wave dual basis.
These bounds are used extensively in determining the
asymptotic scalings discussed in Sec. III. However, we
note that these bounds are likely loose and that one should
compute these bounds numerically in order to determine
practical scaling. Recall that we restrict the support of
all operators to N plane waves with momenta in each
dimension not exceeding an absolute value proportional to
N1=3=Ω1=3.
We begin with the two-body potential operator V, as

given in Eq. (C8). For any state jψi inside the η-electron
manifold of the Hilbert space, we estimate

max
ψ

jhψ jVjψij

¼max
ψ

����hψ j2πΩ
X

ðp;σÞ≠ðq;σ0Þ
ν≠0

cos ½kν · ðrp− rqÞ�
k2ν

np;σnq;σ0 jψi
����

≤
2πη2

Ω

X
ν≠0

1

k2ν
¼ η2

2πΩ1=3

X
ðνx;νy;νzÞ≠ð0;0;0Þ

1

ν2xþν2yþν2z
: ðF1Þ

As the sum above does not have a closed form in three
dimensions, we upper bound it using integrals. In particu-
lar, we use the fact that for monotonically decreasing f,

Xb
x¼a

fðxÞ ≤ fðaÞ þ
Z

b

a
fðxÞdx: ðF2Þ

We break the sum into three cases corresponding to one-,
two-, and three-dimensional sums for the potential operator.
First, let us consider the case of the one-dimensional sum
encountered when νy ¼ νz ¼ 0,

X
νx≠0

1

ν2x
≤ 1þ

Z
∞

1

dx
x2

∈ Oð1Þ: ðF3Þ

Now, consider the two-dimensional case encountered
when νz ¼ 0,

X
ðνx;νyÞ≠ð0;0Þ

1

ν2x þ ν2y
¼
X
νx≠0

2

ν2x
þ
X
νx≠0
νy≠0

1

ν2x þ ν2y
: ðF4Þ

The one-dimensional sum above occurs when νx > 0,
νy ¼ νz ¼ 0. This sum is Oð1Þ from Eq. (F3). The term
in the second case can be bounded using the fact that
1=ðν2x þ ν2yÞ is a monotonically decreasing function of both
variables,
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X
νx≠0
νy≠0

1

ν2x þ ν2y
≤
X
νx≠0

1

ν2x

X
νy≠0

1

1þ ν2y=ν2x
≤
X
νx≠0

1

ν2x

	
1þ

Z
N1=3

1

dy
1þ y2=ν2x




≤
X
νx≠0

1

ν2x
þ
Z

N1=3

1

Z
N1=3

1

dxdy
x2 þ y2

≤
Z

N1=3

1

2dx
x2

þ
Z

N1=3

1

Z
N1=3

1

dxdy
x2 þ y2

≤
Z

N1=3

1

2dx
x2

þ 2π

Z ffiffi
2

p
N1=3

1

dr
r
∈ OðlogNÞ: ðF5Þ

Finally, consider the three-dimensional case. Using exactly the same reasoning spelled out before, but using a spherical
integral rather than a polar integral, we find from Eq. (F5) that in three dimensions,

X
ðνx;νy;νzÞ≠ð0;0;0Þ

1

ν2x þ ν2y þ ν2z
≤ 4π

� ffiffiffi
3

p N1=3

2
− 1

�
þ
Z

N1=3

1

3dz
z2

þ
Z

N1=3

1

Z
N1=3

1

3dxdy
x2 þ y2

∈ OðN1=3Þ: ðF6Þ

Thus, from Eqs. (F3), (F5), and (F6), we find that

max
ψ

jhψ jVjψij ∈ O
�
η2N1=3

Ω1=3

�
; kVk ∈ O

�
N7=3

Ω1=3

�
: ðF7Þ

Note that the dimensions of the potential are in units of inverse length, and the energy scales as η2, as expected.
We can now bound the norm of the external potential operator U, as given in Eq. (C6). For any state jψi inside the

η-electron manifold of the Hilbert space, we estimate

max
ψ

jhψ jUjψij ¼ max
ψ

����hψ j 4πΩ
X
p;σ
j;ν≠0

ζj cos ½kν · ðRj − rpÞ�
k2ν

np;σjψi
���� ≤ 4πη

Ω

�X
j

ζj

�X
ν≠0

1

k2ν

¼ η2

πΩ1=3

X
ðνx;νy;νzÞ≠ð0;0;0Þ

1

ν2x þ ν2y þ ν2z
; ðF8Þ

where we have assumed that
P

jζj ¼ η, as this must be true
when treating periodic systems, which, in general, must be
charge neutral. Thus, we can see that the external potential
has the same bound as the two-body potential,

max
ψ

jhψ jUjψij∈O
�
η2N1=3

Ω1=3

�
; kUk∈O

�
N7=3

Ω1=3

�
: ðF9Þ

We use the equality of these bounds when estimating the
variance of measuring U þ V in Sec. III C.
Finally, we bound the norm of the kinetic-energy

operator T. It turns out that the kinetic-energy operator
is much easier to tightly bound in momentum space, so we
derive the bound from Eq. (B3) rather than from Eq. (C4).
The bound holds for both cases as a consequence of
Parseval’s theorem and the unitarity of the discrete
Fourier transform. The bound is computed as

max
ψ

jhψ jTjψij ≤
����X
ν;σ

k2ν
2
hψ jnν;σjψi

����
≤
2π2η

Ω2=3 ν
2
max ∈ O

�
ηN2=3

Ω2=3

�
: ðF10Þ

However, in some cases (e.g., for the value of Λ
in the Taylor-series method in Sec. III B), we are
interested in the triangle-inequality upper bound on
the operator norm, which is not invariant under
a Fourier transform. Thus, it may also be useful to
bound T in the plane wave dual basis with a triangle
inequality as

1

2N

X
p;q;σ

����
�X

ν

k2ν cos ½kν · rq−p�
�
a†p;σaq;σ

����
¼ 1

2

X
p

����X
ν

k2ν cos ½kν · rp�
����

¼ 1

2

X
p

����∇2
X
ν

exp

	
2πi

Ω1=3 ν · rp


����; ðF11Þ

where ∇2 ¼ ∂2
x þ ∂2

y þ ∂2
z is the Laplacian, which acts

on r. We do this so that we can expand the inner sum
using a geometric series in ν:
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X
ν

exp

	
2πi

Ω1=3 ν · rp



¼
�X

νx

exp

	
2πi

Ω1=3 νxrpx


��X
νy

exp

	
2πi

Ω1=3 νyrpy


��X
νz

exp

	
2πi

Ω1=3 νzrpz


�

¼
�
1 − exp ½2πiN1=3

Ω1=3 rpx
�

1 − exp ½ 2πiΩ1=3 rpx
�
��

1 − exp ½2πiN1=3

Ω1=3 rpy
�

1 − exp ½ 2πiΩ1=3 rpy
�
��

1 − exp ½2πiN1=3

Ω1=3 rpz
�

1 − exp ½ 2πiΩ1=3 rpz
�
�
: ðF12Þ

We can now see that

ð∂2
x þ ∂2

y þ ∂2
zÞ
�
1 − exp ½2πiN1=3

Ω1=3 rpx
�

1 − exp ½ 2πiΩ1=3 rpx
�
��

1 − exp ½2πiN1=3

Ω1=3 rpy
�

1 − exp ½ 2πiΩ1=3 rpy
�
��

1 − exp ½2πiN1=3

Ω1=3 rpz
�

1 − exp ½ 2πiΩ1=3 rpz
�
�

∈ O
�
N2=3

Ω2=3

�
; ðF13Þ

and this leads us to our final bound by completing the sum
over p,

kTk ≤
1

2

X
p

����∇2
X
ν

exp

	
2πi

Ω1=3 ν · rp


���� ∈ O
�
N5=3

Ω2=3

�
:

ðF14Þ

This turns out to be exactly consistent with the bound we
obtained from the momentum space operator, but it was
necessary to show that the triangle-inequality norm re-
mained the same. Finally, the norm of the Hamiltonian
H ¼ T þ U þ V, and the upper bound on its expectation
value is thus

max
ψ

jhψ jHjψij ∈ O
�
η2N1=3

Ω1=3 þ ηN2=3

Ω2=3

�
;

kHk ∈ O
�
N7=3

Ω1=3 þ
N5=3

Ω2=3

�
: ðF15Þ

APPENDIX G: ERROR BOUNDS FOR
TROTTER-SUZUKI FORMULAS

Now that we are equipped with the operator bounds in
Appendix F, we can prove bounds on the Trotter error. For
simplicity, we state our result below as a lemma to allow the
result to be easily reused in subsequent work.
Lemma 1. LetH be the Hamiltonian of Eq. (C9), and letP
jζj ¼ η,

P
jjζjj ∈ OðηÞ, and K be the set of states such

that jϕi ∈ K if and only if
P

ν;σnν;σjϕi ¼ ηjϕi. Under these
assumptions, we have that

jmax
ψ∈K

hψ jðe−iðUþVÞt=2rFFFT†e−i
1
2

P
ν;σ
a†ν;σaν;σt=rFFFTe−iðUþVÞt=2rÞr − e−iHtjψij ≤ ϵ

for a value of r that obeys

r ∈ Θ

0
B@η2N5=6t3=2

Ω5=6 ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηΩ1=3

N1=3

s 1
CA:

Proof.—For methods that simulate the Trotter steps using
the FFFT, Eq. (17) shows us that the error is dominated by
two commutators: ½T; ½T;U þ V�� and ½U þ V; ½T;U þ V��.
We need to bound both of these terms. Because both T and
U þ V conserve particle number, we know that total particle
number commutes with the Hamiltonian, and the total
particle number is a constant of motion for the evolution.
As such, let K be the manifold of states that contains η
electrons. Then, for jψi ∈ K, Hjψi ¼PN

j¼1 jjihjjHjψi ¼P
jϕi∈KjϕihϕjHjψi ≔ PKHjψi. This implies, for the

induced 2-norm, that

jhψ jT2ðUþVÞjψij ¼ jhψ jTPKTPKð½UþV�PKÞjψij
≤ kTPKk2k½UþV�PKk
¼max

ψ∈K
jhψ jTjψij2max

ψ∈K
jhψ j½UþV�jψij2:

ðG1Þ

By repeating the same argument for each term that appears in
the nested commutators and using the triangle inequality, we
then have that the error in the Trotter-Suzuki decomposition
is in

Oðmax
ψ∈K

jhψ jTjψij2max
ψ∈K

jhψ j½U þ V�jψij

þmax
ψ∈K

jhψ j½U þ V�jψij2max
ψ∈K

jhψ jTjψijÞ: ðG2Þ

Then, using the bounds on the kinetic and potential
magnitudes, we find that the Trotter error scales as
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O
�	

η4N5=3

Ω5=3 þ η5N4=3

Ω4=3



t3

r2

�
: ðG3Þ

If we wish the error to be at most ϵ, it therefore suffices to
take a value of r in

Θ
�
η2N5=6t3=2

Ω5=6 ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ηΩ1=3

N1=3

s �
; ðG4Þ

as claimed. ▪

APPENDIX H: LINEAR DEPTH CIRCUIT
TO PLACE ALL QUBITS ADJACENT ON

PLANAR LATTICE

In this section, we describe a circuit that swaps qubits on
a planar lattice so as to place them all adjacent at least once
with circuit depth OðNÞ. This circuit is useful in many
contexts, including for the implementation of the potential
operator, which consists of terms having the form ZiZj. We
describe the process informally below for the case of square
lattices before providing a formal proof that the method
works for a wide class of rectangular lattices. The moti-
vation for restricting qubit connectivity to the planar lattice
comes from existing superconducting qubit platforms that
have this restriction. For the purpose of explanation, we

illustrate the scheme for a 4 × 4 grid of qubits. Our circuit is
implemented in four steps.
Step 1. Define a closed-loop 1D path through the qubits.

Thiswill always be possible on any rectangular arrangement
of qubits on a planar lattice. For instance, for the 4 × 4 grid,
one possible closed-loop path is shown in Fig. 1(a). We then
decompose this path into twodifferent, disconnected graphs,
whichwe call the “left stagger” and “right stagger.”Weshow
an example of this decomposition in Fig. 1.
Step 2. Alternate layers of SWAP gates on the left stagger

and right stagger conformations of the graph. If UL is a
layer of SWAP gates associated with the left stagger and UR
is a layer of SWAP gates associated with the right stagger,
then one should implement ðURULÞN=2, where N is the
number of qubits. This circuit has depth of exactlyN cycles
and returns all of the qubits to their original positions.
A key insight is that half of the qubits will circulate along

the 1D path in a clockwise fashion and half of the qubits
will circulate around the circuit in a counterclockwise
fashion. To see this, it is helpful to imagine the qubits as
being colored in a checkerboard fashion. We demonstrate
the first four layers of this pattern for the 4 × 4 lattice in
Fig. 2. If we imagine the qubits colored as in Fig. 2, then we
can clearly see that the blue qubits will circulate clockwise
and the red qubits will circulate counterclockwise. Because
the qubits will return to their original locations after

(a) (b) (c)

FIG. 1. In the first step, we draw a closed-loop 1D path through the qubits, e.g., Fig. 1(a). We then decompose the 1D path into a left
stagger (b) and a right stagger (c).

(a) (b) (c) (d)

FIG. 2. In the second step, we alternate between applying UL [Fig. 1(b)] and UR [Fig. 1(c)]. If we color the qubits in a checkerboard
fashion, then we can see that all of the qubits of one color (in this case, blue) will move along the 1D path in a clockwise fashion,
whereas all of the qubits of the other color (in this case, red) will move along the 1D path in a counterclockwise fashion. We show the
first four of sixteen layers required to circulate these qubits all the way through the 1D path.
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ðURULÞN=2, all of the blue qubits must have “moved
through” all of the red qubits; thus, all of the blue
qubits have been adjacent to all of the red qubits. What
remains is to make all of the blue qubits adjacent to all of the
blue qubits and all of the red qubits adjacent to all of the red
qubits.
Step 3. Alternate between two staggered layers of

parallel SWAP gates to move all the “colors” of the
checkerboard pattern to separate sides of the qubit array.
In the worst case, this will require

ffiffiffiffi
N

p
=2 cycles. We

demonstrate this in Figs. 3(a) and 3(b).
Step 4. Repeat steps 1 through 3, in parallel, for the

divided sectors of the array. One should alternate between
horizontal and vertical color divisions for step 3. Once the
divided sector size has reached four, a single layer of SWAPs
is all that remains to ensure that every qubit has neighbored
at least once.
Steps 1–3 require exactly N þ ffiffiffiffi

N
p

=2 layers of gates in
the worst case. After every repetition of steps 1–3, the
circuit is divided into sectors of half the number of qubits as
in the prior iteration. Accordingly, one will need to repeat
steps 1–3 a total of logN times. Thus, the total gate depth
required is as follows:

XlogN
k¼0

�
N
2k

þ 1

2

ffiffiffiffiffi
N
2k

r �
∈ ΘðNÞ: ðH1Þ

1. Formal proof

Lemma 2. LetCM be a cycle graph onM ¼ 2mn entries
for integer m and n. Also, let PM be a transformation that
cyclically permutes the odd vertices in the graph in a
counterclockwise fashion and the even vertices in a clock-
wise fashion within the cycle graph. Then, ðx; yÞ is in the
edge set of CM⋃PMðCMÞ⋃ � � �⋃PM=2

M ðCMÞ if and only
if x − y ¼ 1 mod 2.
Proof.—First, let us formalize what we mean by a cyclic

permutation of the vertex labels. Let

PM∶x ↦

�
x − 2 mod M if x mod 2 ¼ 0

xþ 2 mod M if x mod 2 ¼ 1:

For simplicity, let us consider all arithmetic in the following
to be modulo M. We have, for the cyclic graph, that
ðx − 1; xÞ and ðx; xþ 1Þ are edges in CM for every x ∈ ZM.
Let x be even; then, ðxþ 1; x − 2Þ and ðxþ 3; x − 2Þ are in
PMðCMÞ for all x ∈ ZM. Therefore, ðx;xþ3Þ and ðx;xþ5Þ
are in PMðCMÞ. By iterating this q times, we have that
ðx; xþ 4q − 1Þ and ðx; xþ 4qþ 1Þ are in Pq

MðCMÞ. Also,
it follows directly from the definition of PM that PM=2

M is the
identity transformation because x−M¼ðxþMÞmodM.
Finally, we need to show that for each odd y, there exists

an edge ðx; yÞ in some Pn
MðCMÞ. To see this, assume that for

all 0 ≤ p ≤ r, ðx; yÞ is in CM⋃ � � �⋃Pr
MðCMÞ and that for

all odd y, it is ½x − 1;…; xþ 4rþ 1�. We can therefore
apply PM to the graph Pr

MðCMÞ, which includes the edges
ðx; xþ 4ðrþ 1Þ − 1Þ and ðx; xþ 4ðrþ 1Þ þ 1Þ. Thus,
ðx; xþ 4ðrþ 1Þ − 1Þ and ðx; xþ 4ðrþ 1Þ þ 1Þ are in
CM⋃ � � �⋃Prþ1

M ðCMÞ. Thus, ðx; yÞ is in the union for all
odd y greater than x − 1 and less than ðxþ 4ðrþ 1Þ − 1Þ.
Since this trivially holds for r ¼ 0 and because the function
is periodic with period M=2, we then have that our claim
holds for all even x.
Assume x is odd and that there exists even y such that

ðx; yÞ is not in CM⋃PMðCMÞ⋃ � � �⋃PM=2
k ðCMÞ. Since

edges are symmetric, this implies that ðy; xÞ is not in the
union of graphs either. We have shown above that each
even vertex has every even vertex as a neighbor, and hence,
this is impossible. Therefore, the claim holds for all x. ▪
Theorem 3. LetQM∶CM ↦ ðCM=2; CM=2Þ be a function

that maps vertices with odd and even labels to two
disjoint graphs via an invertible transformation for M a
power of 2. Further, let QM(ðCM;CM;…;CMÞ)¼(QMðCMÞ;
QMðCMÞ;…;QMðCMÞ). Let FM be the method of Lemma 2
defined to act similarly on tuples of graphs. There exists an
algorithm that requiresO( logðMÞ) applications ofQM and
FM such that the union of the edges output by the algorithm
is the complete graph on M elements.
Proof.—The proof is constructive. It consists of the

following steps. For p ¼ M;M=2;…; 1, do the following:
(a)ApplyFp, (b) save all edges that are found in the prior step,
(c) apply Qp, and (d) decode all edges saved in the previous
steps to their equivalent edges on the vertex set ZM.

(a) (b) (c)

FIG. 3. In step 3, we alternate between staggered layers of parallel SWAP gates in order to divide the colors of the checkerboard into two
disjoint sectors of the array. In step 4, we repeat steps 1–3 within each of these divisions, in parallel.
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To understand how this works, let us first consider
FMðCMÞ. As argued in Lemma 2, each vertex in ZM
appears in an edge with every other vertex in ZM that has
the opposite parity after an appropriate number of appli-
cations of the PM operation. Thus, the union of the resulting
edges forms a complete bipartite graph on ZM elements.
The results are then saved to ensure that every edge that we
have found can be decoded as an edge later.
Next, we apply QM to the graph. This mapping is

equivalent to splitting both layers of the complete bipartite
graph into separate subgraphs and drawing edges between
the vertices to form a cycle graph isomorphic to CM=2. If
M ≥ 4, then neither of these graphs consists of elements that
have not shared an edgewith each other. Thus,we reduce the
original problem to two instances of the initial problem. By
recursing, we again reduce the subgraph to a complete
bipartite graph, which reduces the number of edges in the
complete graph that have not been observed by a factor of 2.
After recursing this process O( logðMÞ) times, it is then
clear that every possible combination of edges is observed
and saved. Since the map is, by construction, invertible,
these saved edges can be decoded to edges in the original
vertex set, which completes our proof. ▪
Theorem 3 is notably restricted to cases where M is a

power of 2. This is an important restriction for the simple
scheme outlined here because, if we do not make this
assumption, then the approach that we take to recursively
building the edge sets will not work. We can also make this
work in cases where M ¼ 2qX for X ∈ Oð1Þ using OðqÞ
operations from the above set by recursing until the
problem is reduced to building edges between sets of size
X, which can be handled with brute force using bubble sort
inOð1Þ steps. However, in general, ifM ¼ 2P for prime P,
then such a construction will not lead to a low-depth circuit,
and idiosyncratic approaches may be needed to make the
strategy work. For this reason, we focus our attention in the
following on graphs withM ¼ 2k vertices. In the following
lemma, we use these techniques to show how to simulate
the potential term in low depth on a nearest-neighbor
quantum computer that consists of an integer number of
qubits laid out in a rectangular lattice.
Lemma 4. Let S be a set of 2k qubits on a nearest-

neighbor rectangular lattice of dimension 2d × 2k−d such that
SWAP gates and e−iZZϕ gates can only be performed between
neighboring qubits in S. Then,

Q
ðx;yÞ∈Se−iϕxya

†
xaxa

†
yay can be

performed on a quantum computer in depth Oð2kÞ.
Proof.—We prove this result by leveraging Theorem 3,

but to do so, we need to embed the cycle graph described in
the theorem within the square lattice. To see that such an
embedding is possible, first note that every cycle has
a Hamiltonian path. Any rectangular grid of size
2d − 1 × 2k−d also contains the disjoint union of 2k−d−1

cycles and edges that connect these cycles to their neigh-
bors. In particular, if we start a path at (0,0), then by

following the Hamiltonian path, we can arrive at (1,0). This
qubit is adjacent to vertex (2,0), which is also part of a
disjoint cycle; hence, there exists a Hamiltonian path for the
union of both cycles that links (0,0) to (0,3). Repeating this
argument, we see that there is aHamiltonian path connecting
each vertex in the union of these cycles that terminates at
ð0; 2k−d − 1Þ. Now, we introduce another row of vertices
beneath this cycle with labels ð−1; 0Þ;…; ð−1; 2k − 1Þ that
have edges between horizontally adjacent qubits, in addition
to edges between vertices ð−1; 0Þ and (0,0) as well as
ð−1; 2k−d − 1Þ and ð0; 2k−d − 1Þ. Thus, there exists a
Hamiltonian cycle that can be embedded in every rectan-
gular lattice of dimension 2d × 2k−d. This cycle can be
viewed as the cycle graph C2k .
Now that we have shown that we can implement qubits

on a cycle graph in a square lattice, we next need to show
that we can manipulate the qubits in the manner described
in Theorem 3. To do so, we need to first discuss imple-
menting F2q for q ¼ 1;…; k. The operation F2q can be
implemented by swapping every even qubit and its odd
neighbor with higher index, and then swapping each even
qubit with its odd neighbor with lower index. This shifts the
value of every even qubit two sites in the opposite direction
from the data in the corresponding odd qubits. Ergo it
performs the transformation f on the labels ascribed to each
qubit site. Each transformation can be done in depth Oð1Þ
swaps, and in turn, the whole series of swaps requires
Oð2qÞ depth. Furthermore, for each unique edge that is
found in this process, we can easily apply e−iϕZZ to each
edge in depth Oð1Þ. Thus, we can apply F2q and perform
the necessary phase rotations in depth Oð2qÞ.
The operation Q2q can be implemented in the following

way. Apply bubble sort using local swap operations to the
qubits. Since there are 2q vertices within each set that Q2q

acts on, this can be done using a serial bubble-sort
algorithm using 22q swap operations; however, by using
parallel bubble sort, one can performOð2qÞ comparisons at
the same time, allowing the algorithm to execute in depth
2q. This allows us to sort the qubits such that the vertices
0;…; 2q−1 − 1 are assigned even labels and the remaining
vertices are assigned odd labels. Thus, an application of
F2q , Q2q requires depth Oð2qÞ. If the graph has already
been partitioned into a disjoint union of Hamiltonian
cycles, then it is clear that applying C2q to each of these
cycles can be done in depth Oð2qÞ because these graphs do
not interact and gate operations can be applied on them
simultaneously. Following the steps outlined in Theorem 3,
we can produce every edge in the complete graph on 2k

entries in depth

Xk−1
j¼0

2k−j ∈ Oð2kÞ;

which completes our proof. ▪
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Now, if we define the total number of vertices on the
graph to be N ¼ 2k, then the depth required by the
simulation is OðNÞ. Therefore, in architectures that allow
nearest-neighbor interactions that act on disjoint qubits to
be applied at unit cost, we need at most linear time. This is
significant for Trotter-based simulations as well as varia-
tional algorithms where exponentials of such terms have to
be employed in state preparation.

APPENDIX I: FERMIONIC FAST FOURIER
TRANSFORM SCALING

In this section, we outline a method for applying the FFFT
in three dimensions on a planar lattice of quantum bits with
OðNÞ depth. We assume thatM frequencies are kept in each
direction so that, in three dimensions, N ¼ M3. Our deri-
vation of the FFFT will begin by first showing that a one-
dimensional FFFT can be performed expediently on a
quantumcomputer; then,we focusonhowexactly to perform
the three-dimensional analogue on a quantum computer. The
first part of the proof of the validity requires us to work out
some commutation relations between operators.
One of the basic primitives that we need to construct

the FFFT is the fermionic swap operation. The purpose of
the fermionic swap operation is to permute the ordering
of the spin orbitals. Under mappings such as the Jordan-
Wigner transformation, the ordering of the qubits deter-
mines how the operators are antisymmetrized. While the
ordering of the spin orbitals is irrelevant to their quantum
dynamics, a poor ordering of spin orbitals can have a major
impact on the performance of quantum simulation algo-
rithms. The fermionic swap operator allows the canonical
ordering of these operators to be swapped on the fly. Some
important properties of the fermionic swap operator are
given below.
Lemma 5. Let a†p and a†q be fermionic creation operators

acting on two disjoint spin orbitals, and let fswap be the
fermionic swap operator between those two spin orbitals
given in Eq. (12). Then, the following properties hold:
(1) ½a†p; fswap� ¼ a†p − a†q and ½a†q; fswap� ¼ a†q − a†p.
(2) fswap is Hermitian and unitary.
(3) fswapa

†
pfswap ¼ a†q and fswapa

†
qfswap ¼ a†p.

(4) eifswapθa†pe−ifswapθ ¼ 1
2
ðe−2iθ½a†p−a†q�þ ½a†pþa†q�Þ and

eifswapθc†qe−ifswapθ ¼ 1
2
ðe−2iθ½a†q − a†p� þ ½a†p þ a†q�Þ

for any θ ∈ R.
Proof.—For property (1), we have that

½a†p; fswap� ¼ ½a†p; a†qap − a†pap�
¼ a†pa

†
qap − a†qapa

†
p þ a†papa

†
p

¼ −a†q þ a†p: ðI1Þ

The operation fswap is symmetric under the exchange of the
labels of p and q; therefore,

½a†q; fswap� ¼ a†q − a†p: ðI2Þ

Property (2) can be shown in two steps. First, fswap is
manifestly Hermitian. To show that it is unitary, we
demonstrate that it maps a complete orthonormal basis of
unit vectors to another complete orthonormal basis of unit
vectors. The fermionic swap operator has a trivial action on
the vacuum, which is easy to see from its definition,

fswapj0i ¼ j0i: ðI3Þ

It is then easy to show from the above relation and
commutation relations of fswap that

fswapa
†
pj0i ¼ a†pfswapj0i − ½a†p; fswap�j0i ¼ a†qj0i: ðI4Þ

From symmetry arguments, we get fswapa
†
qj0i ¼ a†pj0i. The

final case follows from

fswapa
†
pa

†
qj0i ¼ a†pfswapa

†
qj0i þ ½a†p; fswap�a†qj0i

¼ a†pa
†
qj0i: ðI5Þ

We obtain the result from noting that all four of these states
are orthonormal and unit vectors. Since the subspace is four
dimensional, this demonstrates the claim.
Property (3) follows from properties (1) and (2) and the

fact that a2p ¼ 0 ¼ a2q,

fswapa
†
pfswap ¼ a†pþfswap½a†p;fswap� ¼ a†pþfswapða†p−a†qÞ

¼ 2a†p−a†qþa†qapa
†
p−a†papa

†
p−a†qaqa

†
p

−a†paqa
†
qþa†papa

†
qþa†qaqa

†
q¼ a†q: ðI6Þ

Again, because fswap is invariant under the exchange of
labels p and q, property (3) also holds when p and q are
exchanges.
Finally, property (4) follows directly from Hadamard’s

lemma and the previous properties. Specifically, note that

½fswap; ½fswap; a†p�� ¼ 2ða†p − a†qÞ: ðI7Þ

By nesting this result k times, we see that

adkfswapa
†
p ¼ ð−1Þk2k−1ða†p − a†qÞ; ðI8Þ

where adfswap is adjoint endomorphism (meaning the nested
commutator operator). It then follows that
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eifswapθa†pe−ifswapθ¼a†pþ iθ½fswap;a†p�−
θ2

2!
½fswap; ½fswap;a†p��

¼a†p− iθða†p−a†qÞ−θ2

2!
ða†p−a†qÞþ��� ;

¼1

2
ðe−2iθ½a†p−a†q�þ½a†pþa†q�Þ: ðI9Þ

The analogous claim for a†q follows again by symmetry. ▪
Next, given this result, we need to examine the two-level

fermionic Fourier transform. This is important because it is
the primitive upon which the FFFT is built. The circuit in
Fig. 4 illustrates how the eight-mode FFFT leverages F†

0

and the related operators F†
k ¼ e−i2πk=Ma†qaqF†

0 to perform a
fermionic Fourier transform [71]. The following corollary
illustrates that F†

0 performs the necessary two-mode trans-
formation; then, the subsequent theorem uses this fact to
demonstrate the general construction for the FFFT for more
than eight modes and for representations other than the
Jordan-Wigner transform.
Corollary 6. Let a†p and a†q be creation operators acting

on disjoint spin orbitals and letF†
0 be defined as per Eq. (11)

then F†
0a

†
pF0¼ðapþaqÞ=

ffiffiffi
2

p
and F†

0a
†
qF0¼ðap−aqÞ=

ffiffiffi
2

p
.

Proof.—From Lemma 5, we have that

eifswapπ=4a†pe−ifswapπ=4 ¼ 1ffiffiffi
2

p ða†pe−iπ=4 þ a†qeiπ=4Þ; ðI10Þ

and

eifswapπ=4a†qe−ifswapπ=4 ¼ 1ffiffiffi
2

p ða†qe−iπ=4 þ a†peiπ=4Þ: ðI11Þ

Although the magnitudes of the creation operator match
what is needed by the two-dimensional FFFT, the phases
are not correct. The phases for the transformation of a†p can
be corrected by introducing two phase-shift operators:

eiπ=4a
†
pape−iπ=4a

†
qaqeifswapπ=4a†pe−ifswapπ=4e−iπ=4a

†
papeiπ=4a

†
qaq

¼ 1ffiffiffi
2

p ða†p þ a†qÞ: ðI12Þ

However, if we apply the same transformation to a†q, then
we find

eiπ=4a
†
pape−iπ=4a

†
qaqeifswapπ=4a†qe−ifswapπ=4e−iπ=4a

†
papeiπ=4a

†
qaq

¼ iffiffiffi
2

p ða†p − a†qÞ: ðI13Þ

This unwanted phase of i can be corrected by applying an
e−iðπ=2Þa

†
qaq gate prior to the application of the partial

fermionic swap eifswapπ=4, and this gives us the claimed
unitary gate. ▪
Theorem 7. The FFFTonM spin orbitals, whereM is a

positive integer power of 2, can be implemented using
ÕðM2Þ quantum gates taken from a library that includes F0

gates on nearest-neighbor gates, fermionic swap gates, and
phase gates. It also requires depth ÕðMÞ.
Proof.—Our construction for the FFFT consists of two

types of gates. Specifically, we use F0 gates between two
adjacent spin orbitals, fswap gates, and finally phase-
shifting gates e−insϕ, where ns is the number operator
acting on an arbitrary spin orbital s. For every two-level
subsystem in the problem, we can represent the corre-
sponding creation operators as a vector. For example, let
c†p ¼ ½1; 0�⊤ and c†q ¼ ½0; 1�⊤. Thus, applying F0 on this
subspace is equivalent to applying the two-dimensional
Fourier transform on the vectors that correspond to the
elements. Similarly, the phase shifters can be used to set
the phases arbitrarily for the creation operators, which
allows us to shift the phases of the corresponding vector
components arbitrarily. Thus, these components allow the
Hadamard gate and an arbitrary diagonal unitary to be
performed on the corresponding set of vectors.
TheFFFTof a vector of lengthM ¼ 2k for positive integer

k requires OðM logðMÞÞ operations from our gate library.
The result is such that, for the pth computational basis
vector, this process maps ep ↦ ð1= ffiffiffiffiffi

M
p ÞPje

−2πijp=Mej.
The algorithm does this by applying a divide-and-conquer
approach to the Fourier transform, wherein the discrete
Fourier transform on dimension M is broken up into two
Fourier transforms on dimension M=2. The elements of

FIG. 4. Circuit to implement one-dimensional FFFT onM ¼ 8 sites, as described in Ref. [71]. The circuit is composed of fswap gates
and Fk gates, defined in Eqs. (I16) and (12), respectively. The circuit size is OðM2 logðMÞÞ, and its depth is OðM logMÞ.
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these two Fourier transforms are combined by first applying
phases to the components of the vector of the form

½1; 0�⊤ ↦
½1; e−i2πk=M�⊤ffiffiffi

2
p ; ½0; 1�⊤ ↦

½1;−e−i2πk=M�⊤ffiffiffi
2

p ;

ðI14Þ

on two-dimensional subspaces corresponding to different
mixtures of even and odd Fourier components.
In order to estimate the gate complexity of the algorithm,

we first need to convert these two-level transformations into
operators on the fermionic modes. Again encoding c†p as
½1; 0�⊤ and c†q as ½0; 1�⊤, we have that the equivalent
fermionic transformation is carried out by a unitary Fk
such that

F†
ka

†
pFk ¼

a†p þ e−i2πk=Ma†qffiffiffi
2

p ;

F†
ka

†
qFk ¼

a†p − e−i2πk=Ma†qffiffiffi
2

p : ðI15Þ

Since eiϕa
†
qaqa†qe−iϕa

†
qaq ¼ eiϕa†q, the gate Fk can be

expressed using Corollary 6 as

F†
k ¼ e−i2πk=Ma†qaqF†

0: ðI16Þ

Note that Fk is also unitary, as required, since F0 is unitary
from Lemma 5. This requires Oð1Þ gates from our gate set.
By translating the gate operations between the two sets, it

is clear that if we were not restricted to two-level Fk gates,
then the process could be executed in OðM logMÞ gates
from this gate library. However, owing to this restriction,
we have to perform fermion swap gates in order to move
each q to be adjacent to its corresponding p. To do this,
OðlogðMÞÞ such fermionic swaps are required. We choose
to implement the sort using a parallel bubble sort along the
lexicographical ordering of the fermion modes, which onM
elements requires OðM2Þ nearest-neighbor fermionic
swaps to rearrange the elements. Since this process needs
to be repeated OðlogðMÞÞ times, the number of fermionic
swaps required in the overall algorithm is at most
OðM2 logðMÞÞ. However, the depth is a factor of M lower
than this if parallel bubble sort is employed. ▪
We can now use the previous result to explain how the

three-dimensional FFFT can be performed with low depth.
The result follows similar reasoning as the previous theorem
but with the complication that the FFFT is not easily
expressible as a low-depth circuit using nearest-neighbor
gates when applied to two out of the three dimensions. The
strategy that we employ to avoid this problem is to reorder
the spin orbitals using fermionic swaps.
Corollary 8. The three-dimensional FFFT on N ¼ M3

spin orbitals, whereM is a positive-integer power of 2, can

be implemented using OðN2Þ quantum gates taken from a
library that includes F0 gates on nearest-neighbor gates,
fermionic swap gates, and phase gates. It also requires
depth OðNÞ.
Proof.—Let us begin by assuming the following

canonical ordering: nðνx;νy;νzÞ¼νxþνyMþνzM2. The
three-dimensional FFFT, by definition, is composed of
independent FFFTs in the x, y, and z directions. Let each
node correspond to a vertex label of a Hamiltonian path
embedded in the lattice. Such a path exists because the
number of lattice sites is even sinceM is even. For fixed νy
and νz, all the fermionic modes that participate in the
Fourier transform are contiguous by the definition of a
Hamiltonian path. Therefore, each can be simulated using
the result of Theorem 7. There areM2 groups of qubits with
fixed νy and νz, and ÕðM2Þ gates are required to apply the
x-Fourier transform to each group. Thus, the entire process
requires ÕðM4Þ ⊂ OðN2Þ gates from Theorem 7. Each of
the M2 FFFTs is independent and can be parallelized.
Therefore, we can perform the x component of the
fermionic Fourier transform with depth ÕðMÞ ⊂ OðNÞ.
Next, let us consider the y-Fourier transform. We apply

this Fourier transform by using fermionic swap operations
to transform the basis to one where the effective ordering is
now changed to nðνy; νx; νzÞ. We achieve this by again
performing a bubble sort along the lexicographical ordering
of the fermion modes, using fermionic swap operations for
the exchange. Bubble sort on N elements requires, in the
worst-case scenario,OðN2Þ swap operations (the evaluation
of n is performed in classical preprocessing and thus does
not require any quantum operations). Thus, we can sort the
qubits into the ordering nðνy; νx; νzÞ usingOðN2Þ fermionic
swap gates. These swaps are carried out between adjacent
vertices on the Hamiltonian path inscribed in the two-
dimensional lattice; thus, they commute and can be directly
simulated using nearest-neighbor interactions. By parallel-
izing swaps in bubble sort, we see that depth OðNÞ can be
attained. Once sorted, we can again apply the result of
Theorem 7 to the resultingM2 y-Fourier transforms within
groups of qubits for which νx ¼ νz. Thus, the y component
of the FFFT can be performed in OðN2 þM4 logðMÞÞ ¼
OðN2Þ gates and depth OðNÞ.
The z component of the FFFT can be performed using

exactly the same protocol as the y component, this time
sorting the bits so that the ordering is nðνz; νy; νxÞ and then
(if necessary) using fermionic swaps to sort back to the
original ordering of spin orbitals. Thus, by summing
the complexities of the Fourier transforms along each of
the three components, we obtain the claimed complexities
for a nearest-neighbor architecture on a planar lattice where
M is a positive-integer power of 2. Although the fermionic
swap gate between two lexicographically adjacent fer-
mionic modes is not necessarily a two-local qubit gate,
this is the case under the Jordan-Wigner transformation.
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Thus, we have demonstrated that OðNÞ layers of gates
suffice to implement the FFFT on a planar qubit
architecture. ▪
Note that the fermionic swap operation has many other

potential uses in quantum simulation. As an example, one
application would be in the implementation of operator
nesting [18]. While this procedure typically requires
ancillae to evaluate Jordan-Wigner strings when parallel-
izing commuting operations, one could perform nesting
in place by using fermionic swap operations to move
qubits acted upon by Hamiltonian terms that act on
disjoint sets of qubits next to each other in lexicographical
ordering.

APPENDIX J: ALTERNATIVE
TROTTER-SUZUKI ALGORITHM

While we have examined simulation using the fermionic
fast Fourier transform within the plane wave dual basis, it is
important to note that this approach is not necessary. For
purposes of comparison, we outline here the method by
which one would simulate chemical dynamics within the
basis using the Jordan-Wigner representation of the spin
orbitals. The Hamiltonian is well suited for such simu-
lations because it can be conveniently expressed as a sum of
Pauli operators as shown in Eq. (D6). The simplest term
that appears in such a Trotter decomposition is of the form
e−i2ϕnp . Such terms are easy to implement. It is easy to see
from Eq. (D4) that this is equal to eiϕZ, up to an irrelevant
global phase. This is a single-qubit rotation, which can
either be directly implemented in non-fault-tolerant archi-
tectures or performed using a sequence of O( logð1=ϵÞ)
gates in a fault-tolerant architecture.
The next simplest such terms are of the form e4iϕpqnpnq .

Such terms are slightly more sophisticated, and good
networks are known for these exponentials, as given in
Ref. [16]. While such terms are seldom dominant for
second-quantized quantum simulation, for molecules rep-
resented in the plane wave dual basis, they are among the
most numerous terms. Therefore, it warrants taking some
time to devise optimal networks for these circuits. First,
while the approach of Ref. [16] groups all three nonidentity
terms in the expansion of Eq. (D4) for npnq into a single
circuit, this is not necessarily optimal because the single-
qubit terms can be grouped together. Instead, by decom-
posing the Hamiltonian as per Eq. (D6) directly into Pauli
operators, we can execute the single-qubit terms that come
from both the np and npnq terms simultaneously. This
allows them to be executed with OðNÞ gates and depth
Oð1Þ.
The ZpZq term is slightly more challenging. The strategy

that we employ, as seen in Fig. 5, is to break up the sum into
sets of N − 1 terms, all of which can be computed by
CNOTs acting on disjoint qubits in a logarithmic number of
layers. The simplest such group is

fZ1Z2; Z3Z4;…; ZN−1ZN;Z1Z3;…; ZN−2ZN;…; Z1ZN−1g:

There are OðNÞ such sets, so we can perform all
NðN − 1Þ=2 exponentials using at most NðN − 1Þ=2 rota-
tions,OðNÞ of which need to be executed sequentially. This
is a factor of 3 reduction from the networks of Ref. [16],
and in addition, this approach requires no ancilla to be
parallelized. Next, let us focus on the kinetic term. We
employ a new strategy for simulating the kinetic term that is
based on ideas from Ref. [48]. The circuit works by
diagonalizing the Hamiltonian a†paq þ a†qap by transform-
ing qubits p and q into the Bell basis. This is done because
XpXq and YpYq are simultaneously diagonal in that basis,
which can easily be seen from Eq. (D4) and the fact that

X⊗X¼

0
BBBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCCA; Y⊗Y¼

0
BBBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCCA: ðJ1Þ

More specifically, if we let jBiji ¼ ðCNOT1;2ÞðH ⊗ 1Þ×
ðXi ⊗ XjÞj00i, then the values of i and j uniquely give the
eigenvalues for the X and Y terms in the Hamiltonian.
The circuit in Fig. 6 shows such a transformation. The

outer controlled-NOT gates in the circuit (as well as a
Hadamard that is absorbed into the controlled-Z) give the
basis change into the Bell basis. The next controlled NOT

computes the Jordan-Wigner string, and the controlled Z
copies the value onto the qubit that performs the X part of
the rotation. The remaining qubit flips the sign of the Y part
of the rotation as needed. In general, these networks require

FIG. 5. Simulation circuit for e−iðZ1Z2ϕ12þZ3Z4ϕ34þZ1Z3ϕ13Þ. This
strategy allows N − 1 such terms to be simulated in parallel using
a CNOT chain of depth ⌈ logðNÞ⌉.

FIG. 6. Simulation circuit for e−i2ϕða
†
paqþa†qapÞ for use within the

Trotter-Suzuki framework illustrated for q ¼ pþ 3. The analo-
gous networks traditionally used contain 12 CNOT, 8 single-qubit
Clifford operations, and 2 single-qubit rotations, and the rotations
cannot be parallelized.
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2ðN þ 2Þ gates for N spin orbitals. Also, when these terms
are ordered lexicographically, the majority of the Jordan-
Wigner strings between adjacent Trotter steps will cancel,
as discussed in Ref. [42].
Note that our work provides a further optimization that

was not appreciated in Ref. [42]. The presence of Jordan-
Wigner strings requires the introduction of ancillary qubits to
parallelize the rotations that appear in the simulation. Similar
depth reductions can be achieved by using fermionic swap
operations tomove each relevant pair of spin orbitals adjacent
to each otherwithin the lexicographic ordering implicit in the
Jordan-Wigner representation. There areOðN2Þ such terms;
however, the proof of Lemma 4 shows that we can perform a
fermionic-swap network in depthOðNÞ that will allow us to
simulate every hopping term. Additionally, the construction
requires no ancillary space, but it does require more Clifford
gate operations to perform the fermionic swap (which, in this
case, can be performedwith 3 CNOT gates and a CZ gate) than
would be needed in the nesting approach of Ref. [42]. Thus,
each step in this alternative Trotter-Suzuki approach can also
be simulated in linear depth.
The two approaches mainly differ in the bounds that fall

out of the Trotter-Suzuki decomposition. Following the
same reasoning as was used to find Eq. (20), we obtain the
gate depth needed for simulation,

ÕðNrÞ ∈ O

0
@N5=2t3=2

Ω
ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
N−1=3η2

Ω−1=3

�
2

s 1
A: ðJ2Þ

Note that this bound is likely less tight than the bound that
was found for the Fourier-based approach because more
terms are present in the Hamiltonian, which necessitates
more liberal use of the triangle inequality and also creates
more terms that do not commute with each other in the
expansion. For this reason, if we constrain ourselves to
simulations with constant electron density, then we obtain a
worst-case scaling of OðN9=2Þ.

APPENDIX K: ALTERNATIVE
TAYLOR-SERIES ALGORITHM

In this section, we explain an alternative way to perform
the Taylor-series algorithm. In particular, we implement the
circuit PREPAREðWÞ in a different and more complex
fashion than in Sec. III B. While the asymptotic gate
complexity of the two approaches is almost the same
(perhaps because of loose bounds), the method described
here has significantly lower depth. Whereas Sec. III B
implemented PREPAREðWÞ in a similar fashion to the
database algorithm of Ref. [9], in this section we implement
PREPAREðWÞ in a similar fashion to the on-the-fly algo-
rithm of Ref. [9].
Our approach will be to compute the coefficients of the

Hamiltonian on the fly and apply them as phases in order to
execute PREPAREðWÞ as specified in Eq. (26). To accom-
plish this computation, we think of each term in the sum
over ν as an individual term in the Hamiltonian and then
compress the sum. In other words,

Wp;q;b ¼
X
ν≠0

Wp;q;b;ν Wp;q;b;ν ¼

8>>>>>>>><
>>>>>>>>:

π
2Ωk2ν

− k2ν
8N þ π

Ω
P
j
ζj

cos ½kν·ðRj−rpÞ�
k2ν

p ¼ q

π cos ½kν·ðrp−rqÞ�
4Ωk2ν

b ¼ 0 ∧ p ≠ q

k2ν cos ½kν·ðrp−rqÞ�
4N b ¼ 1 ∧ ðpþ qÞ mod 2 ¼ 0

1
2N b ¼ 1 ∧ ðpþ qÞ mod 2 ¼ 1:

ðK1Þ

While we can efficiently apply phases to quantum states by
controlling on the entire state, one cannot efficiently change
the amplitude of a quantum state by controlling on the
entire state. Thus, we must take the additional step of
further subdividing each term with one more index so that
eachWp;q;b;ν is a sum of μ phases with the same magnitude,

Wp;q;b;ν≈ζ
Xμ−1
m¼0

Wp;q;b;ν;m; Wp;q;b;ν;m ∈ f−1;þ1g;

ζ∈Θ
�
ϵ

Lt

�
; μ∈Θ

�
maxp;q;b;νjWp;q;b;νj

ζ

�
: ðK2Þ

To accomplish this one-the-fly, we perform logic on the
output of PREPAREðWÞ, which acts as

SAMPLEðWÞjpijqijbijνij0i⊗log μ ↦ jpijqijbijνijW̃p;q;b;νi;
ðK3Þ

where W̃p;q;b;ν is a digital approximation with log μ bits to
the real-valued Wp;q;b;ν. Since the values of Wp;q;b;ν shown
in Eq. (K1) are straightforward arithmetic functions of p, q,
b, and ν, togetherwith simple logic,we see that PREPAREðWÞ
can be implemented at gate complexity Õð1Þwith respect to
N and ϵ. Note that some of this arithmetic (such as reversible
computation of the reciprocal) can be costly to compute to
high precision in practice. Furthermore, if we were con-
cerned about scaling with number of nuclear charges, we
could also break up the Zp coefficients in terms of the nuclei
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j using a number of ancillae scaling logarithmically in the
number of nuclei.
Given the PREPAREðWÞ circuit, we can construct the

PREPAREðWÞ circuit by performing logic followed by
phase kickback on the output of the PREPAREðWÞ register.
The values ofWp;q;b;ν;m are always eitherþ1 or −1, but we
actually need the square root of these values for the
PREPAREðWÞ superposition [see Eq. (26)]. Thus, we need
the circuit

KICKBACKðWÞjmijW̃p;q;b;νi

↦

(
jmijW̃p;q;b;νi W̃p;q;b;ν > ð2m − μÞζ
ijmijW̃p;q;b;νi W̃p;q;b;ν ≤ ð2m − μÞζ: ðK4Þ

Note that PREPAREðWÞ can also be implemented with gate
complexity Õð1Þ with respect to N and ϵ. We put these
circuits together with some Hadamard gates to form the
complete PREPAREðWÞ circuit, as shown inFig. 7.We see that

H ¼ ζ
X

p;q;b;ν;m

Wp;q;b;ν;mHp;q;b: ðK5Þ

While our implementation of PREPAREðWÞ is signifi-
cantly more efficient than the method outline in Sec. III B,
by breaking up the Hamiltonian into these different terms,
the normalization Λ becomes

Λ∈Õ
�
ζ
X

p;q;b;ν;m

jWp;q;b;ν;mj
�
¼Õ

�X
p;q;b;ν

���max
p;q;b;ν

jWp;q;b;νj
����

¼Õ
�
N3max

p;q;ν

	����k2ν cos½kν ·ðrp−rqÞ�
N

����;
����cos½kν ·ðrp−rqÞ�

Ωk2ν

����

�

¼Õ
�
N2k2maxþ

N3

Ωk2min

�
¼Õ

�
N8=3

Ω2=3þ
N3

Ω1=3

�
; ðK6Þ

which is significantly higher than the value ofΛ that applies
to the method of Sec. III B. Since the gate complexity of

implementing SELECTðHÞ is ÕðNÞ and the gate complexity
of implementing PREPAREðWÞ is Õð1Þ, from Eq. (24) we
find that the total gate complexity of our Taylor-series
approach is no more than

Õ
�
N11=3

Ω2=3 þ N4

Ω1=3

�
; ðK7Þ

with only polylogarithmic dependence on precision. We see
that the gate complexity at fixed density becomes ÕðN11=3Þ,
which is better than the ÕðN4Þ scaling of the method in
Sec. III B. Furthermore, the oracle for SELECTðHÞ can be
parallelized to Õð1Þ depth using arbitrary two-qubit gates.
We can take advantage of this by using our on-the-fly
algorithm but not our database algorithm because of the
difference in scaling of PREPAREðWÞ.
To see this, consider the following. The SELECTðHÞ oracle

consists of five cases depending on the values ofp, q, and b.
These cases can be executed sequentiallywithout sacrificing
more than a constant factor in depth. They correspond to the
kinetic-energy terms and are the only ones that require
ÕðNÞ-sized circuits. However, they can be performed in
depth Õð1Þ using the following protocol. First, fanout a
qubit string that replicates N copies of p, q, and b. This can
be achieved in OðlogNÞ depth. Next, for each qubit,
compute the value of the control bit that decides whether
the conditions needed for that term to be activated are met.
This requiresOðlogNÞ operations. Next, compute for qubit
j whether j ¼ q, j ¼ p or j ∈ ðp; qÞ; then, using Toffoli
gates conditioned on these qubits, as well as the flag that
determineswhether the term is activated to beginwith, apply
X,Y, orZ on the qubit in question as dictated by SELECTðHÞ.
By construction, the depth needed for this process is Õð1Þ.
After this has been performed, uncompute all ancillae,
which can be done in Õð1Þ depth. The entire process then
clearly requires Õð1Þ depth. Since r ¼ ÕðN8=3Þ segments
are required for the simulation from Eq. (K6) and each
segment can be performed in Õð1Þ depth, we find that the
overall gate depth of our algorithm is ÕðN8=3Þ. This depth is
substantially lower than any previously described algorithm
for electronic structure simulation in the literature.
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