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Origami structures are characterized by a network of folds and vertices joining unbendable plates. For
applications to mechanical design and self-folding structures, it is essential to understand the interplay
between the set of folds in the unfolded origami and the possible 3D folded configurations. When
deforming a structure that has been folded, one can often linearize the geometric constraints, but the
degeneracy of the unfolded state makes a linear approach impossible there. We derive a theory for the
second-order infinitesimal rigidity of an initially unfolded triangulated origami structure and use it to study
the set of nearly unfolded configurations of origami with four boundary vertices. We find that locally, this
set consists of a number of distinct “branches” which intersect at the unfolded state, and that the number of
these branches is exponential in the number of vertices. We find numerical and analytical evidence that
suggests that the branches are characterized by choosing each internal vertex to either “pop up” or “pop
down.” The large number of pathways along which one can fold an initially unfolded origami structure
strongly indicates that a generic structure is likely to become trapped in a “misfolded” state. Thus, new
techniques for creating self-folding origami are likely necessary; controlling the popping state of the
vertices may be one possibility.
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I. INTRODUCTION

The development of responsive materials has paved the
way to the fabrication of self-folding structures, based on
origami, in which flat sheets of a material can be folded
along a discrete network of creases into a targeted three-
dimensional configuration [1–8]. The creases and vertices
formed at their junctions together form a kind of geometric
“program” which determines the shape from the strong
constraints on how a flat sheet can fold into space. This
attractive design paradigm suggests the use of origami as
the foundation for mechanical metamaterials [9–14] and
deployable structures [15,16]. Yet, flexibility is both a
blessing and a curse: a single origami crease pattern can
admit many different folding pathways [17–19] and,
indeed, manipulating a nearly unfolded origami structure
with one’s hands (e.g., the “map-folding problem”) illus-
trates the competition between pathways that can impede
folding to a specific desired configuration [2,8,10,20].

Furthermore, experiments on self-folding gel origami do
not always fold into the expected, programmed shape [1].
Let us now fix terminology so that we can discuss these

issues more precisely. An origami structure refers to a
system of rigid flat plates joined pairwise by ideal hinges,
or creases. Origami structures we consider here will always
arise from a plane polygon decorated with a network
formed by the creases and their junctions at vertices, which
we call the crease pattern. Origami structures can take on a
variety of configurations in 3D space, which are uniquely
specified by the positions of their vertices.
To better understand the phenomena of multiple folding

pathways and misfolding, it is useful to distinguish
two notions of floppiness in an origami structure: (1) the
number of degrees of freedom D, which is the dimension-
ality of the space of motions and scales with the number
of boundary sides of a generic origami crease pattern
[11,21,22], and (2) the number of distinct branches B, or
folding pathways. As we discuss later, the flat unfolded
configuration of an origami structure is a singularity in the
space of origami configurations where B branches of
dimension D intersect. Consider the triangulated origami
structure in Fig. 1 as an example; the figure shows some of
the allowed configurations as a function of three of the fold
angles. In this example, D ¼ 1, so the configuration space
is locally curvelike almost everywhere; yet, B ¼ 4, which
can be seen as four distinct one-dimensional branches
intersecting at the unfolded configuration in the center.
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This paper addresses the following questions: How
many distinct branches does a generic, triangulated origami
crease pattern have, and how can those branches be
distinguished? We focus on triangulated crease patterns
because triangulated structures are marginally rigid while
being maximally flexible [21], and because triangulated
origami can encode the kinematics of origami with bend-
able faces more generally [10].
To answer these questions, we first show that the small

deformations around any initially unfolded configuration of
a triangulated origami structure can be described by the
simultaneous solutions of a system of Vi quadratic equations
(Sec. II) in the Vi þ Ve vertical displacements at the vertices,
where Vi, Ve are the number of internal and external
vertices, respectively. We give two interpretations for each
of these equations, one coming from statics, showing that we
have one equation for each self-stress in the system, and one
coming from kinematics, showing that each equation enfor-
ces the vanishing of Gaussian curvature at an internal vertex.
We use this formalism to review the geometry of nearly
unfolded n-fold single-vertex origami structures and give a
new proof of the fact that their configuration spaces look like
(n − 3)-dimensional double cones [24], where the two
nappes are distinguished by whether the vertex “pops” up
or down [8,19].
Moving on to the case of triangulated origami with

multiple vertices, we restrict our attention in this paper to

triangulated origami with four boundary vertices, where
the number of degrees of freedom D ¼ 1. We provide in
Sec. III numerical evidence from a model of random
origami squares that the number of branches B is generi-
cally 2Vi, and they are with high probability all distinct. We
find a small number of exceptions (appearing with fre-
quency ∼1=1000) that can all be identified from the crease
pattern. The branches are not necessarily distinguished by
the mountain and valley assignments of the folds, that is,
which folds have dihedral angle larger or smaller than π,
respectively. However, we find that pairs of branches
appear to be in one-to-one correspondence with pairs of
vertex sign patterns, which are assignments of �1 to each
internal vertex specifying their popping state.
In Sec. IV, we show that a special class of triangulations

(roughly, those formed from a sequence of adding degree-3
vertices to the boundary) do satisfy B ¼ 2Vi. We conclude
with a discussion in Sec. V on the implications of our
results. In particular, we note that the exponential number
of branches of a generic origami crease pattern interferes
with typical designs for self-folding origami, thus requiring
a deeper understanding of how to engineer the origami
configuration space topology. Specifically, our results
suggest that methods for controlling the popping state of
vertices should be investigated.

II. ANALYTICAL METHODS

A. Model and second-order deformations

Our kinematic model for origami consists of a triangu-
lated network of springs joining vertices in two dimensions
which can, upon deformation, come out of the plane
(Fig. 2). We consider only networks that are planar
triangulations of disks (polygons). The edges that are in
the interior of the disk will be called folds, since we think
of the network as a representation of an origami crease
pattern, and since they separate pairs of triangles whose
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FIG. 1. A neighborhood of the unfolded state in the configu-
ration space of a two-vertex origami structure (inset) projected
onto the fold angles of three folds (thick lines). This was
computed by solving numerically the length constraint equations
[Eq. (1)]. Locally, there are four branches, labeled I–IV, each a
one-dimensional configuration space, all intersecting at a single
point: the flat, unfolded configuration. Movies 1–4 in Supple-
mental Material [23] show animations of these branches. We did
not attempt to compute the global structure of the configuration
space, e.g., how the branches join.

(b)

(c)(a)

FIG. 2. (a) An origami in the unfolded state; the vector un
represents the in-plane displacement of vertex n. (b) A cross-
sectional side view near vertex n; the scalar hn gives the vertical
displacement of vertex n. (c) A small deformation of this origami
away from the unfolded state.
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relative orientations differ by some dihedral angle at that
edge. We refer to configurations of the origami structure as
folded if not all of the dihedral angles between adjacent
faces are equal to π, and unfolded otherwise. Because the
network is made from triangles, the angles at vertices of
faces between adjacent edges will be preserved as long as
lengths are preserved. Furthermore, the triangular faces
cannot bend, making this a good model for rigid origami.
We label the vertices of the origami structure by an integer,
and label edges by a pair ðn;mÞ when the fold joins vertex
n to vertexm. Using this notation, the kinematic constraints
are given by the equations

jXn −Xmj2 − L2
ðn;mÞ ¼ 0; ð1Þ

for each pair of vertices ðn;mÞ joined by a spring of
equilibrium length Lðn;mÞ. These equations define the con-
figuration space C of the origami. Note that while self-
intersections are allowed, we will work in neighborhoods of
C consisting of configurations that do not self-intersect.
Figure 1 shows numerical solutions to these length

equations for a simple crease pattern. We draw C in this
figure using fold angles as coordinates here since those
variables are more intrinsic (for instance, they do not see
the overall position and orientation of the structure). Near
the unfolded state, which we take as the origin, one can
linearize the fold angles as functions of the displacements.
Therefore, the shape of C near the origin looks the same
(up to this linear map) in either set of coordinates. This
representation is also useful when thinking about the self-
folding paradigm, which we return to in Sec. V.
The two notions of floppiness described in the

Introduction have natural interpretations in terms of the
geometry of C. The number of degrees of freedom D is
the dimension of the configuration space. Note that the
configuration space may have singularities (and in this
work, this is the case of particular interest), so the notion of
“dimension” becomes subtle (Ref. [25], Lecture 11). For
our purposes, it suffices to say that the dimension of the
configuration space is the dimension at any nonsingular
point.
The number of branches B is a property of a singular

point of C. For instance, at a singular point consisting of the
intersection of multiple distinct curves or surfaces, each one
of those would consist of a branch. A general definition of a
branch (as an irreducible component of the analytic germ
at the singularity) would take us a bit too far afield into
singularity theory [26]; we give a more concrete definition
for our case in Sec. II C.
We are interested in deformations of unfolded origami,

where the vertices all lie in a single plane and the faces do
not overlap. Without loss of generality, we assume the
initial unfolded configuration lies in the xy plane. We write
the position of vertex n asXn ¼ Un þ un þ hnẑ, where Un
are the equilibrium positions of the vertex in the xy plane,

un is a vertex displacement in the xy plane, and hn is a
vertical displacement out of the plane. Expanding Eq. (1) to
lowest order in the displacements yields

2
Un − Um

jUn − Umj
· ðun − umÞ þ

ðhn − hmÞ2
jUn − Umj

≈ 0: ð2Þ

Because the vertical displacement decouples from the in-
plane displacement and the linear terms in hn vanish, any
displacement with un ¼ 0 for all n preserves lengths to first
order (i.e., any displacement consisting only of height
changes is a first-order flex or motion). But by stopping
here we have not captured enough information to see the
branches, as the lowest-order information lies in the
quadratic terms of Eq. (2). Since the term quadratic in
height leads to a change in bond lengths of the same order
as the linear term in the in-plane displacements, we can
safely neglect terms of order Oðu2

nÞ.
The first term of Eq. (2) governs the infinitesimal

displacements of the in-plane degrees of freedom. We
can rewrite this expression by concatenating the in-plane
displacements into a vector ðu1;u2;…Þ, and define an in-
plane compatibility matrix such that row ðn;mÞ of C is
defined by the equation

"
C

 
u1

..

.

!#
ðn;mÞ

¼ Un − Um

jUn − Umj
· ðun − umÞ: ð3Þ

The matrix C has pairs of columns indexed by vertices n
and rows indexed by the unique folds ðn;mÞ. Formally, it
maps vectors of in-plane deformations to vectors of in-
plane spring displacements and governs the linear defor-
mations of the unfolded configuration of the origami
structure that keep it in the xy plane. Using C, Eq. (2)
becomes

2½C · u�ðn;mÞ þ
ðhn − hmÞ2
jUn − Umj

≈ 0: ð4Þ

Since the in-plane deformations and out-of-plane defor-
mations are decoupled in Eq. (4), the in-plane motions are
governed (at this order) by the kernel ofC. And because 2D
triangulated networks are generically rigid in the plane, by
a counting argument and Laman’s theorem [27], kerC is
generically generated by translations and rotations only.
As these are not of much interest to us here, from now on,
we only consider how Eq. (4) constrains out-of-plane
deformations.
To extract constraints on the vertical displacements hn

from Eq. (4), we make use of the self-stresses of the
network. These are row redundancies in C, defined by
σT ·C ¼ 0T , where σ is a stress vector with one component
per fold and superscript T is the transpose [28]. Taking the
dot product of σ with both sides of Eq. (2), we obtain
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X
ðn;mÞ

σðn;mÞ
jUn − Umj

ðhn − hmÞ2 ¼ 0; ð5Þ

where σðn;mÞ is the component of σ along the fold ðn;mÞ
and the sum is taken over all folds in the network. Thus,
each self-stress of the unfolded configuration of the origami
gives an equation [Eq. (5)] that constrains the vertical
displacements hn to second order. This is a special case
of the more general formalism of Connelly and Whiteley
[29] who also show that all second-order constraints are
generated by the self-stresses (that is, these conditions
which are necessary for deformations to preserve lengths to
second order are also sufficient).
In most of the rest of this paper, we consider solutions to

the system of equations coming from applying Eq. (5) to an
independent basis of self-stresses of triangulated crease
patterns. This system defines a certain subspace in the space
of all vertical displacements, whose dimension we discuss in
Sec. II C. By considering only vertical displacements as our
variables, we are implicitly removing the in-plane degrees of
freedom, and, in particular, the in-plane translations and
rotation about the z axis will not come into play.
The solutions hn to Eq. (5) give only an approximation to

the configuration space at the unfolded state, and may not
be a wholly accurate picture, even qualitatively (Ref. [25],
Lecture 20). The issue is that while the nonexistence of
folded solutions at second order proves that there can
be no folded configurations (second-order rigidity implies
rigidity) [29,30], a second-order solution may not be a
solution at all orders. In all cases that we checked, e.g., in
making Fig. 1 and the movies in the Supplemental Material
[23], solutions to Eq. (5) do seem to correspond to true
solutions of Eq. (1) (see Sec. III). And for single-vertex
origami, the second-order deformations from the unfolded
state can be shown to extend to actual rigid motions
[24,31]; see also Appendix C. We also discuss in
Sec. IV some special multiple-vertex crease patterns where
second-order motions also extend to true motions.
However, we know of no such general guarantee, and
there are (nontriangulated) origami examples where sec-
ond-order solutions do not correspond to points lying in the
true configuration space [31]. Nonetheless, the displace-
ments allowed here can only change the stretching energy
to at most sixth order, so we mostly ignore this issue in
what follows and simply refer to our second-order approx-
imations as configurations. Because our analysis is non-
linear, we end up relying on several more such hypotheses
which we have chosen to deal with post hoc by checking
that they are satisfied in our numerics, rather than seeking a
rigorous proof here.

B. Wheel stresses, Gaussian curvature,
and single-vertex origami

Our first observation is that an unfolded origami struc-
ture with Vi internal vertices has at least Vi self-stresses. To

construct them, we first isolate the faces around each
internal vertex and consider the mechanics of the isolated
vertex stars apart from the rest of the origami structure
[Fig. 3(a)]. Those faces and their edges make a spoked
wheel of folds emerging from a single internal vertex and
meeting the vertices of a polygon. If there are N spokes, the
2N þ 2 in-plane positions of the vertices are subject to 2N
constraints. Since there are three planar Euclidean motions,
there must be generically one self-stress [Fig. 3(b)]. This
wheel stress is preserved if we embed it into the larger
structure by setting the remaining components of σðn;mÞ
to zero.
Interestingly, the second-order constraints arising from

using the wheel stresses in Eq. (5) also have a natural
geometric interpretation in terms of the Gaussian curvature
at each internal vertex, measured by the sum of the angles
between adjacent folds around it. To see this, note that we
can also generate constraints by enforcing the condition
that the Gaussian curvature remains zero at each internal
vertex after deformation. We label the folds around each
internal vertex with an index I, which we take modulo the
number of folds meeting at the vertex. Then let αI;Iþ1 be the
planar angle between folds I; I þ 1 and let ψ I be the angle
the Ith fold makes with respect to the xy plane. Spherical
trigonometry yields the constraint

0 ¼
X
I

�
ψ Iψ Iþ1

sin αI;Iþ1

−
1

2
cot αI;Iþ1½ψ2

I þ ψ2
Iþ1�
�
; ð6Þ

valid up to quadratic order in the ψ I .
To lowest order, we have ψ ðn;mÞ ¼ ðhn − hmÞ=jUn − Umj

in terms of the height displacements. We thus have an
equation for each internal vertex in the form of Eq. (5) from
which we can read off a candidate self-stress σðn;mÞ. If we
denote the self-stress on the outside edges (on the rim of the

(a) (b)

FIG. 3. (a) Extracting a single internal vertex from a larger
origami structure. (b) The “wheel stress” for each single vertex,
represented as either extensional or compressional arrows, is also
present as a self-stress in the larger origami structure of (a).
Indeed, such wheel stresses form a basis for the space of self-
stresses of a generic unfolded triangulated origami; thus, the
dimensionality of that space is equal to the number of internal
vertices. The labels in (b) are associated with Eq. (7).
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wheel) of each vertex by ~σI;Iþ1 and the self-stress on the
spokes I by ~σI [Fig. 3(b)], then we obtain

~σI;Iþ1 ¼ − csc αI;Iþ1

ΔLI;Iþ1

LILIþ1

;

~σI ¼ L−1
Iþ1 cscαI;Iþ1 þ L−1

I−1 csc αI−1;I

− L−1
I ðcot αI;Iþ1 þ cot αI−1;IÞ; ð7Þ

where LI is the length of fold I andΔL2
I;Iþ1 ¼ L2

I þ L2
Iþ1 −

2LILIþ1 cos αI;Iþ1 (Appendix A). In Appendix B, we prove
that Eq. (7) does give the coefficients of a self-stress and
thus that the wheel stress constraint is precisely Gaussian
curvature preservation.
We now discuss the configuration space of single-vertex

origami structures. Our analysis here will play a big role in
our later treatment of multiple-vertex structures. Let Qnm
be the symmetric matrix corresponding to σ so that the
quadratic form in Eq. (5) is written in terms of the vector of
vertical displacements at vertices h:

X
n;m

Qnmhnhm ¼ 0: ð8Þ

If the vertex associated with Qnm has N folds, we find that
the ðN þ 1Þ × ðN þ 1Þ matrix Qnm has N − 2 nonzero
eigenvalues, exactly one of which is negative (Ref. [24]
and Appendix C). This means that a single N-fold vertex
has N − 2 first-order motions once translations and rota-
tions have been removed. The second-order motions are
the solutions to Eq. (8), which defines an (N − 3)-
dimensional surface in the linear space of first-order
motions, namely, the null cone of this quadratic form.
Since Qnm has one negative eigenvalue, its null cone has
two conical components (nappes) that meet at the unfolded
state [Fig. 4(a)]. Topologically, the nappes are cones over
(N − 4)-dimensional spheres.
Let h− be the eigenvector corresponding to this negative

eigenvalue. Points on the two nappes can be distinguished
by the sign of their dot products with h− since the plane
normal to h− separates the nappes. This eigenvector gives a
set of displacements that maximizes the change in the
Gaussian curvature. Indeed, it can be shown from the
formulas given in Appendix C that the component of
largest magnitude in this eigenvector is the displacement at
the vertex itself and the neighboring vertices are moved by
smaller amounts in the opposite direction. Such a displace-
ment [Fig. 4(b)] leads to a conical deformation at the vertex.
This suggests that the difference between rigid origami
configurations in the two nappes is related to whether the
vertex is buckled up or down (relative to the upwards
normal of the origami sheet). We make this more precise in
the rest of this section.
The trace of an origami vertex is defined to be the

spherical polygon obtained by intersecting the origami with

a small sphere centered at the vertex; it is non-self-
intersecting for a vertex sufficiently close to being unfolded
and thus cuts the sphere into two pieces, corresponding to
the upper and lower sides of the origami sheet. Since the
trace of a folded origami vertex lies completely in an open
hemisphere [32], one of those pieces will have area less
than 2π. If that piece corresponds to the upper side of the
origami, the configuration is called popped down (as the
vertex “points” towards the lower side of the sheet) and
otherwise it is called popped up [19] (Fig. 5). Since
configurations of these two types meet only in the unfolded
state, one of the nappes of the double cone configuration
space consists of popped up configurations and the other
consists of popped down configurations, so we can use dot
products with h− to distinguish them computationally. Note
that Ref. [19] give a simpler definition, where popped down

(b)

(c)(a)

FIG. 4. (a) The configuration space of a five-fold origami vertex
structure, for the crease pattern in (c), where the three unlabeled
vertices are pinned to the xy plane. The axes correspond to the
vertical displacements of the three vertices labeled 4–6. (b) The
eigendeformation of the negative eigenvalue would, on its own,
give the vertex positive Gaussian curvature. (c) The planar crease
pattern with the three labeled vertices, 4–6.

FIG. 5. (a) A five-fold origami vertex in a popped up configu-
ration; the vertical line depicts the “upwards” normal of the
origami surface. (b) The same vertex in a popped down
configuration.
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(up) vertices are those whose edge vectors are all in
the northern (southern) hemisphere. Our definition is a
rotation-invariant generalization that is better suited for
considering configurations at vertices that are part of larger
multiple-vertex origami.

C. Consequences for multiple-vertex origami
and the definition of branches

Equation (5) provides a way to count the number of
infinitesimal degrees of freedom of an arbitrary triangulated
origami structure (subject to the caveats described at the
end of Sec. II A), and provides information on the number
of distinct ways of folding a given crease pattern from the
unfolded state.
Suppose we have an unfolded origami structure with

Vi internal vertices and Ve boundary vertices. There are
Vi þ Ve linear degrees of freedom corresponding to ver-
tical displacements, but Vi quadratic equations constraining
them. We are assuming here that all folds are incident to at
least one internal vertex (i.e., we cannot disconnect the
crease pattern by cutting along any one fold as in Fig. 6).
Therefore, the number of nontrivial degrees of freedom for
a generic unfolded triangulation should be given by

D ¼ Ve − 3: ð9Þ

The term 3 arises from removing the three remaining out-
of-plane Euclidean motions (this can be done by, e.g.,
pinning the vertices of an arbitrary triangle to the xy plane).

Equation (9) recovers the count for the degrees of freedom
for a generic (folded) triangulated origami derived from a
linear analysis [21]. The unfolded configuration admits
Vi þ Ve − 3 ¼ Dþ Vi nontrivial linear motions, so this
linear analysis fails, though we see that counting quadratic
constraints as we do here leads to the expected number D.
Geometrically, the unfolded configuration is a singular
point of the configuration space, where the dimension of
the tangent space exceeds the dimension at other nearby
points.
More precisely, D should be the local dimension of the

configuration space at nonsingular points. However, since
the constraint equations are nonlinear, our derivation of
Eq. (9) is not rigorous. To give a proof, we would also need
to show that the hypersurfaces arising from Eq. (5) for each
of the Vi internal vertices intersect transversely (Ref. [25],
Example 11.8). This should be true generically, and in all
of the numerical examples considered in this paper this is
indeed the case.
Before turning to our discussion of distinct folding path-

ways and branches, we consider first the case Ve ¼ 3. Such
crease patterns are triangulated triangles (see the upper
left-hand triangle and its red interior folds in Fig. 6).
Triangulated triangles are equivalent to planar projections
(Schlegel diagrams) of triangulations of spheres; e.g., a
degree-3 vertex lies in the center of a projected tetrahedron.
Our count D ¼ 0 suggests that these should have 0 degrees
of freedom, i.e., that they should be rigid. Gluck proved
that generic triangulated spheres are rigid [33]. In our case,
the triangulated triangles are flat and thus nongeneric, but
Connelly proved that these are rigid at second order in 3D
as well [30]. Thus, in this case, the configuration space is
simply a point at the unfolded state (with multiplicity, as we
will see later).
To better understand the neighborhood of the unfolded

state and to define the notion of “branches” when D ≥ 1,
we consider the solutions of Eq. (5), which are sets of
vectors h in RViþD. Since the quadratic equations are all
homogeneous in the vertex heights, any vector λh solves
Eq. (5) if h does, for any real number λ.
Therefore, we are led to consider solutions of Eq. (5) in

projective space RPViþD−1, where a height vector h is
identified with λh for any nonzero real number λ. Let B be
the number of connected components of the solution set
(counted with multiplicity) in RPViþD−1 and let us assume
that B > 0. Roughly speaking, each of these connected
components is generically a (D − 1)-dimensional compo-
nent of the intersection of a small sphere centered at the
unfolded state with the origami configuration space, where
components related by the z-reflection symmetry h ↦ −h
are identified. In this paper we consider mostly the case
where D ¼ 1, where these components are simply points.
Back in the space of first-order deformations RViþD, each
of these components induces a double cone over some
reflection-related pair of components on this sphere, and all

FIG. 6. An example of a crease pattern containing a fold joining
two external vertices. Such folds do not couple to any others and
we will not consider any crease patterns containing these (except
for the individual butterflies in Sec. IV). This crease pattern also
contains a “triangulated triangle.” All of the red folds above the
upper left diagonal of the square lie within a triangle; hence, the
three vertices interior to the triangle are rigid even though they
each have four folds.
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of the origins of these cones (singular when D > 1)
intersect at the unfolded state. We refer to these B cones
as branches. When D ¼ 1, these cones are simply lines.
Note that by our discussion in Sec. II B, single-vertex

origami structures have a single branch. For the example in
Fig. 4(a), where Vi ¼ 1,D ¼ 2, the branch is a double cone
over a closed curve in RP2.

III. NUMERICAL RESULTS

A. Counting branches

We now discuss the case of D ¼ 1 in more concrete
terms. In that case, each of the branches corresponds to a
curve that passes through the unfolded state, as in Fig. 1. To
understand the typical number of branches B, we consider a
class of random, one-degree-of-freedom origami, general-
izing the example of Fig. 1. We generate random origami
structures by computing a Delaunay triangulation on the
point set consisting of Vi random points uniformly dis-
tributed within a square, together with the corners of the
square. We omit configurations having three-fold vertices
since such vertices are always rigid. We also find no
triangulations with edges connecting opposite corners of
the square (such as in Fig. 6). Such edges would break the
square into two rigid triangulated triangles.
Since there is a vertex at each corner of the square,

Ve ¼ 4, and so Eq. (9) yields D ¼ 1, no matter how the
interior vertices and edges are arranged. We fix the overall
position and orientation by setting the height of the vertices
of one triangle to zero. To remove the scaling symmetry
from the homogeneous system coming from Eq. (5), we
add a normalizing equation

P
jh

2
j ¼ 1, resulting in Vi þ 1

quadratic polynomials that must be simultaneously solved
in terms of Vi þ 1 vertex heights. We solve these systems in
Mathematica 11, which uses a homotopy continuation
algorithm for numerical root finding of polynomial systems
[34]. Note that the solutions of these polynomial systems
come in pairs related by multiplication by −1 correspond-
ing to z-reflection symmetry (as discussed above, each
branch is a line through the origin and these intersect the
normalizing unit sphere twice), so the number of branches
B is half the number of real solutions.
We generated several thousand random triangulated

origami squares with Vi ¼ 2–8 and computed and analyzed
their branches (Table I). Accurate solutions seem to require
very high precision arithmetic, especially as Vi becomes
larger; to ensure good results we used up to 690 digits of
precision and verified the resulting solutions, which
allowed us to find solutions up to Vi ¼ 8.
Using these second-order branches, we numerically

computed approximate configurations [solutions to the
length equations in Eq. (1)] to create our figures and
the movies in the Supplemental Material [23] by using the
solutions to perturb the unfolded configuration and min-
imizing a stretching energy (sum of squared differences of

edge lengths to the lengths in the unfolded state) on the
coordinates until it was zero to high accuracy.
We now give a little bit of background on systems of

polynomial equations to give context for our main results.
In general, there is little one can say about the simultaneous
roots of a completely arbitrary system of polynomials,
especially if one is interested in real roots. One result,
known as Bézout’s theorem, states that if the solutions to a
system of polynomial equations are isolated points, then the
number of complex solutions, counted with multiplicity
and including points “at infinity,” is equal to the product of
the degrees of the equations (Ref. [25], Lecture 18). For our
systems of Vi þ 1 quadratic polynomials in Vi þ 1 height
variables, this yields 2Viþ1 roots. However, we are only
interested in real and finite roots. Our systems have the
property that all coefficients are real, but this merely
guarantees that nonreal roots come in complex-conjugate
pairs; there might still be no real roots.
Nowwe state the first of ourmain numerical findings: with

only a few exceptions we discuss shortly, all the solutions
of our system are distinct and isolated and, amazingly, all
2Viþ1 of them are real. Since the branches correspond to
� pairs of solutions, we therefore have B ¼ 2Vi .
As mentioned, not all crease patterns lead to 2Vi distinct

branches. We find a very small number of systems (two
with Vi ¼ 4, one with Vi ¼ 5, and one with Vi ¼ 6; see
Table I) with fewer branches; in these cases all branches
came with some multiplicity. In these cases, we are able to
identify triangulated triangles within the crease pattern. Let
Vt be the number of vertices in the interior of all such
triangulated triangles (if we had not excluded crease
patterns with degree-3 vertices from our computations,
we would count these in Vt). These vertices must remain
unfolded in all branches of configurations, and it follows

TABLE I. Summary of random triangulation computations. Vi is
the number of internal vertices of the triangulation, the column
“Systems with Vt > 0” gives the number of triangulations found
that include triangulated triangles (in all cases these were flat
octahedra), and the column “MV duplicates” gives the number of
triangulations that included at least one pair of branches with the
samemountain and valley fold assignments. In all cases, the number
of branches with multiplicity was 2Vi , the number of distinct
brancheswas2Vi−Vt , and the brancheswere in2 to1 correspondence
with their vertex sign patterns (defined in Sec. III B).

Vi

Triangulations
generated

Precision
used

Systems with
Vt > 0

MV
duplicates

2 100 500 0 0
3 5000 690 0 0
4 1000 690 2 0
5 1000 690 1 17
6 1000 690 1 28
7 300 690 0 17
8 50 690 0 8
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that their height variables do not contribute to distinct roots
of the quadratic equations, but rather only give rise to
multiplicity. We find that in such cases, the distinct roots of
the quadratic equations have multiplicity 2Vt. Thus, we may
account for this effect with the (conjectural) formula

Bdistinct ¼ 2Vi−Vt : ð10Þ

Let us call the Vi − Vt internal vertices which are not
interior to triangulated triangles foldable vertices. Note that
the heights of nonfoldable vertices are determined by the
foldable ones by the linear condition that each triangulated
triangle is planar, so in the space of linear motions RViþ1,
the branches must lie in a lower-dimensional RVi−Vtþ1.
We now briefly discuss the pattern of mountain and

valley folds in the branches. Following a short Euler
characteristic argument, the number of folds (internal
edges) for a triangulated square is 3ðVi − Vt þ 1Þ, so the
potential number of distinct mountain-valley (MV) assign-
ments up to a global sign change is 23ðVi−Vtþ1Þ=2. Naively,
the fraction of these MVassignments that we should expect
to find among the branches is at most ð1=4ÞVi−Vt−1, which
approaches zero exponentially in the number of vertices.
However, there are combinatorial consistency constraints
on the MV patterns, along the lines of those derived in
Ref. [19] for single-vertex origami, so this is certainly an
overestimate. We do not attempt to work out these con-
sistency conditions, but as some evidence that they play a
role, in our computer-generated examples with Vi ¼ 5, 6,
7, 8 we find an increasing number of crease patterns where
multiple branches have coinciding MV assignments
(Table I and Sec. III C). This phenomenon is well known
in the origami community [35] and an illuminating example
is the six-fold origami vertex with alternating mountain and
valley folds (MVMVMV in cyclic order around the vertex)
called the “waterbomb structure” [8,20]. Since the distri-
bution of mountain and valley folds does not distinguish
different branches in configuration space, and further, since
it is hard to guess which MV assignments are allowed, the
question remains, is there anything that does distinguish
those branches from each other?

B. Vertex sign patterns

Given a folded configuration of an origami square with
multiple internal vertices, we can ask whether each vertex is
popped up or down. These data are encoded as vertex sign
patterns, assignments ofþ1 or−1, to the foldable vertices if
they are popped up or down, respectively. (Since the Vt
vertices lying within triangulated triangles are always
unfolded, we could extend the vertex sign pattern to these
vertices by assigning them the value 0.) As there are
therefore 2Vi−Vt choices of vertex sign patterns, it is natural
to hope that there is a one-to-one correspondence with the
branches. However, branches consist of pairs of solutions
related by the z-reflection symmetry, so we must identify

vertex sign patterns related by a global sign change and we
are left with only 2Vi−Vt−1 equivalence classes. Note that in
a single four-fold vertex origami, we have only one vertex
sign pattern up to sign and two branches, so instead the best
we can hope for is a one-to-one correspondence between
pairs of branches and sign-related pairs of vertex sign
patterns.
We check this correspondence computationally as fol-

lows: we first determine the eigenvector with negative
eigenvalue of Qnm for each internal vertex n, en (shown as
an arrow in Fig. 4). Here we ensure that þen corresponds
to the popping up deformation and we extend the vector
with zero components so that its dimension is the same as
that of h. Then the vertex sign pattern is defined by
σn ¼ sgn½en · h�. Both h and −h correspond to the same
branch, so we associate to each branch a pair of vertex sign
patterns related by a global sign change. Our second main
numerical finding is the following: remarkably, in all of our
computed examples (summarized in Table I), there are
exactly two branches with each such pair of sign patterns,
in agreement with our guess above.
If we look at the branches as lines intersecting in the

singular unfolded state in the second-order configuration
space RVi−Vtþ1, each of the en defines a hyperplane
separating the popped up configurations at n from those
popped down there (Fig. 7). The set of all such planes
arising from the Vi − Vt foldable vertices divides RVi−Vtþ1

into 2Vi−Vt chambers, each labeled by a different vertex sign
pattern. Each of these chambers is topologically the product
of an orthant of RVi−Vt with a real line. For instance, in
Fig. 7 each chamber is topologically the product of a
quarter plane with a line, a “wedge-shaped” region of 3D
space (the projection has been specially chosen so that
these chambers are seen “edge-on,” otherwise the dividing
planes obstruct the view). In these terms, our observation is
that the 2Vi−Vtþ1 distinct rays of the branches always seem
to be distributed so that two rays lie in each of these
chambers, implying that the solutions to the coupled system
of nonlinear equations Eq. (5) are controlled to some extent
by what happens at each vertex. Again, from the perspec-
tive of random solutions to real quadratic equations, one
might have expected some of these branches to be
complex-conjugate pairs and that the real branches would
be distributed much more unevenly in the chambers.
Simple tests with random perturbations of the coefficients
of our equations (so that they no longer come from
realizable crease patterns) confirm this expectation—after
perturbing, the solutions of most systems have many
complex-conjugate pairs and real solutions are not
equidistributed.

C. Branches with nonunique mountain-valley
assignments

We now have two pieces of combinatorial data asso-
ciated to each branch: first, the well-known assignment of
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which folds are mountain and which are valleys (MV
assignment) and, second, the vertex sign pattern (modulo
sign). For most of the origami crease patterns we computed
(Table I), the branches all have different MV assignments.
However, this is not always the case, as mentioned at the
end of Sec. III A. When pairs of branches have identical
MV assignments, they can usually be distinguished by the
vertex sign patterns; in particular, there is usually exactly
one vertex sign that differs. However, interestingly, we do
find a number of examples where the two branches with
the MVassignment also have the same vertex sign pattern.
In the rest of this section we show examples of these
occurrences.
In Fig. 8 we show a typical origami crease pattern from

our data exhibiting two noncongruent branches with
coincident MV assignments. The branches in this example
(and most of the other “MV-coincident pairs” we find) can

be distinguished by the popping state of exactly one vertex.
It follows from Corollary 1 of Ref. [19] that a vertex which
can both pop up and pop down must have degree at least 6,
and indeed, must contain both a mountain “bird’s foot” and
a valley bird’s foot as subsets of the folds around the vertex.
Here, a bird’s foot is a sequence of four not-necessarily
adjacent folds c1, c2, c3, c4 in counterclockwise order
around the vertex such that the angles between c1, c2, c3 are
between 0 and π and c1, c2, c3 have the same sign (all
mountains or all valleys) and c4 has the opposite sign. Note
that the waterbomb vertex contains both a mountain bird’s
foot and a valley bird’s foot.
More interestingly, we find a few examples (one con-

figuration with Vi ¼ 5, two with Vi ¼ 6, and one with
Vi ¼ 7, out of the configurations computed for Table I)
where MV-coincident branches also have the same vertex
sign patterns. The example with Vi ¼ 5 is shown in Fig. 9.
In all the examples we computed where branches had

coincident MV assignments, they had either exactly one
high-degree vertex whose popping state distinguished the
branches or none. We do not dare venture to guess about the
relative frequency of such examples as Vi gets large.

IV. H1 TRIANGULATIONS
AND BUTTERFLIES

In this section we describe a class ofD ¼ 1 triangulations
whose configuration spaces are particularly easy to analyze.
We show that near the unfolded state, their configuration
spaces consist of 2Vi intersecting 1D branches. In contrast to
most of the rest of our results, we discuss actual configu-
rations here, not just second-order approximations.

FIG. 7. A view of the configuration space shown in Fig. 1
embedded in the space of height coordinates, rather than fold-
angle coordinates, with the four folded configurations from
branches I–IV superimposed. Only the second-order approxima-
tions to the branches are plotted here; since at this order they
consist of intersecting lines, the height units are arbitrary. The
upper (lower) sides of the representative configurations have been
colored blue (red) to make the popping at each vertex more
evident. The space is divided into four wedge-shaped 3D
chambers (unshaded, red, purple, blue) corresponding to the
four possible pairs [ðþ;þÞ; ðþ;−Þ; ð−;−Þ; ð−;þÞ] of signs of the
two quantities s5 ¼ e5 · h and s6 ¼ e6 · h, where e5, e6 (not
drawn) are the negative-eigenvalue eigenvectors corresponding to
the internal vertices 5,6, respectively. Thus, for example, the
unshaded chamber ðþ;þÞ consists of all height deformations h
where vertices 5 and 6 are both popped up. The viewpoint has
been chosen carefully to be “edge-on” to the planes s5 ¼ 0 and
s6 ¼ 0. From this angle, the two planes are projected onto the
lines separating the colored regions in the figure, and the line
s5 ¼ s6 ¼ 0 along which these planes intersect becomes the line
passing through the origin that is normal to the plane of the figure.
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FIG. 8. (a) Crease pattern of a triangulated square with Vi ¼ 5
with a pair of branches where the MV assignments to the edges
are identical. Edges colored red and blue represent mountain and
valley folds, respectively. Vertices with red and blue outlines
represent vertices that are popped up and popped down in both
branches, respectively. The state of the green vertex (labeled 7)
distinguishes the two branches; i.e., it is popped up in one branch
and popped down in the other. (b),(c) Images of folded configu-
rations on the two branches. Movies 5 and 6 in Supplemental
Material [23] show animations of the folding motions along these
branches from the unfolded state.
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Henneberg moves [27,36,37] are rigidity-preserving
transformations of graphs that are useful in rigidity theory.
We consider only the Henneberg-1 move, which in three
dimensions is just the addition of a new vertex, and attach it
to the original graph with three new edges. In particular,
we are interested in triangulations that can be built by
repeatedly adding such degree-3 vertices to the boundary.
To be more precise, suppose we have some triangulation T.
First, choose three vertices v1, v2, v3 on the boundary of T
that are adjacent in the cyclic ordering. Then add a new
vertex w and join it with new edges to v1, v2, v3. We say
that T and the resulting triangulation T 0 are related by an H1
move and do not refer to general Henneberg-1 moves any
more. See Fig. 10(b), where the vertex labeled (1) has been

added by an H1 move to the rest of the triangulation; note
how (1) and the three edges incident to it form a pair of
adjacent red triangles on the boundary of the triangulation.
We require that v2 has degree at least 3, as otherwise it
would become a degree-3 vertex in the interior of T 0, and
thus be nonfoldable.
The key property of H1 moves is that given a configu-

ration of T where the faces around v2 are in a folded
configuration, there are always two distinct folded con-
figurations of T 0. To see this, we consider the motion of
butterflies. A butterfly is the 1-degree-of-freedom rigid
origami consisting of two triangular faces joined by a
shared fold [Fig. 10(a)]. Its configuration space is topo-
logically a circle, parametrized by the dihedral angle at the
shared fold. Consider the distance d between the two
nonshared vertices of the butterfly. As the dihedral angle
varies from 0 to 2π, the distance d increases monotonically
from its minimum value dmin in the flat folded state, to its
maximum value dmax when the butterfly is flat and
unfolded, and then decreases monotonically again to
dmin. Thus, for each value dmin < d < dmax, there are
two distinct configurations of the butterfly that are related
by reflection. Now the claim follows since an H1 move can
be viewed as gluing a butterfly at v1, v2, v3. This is
essentially the 3D version of a construction for graphs
embedded in the plane described in Ref. [38]. Note that
when the faces around v2 are unfolded, then d is maximized
and we can only attach the butterfly in its unfolded state.
The basic idea in the rest of this section is that

triangulations that are reducible by reverse H1 moves to
a seed triangulation with a simple configuration space can
also be understood easily. Unfortunately, it seems that very
few triangulations are reducible at all by a reverse H1 move.
We generated 20 000 triangulations with Vi ¼ 3–8 by the
method described in Sec. III and found that an increasing
fraction of triangulations had no degree-3 vertices at the
boundary (starting from 0% at Vi ¼ 3 to 88.5% at Vi ¼ 8).
Furthermore, the number of triangulations in this data set
that can be reduced further with more reverse H1 moves
appears to decay exponentially.
Nonetheless, we now narrow our focus to triangulations

that can be constructed from a sequence of H1 moves from
a butterfly (the seed). We call these H1 triangulations
[Fig. 10(b)]. In line with our observations in the last
paragraph, we find that the fraction of H1 triangulations
decreases roughly exponentially from 1 at Vi ¼ 3 to 0.0077
at Vi ¼ 8. (It is not hard to check that under our restriction
of no interior degree-3 vertices, all Vi ¼ 1, 2, 3 triangu-
lations are H1.)
Note that each reverse H1 move results in the deletion of

one boundary vertex and the conversion of one internal
vertex to a boundary vertex. This means that an H1
triangulation with Vi internal vertices can be decomposed
into a sequence of Vi butterflies. Also, since the seed
butterflies always have four boundary vertices, every H1
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(a) (b)

FIG. 10. (a) An illustration of the distance-maximization
property of the unfolded state for a “butterfly.” (b) An H1
triangulated origami with Vi ¼ 4. One possible reduction se-
quence is depicted, with butterflies and their associated boundary
degree-3 vertices colored and labeled in order: (1) red, (2) orange,
(3) yellow, (4) green, and ending on (5) the blue seed.
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FIG. 9. (a) Crease pattern of a triangulated square with Vi ¼ 5
and a pair of branches with coinciding MVassignments and vertex
signpatterns,with coloring as inFig. 8. There is a short foldbetween
vertices 5 and 7 which is a valley fold. In this pair of examples, all
vertices are popped the sameway in both branches. (b),(c) Images of
folded configurations on the two branches. Movies 7 and 8 in
SupplementalMaterial [23] show animations of the foldingmotions
along these branches from the unfolded state.
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triangulation also has four boundary vertices. We assume in
this section that the triangulations have no interior degree-3
vertices and also that there are no collinear folds meeting
at vertices (there are no “crosses” in the terminology of
Ref. [19]), as these nongeneric collinearities can rigidify
folds in a flat state.
Let us now discuss the configuration space of H1

triangulations near the unfolded state. As discussed above,
the seed butterfly has a configuration space that is a circle.
Now consider the butterfly that is attached by the first H1
move. We show that there are two distinct ways of attaching
it when the seed is nonflat, and one way of attaching it
when the seed is unfolded. We can always choose a small
enough interval around the unfolded state in the configu-
ration space of the seed where the dihedral angle of the new
butterfly never reaches π. This implies that a neighborhood
of the unfolded state of the configuration space of the two
butterflies together consists of two intersecting lines,
topologically a letter X, since we have two choices over
every nonzero initial dihedral angle, glued together at the
unfolded state. Continuing, one sees that for each H1 move,
the number of 1D branches doubles, and they all still
intersect at the unfolded state. This results in 2Vi branches,
as desired.
We have not been able to show that all vertex sign

patterns are realized twice, as this seems to require some
careful analysis of the configurations of the boundary
vertices and when they result in popped up or down states
of interior vertices after an H1 move. However, one can
generalize the arguments in this section to H1-like trian-
gulations where the seed is not just a butterfly but some
other simple triangulation, e.g., a single-vertex origami.
We hope to elaborate on this elsewhere.

V. DISCUSSION

Our results have broad importance in using origami
techniques to manufacture shapes from flat substrates. In
the standard paradigm for self-folding origami, an initially
unfolded sheet is “programmed” by setting the equilibrium
dihedral angle of each fold to a nonzero value [2,8,10,20].
One illustrative self-folding energy functional takes the
form

E½x� ¼ 1

2

X
ðn;mÞ

kðn;mÞðθðn;mÞ − θ̄ðn;mÞÞ2; ð11Þ

where θðn;mÞ is the folding angle of fold ðn;mÞ, θ̄ðn;mÞ is the
programmed equilibrium value, kðn;mÞ is an angular spring
constant for the fold, and the sum is taken over all folds
ðn;mÞ. One can visualize geometrically this functional in
Fig. 1 as a generalized squared-distance function from the
point θ̄ corresponding to the programmed folding angles.
Based on the branched structure of configuration space we
have found (as exemplified by Fig. 1), once an origami

structure begins folding along the wrong branch, it is
potentially very difficult to return it to the desired branch.
This possibility motivated Tachi and Hull, in Ref. [8], to

introduce the notion that the bending moments driving a
self-folding origami structure should drive the pattern in a
direction perpendicular to any undesirable branches in
configuration space; i.e., the gradient of the energy func-
tional at the unfolded state should project onto only one
branch. Their condition can be justified from the point of
view of an analytic energy landscape. In order to avoid
misfolding, the energy should not decrease along any
undesired branches. If we assume that the energy of a
structure depends only on the angles of the folds,
Eðθ1; θ2;…; θNF

Þ, then naturally we require that any
infinitesimal change in fold angles Δθi along an undesired
configuration branch satisfy

XNF

i¼1

∂E
∂θiΔθi ≥ 0: ð12Þ

Since branches are symmetric under θ → −θ, ∂E=∂θi
must then be perpendicular to all undesired branches in
the NF-dimensional space of fold angles.
In order for this to be satisfied easily, one could hope that

under some circumstances, an origami structure would have
very few branches; however, our results suggest that in
generic triangulated patterns with D ¼ 1, the number of
branches depends only on Vi and not the geometry. If we
combine the fact that in a triangulation the number of
internal folds is NF ¼ 3Vi þ const with our finding that the
number of branches is 2Vi , we have thus shown that it is
impossible to satisfy the above orthogonality constraint for
even modest numbers of internal vertices. Nevertheless, it is
an interesting open question whether this condition could
be satisfied approximately, i.e., whether, for sufficiently
large origami crease patterns, we might have most branches
within 99% of being orthogonal, as this happens for
random vectors in high dimensions [39]. Some preliminary
results have been collected in Appendix D which show that
in fact branches tend to be less orthogonal in fold-angle
space than a uniformly random set of vectors. It remains to
be seen how this impacts the programability of self-folding
origami structures.
We also note that our methods can be applied even to

nontriangulated origami. In that case, we would first
triangulate the origami, then add additional quadratic
constraints to rigidify certain folds. The dimension of
the configuration space becomes D ¼ Ve − 4 − E, where
E is the number of rigidified folds in the triangulation that
are not in the original pattern. When this formula becomes
negative, the constraints in the system become redundant
and we instead take D ¼ 0. We would also like to under-
stand what happens when D > 1; it may be that when the
dimension of the branches increases, the number of them
no longer scales exponentially. In a recent paper, Stern et al.
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[40] studied examples with quadrilateral faces where Ve
was large and D ¼ 0. They studied branches defined to be
minimal-energy directions (as opposed to zero energy, as in
this work) away from the unfolded state. Intriguingly, the
scaling of their B is exponential in

ffiffiffiffiffi
Vi

p
. It would be very

interesting to understand the crossover between the regime
studied in that work and this one.
Proving that each sign-related pair of vertex sign patterns

corresponds to a unique pair of folding branches remains
elusive. Our problem of finding all branches fits into the
broader context of enumeration problems in geometric
rigidity such as finding all realizations of isostatic graphs in
the plane [38,41] and enumerating all rigid clusters of
sticky hard spheres [42]. The vertex sign patterns seem to
impose some structure on the branches in configuration
space that leads to the much more tractable formula
B ¼ 2Vi than, e.g., the recent recursion formula for the
number of complex realizations of isostatic graphs in the
plane [41].
Understanding the relation between vertex sign patterns

and the geometry of the branches better may be useful for
developing robust self-folding structures. In particular, it
would be interesting to see whether a self-folding paradigm
based not only on preferred dihedral angles but also on
vertex popping states could be easier to control experi-
mentally, e.g., with conical indenters above and below the
sheet, or perhaps with some kind of actuation or swelling
that breaks the up-down symmetry of the sheet near each
vertex.
Finally, since MV assignments seem to be more fre-

quently ambiguous, particularly for origami with many
internal vertices (see Table I where the fraction of crease
patterns with branches having duplicate MV assignments
seems to be increasing), we suggest that perhaps origami
crease patterns for folding paper origami should be given
with vertex popping states as well.
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APPENDIX A: DERIVING A QUADRATIC
CONSTRAINT FOR EACH INTERNAL VERTEX

FROM THE VANISHING OF THE
GAUSSIAN CURVATURE

One way to express the Gaussian curvature constraint
around a single vertex is in terms of the interior angles of

the spherical triangle made by a pair of adjacent folds and
the ẑ axis (Fig. 11). We denote αi;iþ1 as the planar angle
between adjacent folds, which becomes the length of one
side of the triangle. Similarly, we denote ψ i as the angle
between ẑ and the ith fold.
Let h0 be the height of the central vertex, hi be the

heights of the vertices around the interior vertex at h0, and
Li be the lengths of the folds from h0 to hi. We assume that
all quantities are periodic in the index and numbered in
counterclockwise order. Then we have angles,

ψ i ¼
π

2
−
hi − h0
Li

: ðA1Þ

Finally, define the interior angle of the spherical
triangle between ẑ and the two folds as βi;iþ1 (Fig. 11).
The relationship between these angles is given by the
spherical law of cosines:

cos αi;iþ1 ¼ cosψ i cosψ iþ1 þ sinψ i sinψ iþ1 cos βi;iþ1:

ðA2Þ

Since the vertices we consider are nearly unfolded,
we expand around an unfolded configuration in which
ψ i¼π=2 and βi;iþ1 ¼ αi;iþ1. Therefore, if ψ i ¼ π=2þ δψ i,
βi;iþ1 ¼ αi;iþ1 þ δβi;iþ1, expanding to quadratic order
yields

δβi;iþ1 ¼
2δψ iδψ iþ1 − δψ2

i cos αi;iþ1 − δψ2
iþ1 cos αi;iþ1

2 sin αi;iþ1

:

ðA3Þ

The sum of the interior angles
P

iαi;iþ1 ¼ 2π − K,
where K is the deficit angle, equivalent to the discrete

FIG. 11. The spherical polygon spanned by a single vertex. The
angle between a fold and the ẑ axis is ψ i, the planar angle between
adjacent folds in the plane isαi;iþ1,while the angle between adjacent
folds at the north pole is βi;iþ1. Note that

P
iβi;iþ1 ¼ 2π.
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Gaussian curvature of the vertex; however,
P

iβi;iþ1 ¼ 2π
no matter K. Therefore, for small K, we require thatX

i

δβi;iþ1 ¼ K: ðA4Þ

When the origami is unfolded, K ¼ 0 at each vertex.
Now we can rewrite the angle δβi;iþ1 in terms of the

heights as

δβi;iþ1 ¼ − csc αi;iþ1

ΔLi;iþ1

LiLiþ1

ðhi − hiþ1Þ2
2ΔLi;iþ1

þ
�
csc αi;iþ1

Liþ1

−
cot αi;iþ1

Li

� ðhi − h0Þ2
2Li

þ
�
csc αi;iþ1

Li
−
cot αi;iþ1

Liþ1

� ðhiþ1 − h0Þ2
2Liþ1

; ðA5Þ

where ΔLi;iþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
i þ L2

iþ1 − 2LiLiþ1 cos αi;iþ1

q
is the

distance between the vertices at hi and hiþ1.
Finally, we have

0 ¼
X
i

− cscαi;iþ1

ΔLi;iþ1

LiLiþ1

ðhi − hiþ1Þ2
2ΔLi;iþ1

þ
�
csc αi;iþ1

Liþ1

þ csc αi−1;i
Li−1

−
cot αi;iþ1

Li
−
cot αi−1;i

Li

�

×
ðhi − h0Þ2

2Li
: ðA6Þ

This is precisely the form of the quadratic constraint that we
get from the self-stresses in Eq. (5). In the Appendix B,
we verify that the coefficients here do correspond to a
self-stress.

APPENDIX B: VERIFICATION THAT THE
GAUSSIAN CURVATURE CONSTRAINT

YIELDS A SELF-STRESS

Using Eq. (A6), we can immediately read off the
components of the stress that would give the quadratic
constraint in Eq. (A6). In particular, the stress in the edges
along the “rim” of the wheel should be

σi;iþ1 ¼ − csc αi;iþ1

ΔLi;iþ1

LiLiþ1

; ðB1Þ

and on the spoke edges,

σi ¼
csc αi;iþ1

Liþ1

þ csc αi−1;i
Li−1

−
cot αi;iþ1

Li
−
cot αi−1;i

Li
: ðB2Þ

What remains to to verify that these do in fact satisfy
the equation σT ·C ¼ 0T defining self-stresses. Recall that
self-stresses are assignments of tensions and compressions

to edges that preserve force balance at each vertex.
Therefore, we must check force balance at the spoke
vertices (labeled i ¼ 1 to N) and the hub vertex 0.

1. Force balance at the spokes

We first show force balance at spoke vertex i. Recall
that the position of vertex j is the vector Uj so that
Li ¼ jUi − U0j and ΔLi;iþ1 ¼ jUiþ1 − Uij (Fig. 12). Let
us first check the forces in the direction perpendicular
to the spoke edge vector (Ui − U0). We only need to use
the stresses along the outer edges [Eq. (B1)] for this.
First, we use the law of sines on the triangle with sides

Li, Liþ1, ΔLi;iþ1 to transform Eq. (B1) to

σi;iþ1 ¼ − csc ηi;iþ1=Li; ðB3Þ

where η is the angle opposite Liþ1. A similar argument
shows that

σi−1;i ¼ − csc ηi−1;i=Li; ðB4Þ

where ηi−1;i is opposite Li−1.
The magnitudes of the forces perpendicular to the spoke

vector are given by σi;iþ1 sin ηi;iþ1 ¼ −σi−1;i sin ηi − 1, i, so
there is force balance along this direction at vertex i.
Next, we consider the force at vertex i in the direction

parallel to the spoke vector. Using Eqs. (B3) and (B4),
we see that the contribution from the two rim edges to the
force parallel to the spoke vectors may be written as

Frim;∥ ¼ −ðcot ηi−1;i þ cot ηi;iþ1Þ=Li

¼ Frim;∥;− þ Frim;∥;þ; ðB5Þ

Frim;∥;− ¼ − cot ηi−1;i=Li; ðB6Þ

Frim;∥;þ ¼ − cot ηi;iþ1=Li: ðB7Þ

i-1,i

i-1,i i,i+1

i,i+1

Li

Li+1
Li-1

v0

vi

vi+1
vi-1

h=Li-1sin i-1,i

A=Li tan i-1,i

B=L i tan i-1,i

L i-1,i Li,i+1

FIG. 12. Trigonometric diagram for verification of force bal-
ance at spoke vertex i along the direction parallel to the spoke.
The “crossed ladder” identity relates the lengths of the three
parallel dashed lines, 1=Aþ 1=B ¼ 1=h.
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Consider the term Frim;∥;−. This is minus the reciprocal of
Li tan ηi−1;i, which is the side length A of a certain right
triangle with Li as one of its legs (Fig. 12). There is a
similar interpretation for the term Frim;∥;þ.
Now consider the contribution from the spoke edge

given by Eq. (B2). We split this expression into two pieces,
which each cancel one of the two terms Frim;∥;∓. The first
piece is

cscαi−1;i=Li−1 − cot αi−1;i=Li: ðB8Þ

The first term of Eq. (B8) is the reciprocal of
Li−1 sin αi−1;i, which is the side length h of a right triangle
with Li−1 as the hypotenuse. The second term is the
reciprocal of Li tan αi−1;i, which is the side length B of a
(different) right triangle with Li as one of its legs. See
Fig. 12 where these sides are depicted as dashed lines.
The three side lengths A, B, h are related as in the

“Crossed ladders problem” [43]: for parallel line segments
A, B, h in the configuration shown in Fig. 12, we have the
identity 1=Aþ 1=B ¼ 1=h. Therefore, the first part of the
force along the spoke edge [Eq. (B8)] cancels Frim;∥;−
[Eq. (B6)].
It should be clear that the argument of the preceding

three paragraphs can also be carried out for the second
piece of Eq. (B2), to show that it cancels Frim;∥;þ.

2. Force balance at the hub

For force balance at the hub vertex, we proceed with an
induction on the number of spokes. For the base case with
three spokes, we must show that the vectors with lengths
σ1, σ2, σ3 directed along the spoke directions sum to zero.
Let uj ¼ ðUj − U0Þ=jUj − U0j be the unit vector along the
jth spoke edge. Then this is

X3
j¼1

σjuj ¼ 0: ðB9Þ

We interpret this equation as the condition for the
closure of the polygonal path with sides σjuj. Generally,
when a vertex is in equilibrium, the forces acting on it can
be seen as the sides of a closed force polygon. Note that
in this force triangle the angles α between the spoke
edges become the “turning angles,” so that, e.g., the angle
opposite side σ1 in the force triangle is π − α2;3. We can
show that this triangle is closed using the (converse of the)
law of sines, which amounts to proving that the following
are all equal:

σ1=sin α2;3 ¼ σ2=sin α3;1 ¼ σ3=sin α1;2: ðB10Þ

We show just the first equality, as the proof of the others
is exactly the same.

σ1
sin α2;3

¼ csc α2;3

�
csc α1;2
L2

þ cscα3;1
L3

−
cot α1;2
L1

−
cot α3;1
L1

�
ðB11Þ

¼ csc α3;1 csc α2;3
L3

þ csc α3;1 csc α1;2
L1

þ − csc α3;1ðcot α2;3 þ cot α1;2Þ
L2

: ðB12Þ

We need the following trigonometric identity, equivalent
to the sine addition rule:

csc a csc b ¼ cscðaþ bÞðcot aþ cot bÞ: ðB13Þ

Note that −cscα3;1¼ cscðα1;2þα2;3Þ since α1;2þα2;3þ
α3;1¼2π. Therefore, by applying Eq. (B13) twice, we have

σ1
sin α2;3

¼ csc α3;1 csc α2;3
L3

þ − csc α2;3ðcot α1;2 þ cot α2;3Þ
L1

þ cscα2;3 cscα1;2
L2

ðB14Þ

¼ σ2
sin α3;1

: ðB15Þ

For the induction step, assume that we have shown that
we have force balance at the hub vertex in any wheel graph
with n spokes with stresses given by Eq. (B2). Consider the
star subgraph Gnþ1 of the wheel graph, consisting of nþ 1
spoke vertices connected to the hub; we reduce the force
balance at its hub to force balance in the star graph Gn;i

formed by removing (an arbitrary) spoke vertex i and the
edge joining it to the hub. As in the argument for the base
case, we work with force polygons and prove that the
closure of the force polygon Pn;i of Gn;i implies the closure
of the force polygon Pnþ1 of Gnþ1.
Note that the expression in Eq. (B2) for spoke j depends

only on the lengths Lj−1, Lj, Ljþ1 and the angles αj−1;j and
αj;jþ1. This means that the self-stress evaluated on corre-
sponding spokes of Gnþ1 and Gn;i are identical except at
the edges i − 1, i, iþ 1. Thus, Pn;i and Pnþ1 are identical
except at those edges, too. We prove that the situation is as
depicted in Fig. 13. There, the edges of Pnþ1 are depicted as
thick lines, with the dashed edges i − 1, iþ 1 of Pn;i

overlaid.
To get started, we observe that the closure of Pn;i implies

there is a vertex where the edges corresponding to spokes
i − 1 and iþ 1 (dashed in Fig. 13) intersect. We denote the
lengths of edge i − 1 and iþ 1 in Pn;i as σ0i−1 and σ0iþ1,
respectively. In Pnþ1, edges i − 1 and iþ 1 can be taken to
lie on the corresponding edges of Pn;i, but they will in
general have different lengths, which are simply σi−1 and
σiþ1. For Pnþ1 to be closed, edge i must begin at the end
point of i − 1 and end at the starting point of iþ 1. This

CHEN and SANTANGELO PHYS. REV. X 8, 011034 (2018)

011034-14



means that there is a closed triangle with side lengths
Δσi−1¼σi−1−σ0i−1, Δσiþ1¼σiþ1−σ0iþ1, and σi and whose
angles are determined by the angles αi−1;i and αi;iþ1

between the spoke edges i − 1, i and iþ 1. Note that
the angle βi ¼ π − αi−1;i − αi;iþ1.
To prove that this triangle is closed, we will again use the

law of sines. For convenience, here are the formulas for
the lengths:

σi ¼
csc αi;iþ1

Liþ1

þ csc αi−1;i
Li−1

−
cot αi;iþ1 þ cot αi−1;i

Li
; ðB16Þ

Δσi−1 ¼
csc αi−1;i

Li
þ csc αi−2;i−1

Li−2
−
cot αi−1;i þ cot αi−2;i−1

Li−1

−
cscðαi−1;i þ αi;iþ1Þ

Liþ1

−
csc αi−2;i−1

Li−2

þ cotðαi−1;i þ αi;iþ1Þ þ cot αi−2;i−1
Li−1

ðB17Þ

¼ csc αi−1;i
Li

−
cscðαi−1;i þ αi;iþ1Þ

Liþ1

−
cot αi−1;i − cotðαi−1;i þ αi;iþ1Þ

Li−1
; ðB18Þ

Δσiþ1 ¼
csc αi;iþ1

Li
−
cscðαi−1;i þ αi;iþ1Þ

Li−1

−
cot αi;iþ1 − cotðαi−1;i þ αi;iþ1Þ

Liþ1

: ðB19Þ

We show only σi=sin βi ¼ Δσi−1=sin αi;iþ1, as the proof
of the other identity is the same.

σi
sin βi

¼ − cscðαi−1;i þ αi;iþ1Þ
�
csc αi;iþ1

Liþ1

þ csc αi−1;i
Li−1

−
cot αi;iþ1 þ cot αi−1;i

Li

�
ðB20Þ

¼ − cscðαi−1;i þ αi;iþ1Þ
�
cscαi;iþ1

Liþ1

þ csc αi−1;i
Li−1

�

þ csc αi;iþ1 csc αi−1;i
Li

ðB21Þ

¼ csc αi;iþ1

�
− cscðαi−1;i þ αi;iþ1Þ

Liþ1

þ csc αi−1;i
Li

�

−
csc αi;iþ1½cot αi−1;i − cotðαi−1;i þ αi;iþ1Þ�

Li−1

ðB22Þ

¼ Δσi−1
sin αi;iþ1

; ðB23Þ

where in the second and third equalities we have applied
Eq. (B13). This completes the proof that Eqs. (B1) and (B2)
define a self-stress on the wheel graph.

APPENDIX C: VERTEX QUADRATIC FORMS

Let us consider the quadratic form in Eq. (A6). This form
has the interpretation as the energy if the wheel self-stress
is applied as a prestress [29]. Note that with our sign
convention, this prestress places the spokes under com-
pression and the outer edges under tension.
Using the same notation as in Sec. II, where h0 is the

height of the vertex and h1–hN are the heights of the
adjacent vertices, Eq. (A6) then reads

0 ¼
XN
n¼1

ðgn;nþ12hnhnþ1 þ fnh2n þ An2h0hnÞ − h20
XN
n¼1

An;

where

fn ¼
cot αn;nþ1 þ cot αn−1;n

L2
n

; ðC1Þ

gn;nþ1 ¼ −
csc αn;nþ1

LnLnþ1

; ðC2Þ

An ¼ −fn − gn;nþ1 − gn−1;n ¼
σn
Ln

: ðC3Þ

The corresponding matrix has three null directions, corre-
sponding to the vertical translation and rotations about
the x and y axes of the entire origami structure. We can
remove these by setting h0 ¼ h1 ¼ hN ¼ 0 explicitly. Then
we have

i-1,i

i,i+1

i,i+1

i-1,i+ i,i+1
i

i-1

i+1i

i-1

i+1

FIG. 13. Portion of the force polygon for the hub vertex
considered during the induction. Force balance at the hub vertex
is equivalent to the closure of the force polygon. Each edge in the
figure is a vector parallel to the spoke edges whose length is equal
to the magnitude of the stress component in that edge. Here, we
show only the forces along spokes i − 1, i, iþ 1 and how they
change if spoke i were to be removed.
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0 ¼
XN−1

n¼2

ðgn;nþ12hnhnþ1 þ fnh2nÞ: ðC4Þ

This gives a tridiagonal matrix whose determinant χðNÞ
can be computed to be

χðNÞ ¼
Q

N−1
n¼1 cscαn;nþ1Q

N−1
n¼2 L

2
n

sin

�XN−1

n¼1

αn;nþ1

�
: ðC5Þ

This can be proven by induction using the continuant,

χðN þ 2Þ ¼ fNþ2χðN þ 1Þ − g2Nþ1;Nþ2χðNÞ: ðC6Þ
When all the angles between vertices are identical,

αn;nþ1 ≡ α, and the lengths of the folds are also the same,
Ln ¼ L, the quadratic form of Eq. (C4) is also Toeplitz, and
its eigenvalues can be determined explicitly by

λm ¼ f þ 2jgj cos
�

mπ

N − 1

�
ðC7Þ

for m ranging from 1 to N − 1. For N folds, α ¼ 2π=N.
Thus,

λm ¼ 2
csc ð2π=NÞ

L2

�
cos

�
2π

N

�
− cos

�
mπ

N − 1

��
: ðC8Þ

Consequently, λ1 < 0 and the other eigenvalues are pos-
itive. Now consider changing the angles smoothly. Since no
eigenvalue can change sign without the determinant χ ¼ 0,
we see that Eq. (C5) implies that there is always one
negative eigenvalue so long as the angles between any pair
of adjacent folds remain between 0 and π. When N ≥ 4,
there are thus eigenvalues of both signs, and there is always
a solution to Eq. (C4) for a single vertex; the vertex is
infinitesimally rigid when all eigenvalues have the same
sign (as happens when N ¼ 3, for instance).
We can get some physical intuition for the distribution of

eigenvalues as follows. Under the wheel prestress corre-
sponding to this quadratic energy, the eigenvector with
negative eigenvalue should correspond to an out-of-plane
displacement that is maximally unstable. We can imagine
that there is one that increases the lengths of the com-
pressed spokes while not increasing the lengths of the outer
edges too much, as such a motion will be destabilized by
the stress. The other N − 3 motions correspond to out-of-
plane displacements that are stabilized by the prestress, i.e.,
those that primarily increase the lengths of the outer edges.
The discussion above recovers a special case of a result of

Kapovich and Millson [24] who studied the configuration
space of origami vertices using techniques from the defor-
mation theory of representations of SO(3). In fact, they
considered unfolded origami vertices that may fold back
on themselves (allowing αj;jþ1 < 0 for some j) or have a
different winding around the vertex (

P
N
j¼1 αj;jþ1 ¼ 2πw, for

some integer w not necessarily equal to 1). The relevant
result of their paper is the following.
Theorem I [Kapovich and Millson, 1997].—Theorem

1.1(iii). Assume all planar angles satisfy 0 < jαj;jþ1j < π.
The germ of the configuration space of an origami vertex
with f forward tracks, b back tracks, and winding w is
isomorphic to the germ of the null cone of a quadratic form
with nullity 3, and signature ðf − 2w − 1; bþ 2w − 1Þ.
Here, f counts the number of forward tracks, defined to

be the planar angles with α > 0, and b counts the number of
back tracks, defined to be those angles with α < 0.
We show above the case of this theorem when f ¼ N,

b ¼ 0, and w ¼ 1, and in fact our sign convention for
the sign of the quadratic form also agrees with theirs. (A
change of sign swaps negative and positive eigenvalues,
but, of course, leads to the same null cone). Furthermore, it
is easy to see that our observation that Eq. (C5) only
vanishes when one of the α is an integer multiple of π is
consistent with their statement that the signature changes
when any of f, b, w change. Indeed, Eq. (C4) for the
quadratic form applies in full generality, and so we can
actually use it to give a complete proof of Theorem 1.
Proof of Theorem 1.—The first claim about the germ

being isomorphic to the germ of the null cone essentially
states that the quadratic form we derive in Eq. (C4) as the
lowest-order constraint on the configuration space does
give an accurate picture of a neighborhood of the singular
point (the unfolded state), i.e., that the second-order
motions satisfying Eq. (C4) extend to true motions. For
this we refer to Theorem 4 of Ref. [31], which gives an
elementary proof of this fact. (In fact, Ref. [24] proves the
stronger result that there is an analytic isomorphism
between neighborhood germs.)
The rest of the theorem addresses the signature of the

quadratic form. The nullity of 3 corresponds to the global
isometries mentioned earlier. So we just need to derive the
expression ðf − 2w − 1; bþ 2w − 1Þ for the number of
(positive, negative) eigenvalues. Since the defining sym-
metric matrix is ðnþ 1Þ × ðnþ 1Þ and f þ b ¼ n, it is
enough to show that the number of negative eigenval-
ues N− ¼ bþ 2w − 1.
Suppose we have a real symmetric k × k matrix M,

and let Δj be the determinant of the upper left j × j
submatrix of M (the jth principal minor of M). The key
observation is that, provided none of the Δj vanish, N− is
equal to the number of sign changes of the sequence
Δ0 ¼ 1;Δ1;…;Δk [44].
Because of the tridiagonal nature of the stress matrix,

χðjÞ is also an expression for Δj of the stress matrix. So
we just have to show that we get exactly bþ 2w − 1 sign
changes. Let us consider the ratio

Δjþ1

Δj
¼ csc αj−1;j

L2
j

sinðPj
n¼1 αn;nþ1Þ

sinðPj−1
n¼1 αn;nþ1Þ

: ðC9Þ
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This consists of two factors. The first factor cscαj−1;j is
negative if and only if αj−1;j < 0, i.e., when the jth planar
angle is a back track. The second factor is negative if and
only if the two quantities

Pj−1
n¼1 αn;nþ1 and

Pj
n¼1 αn;nþ1

sandwich an integer multiple of π. Let us first assume that
the second factor does not vanish (the first never will, by
our assumptions on the α’s).
We get a net negative sign in Eq. (C9) if and only if

one of the following two possibilities occurs. Possibility A,
the jth planar angle is a back track and the partial sumPj

n¼1 αn;nþ1 does not pass an integer multiple of π. If Cb is
the number of back-track crossings over integer multiples
of π, this occurs b − Cb times. Possibility B, the jth planar
angle is a forward track and the partial sum does cross an
integer multiple of π. This occurs Cf times, where Cf is the
number of forward-track crossings of integer multiples of π.
It follows that 2w − 1 is the net number of times Cf − Cb

that integer multiples of π are crossed, since w is the
total winding number. Therefore, we have b − Cb þ Cf ¼
bþ 2w − 1 sign changes in total, as desired.
Finally, we treat the case where Δj vanishes due to the

partial sum
Pj

n¼1 αn;nþ1 being equal to an integer multiple of
π. However, as argued after Eq. (C8), we can perturb the
angles α to avoid these cases without changing the sign
of the overall determinant [note that the angle sum in χðNÞ is
equal to 2π − αN;1], and hence, without changing the sig-
nature. Such a perturbation can also be chosen small enough
so that f, b, w do not change, so the same formula applies.
This concludes the proof of Theorem 1.

APPENDIX D: HIGH-DIMENSIONAL
GEOMETRY AND RANDOM ORIGAMI

To better understand how the branches of a random
triangulated D ¼ 1 origami are distributed as directions in
configuration space, we compute pair distribution functions
between the branches, where the branches are interpreted as

lines in the ð3Vi þ 1Þ-dimensional space of infinitesimal
changes in dihedral angle. [Note that the branches lie in a
ðVi þ 1Þ-dimensional linear subspace, as not all sets of
dihedral angles are induced by height displacements.]
Computationally, given a particular configuration, we take
the numerically computed branches given as vectors of
vertex heights and transform them into vectors of dihedral
angles. Here, we choose to work with both � ends of
the branch line, so that we have 2Viþ1 vectors. We then
compute the ð2Viþ1Þ2 angles coming from dot products
between all ordered pairs of branches. These angles
are the distances between branches as points on the
Vi-dimensional sphere. For each Vi we compute these
angles for all of the configurations in Table I to create
histograms of the angles, or pair distribution functions.
In Fig. 14, we show the histogram of the angle between

pairs of branches for V ¼ 6 using bins of size π=128
(black line). We compare the results to random points on a
Vi-dimensional sphere (gray line). The data show that
random origami has a slight enhancement in the number of
orthogonal branches but a more prominent enhancement at
the two tails of the distribution. In particular, the results of
Ref. [39] imply that for random points on a sphere, the
angle distribution approaches a Gaussian with variance
going to zero. However, the tails of the distributions of
angles between branches in random origami appear to
decay exponentially, rather than as a Gaussian.
To indicate what happens as Vi changes, Fig. 15 depicts

the distributions for random origami with vertices from
Vi ¼ 2–8, again binning the results into bins of size π=128.
Since the branches have no natural orientation, for each
angle θ, we also include the angle π − θ; as a consequence,
for small Vi, there is an enhancement for branches that are
almost π apart in angle, since each branch has an angle 0
and π with itself. It is interesting to note that while the
distributions for Vi ¼ 6, 7 very nearly coincide, they differ
significantly from that of Vi ¼ 8. We do not believe that
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FIG. 14. The probability distribution for the angles between
branch vectors in random origami with Vi ¼ 6 (black) compared
to randomly distributed points on a six-dimensional sphere
(gray). The bin sizes are π=32. The solid gray line is an analytical
prediction using Eq. (5) of Ref. [39].
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FIG. 15. The probability distribution that any two pairs of
branches will be a given angle apart for random origami with
V ¼ 2–8 vertices. The bin sizes are π=32.
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this is due to a lack of data. Even though we compute fewer
configurations at Vi ¼ 8, each configuration has twice the
number of branches and hence 4 times as many angle pairs,
so the number of data points going into the histograms is
comparable.
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