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We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes
equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative
application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet
numbers, the flow realizations are found to be described as distributional or “coarse-grained” solutions of
the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The
anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct
mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas
equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to
occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a
cascade of negentropy to small scales. We derive “4=5th-law”-type expressions for the anomalies, which
allow us to characterize the singularities (structure-function scaling exponents) required to sustain the
cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the
“Big Power Law in the Sky” observed in electron density scintillations in the interstellar medium is a
manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
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I. INTRODUCTION

Compressible fluids play a vital role in problems of
astrophysics (interstellar medium or ISM [1], star formation
[2,3]), applied physics (inertial confinement fusion [4]), and
engineering (high-temperature reactive flows [5], super-
sonic aircraft design [6]). Relativistic fluids are necessarily
compressible, of course, and occur in astrophysical flows
(pulsars [7], gamma-ray bursts [8]), high-energy physics
(heavy-ion collisions [9]), and condensed matter physics
(graphene [10–12], strange metals [13,14]). In many of the
above examples, the fluid is either directly observed or
indirectly inferred to be in a turbulent state. The nature of
compressible turbulence has been highly controversial,
however. It is currently debated whether the notion of
an “energy cascade” (as it was developed by Kolmogorov
[15–17], Obukhov [18], Onsager [19,20], Heisenberg [21],
and von Weizsäcker [22] to describe incompressible fluid
turbulence) is applicable at all to turbulence in compressible
fluids. On the one hand, some authors argue that, much the

same as for incompressible turbulence, compressible fluids
possess a turbulent inertial range “which is immune from
direct effects of viscosity and large-scale forcing” [23]
through which kinetic energy is transferred to small scales
by a cascade process that is local in scale. On the other hand,
exact statistical relations have been derived for nonrelativ-
istic compressible turbulence [24] and for relativistic turbu-
lence [25], which do not involve kinetic energy and which
have been invoked to argue that “the interpretation of the
Kolmogorov relation for the incompressible turbulence in
terms of the energy cascademay bemisleading” [25]. This is
a controversy whose resolution has profound consequences
for all physical systemswhere compressible fluid turbulence
manifests itself.
The primary physical effects of cascades in incompress-

ible fluids are “dissipative anomalies,” in which ideal
invariants of the fluid equations, such as kinetic energy,
are nonconserved even in the inviscid or high Reynolds-
number limit. This effect was deduced semiphenomenolog-
ically from geophysical observations by Taylor [26] and
confirmed in classical wind-tunnel experiments [27]. For
modern evidence from numerical simulations and experi-
ments, see Refs. [28–30]. This type of empirical evidence
motivated the theories of Kolmogorov [15–17], Obukhov
[18], Onsager [19,20], Heisenberg [21], and vonWeizsäcker
[22]. A particularly deep contribution was made by Onsager
[20,31], who argued that turbulent fluids could be described
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by singular (weak) solutions of incompressible Euler equa-
tions whose kinetic-energy balance equations would be
afflicted with an anomaly due to the nonlinear cascade
mechanism [32]. Onsager’s derivation was made using a
(smoothed) version of a point-splitting regularization,which
yielded for the anomaly an expression closely related to the
Kolmogorov 4=5th law but valid for individual flow
realizations, without averaging over ensembles [31].
Kolmogorov’s weaker statistical relation is, of course, well
known to physicists; e.g., Polyakov has pointed out the
formal analogy of Kolmogorov’s relation and its point-
splitting derivation to axial anomalies in quantum gauge
field theories [33,34]. Onsager’s deeper contribution has
received little attention in the physics community, on the
other hand, although the many predictions of Onsager’s
analysis are consistent with all available experimental
evidence. In particular, his prediction of 1=3 Hölder singu-
larities for the velocity field has been confirmed exper-
imentally (e.g., Ref. [35]). In fact, an entire multifractal
spectrum of singularities has been measured, as in the later
elaboration of Parisi-Frisch [36,37].
We show here that the Onsager theory carries over to

compressible fluids, completing earlier work of Aluie
[23,38]. There have been extensive further developments
of Onsager’s ideas, which we shall exploit. In particular, we
closely follow the approaches of Eyink [39,40], Constantin
et al. [41], and Duchon-Robert [42], who derived necessary
conditions for dissipative anomalies of kinetic energy in
turbulent solutions of incompressible Euler equations.
Subsequently, there has been deep mathematical work
constructing dissipative, Hölder-continuous Euler solutions
for the incompressible case by “convex integration” meth-
ods, using ideas originating in the Nash-Kuiper theorem
and Gromov’s h-principle (e.g., see DeLellis and
Szkeleyhidi [43,44]). This circle of ideas recently led to
a proof that Onsager’s 1=3 Hölder exponent is sharp [45].
These remarks might suggest that a high level of math-
ematical sophistication is necessary to grasp the essentials
of Onsager’s ideas on turbulent weak solutions. This is not
the case. As a matter of fact, Onsager’s ideas are closely
related to standard physical notions of spatial coarse
graining and renormalization-group invariance [46–48].
See especially Ref. [49], Sec. IV. In addition to extending
Onsager’s approach to compressible fluids and deriving
new testable predictions, we also carefully explain the
connection to renormalization-group ideas. By means of
this intuitive but rigorous approach, we resolve the con-
troversies concerning nonrelativistic compressible fluid
turbulence. A comparison is made with alternative theo-
retical analyses, including classical ideas [50–53], and
more recent works [24,54,55]; see Sec. VII. In a companion
paper, we further extend our analysis to relativistic fluid
turbulence [56].
Turbulence is an essentially strong-coupling problem to

which perturbation theory does not apply, so that, as in

Onsager’s original work, some mathematical tools of
nonlinear analysis must be employed. The required back-
ground for full understanding of the finer points is
mathematical analysis at a theoretical-physics level such
as in Ref. [57], particularly standard spatial Lp norms
(Sec. I.D.10) and basic theory of distributions or general-
ized functions (Sec. VI. A-B). The tools employed are
similar to those in the mathematical theory of fluid shock
solutions. Most of our analysis can be grasped even without
that technical background but assuming just some famili-
arity with spatial coarse graining and fluid turbulence.

II. COMPRESSIBLE NAVIER-STOKES AND
HYDRODYNAMIC SCALING

The model equations that we employ for (nonrelativistic)
compressible fluids in this paper are the standard Navier-
Stokes equations in space dimension d. These govern the
evolution of the conserved densities (per volume) of mass
ρ, momentum j, and total energy E ¼ jjj2=2ρþ u (kinetic-
energy density jjj2=2ρ plus internal-energy density u) by

∂tρþ ∇ · ðρvÞ ¼ 0; ð1Þ

∂tðρvÞ þ ∇ · ðρvv þ pI − 2ηS − ζΘIÞ ¼ 0; ð2Þ

∂t

�
1

2
ρv2 þ u

�
þ ∇ ·

��
uþ pþ 1

2
ρv2

�
v

− κ∇T − 2ηS · v − ζΘv
�
¼ 0: ð3Þ

A fluid velocity v has been defined conventionally by
v ¼ j=ρ, which is thus associated with the transport of
mass. This is not the only possible choice of a fluid velocity
(see, e.g., Refs. [58,59]), but it is the most familiar one
generally employed for a nonrelativistic fluid. In Eqs. (2)
and (3) above, ηðu; ρÞ is the shear viscosity, ζðu; ρÞ is the
bulk viscosity, κðu; ρÞ is the thermal conductivity, and

Sij ¼
1

2

�∂vi
∂xj þ

∂vi
∂xj −

1

d
ð∇ · vÞδij

�
; Θ ¼ ∇ · v ð4Þ

are the strain tensor and dilatational field, respectively.
Here, we admit any thermodynamically consistent relations
for the pressure pðu; ρÞ (the equation of state) and for the
absolute temperature Tðu; ρÞ.
It should be pointed out that this set of equations has

some well-known deficiencies in representing the internal
structure of strong shocks, whose thickness is of the order
of the mean-free-path length of the fluid [60–62]. This may
cause concern since compressible fluid turbulence is well
known to develop numerous small-scale “shocklets.” A
more fundamental model for the dynamics of a neutral
(nonionized) gas would be the Boltzmann kinetic equation,
whose solutions agree well with the experimental data
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for strong shocks. However, we expect that all of our
conclusions below will still apply if such a kinetic
description is employed, as we are concerned with length
scales much greater than the width of the shock front
where, for both kinetic and fluid models, a similar
description emerges as a discontinuous weak or distribu-
tional solution of the compressible Euler equations [63].
The use of a fluid description from the outset greatly
simplifies our analysis, but similar arguments should carry
over to kinetic theory. We do not discuss the effects of
molecular noise either, which, for a thermodynamically
consistent description of a compressible Navier-Stokes
fluid, requires stochastic PDEs with suitable multiplicative
noise given by a fluctuation-dissipation relation [64,65].
The effects of such noise are quite significant, presumably
leading to a “stochastic anomaly” in addition to the
dissipative anomaly already discussed [66–69]. This is
an issue of fundamental importance for the problems of
predicting, reproducing, or controlling turbulent flows
[70,71], but, as argued further below, the addition of
thermal noise does not alter our conclusions in this paper
on dissipative anomalies.
Compressible fluid turbulence is characterized by

several dimensionless number groups, which are revealed
by a scaling of the fluid equations. There is more than one
way to rescale the equations. Here, we follow a simple
approach, introducing dimensionless variables

ρ̂ ¼ ρ=ρ0; v̂ ¼ v=v0; û ¼ u=ρ0v20; ð5Þ

x̂ ¼ x=L0; t̂ ¼ t=ðL0=v0Þ; ð6Þ

p̂ ¼ p=ρ0v20; T̂ ¼ T=T0: ð7Þ

In the equations above, ρ0 and v0 are typical densities
and velocities, such as spatial mean or r.m.s. values.
Here, L0 is the large length scale of the turbulent flow,
e.g., the integral length, or another length characterizing
the scale of injection of kinetic energy either by external
stirring or by initial data. For the temperature scale T0,
we may also take a r.m.s. value or, alternatively,
T0 ¼ Tðρ0v20; ρ0Þ. The nondimensonalized equations of
motion then become

∂ t̂ρ̂þ ∇̂ · ðρ̂ v̂Þ ¼ 0; ð8Þ

∂ t̂ðρ̂ v̂Þ þ ∇̂ · ðρ̂ v̂ v̂þp̂I − 2η̂ Ŝ−ζ̂ Θ̂ IÞ ¼ 0; ð9Þ

∂ t̂

�
1

2
ρ̂v̂2 þ û

�
þ ∇̂ ·

��
ûþ p̂þ 1

2
ρ̂v̂2

�
v̂

− κ̂ ∇̂ T̂ −2η̂ Ŝ ·v̂ − ζ̂ Θ̂ v̂

�
¼ 0; ð10Þ

where

η̂ðû; ρ̂Þ ¼ η

ρ0v0L0

; ζ̂ðû; ρ̂Þ ¼ ζ

ρ0v0L0

ð11Þ

are inverse Reynolds numbers associated with the shear and
bulk viscosities, respectively, and

κ̂ðû; ρ̂Þ ¼ κT0

ρ0v30L0

ð12Þ

is an inverse Péclet number. Fully developed turbulent
flow occurs when the Reynolds and Péclet numbers (as
functions of û, ρ̂) are uniformly very large compared to
unity, and η̂, ζ̂, κ̂ are small. It should be kept in mind that
these dimensionless transport quantities are generally made
smaller not by decreasing η, ζ, κ but instead typically by
increasing ρ0, v0, or especially L0. We hereafter omit the
hats “ ·̂” on all variables but always assume that non-
dimensionalization has been carried out. In particular, when
we discuss the ideal limit η, ζ, κ → 0 below, we always
mean, more literally, that η̂, ζ̂, κ̂ ≪ 1.
There is one other dimensionless variable that plays an

important role in compressible turbulence, which does not
appear explicitly above. This is the Mach number or the
inverse of the dimensionless sound speed:

Ma ¼ 1=ĉs ¼ v0=cs; ð13Þ

with cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂p=∂ρÞsn

q
the adiabatic sound speed (the

density derivative being taken at fixed entropy per particle
sn). Of course, the Mach number as defined above is also a
variable function of û, ρ̂. The properties of compressible
turbulence are strongly dependent upon the Mach number.
However, the main results of the present work are valid for
any Mach number. We comment below on those parts of
our analysis that make any assumptions depending on the
Mach number, either explicitly or implicitly.

III. DISSIPATIVE ANOMALIES

Immediate consequences of the compressible Navier-
Stokes equations (1)–(3) are the kinetic-energy balance

∂t

�
1

2
ρv2

�
þ ∇ ·

��
pþ 1

2
ρv2

�
v − 2ηS · v − ζΘv

�
¼ pð∇ · vÞ − 2ηjSj2 − ζΘ2 ð14Þ

and the internal-energy balance

∂tuþ ∇ · ½uv − κ∇T� ¼ −pð∇ · vÞ þ 2ηjSj2 þ ζΘ2; ð15Þ

where 2ηjSj2, ζΘ2 are the energy dissipation per volume
due to shear and bulk viscosity, respectively. Because total
energy is conserved, the kinetic energy lost is precisely
equal to the internal energy gained.
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The balance equations analogous to Eqs. (14) and (15)
above hold also in the limit Ma ≪ 1 of low Mach numbers.
The incompressible Navier-Stokes equation then governs
the velocity field, in which only the shear viscosity
survives. The temperature field obeys a passive advection
equation with viscous heating as a source term. The
remarkable empirical fact for 3D incompressible turbulence
is that the viscous dissipation per mass Qν ¼ 2νjSj2, where
ν ¼ η=ρ is the kinematic viscosity, appears to have a
nonvanishing limit as ν → 0. Full documentation of the
relevant laboratory experiments and numerical simulations
can be found in Refs. [28–30]. A more precise statement is
that a distributional limit [72] of the viscous dissipation
field appears to exist,

Q ¼ D- limν→0Qν; ð16Þ

and, by experimental evidence, yields a positive measureQ
with multifractal scaling properties [73,74] in the infinite
Reynolds-number limit. As shown in the work of Duchon
and Robert [42], this same measure appears as an anomaly
term in the kinetic-energy balance equation

∂t

�
1

2
v2
�
þ ∇ ·

��
pþ 1

2
v2
�
v

�
¼ −Q ð17Þ

for weak solutions of the incompressible Euler equations,
which are obtained by strong L3 limits of incompressible
Navier-Stokes solutions as ν → 0. Duchon and Robert [42]
also derived an inertial-range expression for Q closely
related to the Kolmogorov 4=5th law. This allowed them to
prove a refined version of the Onsager singularity theorem,
namely, that pth-order scaling exponents ζvp of (absolute)
velocity increments must satisfy ζvp ≤ p=3 for p ≥ 3, or
otherwiseQ≡ 0. See also Refs. [40,41]. The empirical fact
that kinetic-energy dissipation has a nonvanishing limit for
infinite Reynolds numbers, within the accuracy of current
measurements, is so central to the modern understanding of
incompressible fluid turbulence that it is sometimes called
the “zeroth law of turbulence.”
The fundamental hypothesis of the present work is that

there is similarly a nonzero distributional limit

Q ¼ D-limη;ζ;κ→0½2ηjSj2 þ ζΘ2� ¼ Qη þQζ > 0 ð18Þ

for viscous dissipation in compressible fluid turbulence. A
number of previous works have investigated the statistical
properties of the viscous dissipation in compressible
turbulence, e.g., Refs. [75–77]. In particular, Ref. [77]
presents direct empirical evidence for the zeroth law of
compressible turbulence. Furthermore, there are simple
shock solutions of the compressible Navier-Stokes solution
that converge as η, ζ, κ → 0 strongly (and thus distribution-
ally) to weak solutions of compressible Euler equations
for which Q > 0. For example, see Appendix A. In this

respect, the theory of compressible fluids is better off than
the incompressible theory, where there are still no rigorous
examples of dissipative Euler solutions obtained by the
physical limit of vanishing viscosity. The purpose of the
present paper is to develop the consequences of hypothesis
(18) for compressible turbulence.
Furthermore, in this work we also consider the balance

equation for the entropy density per volume, which is
implied by the compressible Navier-Stokes equation. As is
well known (e.g. Ref. [78], Chap. XII, Sec. 1; Ref. [79],
Sec. 49), this balance equation has the form

∂tsþ ∇ ·
�
sv −

κ∇T
T

�
¼ κj∇Tj2

T2
þ 2ηjSj2

T
þ ζΘ2

T
; ð19Þ

where entropy production on the right-hand side is positive,
consistent with the second law of thermodynamics.
Although fluid turbulence is a strongly dissipative macro-
scopic process, there seem to have been remarkably few
attempts to understand its consistency with the thermody-
namic second law. A pioneering work in this direction is a
1949 paper of Obukhov that considered the entropy balance
for incompressible fluid turbulence in the low Mach-
number limit [80]. When Ma → 0, the compressible
Navier-Stokes system (1)–(3) reduces to the divergence-
free condition on velocity, ∇ · v ¼ 0, together with the
space-time constancy of density ρ, the incompressible
Navier-Stokes equation for velocity v,

ρð∂t þ v · ∇Þv ¼ −∇pþ ηΔv; ð20Þ

and the temperature equation

ρcPð∂t þ v · ∇ÞT ¼ ∇ · ðκ∇TÞ þ 2ηjSj2: ð21Þ

These two equations combine to give the total energy
equation (3) with internal-energy density u ¼ ρcPT. Here,
cP is the specific heat (per mass) at constant pressure. See
Ref. [79], Secs. 10 and 50; Ref. [81], Eqs. (5.9) and (5.10);
and, for a more mathematical discussion of the low Mach-
number limit, see Ref. [82], pp. 11–13. A systematic
asymptotic study [83] derives the incompressible system
(20) and (21) in the limit Ma → 0 under the assumption that
mechanical and thermal forcing are balanced and that
thermal expansion effects are negligible [84], but other
limits are possible. For example, if thermal forcing instead
dominates mechanical forcing, then Ref. [83] found that the
final viscous heating term in Eq. (21) is negligible
compared with thermal diffusion, and dropping the viscous
contribution yields the temperature equation considered by
Obukhov [80]. All of these various low Mach-number
limits are special cases of the compressible fluid equa-
tions (1)–(3) that are analyzed in this work, and all of the

GREGORY L. EYINK and THEODORE D. DRIVAS PHYS. REV. X 8, 011022 (2018)

011022-4



results derived here apply immediately to the incompress-
ible fluid. The entropy analyzed by Obukhov [80] for
incompressible fluids is s ¼ ρcP lnT, which is an invariant
for smooth solutions of the system (20) and (21), with
η ¼ κ ¼ 0. Extending Obukhov’s theory to compressible
fluid turbulence at arbitrary Mach numbers is one of the
principal motivations of our paper. In fact, our analysis will
yield results that generalize those in Ref. [80] even for
incompressible fluids.
While entropy is conserved for smooth solutions of the

compressible Euler equations, it is natural to hypothesize
that the entropy balance will also be anomalous for
compressible turbulent flow and that there will be a
nonvanishing limiting measure

Σ ¼ D-limη;ζ;κ→0

�
κj∇Tj2
T2

þ 2ηjSj2
T

þ ζΘ2

T

�
¼ Σtherm þ Σshear þ Σbulk > 0 ð22Þ

describing anomalous entropy production. Simple shock
solutions provide examples of such entropy anomalies for
weak solutions of compressible Euler equations with step
discontinuities (Appendix A), but milder Hölder singular-
ities typical of turbulent flow should suffice for anomalous
entropy production. In this work, we derive an inertial-
range expression for Σ, which shows that an “inverse
cascade” of entropy can provide a mechanism for an
entropy anomaly, and we characterize the type of Hölder
singularities of the turbulent solutions required to sustain a
nonvanishing entropy flux.

IV. THEORETICAL APPROACH

It is often assumed reflexively that fluid turbulence must
be treated probabilistically. For some problems, statistical
ensembles are essential, for example, for predicting the
future of a given turbulent flow [66,68–70]. For many
problems, however, statistical methods are wholly inad-
equate because one always observes in nature a single
turbulent flow realization. If one wants to understand the
effects of turbulence in a specific solar flare event, e.g., one
does not have the luxury of averaging over an ensemble of
flares. An approach that is capable of treating individual
flow realizations is intrinsically more fundamental than a
probabilistic treatment because statistical relations can
always be obtained by subsequent averaging over ensem-
bles. For these reasons, we make no use of statistical
ensembles in the present paper. When we have reason to
consider long-time steady states, we employ time averages
and global space averages, denoted by h·i, which may be
operationally obtained, in principle, from a single flow
realization.
Our analysis will be based not on ensemble averaging

but instead on spatial and/or temporal coarse graining,
which we employ as a regularizer. Note that the existence of

nonvanishing dissipative anomalies as in Eqs. (18) and (22)
requires that gradients of fluid variables must diverge, j∇vj,
j∇Tj → ∞ as η, ζ, κ → 0. This is an ultraviolet divergence
due to the development of high-wave-number excitations in
the ideal limit or, as described by Onsager [19], a “violet
catastrophe.” It is a consequence of these divergences that
the fluid equations (1)–(3) can no longer remain mean-
ingful in the naive sense because they involve the above
diverging gradients. To make sense of the dynamics in the
ideal limit, Onsager used a point-splitting regularization
partially smoothed by a filtering kernel [31]. We employ an
alternative approach [40,41] more closely related to
renormalization-group (RG) methods, with fields fðx; tÞ
spatially coarse grained as

f̄lðx; tÞ ¼
Z

ddrGlðrÞfðxþ r; tÞ; ð23Þ

where GlðrÞ ¼ l−dGðr=lÞ and the filter kernel G is non-
negative, smooth, rapidly decreasing in space, and normal-
ized so that

R
ddrGðrÞ ¼ 1. This coarse-graining operation

is a natural regularization that removes short-distance
divergences. This can be seen from Cauchy-Schwartz
bounds on the coarse-grained gradients:

j∇f̄lj≤ ð1=lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

ddrjð∇GÞlðrÞj2 ·
Z
suppðGlÞ

ddrf2ðxþ rÞ
s

;

ð24Þ

which are finite as long as the function f is locally square
integrable. Such estimates are intuitively obvious because
high wave numbers k≳ 1=l have been removed. As we
shall see, the coarse-graining regularization in Eq. (23) is
more powerful and more general than the point splitting
originally used by Kolmogorov and Onsager [85]. The
coarse-grained field in Eq. (23) is analogous to a “block
spin” in a Wilson-Kadanoff RG scheme [87,88]. A crucial
point is that the coarse graining is a purely passive
operation, which corresponds simply to “taking off one’s
spectacles.” Although it smooths out divergences, no
objective physical phenomenon can depend on the arbitrary
scale l of coarse graining. In this work, we shall draw
important conclusions from this independence, which is a
type of nonperturbative RG invariance [49]. To keep our
notations simple, we denote f̄l as f̄, unless it is essential
that the length scale l be made explicit.
Not only do the equations of motion of coarse-grained

fluid variables remain well defined in the ideal limit, but
another crucial fact is that dissipative transport in those
equations due to the molecular coefficients becomes
negligible at fixed length scale l in the limit η, ζ,
κ → 0. Because this is an essential point, we give a simple
proof of this fact here. Starting with momentum transport, a
coarse graining of the momentum balance equation yields
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∂tðρvÞ þ ∇ · ðρvv þ pI − 2ηS − ζΘIÞ ¼ 0 ð25Þ

because coarse graining commutes with space and time
derivatives. The contribution of the shear viscosity can be
bounded pointwise using the Cauchy-Schwartz inequality

j∇ ·2ηSðx;tÞj

¼ 2

l
j
Z

d3rð∇GÞlðrÞ ·ηðxþr;tÞSðxþr;tÞj

≤
2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hηðxÞil×

Z
d3rjð∇GÞlðrÞj2ηðxþr;tÞjSðxþr;tÞj2

s
ð26Þ

with hηðx; tÞil ¼
R
suppGl

d3rηðxþ r; tÞ and with suppðGlÞ
the compact support set of the function Gl. The inverse
power 1=l arose after using integration by parts to move
the gradient to the filter function G. It shows that this term
is essentially “irrelevant” in the RG sense and is damped
out for increasing l. When G is a test function in the
Schwartz distribution theory (G ∈ C∞ and compactly
supported), then so is j∇Gð· − xÞj2; thus,

lim
η;ζ;κ→0

Z
d3rjð∇GÞlðrÞj2ηðxþ r; tÞjSðxþ r; tÞj2

¼
Z

jð∇GÞlðr − xÞj2QηðdrÞ ð27Þ

by our fundamental hypothesis. On the other hand,
hηðxÞil → 0 whenever η tends to zero locally in L1. An
identical argument also shows that j∇ζΘðx; tÞj → 0 point-
wise for fixed length scale lwhen ζ tends to zero locally in
L1. It follows that all of the molecular transport terms in the
coarse-grained momentum balance become negligible in
the limit of high Reynolds numbers.
This leads to the concept of the “inertial range,” or

the length scales l sufficiently large that the molecular
transport can be ignored relative to the large-scale momen-
tum transport of about ρ0v20=L0. The previous upper
bound shows that this range extends down to at least
l ∼ L0=

ffiffiffiffiffiffiffi
Res

p
with a Reynolds number defined by

1=Res ¼ η0Qη=ρ20v
4
0, which is analogous to the “Taylor

microscale” of incompressible fluid turbulence. Here, we
have assumed that ζ ∼ η; otherwise, one must also consider
the limit set by l≳ L0=

ffiffiffiffiffiffiffiffi
Reb

p
, with another “bulk-viscosity

Reynolds number” defined by 1=Reb ¼ ζ0Qη=ρ20v
4
0. It

should be emphasized that the above estimates of length
scales where viscosity effects become significant are
expected to be overestimates because they are deduced
from mathematical upper bounds on the molecular trans-
port. The range of scales l where viscosity is significant is
usually termed the “dissipation range” and extends down to

scales of order the mean-free-path length λmfp of the fluid,
where the hydrodynamic description breaks down.
The same arguments apply also to the energy balance,

where the shear-viscosity contribution is bounded by

j∇ · 2ηS · vðx; tÞj

≤
2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
supp Gl

d3rjvðxþ rÞj2ηðxþ r; tÞ
s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
d3rjð∇GÞlðrÞj2ηðxþ r; tÞjSðxþ r; tÞj2

s
;

ð28Þ
and this vanishes at fixed l, for example, if v is locally L2

and if η tends to zero locally in L∞. The energy transport by
shear viscosity is negligible compared with large-scale
advective transport of about ρ0v30=L0, again down to length
scale l ∼ L0=

ffiffiffiffiffiffiffi
Res

p
(at least). Similar arguments apply to

the other molecular contributions to energy transport. The
contribution from bulk viscosity tends to zero if ζ → 0
locally in L∞ and is negligible down to at least the length
scale l ∼ L0=

ffiffiffiffiffiffiffiffi
Reb

p
. Finally, the contribution from thermal

conductivity vanishes if temperature T is locally L2 and
κ → 0 locally in L∞, and it may be neglected down to at
least length scale l ∼ L0=

ffiffiffiffiffiffiffi
Pec

p
for the thermal Péclet

number defined by 1=Pec ¼ κ0T2
0Σtherm=ρ20v

6
0.

The final conclusion of this argument is that, for
sufficiently large length scales l (or for all l in the ideal
limit η, ζ, κ → 0), the following set of coarse-grained
balance equations holds:

∂tρ̄þ ∇ · ðρvÞ ¼ 0; ð29Þ

∂tðρ̄vÞ þ ∇ · ðρvv þ pIÞ ¼ 0; ð30Þ

∂t

�
1

2
ρv2 þ u

�
þ ∇ ·

��
uþ pþ 1

2
ρv2

�
v

�
¼ 0; ð31Þ

in which the molecular transport terms are absent. This set
of equations for all x, t, and l is mathematically equi-
valent to the statement that any limiting fields ρ, v, u are
distributional or “weak” solutions of the compressible
Euler equations (see Ref. [89], Sec. 4; and Ref. [90]). It
must be appreciated that this notion of “distributional or
weak solution” is quite distinct from the statement that
either the fields ρ, v, u or their coarse-grained versions
satisfy compressible Euler equations in the usual naive
sense [91]. This point can be made clearly by introducing
the density-weighted Favre average [93,95],

~f ¼ ρf=ρ̄ ð32Þ

and using the expansion of average products gf1…fn into a
finite sum of pth-order cumulants ~τðfi1 ;…; fipÞ∶
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gf1…fn ¼
X
I

YrI
r¼1

~τðf
iðrÞ
1

;…; f
iðrÞpr
Þ; ð33Þ

where the sum is over all distinct partitions I of f1;…; ng
into rI disjoint subsets fiðrÞ1 ;…; iðrÞpr g, r ¼ 1;…; rI , so thatPrI

r¼1 pr ¼ n for each partition I [96,97]. One may like-
wise expand averaged products f1…fn into cumulants
τ̄ðf1;…; fnÞ for the original (nondensity-weighted) spatial
coarse graining. Exploiting these cumulant expansions in
the ideal balance equations yields an equivalent set of
equations,

∂tρ̄þ ∇ · ðρ̄ ~vÞ ¼ 0; ð34Þ

∂tðρ̄ ~vÞ þ ∇ · ðρ̄ ~v ~vþρ̄ ~τðv; vÞ þ p̄IÞ ¼ 0; ð35Þ

∂t

�
1

2
ρ̄j~vj2 þ 1

2
ρ̄ ~τðvi; viÞ þ ū

�
þ ∇ ·

�
ðūþ p̄Þv̄ þ τ̄ðuþ p; vÞ

þ 1

2
ρ̄j~vj2 ~v þ ρ̄~vi ~τðvi; vÞ þ

1

2
ρ̄ ~τðvi; vi; vÞ

�
¼ 0: ð36Þ

It is immediately clear that the coarse-grained fields ρ̄,
~v ¼ j̄=ρ̄, and ū, although smooth and with all derivatives
well defined, do not satisfy the compressible Euler equa-
tions in the standard sense and that there are new transport
terms at length scale l that were introduced by the coarse
graining. Of course, it is not surprising that the effective
equations for block-spin variables are renormalized and
contain new, complex terms. Note, in particular, that the
coarse-graining cumulants of second and higher orders are
not simple closed functions of the “resolved” fields ρ̄, ~v, ū.
The cumulants are instead very complex functions of the
resolved fields, with nonpolynomial nonlinearity and non-
Markovian dependence on the past history. In fact, these
cumulants cannot, in principle, be fixed, deterministic
functions of the resolved fields, but they must be consid-
ered stochastic [98] variables because of their dependence
on the unknown degrees of freedom below length scale l
[66]. In the “large-eddy simulation” (LES) methodology of
turbulence modeling, one seeks computationally tractable
closed models of these cumulant terms as functions of the
resolved fields (see Refs. [94,101,102]). As we shall see,
the cumulant terms that appear in these coarse-grained
equations are the source of turbulent cascade and dissipa-
tive anomalies for weak Euler solutions [40].
The above description of weak solutions is somewhat

novel and designed to make clear the close connection
with renormalization-group methodology. A more tradi-
tional account follows by first taking the ideal limit
η, ζ, κ → 0 of the coarse-grained conservation equations,
just as above, and then followed by the limit l → 0.

The coarse-grained balance equations in this order of limits
converge in the sense of distributions to

∂tρþ ∇ · ðρvÞ ¼ 0; ð37Þ

∂tðρvÞ þ ∇ · ðρvv þ pIÞ ¼ 0; ð38Þ

∂t

�
1

2
ρv2 þ u

�
þ ∇ ·

��
uþ pþ 1

2
ρv2

�
v

�
¼ 0: ð39Þ

This system follows because all space and time derivatives
can be transferred to the test functions and all coarse-
grained fields inside the derivatives converge to their
fine-grained values under modest assumptions on the
fields (e.g., if they are bounded, measurable functions).
Equivalently, all of the coarse-graining cumulants of the
fields converge to zero. In contrast to the regularized
systems of equations (29)–(31) or (34)–(36) where all
derivatives are taken in the classical sense, in the above set
of l → 0 limit equations (37)–(39), the derivatives must be
interpreted distributionally since the limit functions ρ, v, u
are not generally even once differentiable. (See further
discussion on fluid singularities below.) This more conven-
tional notion of a weak solution is a suitable mathematical
idealization of infinite Reynolds-number turbulence, where
the inertial range extends to infinitesimally small scales.
The concept goes back to Onsager [20], who termed it
“ideal turbulence.”
As we now discuss, standard consequences of the Euler

equations for smooth “strong” solutions do not generally
hold for weak solutions, which are instead afflicted with
dissipative anomalies due to turbulent cascade. First, we
make an important comment on notations. Whenever

coarse-grained quantities marked with ð� � �Þ or gð� � �Þ appear
hereafter, we assume that the ideal limit η, ζ, κ → 0 has
been taken, unless indicated otherwise (e.g., by explicitly
taking this limit, or by retaining terms with explicit
dependence on η, ζ, κ). This convention for coarse-grained
quantities simplifies the expressions involved by eliminat-
ing the terms that vanish in the ideal limit by the arguments
given above.

V. ENERGY CASCADE

A. Kinetic energy

We begin with kinetic-energy cascade. Because jvj2 is a
convex function of v, one has

1

2
ρ̄j~vj2 ≤ 1

2
ρ̄ fjvj2 ¼ 1

2
ρjvj2: ð40Þ

Thus, the integral over space of 1
2
ρ̄j~vj2 is less than the total

kinetic energy and represents only the “resolved” kinetic
energy, while the second-order Favre cumulant
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1

2
ρ̄ ~τðvi; viÞ ¼

1

2
ρ̄½ ~v2i − ~v2i � ≥ 0 ð41Þ

represents the “unresolved” or “subscale” kinetic energy. In
a decaying turbulence without external forcing, the fine-
grained kinetic energy integrated over space decreases
because of the effect of viscosity. Since

1

2

Z
ddxρ̄j~vj2 ≤ 1

2

Z
ddxρjvj2; ð42Þ

this decrease must also occur with increasing time for the
resolved kinetic energy, despite the negligible effect of
viscosities for l in the inertial range. Physically speaking,
the kinetic energy will decay whether an observer is
“wearing spectacles” or not. The following question thus
arises: How can the resolved kinetic-energy decay, if not
through the influence of viscosity? A similar question
arises for forced steady states. If the fluid is stirred by a
large-scale acceleration field, then it is not hard to show that
the input of resolved kinetic energy is nearly independent
of l for l≲ L, the length scale of the acceleration field
(Ref. [23], Appendix B). What mechanism is available at
length scales l in the inertial range in order to dispose of
the fixed mechanical power input and to maintain a mean
steady-state energy?
An obvious answer is that the cumulant term in Eq. (35),

or the “subscale stress” ~τðv; vÞ, provides an effective
dissipation of kinetic energy for l in the inertial range.
This can be seen from the balance equation for the resolved
kinetic energy, which may be easily calculated from
Eq. (35) to be [23,38]

∂t

�
1

2
ρ̄j~vj2

�
þ ∇ ·

��
p̄þ 1

2
ρ̄j~vj2

�
~v þ ρ̄ ~τðv; vÞ · ~v − p̄

ρ̄
τ̄ðρ; vÞ

�
¼ p̄ð∇ · v̄Þ − ∇p̄

ρ̄
· τ̄ðρ; vÞ þ ρ∇~v∶~τðv; vÞ: ð43Þ

The final term on the right-hand side is the so-called
“deformation work” or the work done by the large-scale
velocity-gradient ∇~v acting against the subscale stress
~τðv; vÞ. It is thus a typical “fluxlike term” describing an
interaction between resolved and unresolved degrees of
freedom and, on average, transferring kinetic energy from
resolved to unresolved modes. This term is one of the main
contributors to kinetic-energy cascade. It is more traditional
to combine the first two terms on the right-hand side of
Eq. (43) into a single term p̄ð∇ · ~vÞ [94] while also dropping
the last term in the square brackets (representing space
transport of kinetic energy) on the left-hand side. Above, we
have followed Aluie [23,38] in separating the contributions
of resolved pressure work p̄ð∇ · v̄Þ and “baropycnal work”
−∇p̄ · τ̄ðρ; vÞ=ρ̄, using the simple relation

~v ¼ v̄ þ 1

ρ̄
τ̄ðρ; vÞ: ð44Þ

This division was motivated physically in Refs. [23,38],
which pointed out that the resolved pressure work is a
purely large-scale quantity, whereas the baropycnal work is
“fluxlike” and describes an interaction between the resolved
pressure gradient and subscale mass transport. For more
discussion of the physics of this term, see Refs. [23,38].
The baropycnal work is thus an additional contributor to
kinetic-energy cascade, with total inertial-range energy flux
represented by the combination

Qflux
l ¼ ∇p̄

ρ̄
· τ̄ðρ; vÞ − ρ̄∇~v∶~τðv; vÞ: ð45Þ

Aswe see presently, there are also compelling mathematical
reasons to make the above separation of the pressure work.
The cascade terms in Eq. (43) are a possible source of

the dissipative anomaly of kinetic energy for the weak
solutions of Euler obtained in the limit first η, ζ, κ → 0 and
then l → 0. Taking the limit l → 0 of the balance
equation (43), one obtains

∂t

�
1

2
ρv2

�
þ ∇ ·

��
pþ 1

2
ρv2

�
v

�
¼ p∘Θ −Qflux; ð46Þ

which is the kinetic-energy balance for the limiting weak
Euler solution. Here, we defined

p∘Θ ¼ D-lim
l→0

p̄ ·Θ̄ ð47Þ

with Θ ¼ ∇ · v and

Qflux ¼ D-lim
l→0

Qflux
l ; ð48Þ

where D- lim denotes the limit in the sense of distributions.
We now discuss the physical meaning of these two terms.
Because p and v are not generally smooth functions, the

divergence Θ exists only as a distribution, and its product
with the nonsmooth function p is thus ill defined and
ambiguous. The limit p∘Θ in Eq. (47) is a standard
approach to define a generalized product of distributions
[103], and our circle notation “∘” is meant to emphasize
that this product must be carefully defined. Despite this
subtlety, however, such a term is exactly the same as that
which appears for a smooth Euler solution. It clearly
represents pressure work in the large scales, which converts
energy from mechanical to internal and vice versa. The
tendency to equipartition of total energy suggests that,
when the turbulence is mechanically forced, the transfer
will be, on average, from mechanical to internal. It was
already argued in Refs. [23,38] that the mean transfer
hp̄lΘ̄li at length scales greater than l will saturate to a
constant negative value as l decreases through the inertial
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range, and this saturation has been verified in numerical
simulations of subsonic and transonic compressible turbu-
lence [104,105]. Our mathematical analysis implies that
hp∘Θi < 0 will give the saturated level.
The additional term Qflux that appears in Eq. (46) is, on

the other hand, entirely missing for smooth Euler solutions
and represents a kinetic-energy anomaly. It is due to the
loss of kinetic energy by turbulent cascade to infinitesi-
mally small scales. As shown by Onsager [20,31] for the
case of incompressible fluid turbulence, the nonvanishing
of such a cascade term requires singularities of the fluid
fields ρ, v, and p [106]. For a complete proof of the
analogous result for compressible fluids, see the works of
Aluie [23,38,108] and the companion paper [90]. Briefly,
the result follows by expanding Favre averages into cumu-
lants τ̄ðf1;…; fnÞ of the original (nondensity-weighted)
coarse graining. A fundamental fact is that such cumulants
and their spatial gradients can be written entirely in terms
of space increments δfiðr;xÞ ¼ fiðxþ rÞ − fiðxÞ of the
fields fi (for a proof, see Ref. [89], Appendix B, or
Ref. [109]). From these basic identities, one can derive
estimates of the form

∇~v ¼ OðδvÞ
l

�
1þO

�
δρ

ρ

�
þO

��
δρ

ρ

�
2
��

; ð49Þ

~τðv; vÞ ¼ OðδvÞ2
�
1þO

�
δρ

ρ

�
þO

��
δρ

ρ

�
2
��

; ð50Þ

where δv, δρ denote increments over the length scale l.
For example, see Eqs. (1) and (2) and intervening relations
in the paper of Aluie [38]. Substituting such expres-
sions into the formula for the deformation work yields
an analogue for compressible turbulence of the 4=5th law
of Kolmogorov [17], which expresses the energy flux in
terms of increments of the basic fields [110]. One can easily
see that when the fields v and ρ are space differentiable,
then δv, δρ ¼ OðlÞ, and thus energy flux due to deforma-
tion work vanishes at least as Oðl2Þ for l → 0. In order to
sustain a nonvanishing energy flux, the fluid variables must
appear “rough” for l in the inertial range. A more precise
statement is that the scaling exponents ζvp of the qth-order
(absolute) velocity structure functions [37] must be suffi-
ciently small. For example, when density ρ is bounded
away from zero and infinity, then nonvanishing of
liml→0ρ̄∇~v∶~τðv; vÞ requires

ζvq ≤ q=3; ∀ q ≥ 3; ð51Þ

where q=3 is the dimensional Kolmogorov value. See
Refs. [90,108]. This is an exact singularity statement for
the velocity field in compressible turbulence, consistent
with possible spatial intermittency. It is interesting to note
that for structure-function exponents in the range 0 < ζvq,
ζρq < p, the deformation work can be shown to be scale

local [38,111], and thus “cascade” is an apt description of
the transfer process [112].
Similar results also hold for the baropycnal work, where

identical arguments yield a 4=5th-law type result of the
form [23,38,90]

−∇p̄ · τ̄ðρ; vÞ=ρ̄ ¼ O

�ðδpÞðδρÞðδvÞ
lρ

�
: ð52Þ

An Onsager singularity theorem for this quantity states that
it can be nonvanishing as l → 0 only if a condition is
satisfied of the form

ζpq þ ζρq þ ζvq ≤ q; ∀q ≥ 3 ð53Þ

for scaling exponents of all three fields p, ρ, v [90,108].
Thus, the baropycnal work contributes to energy cascade
only if the pressure and density, in addition to the velocity,
are sufficiently rough. When the qth-order scaling expo-
nents of all these fields lie between 0 and q, then the
baropycnal work is also a scale-local quantity by the same
arguments as for deformation work [38,111]. These
inequalities have been stated in terms of singularities for
Euler solutions obtained in the limit of infinite Reynolds
numbers, but it is important to emphasize that Eqs. (51) and
(53) are necessary for sustaining an energy cascade rate
nondecreasing with l at large but finite Reynolds numbers.
The above conclusions on kinetic-energy cascade in

compressible turbulence are almost entirely based upon
earlier works of Aluie [23,38,108] and seem to closely
parallel the theory of Onsager for incompressible fluids.
In fact, we exactly recover his results [20,31], by setting
ρ ¼ ðconstÞ and Θ ¼ 0. However, we now show that
compressibility leads to a novel mechanism for anomalous
dissipation of kinetic energy. By our fundamental hypoth-
esis (18), the viscous heating does not vanish at high
Reynolds numbers. It follows by taking the ideal limit η, ζ,
κ → 0 of the fine-grained kinetic-energy balance (14) that

∂t

�
1

2
ρv2

�
þ∇ ·

��
pþ 1

2
ρv2

�
v

�
¼ p �Θ−Qvisc; ð54Þ

where Qvisc ¼ Qη þQζ as in Eq. (18) and we have defined

p � Θ ¼ D- lim
η;ζ;κ→0

pΘ: ð55Þ

One might naively conjecture that the latter quantity is the
same asp∘Θ given by Eq. (47). However, the general theory
of distributional products makes this a priori highly
unlikely. It is part of the definition of the product f∘g ¼
D-liml→0f̄l · ḡl that the limiting distribution must be
independent of precisely which filter kernel G is employed,
but it is generally not true that other regularizations fϵ, gϵ for

which fϵ!D f, gϵ!D g will have the same limiting product
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fϵ · gϵ!D f∘g [103]. Since viscosities and thermal con-
ductivities are a different “regularization” of the Euler
system than mere coarse graining, one should expect that
p � Θ ≠ p∘Θ.
Nevertheless, the fine-grained or dissipation-range

energy balance (54) must agree with the coarse-grained
inertial-range balance (46) in the limit as l → 0. Objective
physical facts such as the rate of decay of energy or the
rate of absorption of power input cannot depend upon an
arbitrary scale l of spatial resolution of observations
(cf. Ref. [49]). After first taking the limit η, ζ, κ → 0,
we must then be able to take l → 0 and reproduce the same
result. Comparing Eqs. (54) and (46), it follows that

Qvisc ¼ τðp;ΘÞ þQflux; ð56Þ

where we have defined the quantity

τðp;ΘÞ ¼ D-lim
l→0

lim
η;ζ;κ→0

τ̄ðp;ΘÞ

¼ p � Θ − p∘Θ; ð57Þ

which we call the “pressure-dilatation defect.” It is
nonvanishing when the joint limits liml→0 and limη;ζ;κ→0

of the product p̄ · Θ̄ do not commute but instead yield
either p � Θ or p∘Θ depending upon the order of the two
limits. Unlike incompressible fluid turbulence where
Qvisc ¼ Qflux [42], we see that, for compressible fluids,
the pressure-dilatation defect τðp;ΘÞ can be another
source of anomalous dissipation distinct from energy
cascade.
In fact, all stationary, planar shocks in fluids with an

ideal-gas equation of state exhibit this mechanism in a pure
form because there Qflux ¼ 0 and Qvisc ¼ τðp;ΘÞ ≥ 0. For
a proof of this result, see Appendix A. All of the anomalous
dissipation in such shocks, or so-called “shock heating,” is
due to the pressure-dilatation defect. In addition to the
general inertial-range result that Qflux ¼ 0 for such shocks,
we can also obtain exact dissipation-range limits at special
values of the Prandtl number where analytical results are
available: Pr ¼ 3=4 [114] and Pr ¼ 0, ∞ [115]. For cases
Pr ¼ 3=4, ∞, in particular, we show in Appendix A
that τðp;ΘÞ > 0.
Our arguments show generally that Qvisc > 0 only if at

least one of τðp;ΘÞ or Qflux is positive. For developed
compressible turbulence, one should expect that both of
these mechanisms will contribute. At finite l, we may
rewrite the inertial-range kinetic-energy balance (43) as

∂t

�
1

2
ρ̄j~vj2

�
þ ∇ ·

��
p̄þ 1

2
ρ̄j~vj2

�
~v

þ ρ̄ ~τðv; vÞ · ~v − p̄
ρ̄
τ̄ðρ; vÞ

�
¼ p � Θ −Qinert

l ; ð58Þ

where

Qinert
l ¼ τ̄lðp;ΘÞ þQflux

l ð59Þ

is an effective “inertial dissipation” at scale l, such that
Qinert ≔ D- liml→0Qinert

l ¼ Qvisc. The effective dissipation
at each arbitrary scale l can agree with the fine-grained or
viscous dissipation rate only if there is either nonlinear
energy cascade [116] with Qflux

l > 0 or a positive defect
τ̄lðp;ΘÞ > 0 as l → 0. The estimates of Aluie [23,38,108]
show that the fluid variables must be sufficiently rough in
order to sustain energy cascade. The consequences (51)
and (53) for scaling exponents are directly testable pre-
dictions of the argument, which is an exact, nonperturbative
application of the principle of renormalization-group
invariance [46–48]. Although it is not yet obvious, the
condition that τ̄lðp;ΘÞ > 0 as l → 0 also requires these
same exponent relations to hold. In order to show this, we
must develop a deeper understanding of the thermodynam-
ics of compressible turbulence.

B. Internal energy

The other half of the energy budget is internal energy.
Numerical results [104,105] show that up to 50% of the
energy injected at large scales can be channeled into
internal energy by the large-scale pressure work. We must
therefore consider the inertial-range dynamics of internal
energy. The simplest way to obtain an equation for the
coarse-grained or resolved internal energy ū is to apply the
coarse-graining operation to Eq. (15) for fine-grained
internal energy and to then consider the ideal (infinite
Reynolds and Péclet number) limit. The first step yields

∂tūþ ∇ · ½uv − κ∇T� ¼ −pΘþ 2ηjSj2 þ ζΘ2: ð60Þ

Invoking the fundamental hypothesis (18) and taking the
ideal limit η, ζ, κ → 0 yields the following equation for the
inertial-range dynamics of the internal energy:

∂tūþ ∇ · (ū v̄þτ̄ðu; vÞ) ¼ −p � Θþ Q̄visc: ð61Þ

In the subsequent limit l → 0, we get

∂tuþ ∇ · ðuvÞ ¼ −p � ΘþQvisc ð62Þ

as the distributional balance of internal energy for the
limiting weak Euler solution.
On the other hand, we can obtain another form of this

equation by subtracting the balance equation (43) for
resolved kinetic energy from the coarse graining of
Eq. (39) for conservation of total energy. After some
straightforward calculations, this yields the equation
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∂t

�
ūþ 1

2
ρ̄ ~τðvi; viÞ

�
þ ∇ ·

�
ū v̄þτ̄ðh; vÞ þ 1

2
ρ̄ ~τðvi; viÞ~v

þ 1

2
ρ̄ ~τðvi; vi; vÞ

�
¼ −p̄ Θ̄þQflux

l ; ð63Þ

with h ¼ uþ p the enthalpy. In this balance, the following
quantity appears:

ū� ≔ ūþ 1

2
ρ̄ ~τðvi; viÞ; ð64Þ

which we call the intrinsic large-scale or resolved internal
energy. It is a natural object because, based on coarse-
grained observations alone, it is impossible to distinguish
between energy in thermal fluctuations and that in unre-
solved turbulent fluctuations. In contrast to the balance (61)
for resolved internal energy, the balance (63) for intrinsic
large-scale internal energy contains no direct contributions
from microscopic dissipation and is a consequence solely
of the limiting distributional Euler solution. In the limit
l → 0, all of the cumulant terms in Eq. (63) vanish
distributionally, and one obtains a second form of the
internal-energy balance:

∂tuþ ∇ · ðuvÞ ¼ −p∘ΘþQflux: ð65Þ

Using Eq. (59), we may rewrite the right-hand side of
Eq. (65) as −p � ΘþQinert. Equations (62) and (65) thus
agree sinceQvisc ¼ Qinert ¼ Q. We see that the sameQ that
appears as a sink in the kinetic-energy balance, Eq. (54) or
(58), appears as a source in the balance of internal energy,
Eq. (62) or (65).
One concern at this point is whether Eq. (61) for ū

truly represents “inertial-range dynamics,” in contrast to
Eq. (63) for ū�, which is clearly an inertial-range balance.
Quantities of the sort Q̄visc have been much discussed for
incompressible fluid turbulence in the context of the
“Kolmogorov refined similarity hypothesis” [118], and it
has been a debated issue whether such coarse-grained
dissipation fields for inertial-range lengths l should be
considered inertial range or dissipation range. For example,
Kraichnan [119] concluded that Q̄visc is not inertial range:
“Instead it is the integral of a dissipation-range quantity.”
The question is hard to argue substantively because there is
no clear, accepted definition in the literature of what it
means to be “inertial range” or “dissipation range.” We
would like to offer a simple, precise definition of an
“inertial-range quantity” as any field that exists as an
ordinary function (as opposed to a distribution only) in
the ideal limit η, ζ, κ → 0. By this definition, Q̄visc is clearly
an inertial-range quantity and so is the pressure work p � Θ,
although both involve effects of molecular dissipation that
survive in the ideal limit η, ζ, κ → 0.
The questions about inertial-range status of Q̄visc and

p � Θ cannot, however, be legitimately answered by merely

offering a definition. The more serious worry that underlies
this question is whether these can be universal quantities
independent of the particular microscale dissipation mecha-
nism, or whether they are distinct for every particular
fine-grained dissipation (e.g., ordinary viscosity vs hyper-
viscosity). As a matter of fact, the quantities Q̄visc and p � Θ
probably cannot be completely universal in compressible
fluid turbulence, as they can be shown to be Prandtl-
number dependent [120] even for planar, ideal-gas shocks
(see Appendix A). On the other hand, it is a direct
consequence of Eq. (62) for the internal energy u that
the combination −p � ΘþQvisc depends only upon the
limiting Euler solution fields ρ, v, u and not upon the
particular sequence η, ζ, κ → 0 used to obtain that solution.
It is explicitly verified for planar, ideal-gas shocks in
Appendix A that the combined quantity is independent
of Prandtl number even though the quantities Q̄visc and
p � Θ separately are Pr dependent. This suggests that the
combination Q̄visc − p � Θ for inertial-range length scales l
should be universal for a wide class of fine-grained
dissipation mechanisms and determined only by fluid
modes at scales comparable to l.
We can make a substantive argument for this assertion

based upon the following equation for subscale or unre-
solved kinetic energy in the ideal limit:

∂t

�
1

2
ρ̄ ~τðvi; viÞ

�
þ ∇ ·

�
1

2
ρ̄ ~τðvi; viÞ~v þ τ̄ðp; vÞ

þ 1

2
ρ̄ ~τðvi; vi; vÞ

�
¼ τ̄ðp;ΘÞ − Q̄visc þQflux

l : ð66Þ

This equation is straightforward to derive by considering

the equations for ð1=2Þρjvj2 and ð1=2Þρ̄j~vj2, subtracting
them, and taking the limit η, ζ, κ → 0. A simple reorgani-
zation of this equation gives

p � Θ − Q̄visc

¼ p̄ Θ̄−Q̄flux þ
1

2
ρ̄ ~Dt ~τðvi; viÞ

þ ∇ ·

�
τ̄ðp; vÞ þ 1

2
ρ̄ ~τðvi; vi; vÞ

�
; ð67Þ

where ~Dt ¼ ∂t þ ~v · ∇ is the large-scale Lagrangian time
derivative. The important point is that all of the terms on the
right-hand side of this equation are pure inertial-range
quantities that are local in scale and thus determined only
by fluid modes near the considered scale l. The standard
arguments for universality thus apply to the right-hand side,
so we may argue that, also on the left-hand side, the
combinationp � Θ − Q̄visc will be a universal, inertial-range
quantity, independent of the particular microscale mecha-
nism of dissipation. As we discuss further in the following
section, the above considerations play an essential role in our

CASCADES AND DISSIPATIVE ANOMALIES IN … PHYS. REV. X 8, 011022 (2018)

011022-11



proof of a complete Onsager theorem for compressible
turbulence [90]. By this, we mean the proof that a kinetic-
energy dissipation anomaly Q ≠ 0 requires singularities in
the fluid fields. As emphasized earlier, the arguments of
Aluie [23,38,108] imply thatQflux ≠ 0 requires the inequal-
ities (51) and (53) to hold, but it is still possible, in principle,
that Qvisc ¼ τðp;ΘÞ > 0 with milder singularities.
Let us close this section by briefly considering the

energy balances that must exist in a long-time steady
state of mechanically forced compressible turbulence.
In order for a steady state to exist, one must take into
account cooling mechanisms, such as electromagnetic
radiation; otherwise, the internal energy will continue to
grow because of the input from viscous dissipation and
mechanical work. The situation may be modeled by
the compressible Navier-Stokes equations modified to
include an external acceleration field aext and a cooling
function Qcool:

∂tρþ ∇ · ðρvÞ ¼ 0; ð68Þ

∂tðρvÞ þ ∇ · ðρvv þ pI − 2ηS − ζΘIÞ ¼ ρaext; ð69Þ

∂t

�
1

2
ρv2 þ u

�
þ ∇ ·

��
uþ pþ 1

2
ρv2

�
v

− κ∇T − 2ηS · v − ζΘv
�
¼ ρv · aext −Qcool: ð70Þ

The acceleration field is a source of mechanical input of
kinetic energyQin ¼ ρv · aext, whereas Eq. (15) for internal
energy now includes the cooling term −Qcool on the right.
When the forcing aext and cooling function Qcool are large-
scale (smooth) fields, then all of our previous consider-
ations on the ideal limit apply. Steady-state kinetic-energy
balance gives hQini ¼ hQtransi þ hQi, where Qtrans ¼
−p � Θ. From the fine-grained point of view, Q ¼ Qvisc,
whereas, in the inertial range, Q ¼ Qinert and hQinerti ¼
hQini − hQtransi, exactly as argued earlier by Aluie [23].
The steady-state internal-energy balance likewise gives
hQtransi þ hQi ¼ hQcooli, so hQini ¼ hQcooli in the steady
state. In decaying turbulence without external forcing such
as we considered throughout most of the paper, one expects
a quasisteady state with initial conditions supplying the
reservoir of energy to drive the cascade and −h∂tðρv2=2Þi
playing the role of hQini. Likewise, if cooling mechanisms
are inefficient, then h∂tui plays the role of hQcooli.

VI. ENTROPY CASCADE

The energy transfer p̄ Θ̄ from large-scale kinetic energy
to large-scale internal energy ū, which was discussed in
the previous section, does not represent a global heating of
the fluid resulting merely in a uniform increase in the
internal energy. It is instead an “ordered” or “coherent”
input of energy, which leads to large-scale structure of the

internal-energy field ū. One should thus expect this input to
decrease the large-scale entropy of the system, which is
maximum for a spatially homogeneous state. These con-
siderations are one motivation to consider the entropy
balance of the turbulent flow in detail, which allows us to
verify the above expectations. In addition, entropy is an
invariant of smooth Euler solutions but increases for
viscous, heat-conducting fluids. Whereas kinetic energy
need not evolve monotonically in time for a compressible
fluid, the entropy is a quantity suitable to express the
irreversibility in turbulent evolution of general fluids, both
compressible and incompressible. The molecular entropy is
also a physical quantity whose balance is important in
geophysical flows [121,122] and in plasma turbulence
[123–125]. We argue below that cascade of entropy is a
universal feature of turbulence in molecular fluids whose
entropy production is at small scales but which are weakly
cooled or cooled only at large scales.

A. Cascade of resolved entropy

We recall that the thermodynamic entropy per volume
sðu; nÞ is a concave function of the internal energy per
volume u and the particle number per volume n. This
follows microscopically from the extensivity of the thermo-
dynamic limit [126,127] and macroscopically from the
stability of thermodynamic equilibrium [128]. The entropy
is also an analytic function jointly in u and n, except at
phase transitions, and we restrict our discussion here to
single-phase flows. The quantity sðū; n̄Þ naturally repre-
sents the “large-scale or resolved entropy” for a given
length scale l. We can, in turn, define the “small-scale or
unresolved entropy”

Δs≡ sðu; nÞ − sðū; n̄Þ ≤ 0: ð71Þ

The nonpositivity follows by concavity, so spatial coarse
graining increases entropy. Throughout our discussion, we
use the shorthand notations

s̄ ¼ sðu; nÞ; s ¼ sðū; n̄Þ; ð72Þ

and likewise for other thermodynamic functions of u, n.
Note that hsi plays the role of a “cumulative entropy (co)
spectrum” up to a wave number of about 1=l, and hΔsi is
analogous to a second-order “entropy structure function”
at separation l. In many respects, it is more natural to
consider a quantity smax − s that is convex and decreasing
in time rather than the traditional entropy, which is instead
concave and increasing. The quantity smax − s was known
variously as “capacity of entropy” by Gibbs [129], “defi-
ciency of entropy” by Obukhov [80], and “negentropy” by
Brillouin [130]. Here, we use the latter term.
We first derive the balance equation of large-scale

entropy at finite η, ζ, κ using Eq. (61) for ū and
Eq. (29) for ρ̄, with ρ̄v ¼ ρ̄ v̄þτ̄ðρ; vÞ. Invoking the first
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law of thermodynamics in the form du ¼ Tdsþ μdn for
absolute temperature T and chemical potential μ, and
denoting D̄t ¼ ∂t þ v̄ · ∇, we get from

TD̄ts ¼ D̄tū − μD̄tn̄; ð73Þ

after some straightforward calculation, that

∂tsþ ∇ · ½s v̄þβ τ̄ðu; vÞ − λ τ̄ðn; vÞ� ¼ Σinert
l ; ð74Þ

with inertial-range entropy production given by

Σinert
l ¼ −Imech

l þ Σflux
l þ Q̄visc=T; ð75Þ

for mechanical input of negentropy

Imech
l ¼ pΘ − p Θ̄

T
ð76Þ

and for negentropy flux

Σflux
l ¼ ∇β · τ̄ðu; vÞ − ∇λ · τ̄ðn; vÞ: ð77Þ

The quantity β ¼ 1=T in the expressions above is inverse
temperature, and λ ¼ μ=T is the thermodynamic potential
entropically conjugate to particle number. We now discuss
in detail the physical significance of each of these various
contributions to the entropy balance.
First, Imech

l represents the net input of negentropy [131]
into the large scales from pressure work, where −p Θ̄ =T is
the “coherent input” of negentropy at large scales and
pΘ=T is the entropy production (destruction of negen-
tropy) due to mechanical heating at all scales. There is
competition between these two terms but, as anticipated,
they will not cancel, in general. We suggest that it is likely
that hp Θ̄ =Ti < hpΘ=Ti < 0 because of the greater coher-
ence at larger scales and the near cancellations between
positive and negative terms at small scales [104,105]. An
alternative decomposition is

Imech
l ¼ τ̄ðp;ΘÞ

T
þ Ifluxl ; Ifluxl ¼ ΔpΘ̄

T
; ð78Þ

with Δp ¼ p̄ − p. The first term is related to the pressure-
dilatation defect, and the second term is a “fluxlike”
contribution, in the sense that it represents an interaction
between a large-scale dilatation Θ̄ and a small-scale
pressure Δp. There is a simple formula for the latter
[90,132], which provides an estimate

Δp ¼ O(ðδuÞ2; ðδuÞðδρÞ; ðδρÞ2) ð79Þ

yielding a 4=5th-law type representation of the flux term. It
is worth noting that for an ideal gas with adiabatic index

γ ¼ cP=cV , one has pðu; nÞ ¼ ðγ − 1Þu so that Δp ¼ 0
exactly and the fluxlike term is absent. Neither term is
present in a naive fine-grained calculation.
Second, Σflux

l represents negentropy flux to small scales,
arising from small-scale turbulent transport of heat energy
τ̄ðu; vÞ acting against large-scale temperature gradients ∇T
and small-scale particle transport τ̄ðn; vÞ acting against
large-scale λ gradients. These contributions will be positive,
indicating entropy production or inverse cascade of entropy
or forward cascade of negentropy [133], when the turbulent
transport is “down-gradient,” with heat transport from
higher to lower resolved temperatures T and particle
transport from higher to lower λ potential. Because of
the lack of scale separation of turbulent transport, both
positive and negative values will occur pointwise in space-
time for finite l, but one should expect that, on average,
hΣflux

l i > 0, consistent with the overall increase of entropy
from the second law of thermodynamics. Of course, the
term Q̄visc=T ≥ 0 is the resolved entropy production at
large scales due to viscous dissipation.
We now consider the situation when there is anomalous

entropy production in the ideal limit η, ζ, κ → 0, as
hypothesized in Eq. (22). The same result must be obtained
by considering either the fine-grained entropy balance (19)
or the inertial-range balance (74). Indeed, because of
concavity of the volumetric entropy density, the total
entropy observed “without spectacles” at resolution l
can only exceed the true entropy

SlðtÞ ¼
Z

ddxsðūl; ρ̄lÞ ≥
Z

ddxsðu; ρÞ ¼ SðtÞ; ð80Þ

and in the limit l → 0, they must agree. Thus, if entropy
SðtÞ continues to grow over a finite time interval in the limit
η, ζ, κ → 0, then SlðtÞ must also grow for the subsequent
limit l → 0 described by a weak Euler solution. Taking the
limit η, ζ, κ → 0 of the fine-grained entropy balance (19),
the anomaly is represented as

∂tsþ ∇ · ðsvÞ ¼ Σdiss; ð81Þ

with Σdiss ¼ Σtherm þ Σvisc, for viscous entropy production

Σvisc ¼ β �Qvisc ¼ D- lim
η;ζ;κ→0

βQvisc ð82Þ

and for entropy production by thermal conduction

Σtherm ¼ D- lim
η;ζ;κ→0

κj∇Tj2
T2

: ð83Þ

The coarse-grained entropy balance (74) in the limit η, ζ,
κ → 0 is unchanged, except that pΘ → p � Θ. In the
subsequent limit l → 0, the inertial-range entropy balance
becomes
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∂tsþ ∇ · ðsvÞ ¼ Σinert; ð84Þ

where Σinert ¼ −Imech þ Σflux þ β∘Qvisc with [134]

β∘Qvisc ¼ D-lim
l→0

β Q̄visc ð85Þ

and where Imech ¼ Iflux þ β∘τðp;ΘÞ with
β∘τðp;ΘÞ ¼ D-lim

l→0
β τ̄ðp;ΘÞ: ð86Þ

The expressions (84)–(86) provide an inertial-range repre-
sentation of anomalous entropy production. Equating the
two different expressions, Σinert ¼ Σdiss.

B. Singularity conditions and intrinsic entropy

The above general results are nicely illustrated by planar
shocks in an ideal gas for the special value of Prandtl
number Pr ¼ 3=4. There is, in fact, a two-parameter family
of stationary shocks in ideal gases, labeled by the adiabatic
index γ > 1 and by the preshock Mach numberM0 > 1, or,
alternatively, the compression ratio R ¼ ðγ þ 1Þ=½ðγ − 1Þþ
2=M2

0�. All of the anomalous quantities in the balances
above are nonzero for Pr ¼ 3=4 (with the exception of Iflux
sinceΔp≡ 0 for an ideal gas) and are proportional to Dirac
delta functions at the location of the shock. For a shock
situated at the origin, there is a positive entropy production
anomaly of the simple form

Σinert ¼ Σdiss ¼ ðΔsmÞj�δðxÞ; ð87Þ

where Δsm ¼ sm;1 − sm;0 > 0 is the jump across the shock
of the entropy per mass sm ¼ s=ρ (with “0” denoting
the gas in front of the shock and “1” the gas behind the
shock) and j� ¼ j0 ¼ j1 > 0 is the mass flux through the
shock. Explicit expressions for all terms in the entropy
balance are given in Appendix A. As expected, the
inertial-range quantities Σflux and β∘ðQvisc − τðp;ΘÞÞ in
the infinite Reynolds-number limit are identical for all
planar, ideal-gas shocks with the same values of γ
and M0, entirely independent of the precise molecular
dissipation mechanism. In particular, these two specific
quantities are Prandtl-number independent. It is interesting
that the negentropy flux is nonzero for such shocks, even
though the energy flux vanishes exactly. This clearly
shows that the two cascades are distinct, in general.
In fact, it is the negentropy flux Σflux that, inside the
inertial-range of planar, ideal-gas shocks, supplies the
contribution ðΔsmÞj�δðxÞ, arising from the particle trans-
port term −∇λ · τ̄ðn; vÞ. All other inertial-range contribu-
tions cancel between Imech, Σflux, and β∘Qvisc. See
Appendix A for details.
While Euler shock solutions with discontinuous fields

provide a simple example where the negentropy flux is

nonvanishing, more modest singularities are able to support
a negentropy cascade. Note that, from formula (79) for Δp
and the definition (78) of Ifluxl ,

Ifluxl ¼ O(ðδuÞ2; ðδuÞðδρÞ; ðδρÞ2)O
�
δv
l

�
: ð88Þ

Hence, this term may have a nonvanishing limit as l → 0
whenever

2minfζuq; ζρqg þ ζvq ≤ q; q ≥ 3: ð89Þ

Likewise, from the chain rule for gradients of the smooth
functions βðu; ρÞ and λðu; ρÞ, one gets

∇β;∇λ ¼ Oðδu; δρÞ
l

; ð90Þ

which, with the general result τðf; gÞ ¼ Oðδf · δgÞ and the
definition of Σflux

l , gives the identical estimate

Σflux
l ¼ O(ðδuÞ2; ðδuÞðδρÞ; ðδρÞ2)O

�
δv
l

�
: ð91Þ

Thus, the inequality (89) again provides a necessary
condition for a nonvanishing limit as l → 0. The shock
solutions with discontinuous fields have ζuq ¼ ζρq ¼ ζvq ¼ 1

for q ≥ 1 and thus satisfy these inequalities for all q ≥ 3.
However, multifractal fields u, ρ, v with positive Hölder
exponents can also easily satisfy these inequalities [37].
Thus, for compressible turbulent flow, the anomalous
entropy production should generally arise not just from
shocks with zero Hölder exponents but also from the
spectrum of milder Hölder singularities.
When the singularity conditions (51) and (53) are not

satisfied, then one expects that entropy will in fact be
conserved. This statement is an analogue of the Onsager
singularity theorem for a dissipative anomaly of negen-
tropy. Such a result does not follow directly from the
estimates (88) and (91) on the fluxes because of the
additional terms contributing to the inertial-range entropy
balance. However, such a result may be proved [90] by the
following arguments. First, rewrite the inertial-range
entropy balance as

∂tsþ ∇ · ½s v̄þβ τ̄ðu; vÞ − λ τ̄ðn; vÞ�
¼ Σflux

l − Ifluxl þ β(Q̄visc − τ̄ðp;ΘÞ): ð92Þ

The first two terms on the right are those that have been
shown to vanish as l → 0 when Eq. (89) is not satisfied. To
evaluate the last term, we use Eq. (66) for the subscale
kinetic energy. The first two terms on the right of Eq. (66)
are exactly those appearing in the entropy balance, while
the third is the energy flux. Thus, multiplying Eq. (66)
by β gives
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βðQ̄visc − τ̄ðp;ΘÞÞ

¼ βQflux
l þ ð∂tβÞ

1

2
ρ̄ ~τðvi; viÞ

þ ∇β ·
�
1

2
ρ̄ ~τðvi; viÞ~v þ τ̄ðp; vÞ þ 1

2
ρ̄ ~τðvi; vi; vÞ

�
þ ð� � �Þ; ð93Þ

where ð� � �Þ denotes a total derivative term that vanishes
distributionally in the limit l → 0. The other three terms
are all fluxlike. The first of these contains a time derivative,
which is perhaps unexpected, but the physical meaning is
clearly an entropy production due to the rate of change of
large-scale inverse temperature times subscale kinetic
energy. The term βQflux

l is an entropy production due to
kinetic-energy cascade, and the terms proportional to ∇β
are a correction to the turbulent internal-energy transport
τ̄ðu; vÞ. These flux terms vanish as explicit power laws in
the limit l → 0 for solutions that are not sufficiently
singular. Precisely, at least one of the following conditions
must be satisfied:

2minfζuq; ζρqg þ ζvq ≤ q q ≥ 3; ð94Þ

minfζuq; ζρqg þ 2ζvq ≤ q q ≥ 3; ð95Þ

3ζvq ≤ q q ≥ 3; ð96Þ

for the fluxes not to vanish. Here, Eq. (94) is the same as
Eq. (89), and Eq. (53) has also been replaced by Eq. (94),
which implies vanishing of baropycnal work via Eq. (52).
There is, in fact, a much more fundamental way to reach

the same conclusion. Let us define an intrinsic large-scale
or resolved entropy density by

s� ¼ sþ 1

2
β ρ̄ ~τðvi; viÞ: ð97Þ

Clearly, s� ≥ s̄. From the homogeneous Gibbs relation
s ¼ βðūþ pÞ − λ n̄, it follows that s� ¼ βðū� þ pÞ − λ n̄,
where ū� is the intrinsic large-scale internal energy that was
introduced in Eq. (64). Using Eq. (63) for the intrinsic
internal energy, the coarse-grained mass conservation
equation (29), and the standard thermodynamic relation
dðβpÞ ¼ n̄dλ − ūdβ, it is then straightforward to verify the
entropy balance equation

∂ts� þ ∇ · s� ¼ Σinert�
l ; ð98Þ

where

s� ¼ s v̄þβ τ̄ðu; vÞ − λ τ̄ðn; vÞ

þ β

�
1

2
ρ̄ ~τðvi; viÞ~v þ

1

2
ρ̄ ~τðvi; vi; vÞ þ τ̄ðp; vÞ

�
ð99Þ

is the spatial current of intrinsic entropy and where
Σinert�
l ¼ −Ifluxl þ Σflux�

l , with

Σflux�
l ¼ Σflux

l þ βQflux
l þ ð∂tβÞ

1

2
ρ̄ ~τðvi; viÞ

þ ∇β ·
�
1

2
ρ̄ ~τðvi; viÞ~v þ

1

2
ρ̄ ~τðvi; vi; vÞ þ τ̄ðp; vÞ

�
¼ ∇β ·

�
τ̄ðh; vÞ þ 1

2
ρ̄ ~τðvi; vi; vÞ

�
− ∇λ · τ̄ðn; vÞ þ βQflux

l þ ð ~DtβÞ
1

2
ρ̄ ~τðvi; viÞ

ð100Þ
the flux of intrinsic inertial-range negentropy. Although this
result is the same as that obtained by substituting Eq. (93)
into Eq. (92), the present derivation is more general because
it makes no reference to any microscopic model. Thus,
Eq. (98) is seen to be valid for all distributional Euler
solutions, including those derived from Boltzmann kinetic
theory [63], for example, and not restricted to limits of
compressible Navier-Stokes solutions.
Taking the limit as l → 0 of the inertial-range balance

equation (98) yields again the limiting balance (84) for the
distributional solution of the compressible Euler equations.
One concludes that any solution that is too regular,
satisfying none of the conditions (94)–(96), will obey local
entropy conservation:

∂tsþ ∇ · ðsvÞ ¼ 0: ð101Þ
Put another way, Σdiss ¼ 0 unless the fluid fields possess
singularities compatible with (94)–(96). For details of the
proof, see the companion paper [90]. These arguments also
allow one to complete the proof that energy dissipation
anomalies must vanish when (94)–(96) are not satisfied.
Because of the non-negativity of the separate viscous and
thermal conduction contributions to anomalous entropy
production, Σdiss ¼ 0 immediately implies that

Σtherm ¼ 0; Σvisc ¼ β �Qvisc ¼ 0: ð102Þ

It is not hard to see that the second condition implies that
Qvisc ¼ 0 since β∘Qvisc ≥ Qvisc=∥T∥∞ ≥ 0 [90]. Coupled
withQflux ¼ 0, we obtain from Eq. (56) that τðp;ΘÞ ¼ 0 or
p∘Θ ¼ p � Θ. Thus, kinetic-energy balance (46) becomes

∂t

�
1

2
ρv2

�
þ ∇ ·

��
pþ 1

2
ρv2

�
v

�
¼ p � Θ; ð103Þ

and internal-energy balance (65) becomes

∂tuþ ∇ · ðuvÞ ¼ −p � Θ: ð104Þ

In other words, kinetic-energy and internal-energy balances
hold without anomalies for flows more regular than allowed
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by (94)–(96). It is interesting that the proof of a com-
plete Onsager singularity theorem for energy dissipation
anomalies in compressible turbulence seems to require an
essential consideration of entropy.

C. Steady-state entropy balances

We can now discuss entropy balances in steady-
state turbulence of a compressible fluid, which is forced
mechanically and also cooled, e.g., by radiation, governed
by Eqs. (68)–(70). It is easy to see that Eq. (63) for intrinsic
resolved internal energy is modified by the addition of
two terms:

∂tū� ¼ � � � þ ρ̄ ~τðv; aextÞ − Q̄cool: ð105Þ

The first term ρ̄ ~τðv; aextÞ is negligible when l ≪ L, where
L is the length scale of the smooth acceleration field aext.
However, the second term −Q̄cool has a nonzero limit as
l → 0 and contributes to the balance (98) of intrinsic
resolved entropy an additional term −βQ̄cool on the right,
which represents the removal of entropy at large scales by
cooling. Likewise, the fine-grained entropy balance (19)
gains an additional term −βQcool on the right. A statistically
stationary and homogeneous steady state thus must satisfy

hΣdissi ¼ hβQcooli ð106Þ

from the fine-grained balance and

hΣinert�
l i ¼ hβ

l
Q̄cool

l i þ hβ
l
ρ̄l ~τlðv; aextÞi

≈ hβQcooli; l ≪ L ð107Þ

from the coarse-grained or inertial-range balance [135].
The physical picture is that the large-scale negentropy
introduced by cooling cascades through an inertial range
down to small scales where it is canceled by microscopic
entropyproduction.Alternatively,wemaywrite Eq. (107) as

hΣflux�
l i ¼ hIfluxl i þ hβlQ̄cool

l i þ hβlρ̄l ~τlðv; aextÞi
≈ hIfluxi þ hβQcooli; l ≪ L ð108Þ

so that the flux of intrinsic entropy through the initial range
also includes negentropy input from anomalous pressure
work, as well as from large-scale cooling. For an ideal-gas
equation of state, Ifluxl ¼ 0, of course, and hΣflux�

l i ≈ hΣdissi
for l ≪ L.
In addition to these exact relations, some approximate

balances are suggested by our results. For the purpose of a
qualitative picture, let us assume an approximately constant
temperature T. This gives (on average) the fine-grained
(dissipation-range) entropy balance

hΣthermi þ
hQi
T

¼ hQcooli
T

ð109Þ

and from Eq. (75) the coarse-grained (inertial-range)
entropy balance

hΣfluxi þ
hQi
T

¼ hQcooli
T

þ hImechi: ð110Þ

One also has the mean energy balance hQcooli ¼ hQi þ
hQtransi with Qtrans ¼ −p � Θ. Note that the fine-grained
pressure work Qtrans is an incoherent transfer of energy,
which might be better denoted in this context as Qincoh.
Equation (109) thus gives

hΣthermi ¼
hQincohi

T
: ð111Þ

Decomposing hImechi ¼ ðhQcohi − hQincohiÞ=T with the
definition hQcohi ¼ −liml→0hp Θ̄i of coherent work input,
substituting into Eq. (110), and using hQcooli ¼ hQi þ
hQincohi again yields

hΣfluxi ¼
hQcohi
T

: ð112Þ

The above relations implicitly assume that hβ �Qvisci≃
hβ∘Qvisci≃ hQi=T. This heuristic argument suggests
that the coherent input of negentropy at large scales by
anomalous pressure work will be cascaded downscale,
while the positive entropy input due to fine-grained
(incoherent) transfer from mechanical to internal energy
will go into entropy production due to thermal conduction.
Needless to say, this is a nonrigorous mean-field argument
ignoring temperature fluctuations and must be subject to
empirical tests in order to determine its range of validity.
It clearly requires a sufficiently large Mach number since
Qcoh, Qincoh both vanish for incompressible flow. However,
like our earlier arguments, it supports the conclusion that
compressible turbulence will generally involve a forward
cascade of negentropy or, equivalently, an inverse cascade
of the traditional entropy.

D. Incompressible limit

All of our analysis of entropy cascade can be carried
out for the special case of the incompressible fluid
equations (20) and (21) that were derived assuming bal-
anced mechanical and thermal forcing, with u ¼ ρcPT,
s ¼ ρcP lnT, and with chemical potential per mass
μ ¼ cPT − cPT lnT, so that the Gibbs relation Ts ¼ u −
μρ is satisfied. In the same manner as for compressible
fluids, we can derive from Eqs. (20) and (21) the following
balance equation for resolved/large-scale entropy:

∂tsþ ∇ · ½s v̄þβ τ̄ðu; vÞ − χ∇s�
¼ ∇β · τ̄ðu; vÞ þ κj∇T̄j2=T̄2 þ Q̄visc=T̄; ð113Þ

with χ ¼ κ=ρcP the thermal diffusivity. In the limit κ,η → 0
with l fixed, the terms involving κ disappear, but the term
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involving viscous energy dissipation Q̄visc remains.
Equation (113) in that limit may be formally obtained
directly from the general result (92) by setting Θ ¼ 0 and
n ¼ ðconstÞ. The negentropy flux for an incompressible
fluid is given by the first term on the right-hand side of
Eq. (113), or

Σflux
l ¼ ∇β · τ̄ðu; vÞ ¼ O

�ðδTÞ2ðδvÞ
l

�
: ð114Þ

In the balance equation (113) for entropy, we generalize the
one of Obukhov [80] in two ways: (i) We keep the
contribution from Q̄visc that he neglected [136], and (ii) we
do not approximate s≃ ρcP lnT0 þ ð1=2ÞρcPðT 0=T0Þ2 by
assuming small fluctuations T 0 around background temper-
ature T0. By applying a point-splitting argument to the
latter quadratic approximation, Yaglom [137] derived an
expression for negentropy flux in terms of velocity and
temperature increments, analogous to the 4=5th law of
Kolmogorov. Our expression for negentropy flux (114)
generalizes that relation to the exact entropy.
The intrinsic resolved entropy may also be defined for an

incompressible fluid as s� ¼ sþ βð1=2Þρτ̄ðvi; viÞ. From
the coarse-grained versions of the ideal incompressible
equations (20) and (21) for η, κ → 0, the balance equation
of the intrinsic entropy may be derived as

∂ts� þ ∇ · ½s�v̄ þ β τ̄ðp; vÞ þ ρðβ=2Þτ̄ðvi; vi; vÞ�
¼ βQflux

l þ ðD̄tβÞð1=2Þρτ̄ðvi; viÞ
þ ∇β · ½τ̄ðh; vÞ þ ð1=2Þρτ̄ðvi; vi; vÞ� ð115Þ

with h ¼ uþ p. Unlike the balance equation (113) for the
(naive) resolved entropy s as η, κ → 0, the balance
equation (115) for intrinsic entropy s� does not contain
any terms involving η, κ and can be evaluated purely from
coarse-grained measurements of the basic fluid fields v, T
and their products. Equation (115) is the incompressible
analogue of Eqs. (98)–(100) for compressible fluids and
can be formally obtained from them by setting Θ ¼ 0 and
n ¼ ðconstÞ. Whenever there is anomalous entropy pro-
duction, there must be an inertial-range flux of intrinsic
negentropy, with some of the terms on the right-hand side
of Eq. (115) nonvanishing as l → 0. This follows by the
same argument as for the compressible fluid: If fine-
grained entropy SðtÞ ¼ R

ddxs is increasing in time, then
any coarse-grained measurements at resolution l must
show a similar increase in S�ðtÞ ¼ R

ddxs� since s� ≥ s̄.
Exact steady-state entropy balances for an incompress-

ible fluid that is stirred and cooled only at large scales can
be derived similarly to Eqs. (106)–(108) for the compress-
ible fluid. This is the same problem considered by
Refs. [80,137], and we modestly generalize their results
for this problem. Since there is no anomalous input Ifluxl for
incompressible flow, the inertial-range balance for incom-
pressible turbulence analogous to Eq. (108) becomes

hΣflux�
l i ≈ hβQcooli; l ≪ L; ð116Þ

with Σflux�
l defined by the right-hand side of Eq. (115). The

approximate balances (111) and (112) reduce for incom-
pressible flow to the prediction that hΣthermi ¼ hΣflux

l i ¼ 0.
However, these are “mean-field relations” assuming a
nearly constant temperature field, and they are especially
unlikely to hold in the incompressible limit, when u and s
vary only because of temperature.
In addition to generalizing the classical theories for a fluid

that is stirred and heated or cooled at large scales [80,137],
our analysis also predicts an inertial-range negentropy
cascade whenever there is anomalous entropy production
at small scales and negligible cooling. An example is freely
decaying incompressible fluid turbulence with an initial
uniform temperature T0. This is not a situation where
negentropy cascade is predicted by the classical theories,
but our analysis implies that hΣflux�

l i ≈ hΣdissi for l ≪ L.
The microscopic entropy production Σdiss is expected to be
nonvanishing at least because of the contribution βQvisc
from viscous heating. In this situation, the temperature T
will, on average, slowly increase in time because of the
viscous heating, but it may be expected that β remains
approximately constant in space at inertial-range lengths l.
The mean-field relations (111) and (112) should hold quite
well, predicting that hΣthermi ¼ hΣflux

l i ¼ 0. The most likely
source of negentropy cascade is the first term βQflux

l inΣflux�
l ,

which would imply that entropy flux hΣflux�
l i ≈ hQflux

l i=T,
completely enslaved to the incompressible energy cascade.
However, it is also possible that the second term in Eq. (115)
proportional to D̄tβ may contribute non-negligibly because
of the secular increase in temperature. Empirical investiga-
tion will be required to clarify the relative magnitudes of the
various contributions to hΣflux�

l i.

VII. RELATIONS TO OTHER APPROACHES

We now briefly discuss the relation of our analysis with
other approaches to compressible fluid turbulence that have
been proposed.

A. Barotropic models

Barotropicity is a common assumption that is employed
to simplify the description of compressible turbulence, with
pressure p ¼ pðρÞ taken to be a function of mass density
only. Polytropic models with pðρÞ ¼ Kργ are a special
case. This assumption has been employed in many classical
theoretical papers [50,51] and also in more recent theo-
retical works [54,55,138]. Barotropic models are often also
employed for numerical simulations, especially in astro-
physical applications [139,140]. There is no explicit
representation of thermodynamic entropy in such models,
and thus no entropy cascade of the type considered in this
paper can occur there. Such simulations nevertheless
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exhibit a kind of compressible turbulence and therefore
might be taken as counterexamples to our predicted entropy
cascade. This is only the case, however, if barotropic
models can be valid descriptions of compressible turbu-
lence in a molecular fluid that is weakly cooled or cooled
only at large scales, which is the proposed domain of our
theory. This is a serious open question. Unlike the
compressible Navier-Stokes equation, which can be sys-
tematically derived from the Boltzmann equation or even
Hamiltonian molecular dynamics in the limit of small
Knudsen number [141–143], there seems to be no similar
derivation of barotropic fluid models from first principles.
One must therefore carefully consider whether these
models can be valid descriptions of molecular fluids not
interacting strongly with other systems.
Ideal barotropic models can be understood to describe

molecular fluids in a very simple way. No explicit equation
for internal energy is solved in such models, and instead,
the internal energy per mass is obtained from

eðρÞ ¼
Z

pðρÞ dρ
ρ2

: ð117Þ

Thus, Dtρ ¼ −ρð∇ · vÞ implies ρDte ¼ −pð∇ · vÞ, and
then u ¼ ρe is recovered, satisfying

∂tuþ ∇ · ðuvÞ ¼ −pð∇ · vÞ: ð118Þ

The first law of thermodynamics in the form

de ¼ Tdsm þ p
ρ2

dρ; ð119Þ

with sm ¼ s=ρ the entropy per mass, shows that u obtained
as above can consistently represent internal energy only
when either T ¼ 0 (so that s ¼ 0 by the Nernst law) or
entropy per particle sn ¼ s=n is constant. For a smooth
solution of the ideal Euler equations, the entropy is a locally
conserved quantity, as can be seen by setting η ¼ ζ ¼ κ ¼
0 in Eq. (19), so an initially isentropic flow remains
isentropic. We thus recover a well-known interpretation
of ideal barotropic models as a description of isentropic,
laminar flows with negligible molecular dissipation.
Barotropic fluid models with viscous stresses added to

the momentum equation are much more problematic [144].
The interpretation of the quantity e given by Eq. (117) as
internal energy per mass leads to an obvious contradiction
with conservation of total fluid energy since, according to
Eq. (118), the energy lost by viscous dissipation of kinetic
energy does not reappear as increased internal energy of the
fluid. It has been suggested to us by two anonymous
referees that the integral in Eq. (117) should instead
represent only the “work part” w ¼ −

R
pdð1=ρÞ of e

and that conservation of energy is maintained by transfer
of “barotropic energy” EB ¼ ð1=2Þρv2 þ ρw to the “heat
part” q ¼ R

Tdsm, not explicitly represented in the model.

In this view, the viscous barotropic model is a reduced
description of the molecular fluid, similar to the incom-
pressible Navier-Stokes equation (20), which also dissi-
pates kinetic energy but for which the total fluid energy
E ¼ ð1=2Þρv2 þ ρcPT is conserved. In that analogy, a full
description of a barotropic fluid requires an additional
dynamical equation for sm (or other thermodynamic var-
iable), similar to Eq. (21) for the temperature field of an
incompressible fluid. There seems to be no study that
derives viscous barotropic models in this fashion, and it is
not clear what physical parameter would determine the
validity of such a reduced description, analogous to Mach
number for an incompressible fluid. However, if correct,
this would be one possible means to justify viscous
barotropic models as a valid description of a molecular
fluid, consistent with equilibrium thermodynamics, con-
servation of energy, and the nonequilibrium second law.
There are substantial arguments against this view, in our

opinion. First, the work part w and heat part q are not
thermodynamic state variables because đq ¼ Tdsm, đw ¼
−pdð1=ρÞ are not exact differentials and, as is well known,
their integrals depend upon the path in state space ðρ; smÞ.
Without specifying a particular integration path, the “bar-
otropic energy” EB ¼ ð1=2Þρv2 þ ρw is ambiguous, and
no comparison with laboratory experiment or a more
detailed model (such as compressible Navier-Stokes) is
possible. This is quite different from the incompressible
limit, where u and T are well-defined thermodynamic state
variables for flows at any Mach number. An even more
serious issue is that it is quite difficult to see how a
barotropic model for pressure p ¼ pBðρÞ can be consistent
with the exact thermodynamic pressure p ¼ pðρ; smÞ,
when entropy per mass sm is increasing along fluid particle
trajectories. Even if the two expressions for pressure agree
at an initial time, the growth of sm will lead to their
disagreement at later times. In Appendix B, we present an
exact no-go theorem of this type, proving that there is no
sequence of compressible flows ðvϵ; ρϵ; sϵmÞ for which the
barotropic closure can become asymptotically exact, with
pðρϵ; sϵmÞ − pBðρϵÞ → 0 as some parameter ϵ → 0, unless
the entropy production per volume Σϵ tends to zero
everywhere in the same limit. For these reasons, we believe
that viscous barotropic models have questionable validity
as descriptions of dissipative molecular fluids evolving as
nearly isolated systems (e.g., not cooled by effective
coupling with radiation). Barotropic models could, of
course, potentially be valid descriptions of fluid systems
in other situations than these.
Therefore, we cannot immediately accept barotropic

models as physical counterexamples to our prediction of
an entropy cascade in turbulence of molecular fluids that
are weakly cooled or cooled only at large scales. The
preceding no-go argument against barotropic closures
applies even in the ideal limit as η, ζ, κ → 0, if turbulent
entropy production is anomalous and persists in the limit.
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The inconsistency of the barotropic closure with viscous
entropy production due to shocks has been discussed
previously in the mathematics literature, e.g. Ref. [82],
pp. 13–14. In addition to the above theoretical problems, it
is also observed empirically that the isentropic approxi-
mation is not well satisfied pointwise in subsonic and
transonic turbulence for an ideal gas [105,145]. Substantial
entropy fluctuations sm ¼ cV logðp=KργÞ of the ideal gas
are found, which are completely neglected by barotropic
models and are physically significant. It is possible, in
principle, that viscous barotropic models may approximate
some features of turbulence in molecular fluids, e.g.,
velocity statistics, even though the barotropic closure for
pressure is not consistent with all physical principles.
Viscous barotropic models certainly fail to represent the
entropy cascade derived in this work from the full com-
pressible Navier-Stokes equation, but we argue that this is a
failure of the barotropic models and not of our prediction.
The polytropic model p ¼ Kρ requires special discus-

sion because it is often interpreted by means of the ideal-
gas law p ¼ nkBT0 as an isothermal ideal gas, very
strongly cooled to a uniform temperature T0 at all length
scales, rather than as an isentropic fluid. This is a good
example of a barotropic model that arises as a valid
description of a molecular fluid but in a limit of extreme
coupling to radiation. The temperature equation can be
easily checked for a general equation of state to have
the form

ρcVDtT ¼ −T
�∂p
∂T

�
n
Θþ ∇ · ðκ∇TÞ þQvisc; ð120Þ

where cVðn; TÞ and pðn; TÞ are taken to be functions of the
two independent thermodynamic variables n, T. For an
ideal gas, this simplifies further to

ρcVDtT ¼ −pΘþ ∇ · ðκ∇TÞ þQvisc; ð121Þ

with cV ¼ αkB=m constant. To obtain the isothermal
model, one can add a cooling term −ρcVðT − T0Þ=tcool
to the right side of Eq. (121), with cooling time tcool taken
to be much shorter than any fluid evolution times. In this
limit for this simple cooling model, all of the heating by
pressure work and viscous dissipation will be plausibly
balanced by the strong cooling, so Eq. (121) reduces, at
leading order, to

ρcVðT − T0Þ=tcool ¼ −pΘþQvisc; ð122Þ

with temperature fluctuations of orderOðtcoolÞ. In this limit,
the viscous isothermal model provides a description con-
sistent with energy conservation and the second law of
thermodynamics, where internal energy and entropy gen-
erated by viscosity are immediately transferred to the
radiation field (on time scale tcool).

To verify energy conservation, recall that internal energy
per volume of an isothermal ideal gas with specific heat
ratio γ ¼ cP=cV is given

u ¼ αnkBT0 ¼ cVρT0; α ¼ 1=ðγ − 1Þ ð123Þ

rather than by the integral (117). Since the specific heat per
volume cV and the temperature T0 are both considered
constant, the internal energy u in the isothermal model
obeys the same equation as the density ρ, or

∂tuþ ∇ · ðuvÞ ¼ 0: ð124Þ

Together with Eq. (14) for the kinetic energy, this gives, for
total fluid energy E ¼ ð1=2Þρv2 þ u, the equation

∂tEþ ∇ · (ðEþ pÞv þ Tvisc · v) ¼ pΘ −Qvisc; ð125Þ

with Tvisc the viscous stress. If one uses the limiting
temperature balance (122), then this becomes

∂tEþ ∇ · (ðEþ pÞv þ Tvisc · v) ¼ −ρcVðT − T0Þ=tcool;
ð126Þ

so the energy lost by the fluid is exactly that gained by
radiation for the simple cooling law in the limit t0 → 0.
Note that the integral −

R
pðρÞdð1=ρÞ, sometimes descri-

bed as internal energy in the isothermal model, in fact
represents the chemical potential per mass μm ¼ μ=m or,
equivalently, the Gibbs free energy g per mass. Indeed,
the Gibbs-Duhem relation dp ¼ sdT þ ρdμm with dT ¼ 0

and dðp=ρÞ ¼ 0 immediately yields dμm ¼ pdρ=ρ2.
Consistently, substituting p ¼ ðkBT=mÞρ givesZ

pðρÞ dρ
ρ2

¼ ðkBT=mÞ logðρ=ρ0Þ; ð127Þ

which agrees with the chemical potential per mass of an
ideal gas up to an additive constant depending only upon
temperature.
To verify the entropy balance, we use the well-known

formula for the entropy per particle of an ideal gas,

sn ¼ kB lnðTα
0=cnÞ: ð128Þ

From the equation Dt ln n ¼ −Θ, one then readily obtains

∂tsþ ∇ðsvÞ ¼ nkBΘ: ð129Þ

Furthermore, together with the ideal-gas law p ¼ nkBT and
the limiting temperature relation (122) for t0 → 0, the
entropy balance becomes

∂tsþ ∇ðsvÞ ¼ 1

T0

ðQvisc − ρcVðT − T0Þ=tcoolÞ: ð130Þ
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In the statistical steady state for this problem, therefore, the
mean entropy production by viscous dissipation correctly
balances with the entropy carried off by the radiation field.
Our prediction of an entropy cascade does not apply to such
gases that are strongly cooled at all scales (although our
analysis of kinetic-energy cascade still carries over to this
extreme isothermal limit). For more realistic cooling
models, however, it is far less clear that an isothermal
description will emerge, no matter how strong the rate of
cooling. Even a quite simple Stefan-Boltzmann radiation
law with Qcool ¼ aT4 involves cooling that is nonuniform
in scale and concentrated mostly at large scales, when the
temperature spectrum is peaked at low wave numbers. The
cooling mechanisms in a realistic astrophysical situation
like the ISM are even more complex.

B. Point-splitting regularization

As discussed in the Introduction, Onsager derived his
result on dissipative anomalies for incompressible Euler
equations in his original work using a point-splitting
regularization [20,31], closely related to the methods used
by Kolmogorov [17] to derive his statistical 4=5th law for
incompressible turbulence. Onsager’s argument was later
made completely rigorous by Duchon-Robert [42], and a
formal analogy to point-splitting derivations of anomalies
in quantum gauge theories was pointed out by Polyakov
[33,34]. It is therefore natural to consider whether the
point-splitting approach can be applied as well to com-
pressible fluids. Two different groups of researchers have
already attempted to obtain statistical relations analogous
to the 4=5th law for compressible turbulence by distinct
variations of point-splitting methods: Galtier and Banerjee
[54,55] and Falkovich-Fouxon-Oz [24]. We briefly discuss
the works of both of these groups in the light of our
own results.
Galtier-Banerjee relations.—These authors have

derived relations analogous to 4=5th laws for compressible
turbulence within viscous isothermal [54] and polytropic
[55] fluid models by a point splitting of the total fluid
energy (kinetic þ internal). Here, we present several
criticisms of their analysis.
First, there are difficulties in the physical interpretation.

If the integral
R
pðρÞdρ=ρ2 is interpreted to be internal

energy per mass and E ¼ ð1=2Þρv2 þ ρe the total fluid
energy, as stated in Refs. [54,55], then their results are
inconsistent with conservation of energy for an isolated
fluid. An alternative interpretation that the relation of
Refs. [54,55] describes the flux of a barotropic energy
appears to us to be also problematic for a molecular fluid, as
discussed in the previous subsection. The possibility
remains that the viscous isothermal or barotropic systems
studied in Refs. [54,55] may be acceptable as approximate
models of weakly collisional astrophysical fluids, in which
the viscosity is a proxy for some other physical mechanism
that transforms the cascaded kinetic energy at small scales

not into internal energy of the fluid in question but into
some other form (e.g., internal energy of another fluid
component, electromagnetic radiation, nonthermal particle
acceleration, etc.). Note that the inertial-range analysis of
the present paper, and also of Refs. [23,38], applies to the
viscous barotropic/isothermal models. The only change to
our analysis of the inertial-range balance of u in Sec. V B is
that terms Qvisc must be set to zero there (and in the
isothermal model pΘ is also omitted). To justify a fluid
approximation for internal energy, there must be some
additional physical mechanism, not explicitly represented
in Eq. (118), which regularizes its solution. For example,
this could be the tiny thermal conductivity of electrons due
to rare collisions with ions [146,147]. There may also be
very weak collisional heating enhanced by kinetic mech-
anisms [124,125]. However, our analysis leads to a quite
different picture than that of Galtier and Banerjee [54,55]
for their own models, where we predict no cascade of
internal energy. Any “cascade of total energy” is only via
kinetic-energy cascade in our analysis. As pointed out in
the previous section, the quantity called internal energy for
the isothermal fluid in Ref. [54], e ¼ R

pðρÞdρ=ρ2, is, in
fact, the Gibbs free energy g per mass. One can always
consider the cascade of the quantity ð1=2Þρv2 þ ρg, which
is an inviscid invariant of the isothermal model, but it is not
the physical energy.
It is also interesting to ask whether the results of the

present paper on a kinetic-energy anomaly for Euler
equations might be alternatively derived by the Galtier-
Banerjee point splitting. The answer is no because the point
splitting employed by Galtier-Banerjee is not a proper
regularization of the kinetic-energy equation and does not
remove divergences in the infinite Reynolds-number limit.
To see this, we note that the key identity in Refs. [54,55] for
the point-split kinetic energy evolved under isentropic
Euler dynamics is

∂tðj · v0 þ j0 · vÞ
≡∇r · ½ðδj · δvÞδv� þ h0mð∇ · jÞ þ hmð∇ · j0Þ
þ ðj · v0 − j · vþpÞ∇ · v0 þ ðj0 · v− j0 · v0 þp0Þ∇ · v:

ð131Þ

Here, quantities marked with a prime “0” are evaluated at a
space point xþ r, while unmarked quantities are evaluated
at point x, and δf is the difference fðxþ rÞ − fðxÞ. The
notation “≡” indicates equality up to overall space-gradient
terms ∇x · ð…Þ, which represent space transport of kinetic
energy. Finally, hm ¼ eþ p=ρ is the enthalpy per mass,
which satisfies dhm ¼ dp=ρ for isentropic flow. In the
original work of Onsager [20,31] and Duchon-Robert [42],
a coarse-graining operation was applied to the separation
vector r to obtain a fully regulated expression. However, if
the same approach is applied to the above identity, one gets
terms that are ill defined in the infinite Reynolds-number
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limit. For example, the last term on the right gives the
contribution ðj̄ · v − j · v þ p̄Þ∇ · v, which involves a non-
smooth function v multiplied by a distribution ∇ · v. Just as
in local quantum field theory where UV divergences
likewise arise from the attempt to multiply distributions
at the same space-time point (e.g., see Ref. [148],
Sec. 23.1), such products of “bare fields” are a priori
ill defined at infinite Reynolds number. Instead, the
coarse-graining approach of Ref. [23] and the present
paper yields fully regularized expressions, as in our
Eq. (43). Notice that the terms that cause trouble for point
splitting as a regularizer are absent in the incompressible
case because ∇ · v ¼ 0.
This is not just an abstract technical problem, but, in fact,

a correct regularization leads to results that are quite
different from those of Refs. [54,55]. We can illustrate
this statement for the balance of the inviscid invariant
I ¼ ð1=2Þρjvj2 þ ρwðρÞ of the general barotropic model,
with w ¼ −

R
pdð1=ρÞ. [Of course, we have argued above

that the viscous barotropic model is physically inconsistent
as a model of an isolated molecular fluid, but one can
nonetheless consider the mathematical problem of the
high Reynolds-number limit of this model. For the case
pðρÞ ∝ ρ, the analysis yields exact 4=5th laws for the
total Gibbs free energy of an isothermal ideal gas.] We can
use the same Favre coarse graining that we employed
for compressible Navier-Stokes. A regularization of the
invariant I can then be defined by

I ¼ ð1=2Þρ̄j~vj2 þ ρ̄wðρ̄Þ: ð132Þ

It is now straightforward, using the viscous barotropic fluid
equations, to derive a balance equation for I, which, in the
inviscid limit η, ζ → 0 (for simplicity), becomes

∂tI þ ∇ · ½ðI þ p̄Þ~v þ ρ̄ ~τðv; vÞ · ~v�
¼ Δpð∇ · ~vÞ þ ρ̄∇~v∶~τðv; vÞ ≔ −Πflux

l ; ð133Þ

with Δp ¼ p̄ − p. In contrast to the point-split equations
of Refs. [54,55], all of the terms in Eq. (133) are perfectly
well defined in the limit η, ζ → 0 with l fixed. The terms
on the right-hand side of Eq. (133) define the flux Πflux

l of
the invariant I and describe its inertial-range turbulent
cascade. Using the cumulant-expansion methods of our
paper, this flux can be written in terms of increments,
thus providing the exact analogue of a 4=5th law for this
problem. In particular, the estimates (49), (50), and (79) in
our paper yield

ðΔpÞð∇ · ~vÞ ¼ O

�ðδρÞ2ðδvÞ
l

�
;

ρ̄∇~v∶~τðv; vÞ ¼ O

�ðδvÞ3
l

�
: ð134Þ

We emphasize that the point-splitting approach employed
in Refs. [54,55] does not, and cannot, yield the analogue of
Eqs. (133) and (134). Instead, the results described above
are a slight simplification of those in Ref. [149], which
employs the same coarse-graining regularization as in
our work.
Just to be clear, we are not claiming that there is a

mathematical mistake of a trivial sort in the analyses of
Galtier and Banerjee [54,55]. All of their calculations are
meaningful and correct at finite Reynolds numbers. In
fact, their mathematical relations have been checked to be
true in numerical simulations of supersonic “isothermal”
turbulence [140]. What we are claiming is that there are
unphysical assumptions underlying the mathematical
models employed by Galtier and Banerjee [54,55] and
erroneous physical interpretations of the mathematical
results. Their failure to regularize UV divergences asso-
ciated with dissipative anomalies prevents them from
drawing any conclusions on the infinite Re limit.
Falkovich-Fouxon-Oz relation.—In the paper of

Falkovich et al. [24], another generalization of the
4=5th law to compressible turbulence has been obtained
for a barotropic fluid. This approach has also been
applied to relativistic fluid turbulence by Fouxon and
Oz [25], as we will discuss in a following paper [56].
Consideration of a point-split quantity j · j0 allowed
Ref. [24] to derive an exact relation for homogeneous,
isotropic statistics, which reduces to the standard 4=5th
law in the incompressible limit. The quantity that is
cascaded to small scales in their picture is the input of
ð1=2Þjjj2 by external forcing. The exact equation obeyed
by this field for a smooth solution of compressible
Euler equations (without the need for any barotropic
assumption) is

∂t

�
1

2
jjj2

�
þ ∇ ·

�
1

2
jjj2v þ pj

�
¼ −

1

2
jjj2ð∇ · vÞ þ pð∇ · jÞ: ð135Þ

As a matter of fact, it is not hard to show that this
balance equation may indeed be anomalous in a high
Reynolds-number compressible turbulence or to use a
point-splitting regularization to derive the anomaly. With
the same notations as in Eq. (131), one easily finds

∂tðj · j0Þ≡ 1

2
∇r · ½jδjj2δv� −

1

2
jjj2ð∇ · v0Þ − 1

2
jj0j2ð∇ · vÞ

þ pð∇ · j0Þ þ p0ð∇ · jÞ: ð136Þ

Unlike the previous case, all terms are fully regularized
after coarse graining in the separation vector r, and one
obtains an anomaly term −A appearing on the right side
of Eq. (135) for infinite Reynolds number, with
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A ¼ D-lim
l→0

1

4l

Z
ddrð∇GÞlðrÞ · δvðrÞjδjðrÞj2: ð137Þ

It is also straightforward to derive the anomalous balance
equation for ð1=2Þjjj2 by using the coarse-graining
approach of the present paper, but we leave this as an
exercise for the reader. Note that, in this balance
equation, one faces the same issue of defining products
like 1

2
jjj2∘Θ and 1

2
jjj2 � Θ, similar to pressure work in the

energy balances in Sec. V of the present paper.
As with the previous point-splitting approach, we con-

clude that the result of Falkovich et al. [24] is mathemati-
cally correct, and, moreover, the derivation is valid in the
infinite Reynolds-number limit. The statistical relation of
Ref. [24] has also been verified in a numerical simulation of
isothermal compressible turbulence [150] (although there
are some subtle issues in the statistical evaluation of the
external input). However, we disagree with the conclusion
that the result of Ref. [24] “...indicates that the interpre-
tation of the Kolmogorov relation for the incompressible
turbulence in terms of the energy cascade may be mis-
leading” (Fouxon and Oz [25]). Such a conclusion could be
justified if that relation were the only possible generaliza-
tion of the 4=5th law to compressible turbulence. The
analysis of Refs. [23,38] and ours in Sec. VA of the present
paper instead fully support the existence of a kinetic-energy
cascade for compressible turbulence and yield the analogue
of 4=5th laws for the kinetic-energy flux. A further issue
with the result of Falkovich et al. [24] is that we see no
compelling interest in the quantity ð1=2Þjjj2 for compress-
ible fluids. It is neither a conserved quantity nor any
component of a conserved quantity, and it has no obvious
dynamically important role in compressible turbulence.
Just as in quantum field theory, it is not hard to find
infinitely many anomalous balance relations in the ideal
limit of turbulence, but most of them are not physically
relevant and have no significant consequences. In our
opinion, the deep importance of the 4=5th law for incom-
pressible turbulence arises from its connection to the
dissipative anomaly for kinetic energy and its implication
that fluid singularities of the type ζvq ≤ q=3 are required for
such an anomaly. Our analysis shows that such a con-
nection fully extends to compressible fluid turbulence.
As our final comments in this section, we would like to

emphasize the general limitations of point splitting in
turbulence theory. It is not ruled out by the analysis in
this paper that a clever point splitting may someday be
found for compressible turbulence, which will yield the
anomalous kinetic-energy balance (54). However, it is hard
to imagine that a point-splitting regularization will ever be
found to yield the anomalous entropy balance (84) in this
paper. The coarse-graining approach that we employ is a
more powerful and general method than point splitting. In
addition to the Eulerian balances discussed here, coarse
graining can also be employed to obtain Lagrangian

conservation-law anomalies, such as for fluid circulation
in hydrodynamic turbulence [86] and magnetic flux con-
servation in MHD turbulence [89,151].

C. Decomposition into linear wave modes

Another common theoretical approach to compressible
turbulence, which goes back to the work of Kovásznay [52]
and Chu and Kovásznay [53], is to expand compressible
Navier-Stokes solutions into linear wave modes, based on
an assumption of small perturbations around a homo-
geneous state and weak nonlinearity. This expansion
identifies three ideal linear wave modes [152]: the “sound
mode” of frequency csk for sound speed cs and wave
number k, and two zero-frequency modes—the “vorticity
mode” and the “entropy mode.” An obvious question,
which we address here, is how the entropy mode of
Kovásznay is related to our concept of an entropy cascade.
To briefly review the approach of Kovásznay [52] and

Chu and Kovásznay [53], we recall that it assumes an
ideal-gas equation of state, with pressure and entropy per
particle given by

p ¼ nkBT; sn ¼ kB logðTα=CnÞ ð138Þ

as functions of n and T, with α ¼ 1=ðγ − 1Þ. Linearization
around a homogeneous state satisfying p0 ¼ n0kBT0

yields, for the fluctuations, the linear relations

p0

p0

¼ n0

n0
þ T 0

T0

;
s0n
kB

¼ −
n0

n0
þ α

T 0

T0

: ð139Þ

Here, we use the prime “0” to denote a putatively small
fluctuation value. For ideal flow, the sound mode has s0n ¼
0 and the entropy mode has p0 ¼ 0. (For nonideal flow,
Kovásznay finds instead a small entropy s0n associated with
the sound mode, which is proportional to the molecular
transport coefficients or dimensionless “Kundsen number”
ϵ and which is neglected at zeroth order in ϵ.) The zeroth-
order dynamics of the fluctuations for ideal flow are found
to be given by the linear equations

∂tω0 ¼ 0; ∂ts0n ¼ 0; ∂2
t p0 − c2s∇2p0 ¼ 0; ð140Þ

with ω0 ¼ ∇ × v0 the vorticity fluctuation. See Ref. [53],
Eq. (6.5). Nonlinearity is recovered in the Kovásznay
approach by expansion to second order in the nonlinearity,
which yields mode-mode coupling terms, such as vortex
self-stretching (a vorticity-vorticity mode coupling). See
Table 1 of Ref. [53] for a complete tabulation of all second-
order interactions. The only such couplings that contribute
to entropy dynamics are entropy-vorticity and entropy-
sound couplings of the form −v0 · ∇s0n, which describe
advection of entropy by velocity fluctuations v0 due to
vorticity and sound modes. Thus, to quadratic order in
nonlinearity, the entropy per particle s0n appears as a passive
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scalar and entropy per volume s0 ¼ ns0n as a passive
density.
Independent of our work, there are a number of serious

problems with the Kovásznay modal expansion when
considered as an a priori theoretical approach. First and
foremost, there is no small parameter on which to base such
an expansion. Instead, fluctuations of thermodynamic
variables in compressible flow can be very large relative
to mean or r.m.s. values, as seen, for example, in Ref. [145],
Fig. 4 for Ma ¼ 0.1–0.6. For very small Mach numbers,
density and pressure fluctuations may become small;
however, even in that limit, Eqs. (20) and (21) of the
velocity and temperature fields remain strongly nonlinear,
and anomalous entropy production occurs by turbulent
cascade [153]. This essential strong-coupling nature is, of
course, the most well-known theoretical difficulty with the
analysis of turbulent flow. A closely related problem is that
solutions of the compressible Navier-Stokes equation
cannot be consistently expanded into linear wave modes
because there is no superposition principle for such non-
linear dynamics. Even for an ideal gas, the thermodynamic
relations (138) impose nonlinear constraints between p, n,
T or sn, n, T, which will not be satisfied for superpositions
of wave modes except in the crude linear approximation
(139). For second-order moments of p0=p0 and modest
Mach numbers (0.1–0.6), the predictions of the linear
approximation (139) are adequate to about the 1% level
(see data in Table 1 and Figs. 2 and 3 in Ref. [145]), but the
error grows with increasing Mach number and also for
higher moments or larger fluctuations. It is worth noting
that Kovásznay himself was not attempting to develop a
general theoretical approach for analysis of compressible
fluid turbulence in his original works, but his goal was
instead a more modest one of constructing a decomposi-
tion to assist in the interpretation of experimental mea-
surements. Some later researchers have taken this type of
modal decomposition much more literally than it was
first intended.
Our analysis in this paper has shown that the entropy in

high Reynolds-number compressible turbulence is not at all
a passive scalar. Entropy is, of course, a nonlinear function
of basic thermodynamic variables, e.g., sðu; nÞ taken as a
function of internal energy density u and particle density n.
Its dynamics is completely determined by the dynamics of
u and n, and it is, in that sense, “passive.” However, the
turbulent dynamics of entropy in the ideal limit of vanish-
ing molecular transport is not that of a passive scalar but
instead remains fundamentally constrained by the second
law of thermodynamics. Comparing the weakly nonlinear
expansion result

∂ts0 þ ∇ · ðs0v0Þ ¼ 0 ð141Þ

with our own Eq. (84), we see that, beyond passive
advection, the inertial-range dynamics of entropy involves

both anomalous input Imech of negentropy from pressure
work and nonlinear entropy cascade Σflux (as well as
entropy production by viscous heating). If one tries to
interpret the mechanical input Imech of entropy crudely
within the Kovásznay framework, it would have to be
considered a turbulent “sound-sound” coupling that pro-
duces negentropy. This is completely missed by the
Kovásznay weakly nonlinear expansion, which cannot
detect such “anomalous” terms. Finally, the identification
of s0n as a passive scalar would imply that there is a forward
cascade of js0nj2, but our analysis instead predicts an inverse
cascade of the entropy s as a nonlinear function of u and n.
Our predictions for entropy are thus fundamentally differ-
ent from those obtained by treating the linear entropy mode
as a passive scalar.

VIII. EMPIRICAL CONSEQUENCES
AND EVIDENCE

Our analysis yields a great many predictions testable by
laboratory experiments and numerical simulations, the two
most novel being the pressure-dilatation defect τlðp;ΘÞ
contribution to anomalous kinetic-energy dissipation and
the anomalous production of negentropy by pressure work
Ifluxl and nonlinear negentropy cascade Σflux�

l . These quan-
tities are all straightforward to calculate in simulations of
compressible turbulence, where inertial-range contributions
such as τ̄lðp;ΘÞ or negentropy flux Σflux�

l can be obtained
by numerical implementation of the spatial filtering.
Laboratory experiments can also measure such quantities
using techniques such as holographic particle-imaging
velocimetry [154]. Our analysis also yields testable pre-
dictions on scaling exponents through the inequalities
(94)–(96). Here, we may note, in particular, the predictions
for “roughness” of the internal energy density and mass
density fields in order for an entropy cascade to exist, with
structure-function exponents ζuq and ζρq essentially required
to be less than or equal to K41 values for q ≥ 3. These
predictions can not only be checked in detail in future
studies, but also many past works, in retrospect, provide
supporting evidence. We next discuss some of this
prior work.
First, the previous numerical studies of the pressure work

[104,105] provide evidence for a pressure-work defect
τðp;ΘÞ, although this was not clearly understood at the
time. The main object of those studies was the saturation of
hp̄lΘ̄li for l decreasing through the inertial range. This
was demonstrated through the study of the pressure-
dilatation cospectrum

PDðkÞ ¼ −
X

k0∶jjk0j−kj<0.5
p̂ðk0ÞΘ̂ð−k0Þ ð142Þ

and of the statistics of the pressure-dilatation residual
pΘ − p̄ Θ̄. In both studies [104,105], it was found
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that the cospectrum exhibited a power-law behavior
PDðkÞ ∼ Ck−β in the inertial range, crucially with β > 1,
so the integral over the range k ∈ ½0;∞Þ would converge.
However, in the finite Reynolds-number simulations, the
power law with exponent β persists only over a finite range,
and in the dissipation range, the cospectrum was found to
lie above the inertial-range power law. See Ref. [104],
Fig. 2, and Ref. [105], Fig. 23. This is the signature to be
expected from a positive mean defect hτðp;ΘÞi > 0. Even
more relevant are the previous numerical results for the
pressure-dilatation residual since it is directly related to the
mean defect by

hτ̄ðp;ΘÞi ¼ hpΘ − p̄ Θ̄i: ð143Þ
The two previous studies both found that the residual
for l near the bottom of the inertial range took on very large
positive and negative values associated with shocks (small-
scale shocklets or large-scale shocks, depending upon the
compressibility of the forcing). See Ref. [104], Fig. 4, and
Ref. [105], Figs. 26 and 27. The large values nearly cancel
in a global space average, leaving only a small positive
average hτðp;ΘÞi, about 20 times smaller than the asymp-
totic value hp∘Θi. Aluie et al. [104] considered this 5%
contribution to be “negligible.” However, both the simu-
lations [104,105] were for subsonic and transonic turbu-
lence. If hτðp;ΘÞi arises mainly from shock heating, then it
is reasonable to expect that this average will make an
increasingly large contribution to the kinetic-energy dis-
sipation anomaly for increasing Mach numbers.
There is also evidence from prior studies for a negen-

tropy cascade. Motivated by incompressible fluid turbu-
lence where the temperature is a passive scalar, Ni et al.
[77] and Ni and Chen [105] (see Sec. VI of both papers)
have numerically studied “temperature cascade” in sub-
sonic and transonic compressible turbulence of an ideal
gas. Using the same coarse-graining approach as the
present paper, those authors attempted to derive a balance
equation for the quantity G ¼ ð1=2Þρ̄ ~T2. Their result
[Ref. [105], Eqs. (6.3)–(6.8)] contains several errors
[155], but the expression for the subscale flux of G that
they obtained is the same as that for the correct equation
derived from Eq. (121) and given here:

∂t

�
1

2
ρ̄ ~T2

�
þ ∇ ·

�
1

2
ρ̄ ~T2 ~v þ ρ̄ ~τðT; vÞ ~T − ðκ∇TÞ ~T=cV

�
¼ −ΠG

l þ ð−pΘþ Q̄viscÞ ~T=cV − ∇ · ðκ∇TÞ · ∇ ~T=cV;

ð144Þ

with

ΠG
l ¼ −ρ̄∇ ~T · ~τðT; vÞ ð145Þ

the subscale flux of G. Studies [77,105] have verified
numerically that this quantity has a positive average

hΠG
l i > 0 over a range of l, indicating a forward cascade

of the quantity G to small scales. Given that the quantity
G ¼ 1

2
ρ̄ ~T2 was first introduced by Obukhov [80] for incom-

pressible fluid turbulence as an approximation to the
“negentropy” or “information” introduced by an ordered
temperature field, this is almost direct evidence for a
forward negentropy cascade.
For compressible turbulence, there is little reason to

consider the approximation G rather than the correct
large-scale entropy sðū; ρ̄Þ, and our balance equations (74)
for s and (98) for s� are more theoretically tractable than
Eq. (144) for G because entropy is a conserved quantity for
smooth solutions of compressible Euler equations whereas
G is not. However, the observation of Refs. [77,105] that
hΠG

l i > 0 strongly suggests that hΣflux
l i > 0will hold over a

similar range of l and makes it vital to subject the latter
prediction and the balance relations (107), (108), (111), and
(112) to detailed empirical tests. Here, we note that the
spectra of density, temperature, and pressure (or, equiva-
lently, for an ideal gas, internal energy) in the simulations of
Refs. [77,145] are consistent with the roughness expected
for negentropy cascade. In particular, for transonic Mach
numbers (Ma ≈ 0.6), all three thermodynamic variables
have Fourier spectra close to k−5=3, scaling with the K41
exponent [156].
The negentropy cascade proposed here, if correct, must

occur for compressible turbulent flows in nature, with one
of the most significant examples being turbulence in the
ISM. The electron density of the ISM exhibits a spectrum
close to the Kolmogorov k−5=3 over a 13-decade range, as
inferred from electron scintillation measurements over
105–1010 km scales and from other observations over
102–1015 km [157–160]. The spectacular extent of this
scaling range has led to the density spectrum being dubbed
the “Big Power Law in the Sky.” Because the ion mean free
path in the ISM is about 107 km, a fluid approximation is
expected to be valid over the majority of this range.
Magnetic fields also play a significant role in the dynamics
of the ISM, so the dynamics of the ISM at length scales
above about 107 km is expected to be that of a compress-
ible magnetohydrodynamic (MHD) fluid with a Mach
number of order unity. Our work suggests an identification
of the Big Power Law in the Sky as resulting from a
nonlinear inverse cascade of entropy (or forward
negentropy cascade). Note that all of our results in this
paper extend straightforwardly to compressible MHD (see
Landau and Lifshitz [161], Chap. VIII, Secs. 65–66). The
only difference is that now there is a cascade of total
mechanical energy (kineticþmagnetic), and the corre-
sponding energy dissipation anomaly now contains a
contribution from resistive heating,

Q̄ ¼ lim
η;ζ;κ;γ→0

2ηjSj2 þ ζΘ2 þ γJ2=4π; ð146Þ
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where γ ¼ c2=4πσ is the magnetic diffusivity and
J ¼ ∇ ×B. In particular, our balance equation (74) for s
remains valid for compressible MHD with the above
change to Qdiss, and the balance equation (98) for s�

now has contributions toQflux
l from the Lorentz force [162].

Thus, by our arguments, there is a forward negentropy
cascade in compressible MHD turbulence. We theorize that
this nonlinear negentropy cascade is the origin of the
plentiful density fluctuations in the large scales of the
ISM where compressible MHD is valid.
Most current theories of the electron density spectrum of

the ISM, by contrast, have been developed within a
Kovásznay-type linear wave-mode picture for compressible
MHD, where the basic waves are now the “shear Alfvén
mode,” the “slow magnetosonic mode,” the “fast magneto-
sonic mode,” and the “entropy mode” (e.g., see Ref. [163],
Chap. 5). In particular, one popular theory of the power-law
spectrum is that it results from a forward cascade of the
entropy mode as a passive scalar [164,165]. However, the
large scales of the ISM are believed to be nearly isothermal
above a cooling scale Lcool ∼ 1012 km because of efficient
radiative cooling (e.g., by electron impact excitation ofmetal
line transitions). Referring to Eq. (139), one sees that there
can then be no entropy mode with p0=p0 ¼ 0 because
T 0=T0 ¼ 0 and so cannot cancel the density fluctuation
n0=n0 (or, more accurately, the entropy mode is extremely
damped because T 0=T0 ≪ 1). In that case, the only remain-
ing mode to carry density fluctuations is the isothermal
sound mode (slow magnetosonic) with p0=p0 ¼ n0=n0 ¼
−s0n=kB (which, in contrast to the adiabatic sound mode,
carries entropy fluctuations due to density changes) [166].
This linear analysis of the fluctuations leads to the so-called
cooling catastrophe, which is concisely summarized in
this quote:

“However, the entropy mode is rapidly damped in
isothermal turbulence. As a consequence, small-scale
density fluctuations may be significantly suppressed.
There are two possible solutions to this “cooling
catastrophe”: either (1) the outer scale is extremely
small, small enough that the turbulence at the outer
scale is nearly adiabatic; or (2) there are significant
density fluctuations associated with the slow mode.
However, in the latter case, the mean magnetic field
must be amplified almost to equipartition with the gas
pressure, so that β ∼ 1. Either of these two solutions
would place stringent constraints on the nature of the
turbulence that is responsible for observed density
fluctuations.”—Lithwick and Goldreich [165].

Within a Kovásznay-type modal picture, the slow magneto-
sonic mode seems the most plausible source of the observed
density fluctuations. However, in our nonlinear theory, there
is no cooling catastrophe in the first place. Large-scale
cooling adds excess negentropy (deficiency of entropy) that

feeds the cascade of negentropy to small scales. See
Eq. (107). This necessitates “rough” density and temper-
ature fields with Kolmogorov-type spectra. In our view, the
cooling catastrophe is an artifact of attempting to describe
nonlinear compressible MHD turbulence in terms of linear
wave modes. There is no sound theoretical basis for such a
decomposition and, unsurprisingly, the Kovásznay mode-
mode interactions lead to empirically wrong predictions for
the problem [167].
A complete presentation of this theory of the ISMelectron

density spectrumwill be given elsewhere, as it requiresmore
specialized discussion of MHD turbulence and even plasma
kinetics. An interesting question is how our theorized
negentropy cascade proceeds to smaller length scales below
the ion mean free path where a fluid approximation breaks
down. As discussed earlier, the observed k−5=3 density
spectrum in the ISM extends many decades below the ion
mean-free-path length. The key concept of plasma kinetic
turbulence is the cascade of negative kinetic entropy or “free
energy” (electromagnetic energy minus kinetic entropy) to
small scales of length and velocity in the one-particle phase
space [124,125]. The natural conjecture is that the negen-
tropy cascade of compressibleMHD turbulencemergeswith
the kinetic cascade at scales below the mean free path, but
details remain to be understood.

IX. DISCUSSION

The theory developed in this paper is based upon the
hypothesis that compressible fluid turbulence should
exhibit dissipative anomalies of energy and entropy, similar
to those observed for incompressible fluids. From this
hypothesis alone, we have argued that the high Reynolds-
and Péclet-number limits should be governed by distribu-
tional or coarse-grained solutions of the compressible Euler
equations. The argument closely follows that of Onsager
[20,31] for incompressible fluids, which we have explained
as a nonperturbative application of the principle of renorm-
alization-group invariance. The theory makes many pre-
dictions that are testable by experiment and simulations—
in particular, (1) anomalous dissipation of kinetic energy
by local energy cascade and by a pressure-work defect;
(2) anomalous input of negentropy into the inertial range of
compressible fluid turbulence by pressure work, in addition
to any external input by large-scale cooling mechanisms;
(3) negentropy cascade to small scales through a flux of
intrinsic inertial-range entropy; and (4) fluid singularities
required to sustain cascades of energy and entropy so that at
least one of Eqs. (94)–(96) must hold.
It should be stressed that even for incompressible fluids,

many difficult mathematical questions remain open con-
cerning Onsager’s theory of “ideal turbulence” described
by dissipative Euler solutions, and its main support arises
from successful agreement with a broad array of numerical
simulations and laboratory experiments. The convex inte-
gration theory [43,44] has revealed that the Cauchy
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problem for incompressible Euler equations has nonunique
dissipative solutions with fixed initial data, suggesting that
the infinite-Reynolds turbulent solutions are essentially
unpredictable. So far, no dissipative Euler solutions of
the type conjectured by Onsager have been mathematically
derived from incompressible Navier-Stokes solutions by
the physical limit of vanishing viscosity or infinite
Reynolds number. Work on toy “shell models” suggests
that this limit will be very subtle and that the limiting
Euler solutions will be nonunique and stochastic [67–69].
Further surprises and new insights are doubtlessly in store.
However, Onsager’s theory for incompressible fluid turbu-
lence has much more empirical support than many other
highly regarded physical theories, e.g., Einstein’s theory of
general relativity.
For the compressible theory that we have developed

here, further work is also clearly required on a few key
issues. One of these is the Mach-number dependence of
the various physical quantities in our theory. All of our
derivations are formally independent of Mach number,
but there is an implicit Mach-number dependence through
the assumption that mass density ρ remains a bounded
function in the ideal limit. Instead, there is empirical
evidence from numerical simulations that, for a sufficiently
high Mach number, the density is not even square inte-
grable, and its ideal limit may exist only as a singular
measure [113]. At small Mach numbers, our theoretical
analysis remains valid without further assumption and
recovers, as a special case, the negentropy cascade pre-
dicted long ago by Obukhov [80] for incompressible fluids
with strong thermal forcing. However, the various quan-
tities that appear in our analysis will have an explicit Ma
dependence that is not predicted by our present consid-
erations. For example, the anomalous negentropy input by
pressure work Imech

l in Eq. (76) must tend to zero, but the
rate of approach to the incompressible limit is unknown. As
argued convincingly in Ref. [83], the small Ma limit is
quite rich, with different limiting regimes possible, and the
Mach-number dependences are presumably distinct and
must be calculated separately for each. This is an urgent
matter for evaluating the theory since much empirical data
exist for subsonic and transonic flows.
A second very important open issue has to do with the

extension of our theory to kinetic regimes. Our theorem on
turbulent entropy dissipation anomalies and entropy cas-
cade applies to any distributional solution of compressible
Euler equations, including those resulting from a kinetic
equation. However, it is very unclear how our fluid
negentropy cascade will merge into a kinetic description
at scales much smaller than the mean free path of the fluid.
This is a particularly important issue for plasma kinetics in
astrophysics [124,125] because the large mean free paths
frequently encountered in astrophysical plasmas imply that
long ranges of scales are described by Vlasov-Landau
kinetic theory rather than a fluid description.

One strength of our theory is that it extends readily to
relativistic fluid turbulence. This is the subject of our
following paper [56].
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APPENDIX A: ANALYTICAL SHOCK SOLUTION

1. Model and shock solution

We consider a family of shock solutions derived by
Becker [114] and Johnson [115,169] for the 1D compress-
ible Navier-Stokes system, obtained by reduction of the 3D
equations to a single space dimension, with x the distance
perpendicular to the planar shock and with v ¼ vx the
corresponding velocity component:

∂tρþ ∂xðρvÞ ¼ 0; ðA1Þ

∂tðρvÞ þ ∂xðρv2 þ p − η∂xvÞ ¼ 0; ðA2Þ

∂t

�
1

2
ρv2þu

�
þ∂x

�
ρv

�
1

2
v2þhm

�
−η∂xv−κ∂xT

�
¼0:

ðA3Þ

Here, η ¼ ð4=3Þη3D þ ζ3D for the 3D shear viscosity η3D
and bulk viscosity ζ3D [170]. An ideal-gas equation of state
is assumed, with

p ¼ ðγ − 1Þu; u ¼ cVρT; hm ¼ cPT ðA4Þ
for any adiabatic index γ ¼ cP=cV > 1. The solutions
obtained are for the stationary equations, with all time
derivatives set to zero, and they reduce in the ideal limit
(η, κ → 0) to stationary shocks with discontinuous, step-
function solution fields:

fðxÞ ¼
�
f0 x < 0

f1 x > 0
¼ f0 þ ðΔfÞθðxÞ: ðA5Þ

Here, preshock values are labeled by 0 and postshock
values by 1, Δf ¼ f1 − f0, and θðxÞ is the Heaviside step
function. We also denote fav ¼ 1

2
ðf0 þ f1Þ. The values of

the fields on the two sides of the shock are related by the
Rankine-Hugoniot conditions:

ΔðρvÞ¼0; Δ
�
1

2
v2þhm

�
¼0; Δðpþρv2Þ¼0; ðA6Þ

with a mass flux j� ¼ ρ0v0 ¼ ρ1v1 > 0. See Ref. [79],
Sec. 84. The strength of the shock is characterized by the
compression ratio R ¼ ρ1=ρ0 ¼ v0=v1 > 1, which, for an
ideal gas, is given by
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R ¼ γ þ 1

ðγ − 1Þ þ 2=M2
0

ðA7Þ

in terms of the preshock Mach number M0 ¼ v0=cs > 1.
For example, see Landau and Lifshitz [79], Sec. 89. Note
that, because of the ideal-gas relation p=ρ ¼ ðγ − 1Þhm=γ,
the second two Rankine-Hugoniot conditions determine the
preshock and postshock pressures by the formulas

pi ¼
j�
2γ

½ð1þ γÞv1−i þ ð1 − γÞvi�; i ¼ 0; 1: ðA8Þ

As was first noted by Becker [114], the stationary 1D
Navier-Stokes equations of an ideal gas admit an exact
integral for η ¼ κ=cP or, assuming ζ3D ¼ 0, for the 3D
Prandtl number Pr ¼ cPη3D=κ ¼ 3=4. This integral takes
the form of a (nonideal) Bernoulli equation, which relates
velocity and enthalpy per mass:

1

2
v2þhm¼1

2
v20þhm0¼

γþ1

2ðγ−1Þv0v1; Pr¼3=4: ðA9Þ

By means of this relation and the formula

ρ ¼ j�=v ðA10Þ

for the mass density, all thermodynamic variables can be
related to the velocity. For example, using Eq. (A9) and the
ideal-gas relation p=ρ ¼ ðγ − 1Þhm=γ, we get, for the
pressure field,

p¼ j�
2γ

�
ðγþ1Þv0v1

v
þð1−γÞv

�
; Pr¼3=4: ðA11Þ

Using hm ¼ cPT, we get, for the temperature field,

T ¼ 1

2cP

�
γ þ 1

γ − 1
v0v1 − v2

�
; Pr ¼ 3=4; ðA12Þ

and likewise for other thermodynamic quantities. For a very
clear discussion, see Ref. [115].
To obtain the velocity itself in the approach of Ref. [114]

requires the evaluation of an integral involving the specific
choice of dynamic viscosity ηðρ; TÞ as a function of ρ and
T. This generally yields the velocity field in the implicit
form xðvÞ. As pointed out by Johnson (2014), some choices
of ηðρ; TÞ permit one to invert the relation xðvÞ to an
explicit form vðxÞ. It turns out, however, that to evaluate the
infinite Reynolds-number or Péclet-number limits, we need
only the Bernoulli relation (A9) of Ref. [114] and its
alternative forms (A11) and (A12). We furthermore need
one additional constraint, which follows from the con-
stancy of momentum flux:

j�vþ p − η∂xv≡ τ�: ðA13Þ

The constant value τ� can be evaluated far from the shock
where the gradient vanishes, giving

τ� ¼ j�vi þ pi; i ¼ 0; 1 ðA14Þ

or, using Eq. (A8), from the Rankine-Hugoniot conditions,

τ� ¼ j�vav þ pav ¼
1þ γ

γ
j�vav: ðA15Þ

Equations (A13) and (A15) and the Bernoulli relation
(A11) for p allow us to determine η∂xv in terms of v itself,
yielding identical results for any choice of viscosity ηðρ; TÞ.
As a consequence, all of our ideal limit results are
independent of the details of the molecular transport
coefficients, apart from the requirement that Pr ¼ 3=4.
Many inertial-range limit results hold with complete gen-
erality for all dissipative planar shocks in an ideal gas and
do not even depend upon the Prandtl number Pr. Some
inertial-range quantities do depend upon Pr, which we can
explicitly verify for the cases Pr ¼ ∞ (κ ¼ 0) and Pr ¼ 0
(η ¼ 0). As was noted by Ref. [169], there are also
Bernoulli-type relations for those cases, which yield
expressions for the pressure of the form

p¼ j�

�
−
1− γ

2
vþ 1− γ2

γ
vav þ

1þ γ

2

v0v1
v

�
; Pr ¼∞;

ðA16Þ

and

p ¼ j�

�
1þ γ

γ
vav − v

�
; Pr ¼ 0: ðA17Þ

Employing these expressions for p and Eqs. (A13) and
(A15), we can also obtain formulas for η∂xv with Pr ¼ 0,
∞, which allow us to extend all of our results for Pr ¼ 3=4
to those cases. Because the mathematical methods are
essentially the same for all three cases, below we discuss
explicitly only Pr ¼ 3=4 and then just briefly mention some
corresponding results for Pr ¼ 0, ∞.
The solutions of Becker [114] and Johnson [115,169] are

a nice example for our general mathematical framework
since they converge in Lp norms for any p ∈ ½1;∞Þ to a
weak shock solution of 1D compressible Euler as ν → 0.
Here, we derive all of the source terms that appear in the
kinetic energy and the entropy balance for the shock
solutions in the distributional limit as η, κ → 0 for the
fine-grained balances and as l → 0 for the coarse-grained
balances. A fact that we use frequently for ideal step-
function fields below is

f̄ðxÞ¼f0þðΔfÞθ̄ðxÞ; ḡðxÞ¼g0þðΔgÞθ̄ðxÞ ðA18Þ

and thus
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ḡ ¼ g0 þ
Δg
Δf

ðf̄ − f0Þ; ∂xḡ ¼
Δg
Δf

∂xf̄: ðA19Þ

Furthermore,

∂xf̄ðxÞ ¼ ðΔfÞδ̄ðxÞ: ðA20Þ

Similar results can be obtained from

f̄ðxÞ ¼ fav þ
1

2
ðΔfÞsignðxÞ;

ḡðxÞ ¼ gav þ
1

2
ðΔgÞsignðxÞ: ðA21Þ

These relations are very helpful to derive inertial-range
expressions for the shock solution.

2. Kinetic-energy balance

a. Viscous dissipation

Using in Eq. (A13) expression (A11) for p with
Pr ¼ 3=4,

ηð∂xvÞ ¼
γ þ 1

2γ
j�

�
v − 2vav þ

v0v1
v

�
: ðA22Þ

Hence,

ηð∂xvÞ2 ¼
γ þ 1

2γ
j�

�
∂x

�
1

2
v2
�

− 2vav∂xvþ v0v1∂xðln vÞ
�
: ðA23Þ

Since

D- limη;κ→0

�
∂x

�
1

2
v2
�
; ∂xv; ∂xðln vÞ

�
¼

�
1

2
ðv21 − v20Þ;Δv; lnðv1=v0Þ

�
δðxÞ; ðA24Þ

one easily obtains

Qvisc ≡D- limη;κ→0ηð∂xvÞ2

¼ γ þ 1

2γ
j�

�
v1v0 ln

�
v1
v0

�
−
1

2
ðv21 − v20Þ

�
δðxÞ: ðA25Þ

Note that Qvisc ≥ 0 because

fðθÞ ¼ θ ln θ −
1

2
θ2 þ 1

2
> 0; 0 ≤ θ < 1 ðA26Þ

and fð1Þ ¼ 0. This result is Prandtl-number dependent. In
fact, Qvisc for Pr ¼ ∞ is larger by a factor of γ, and for
Pr ¼ 0, obviously, Qvisc ¼ 0.

b. Pressure-dilatation defect

From Eq. (A11) for p with Pr ¼ 3=4, we have

pð∂xvÞ ¼
j�
2γ

�
ðγ þ 1Þ v0v1

v
− ðγ − 1Þv

�
∂xv

¼ j�
γ þ 1

2γ
v0v1∂xðln vÞ − j�

γ − 1

2γ
∂x

�
1

2
v2
�
:

ðA27Þ

Thus,

p �Θ≡D- limη;κ→0pð∂xvÞ

¼ j�
2γ

�
ðγþ 1Þv1v0 ln

�
v1
v0

�
−
1

2
ðγ− 1Þðv21−v20Þ

�
δðxÞ:

ðA28Þ

This result is also Prandtl-number dependent (see
below), and the above expression holds only for
Pr ¼ 3=4.
Next, we calculate p∘Θ. Since v and p in the ideal limit

are both step functions, ∂xv̄ ¼ ðΔv=ΔpÞ∂xp̄, so

p̄∂xv̄ ¼ Δv
Δp

∂x

�
1

2
p̄2

�
ðA29Þ

and thus

p∘Θ≡D- liml→0p̄ð∂xv̄Þ

¼ ðΔvÞpavδðxÞ ¼
j�
2γ

ðv21 − v20ÞδðxÞ ðA30Þ

using pav ¼ j�vav=γ from Eq. (A8). Note that this result
is independent of the particular choice of filter kernel G,
as required. It is also completely independent of the
molecular dissipation, as it is determined solely from
the limiting Euler solution fields. One finds, by sub-
tracting, that

τðp;ΘÞ≡ p � Θ − p∘Θ
¼ γ þ 1

2γ
j�

�
v1v0 ln

�
v1
v0

�
−
1

2
ðv21 − v20Þ

�
δðxÞ:

ðA31Þ

Clearly, Qvisc ¼ τðp;ΘÞ for Pr ¼ 3=4. This same iden-
tity, in fact, holds for all values of the Prandtl number,
allowing us to infer the Pr dependence of p � Θ from
that of Qvisc. The underlying reason for this identity,
which is valid for all planar shocks in an ideal gas,
is explained in the next subsection on kinetic-
energy flux.
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c. Kinetic-energy flux

Baropycnal work.—Using τ̄ðρ;vÞ¼ρv−ρ̄v̄¼j�−ρ̄v̄,

1

ρ̄
τ̄ðρ; vÞ ¼ j�

ρ̄
− v̄: ðA32Þ

Using ∂xp̄ ¼ ðΔp=ΔρÞ∂xρ̄ ¼ ðΔp=ΔvÞ∂xv̄,

1

ρ̄
τ̄ðρ; vÞ∂xp̄ ¼ j�

Δp
Δρ

∂xðln ρ̄Þ −
Δp
Δv

∂x

�
1

2
v̄2
�
: ðA33Þ

Thus,

Qbaro ≡D- liml→0

∂xp̄
ρ̄

τ̄ðρ; vÞ

¼ Δp
�
j�
Δρ

ln

�
ρ1
ρ0

�
− vav

�
δðxÞ

¼ −j�
�
v1v0 ln

�
v1
v0

�
−
1

2
ðv21 − v20Þ

�
δðxÞ; ðA34Þ

where the final line was obtained using Δp ¼ −j�Δv,
which follows either from Eq. (A8) or directly from the
Rankine-Hugoniot conditions (A6). Note that Qbaro ≤ 0.
We see again that the limiting inertial-range result

Qbaro is independent of the filter kernel G. This is true for
all of the limits as l → 0 of inertial-range expressions for
the shock solutions that we obtain in this appendix. Thus,
we make no further note of this fact for the other limits
derived below. Note that Qbaro is also completely inde-
pendent of the molecular transport coefficients, as are all
other quantities that are determined solely by the limiting
Euler solution fields.
Deformation work.—Using ~v ¼ ρv=ρ̄ ¼ j�=ρ̄,

ρ̄∂x ~v ¼ −
j�
ρ̄
∂xρ̄: ðA35Þ

Likewise, from its definition and ρv ¼ j�, one gets

~τðv; vÞ ¼ j�v̄
ρ̄

−
j2�
ρ̄2

¼ j�

�
Δv
Δρ

þ
�
vav −

Δv
Δρ

ρav

�
1

ρ̄
−
j�
ρ̄2

�
ðA36Þ

after substituting v̄ ¼ vav þ Δv
Δρ ðρ̄ − ρavÞ from Eq. (A21).

Thus,

Qdefor ≡ −D- liml→0 ρ̄ð∂x ~vÞ~τðv; vÞ

¼ j2�

�
Δv
Δρ

Δðln ρÞ −
�
vav −

Δv
Δρ

ρav

�
Δ
�
1

ρ

�
þj�Δ

�
1

2ρ2

��
δðxÞ

¼ j�

�
v1v0 ln

�
v1
v0

�
−
1

2
ðv21 − v20Þ

�
δðxÞ ≥ 0 ðA37Þ

upon simplification. Thus, Qflux ¼ Qbaro þQdefor ¼ 0.
Since Qvisc ¼ τðp;ΘÞ þQflux in general, this explains
why Qvisc ¼ τðp;ΘÞ holds independent of the molecular
transport coefficients for any planar ideal-gas shock. Note
that the last identity can also be restated as −p � Θþ
Qvisc ¼ −p∘Θ, which corroborates, for these solutions, the
general argument in the text that the sum of −p � Θ and
Qvisc should be completely independent of the molecular
dissipation, even though separately the two terms are
Prandtl-number dependent.
In physical terms, there is a loss of kinetic energy −p∘Θ

at the shock and an equal gain −p � ΘþQvisc of internal
energy. There is no external force to balance the kinetic-
energy loss and no cooling to balance the internal energy
gain. While these shock solutions are stationary, they are
not, however, homogeneous or isotropic. Thus, the loss or
gain is balanced by space transport of kinetic or internal
energy into or away from the shock, respectively. For
example, the space flux of kinetic energy is

Jkin ¼
�
1

2
ρv2 þ p

�
v ¼ j�

�
1

2
v2 þ p

ρ

�
: ðA38Þ

One readily finds from Eq. (A8) for pi, i ¼ 0, 1 that

ΔJkin ¼
j�
2γ

ðv21 − v20Þ < 0; ðA39Þ

so more kinetic energy enters the shock than leaves it, and
the difference is exactly the correct amount to offset the loss
due to pressure work. Similarly, more internal energy is
transported away from the shock than what enters it,
balancing the gain from pressure work and heating. This
follows directly from the conservation of total energy or by
using Jint ¼ uv for space flux of internal energy and
evaluating ΔJint ¼ −ΔJkin.

3. Entropy balance

a. Dissipation range

Viscous heating β �Qvisc.—Using Eq. (A22) for η∂xv,
we write
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ηð∂xvÞ2
T

¼ γ þ 1

2γ
j�

�
v − 2vav þ

v0v1
v

� ∂xv
T

¼ γ þ 1

2γ
j�

�
1þ v0v1

v2

�
v∂xv
T

−
γ þ 1

γ
j�vav

∂xv
T

:

ðA40Þ

In the first term, we replace v2 with T using both Eq. (A12)
and its derivative v∂xv ¼ −cP∂xT, while in the second
term, we replace T with v2 using Eq. (A12). Elementary
antiderivatives give, for the first term,

−j�γcV∂xðlnTÞ þ
1

2
j�ðγ − 1ÞcV∂x ln ja2 − 2cPTj; ðA41Þ

with a2 ¼ ½ðγ þ 1Þ=ðγ − 1Þ�v0v1, and for the second term,

−2j�cVðγ þ 1Þ vav
a

∂xarctanhðv=aÞ: ðA42Þ

Noting that a2 − 2cPT ¼ v2 ¼ j2�=ρ2, we finally get

β �Qvisc ¼ D- limη;κ→0

ηð∂xvÞ2
T

¼ −j�cV
�
γ ln

�
T1

T0

�
þ ðγ − 1Þ ln

�
ρ1
ρ0

�
þ 2ðγ þ 1Þ vav

a
Δðarctanhðv=aÞÞ

�
δðxÞ: ðA43Þ

This expression holds only for Pr ¼ 3=4, and the quantity is
generally Prandtl-number dependent. For example, β �
Qvisc ¼ 0 for Pr ¼ 0.
Thermal conduction Σtherm.—Note that, since Pr ¼ 3=4

and v∂xv ¼ −cP∂xT,

κ∂xT ¼ −ηv∂xv; ðA44Þ

and thus, also using Eq. (A22) for η∂xv,

κ∂xT ¼ −j�
γ þ 1

2γ
ðv2 − 2vavvþ v0v1Þ

¼ −j�ðγ þ 1Þ
�
v0v1
γ − 1

− cVT

�
þ j�

γ þ 1

γ
vavv:

ðA45Þ

Hence,

κð∂xTÞ2
T2

¼ −j�ðγ þ 1Þ
�
v0v1
γ − 1

− cVT

� ∂xT
T2

− 4j�cVðγ þ 1Þvav
v2∂xv

ða2 − v2Þ2 : ðA46Þ

Elementary antiderivatives and some lengthy algebraic
simplifications give

κð∂xTÞ2
T2

¼ j�
γ þ 1

γ − 1
v0v1∂x

�
1

T

�
þ j�cVðγ þ 1Þ∂xðlnTÞ

− j�
γ þ 1

γ
vav∂x

�
v
T

�
þ 2j�cVðγ þ 1Þ vav

a
∂xarctanhðv=aÞ: ðA47Þ

Taking the limit η, κ → 0, one finds, using the Bernoulli
relation, that the contributions of the first and third terms in
the above expression cancel, giving the final result

Σtherm ¼ D- limη;κ→0

κð∂xTÞ2
T2

¼ j�cVðγ þ 1Þ
�
ln

�
T1

T0

�
þ 2

vav
a

Δðarctanhðv=aÞÞ
�

× δðxÞ: ðA48Þ

Once again, this quantity is Prandtl-number dependent, and
the above expression holds only for Pr ¼ 3=4. Obviously,
Σtherm ¼ 0 for Pr ¼ ∞.
Total entropy production Σdiss.—The inverse hyperbolic

tangent terms cancel when added, giving

Σdiss ¼ Σtherm þ β �Qvisc

¼ j�cV

�
ln

�
T1

T0

�
− ðγ − 1Þ ln

�
ρ1
ρ0

��
δðxÞ

¼ j�ΔsmδðxÞ; ðA49Þ

using sm ¼ cV lnðT=Cργ−1Þ. We see that Σdiss > 0 since
Δsm > 0 is the standard entropy condition for a Euler
shock. The result (A49) could have been anticipated on the
basis of simple entropy balance since Jent ¼ sv ¼ smj� is
the space flux of entropy and ΔJent ¼ ðΔsmÞj� is the net
entropy transported away from the shock. Thus, the entropy
production at the shock is balanced by transport of entropy
to infinity. The result (A49) for Σdiss is, for this reason,
completely independent of the molecular dissipation. Note
that Σtherm ¼ Σdiss for Pr ¼ 0 and that β �Qvisc ¼ Σdiss for
Pr ¼ ∞. These results for Pr ¼ 0, ∞ can also be obtained
by using the Bernoulli-type relations in Refs. [115,169] and
by calculating in the same manner as for Pr ¼ 3=4 above.

b. Inertial range

Inertial-range viscous heating β∘Qvisc.—From
Eq. (A25), Qvisc ¼ q�δðxÞ, so

Q̄visc ¼ q�δ̄ðxÞ: ðA50Þ

On the other hand, for an ideal gas, by definition of β,

β ¼ cV
ρ̄

ū
: ðA51Þ
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Because u, ρ are step functions in the ideal limit,

ρ̄ ¼
�
ρ0 −

Δρ
Δu

u0

�
þ Δρ
Δu

ū; δ̄ ¼ ∂xū
Δu

: ðA52Þ

Thus,

βQ̄visc ¼ cVq�

��
ρ0 −

Δρ
Δu

u0

� ∂xū
ūΔu

:þ Δρ
Δu

δ̄ðxÞ
�

¼ cVq�

��
ρ0Δu − u0Δρ

ðΔuÞ2
�
∂xðln ūÞ þ

Δρ
Δu

δ̄ðxÞ
�
:

ðA53Þ
Hence,

β∘Qvisc ¼ D- liml→0βQ̄visc ¼ β�q�δðxÞ; ðA54Þ
with

β� ≡ cV

��
ρ0u1 − u0ρ1

ðΔuÞ2
�
ln

�
u1
u0

�
þ Δρ
Δu

�
: ðA55Þ

This result is obviously independent of the filter kernel G
(as are all such limits of coarse-grained quantities), but the
quantity q� gives a Prandtl-number dependence.
Pressure-dilatation defect β∘τðp;ΘÞ.—Because of our

earlier result p � Θ ¼ qPVδðxÞ, the same argument as above
shows that

D- liml→0βp � Θ ¼ β�qPVδðxÞ: ðA56Þ

Next note that, using p̄ ¼ ðγ − 1Þū and Eq. (A51) for β,

β p̄ ∂xv̄ ¼ cVðγ − 1Þρ̄∂xv̄ ¼ cVðγ − 1ÞΔv
Δρ

∂x

�
1

2
ρ̄2
�
;

ðA57Þ

where the last equality follows from ∂xv̄ ¼ ðΔv=ΔρÞ∂xρ̄.
Thus,

D- liml→0β p̄ ∂xv̄ ¼ cVðγ − 1ÞðΔvÞρavδðxÞ

¼ cVj�ðγ − 1Þ ðΔvÞvav
v1v0

δðxÞ ðA58Þ

after using ρ ¼ j�=v. Finally,

β∘τðp;ΘÞ ¼
�
β�qPV − cVj�ðγ − 1Þ ðΔvÞvav

v1v0

�
δðxÞ: ðA59Þ

This quantity is, of course, Prandtl-number dependent
through the coefficient qPV.
Combined contribution β∘Q − β∘τðp;ΘÞ.—Using the

expression (A25) for q� and Eq. (A28) for qPV, one can
see that the log term cancels in the difference and

q� − qPV ¼ −
j�
γ
Δ
�
1

2
v2
�

¼ j�cVðΔTÞ: ðA60Þ

In accordance with our earlier remarks, this is the same as
the coefficient of −p∘Θ and is completely independent of
the choice of molecular transport coefficients. Thus,

β∘Q − β∘τðp;ΘÞ ¼ cVj�

�
β�ðΔTÞ þ ðγ − 1Þ vavΔv

v0v1

�
δðxÞ

ðA61Þ
and is also independent of molecular dissipation.
Negentropy flux Σflux.—We first consider the contribu-

tion from ð∂xβÞuv. From β ¼ cV ρ̄=ū, one gets

∂xβ ¼ cV

�
1

ū
∂xρ̄ −

ρ̄

ū2
∂xū

�
; ðA62Þ

whereas

uv ¼ cVρTv ¼ cVj�T̄: ðA63Þ
Writing ρ̄ in terms of ū using Eq. (A19) and a similar
relation for T̄ in terms of ū, one finds, after some
simplifications,

ð∂xβÞuv ¼ −c2Vj�
�
ρ0 −

Δρ
Δu

u0

�
×

��
T0 −

ΔT
Δu

u0

� ∂xū
ū2

þ ΔT
Δu

∂xū
ū

�
: ðA64Þ

Thus,

D- liml→0ð∂xβÞuv

¼ −c2Vj�
�
ρ0 −

Δρ
Δu

u0

�
×

��
T0 −

ΔT
Δu

u0

�
Δu
u0u1

þ ΔT
Δu

ln

�
u1
u0

��
δðxÞ: ðA65Þ

Using the relation

ðT0u1 − T1u0Þðρ0u1 − ρ1u0Þ ¼ ðΔTÞðΔρÞu0u1; ðA66Þ
which follows from u ¼ cVρT, and the definition of β�
from Eq. (A55), this reduces to

D- liml→0∂xβ · uv ¼ −β�cVðΔTÞj�δðxÞ: ðA67Þ

Next, note that ∂xλm · ρv ¼ j�∂xλm. Hence,

D- liml→0∂xλm · ρv ¼ ðΔλmÞj�δðxÞ: ðA68Þ

For any equation of state, the Gibbs fundamental relation
may be written as sm ¼ hm=T − λm. For an ideal gas
hm ¼ cPT, so sm ¼ cP − λm and Δsm ¼ −ðΔλmÞ. Thus,
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D- liml→0∂xλm · ρv ¼ −ðΔsmÞj�δðxÞ: ðA69Þ

Finally, consider the contributions from ∂xβðū · v̄Þ,
∂xλmðρ̄ · v̄Þ. Using Eq. (A62) for ∂xβ, one has

∂xβðū · v̄Þ ¼ cVv̄ð∂xρ̄Þ − cV
ρ̄ v̄
ū

ð∂xūÞ: ðA70Þ

Next, use ∂xλm ¼ −∂xsm and sm ¼ cV lnðu=CργÞ to obtain

∂xλmðρ̄ · v̄Þ ¼ cVγv̄ð∂xρ̄Þ − cV
ρ̄ v̄
ū

ð∂xūÞ: ðA71Þ

Subtracting these two expressions gives

∂xβðū · v̄Þ − ∂xλmðρ̄ · v̄Þ

¼ cVðγ − 1Þv̄ð∂xρ̄Þ ¼ ðγ − 1ÞcV
Δρ
Δv

v̄ð∂xv̄Þ: ðA72Þ

From this result, it follows easily that

D- liml→0½∂xβðū · v̄Þ − ∂xλmðρ̄ · v̄Þ�

¼ cVðγ − 1Þj�
vavΔv
v0v1

δðxÞ: ðA73Þ

Putting together all of these results,

Σflux ¼ D- liml→0½∂xβ τ̄ðu; vÞ − ∂xλmτ̄ðρ; vÞ�

¼ j�

�
Δsm − cVβ�ðΔTÞ − cVðγ − 1Þ vavΔv

v0v1

�
δðxÞ;

ðA74Þ

which is valid, in general, for the limiting Euler solution
independent of the microscopic dissipation mechanism.
Note that the first and third terms in the square brackets of
the last expression are positive, while the second term is
negative. We do not present details here, but it is possible to
show that the sum of all three terms is strictly positive as a
function of compression factor R ¼ ρ1=ρ0 ¼ v0=v1 and
maximum compression factor R∞ ¼ ðγ þ 1Þ=ðγ − 1Þ over
the allowed range 1 ≤ R ≤ R∞.
Total entropy production Σinert.—For the final inertial-

range entropy production, we get from Eqs. (A61) and
(A74) that

Σinert ¼ Σflux þ β∘(Q − τðp;ΘÞ) ¼ j�ΔsmδðxÞ; ðA75Þ

which is independent of the molecular dissipation and in
exact agreement with the net result of the dissipation-range/
fine-grained calculation in Appendix A 3 a. From relation
(92), it is also true that

Σflux� ¼ Σflux þ β∘(Q − τðp;ΘÞ) ¼ j�ΔsmδðxÞ: ðA76Þ

The intrinsic negentropy flux consistently gives the net
entropy production for this problem since Iflux ¼ 0 for an
ideal-gas equation of state.

APPENDIX B: NO-GO THEOREM
FOR ASYMPTOTIC VALIDITY
OF BAROTROPIC MODELS

We present here an argument that barotropic models
cannot become exact in the limit of any parameter ϵ → 0
(analogous to Mach number for incompressible fluids)
unless the entropy production also vanishes in the same
limit. Since barotropic models contain no thermal con-
ductivity, we assume for simplicity that the fluid has
infinite Prandtl number, or κ ¼ 0. In that case, the entropy
balance (19) for compressible Navier-Stokes reduces to the
equation for sm, the entropy per mass:

ρDtsm ¼ Σ ≥ 0; ðB1Þ

with Σ ¼ Qvisc=T. In fact, our argument applies to any
other fluid model for which Eq. (B1) holds. We also
assume that the equation of state p ¼ pðρ; smÞ satisfies
ð∂p=∂smÞρ > 0. By a Maxwell relation, ð∂p=∂smÞρ ¼
−ð∂T=∂vÞsm , this is equivalent to the condition that the
fluid cools during adiabatic expansion, which holds true for
most fluids (including ideal gases). We then consider any
sequence of flows ðvϵ; ρϵ; sϵmÞ for which the barotropic
closure p ¼ pBðρÞ becomes asymptotically exact as ϵ → 0,
in the sense that

pðρϵ; sϵmÞ − pBðρϵÞ → 0; ðB2Þ�∂p
∂ρ

�
sm

ðρϵ; sϵmÞ −
∂pB

∂ρ ðρϵÞ → 0: ðB3Þ

Since the speed of sound is given by c2s ¼ ð∂p=∂ρÞsm, the
last condition is equivalent to the requirement that
c2sϵ → c2sB, where c2sB ¼ p0

BðρÞ gives the speed of sound
in the barotropic closure. Finally, we assume that all of
the solution fields vϵ; ρϵ; sϵm and also the divergence Θϵ

are bounded by fixed constants for ϵ > 0 and that
ð∂p=∂smÞϵρ ≥ Φ0, with some fixed constant. For an ideal
gas, the last assumption means that vacuum (zero-density)
conditions are not approached. For any sequence of
flows satisfying these reasonable conditions, we show that
entropy production per volume Σϵ → 0 necessarily.
To show this, we consider how p ¼ pðρ; smÞ and pB ¼

pBðρÞ evolve along fluid particle trajectories. Using Eq. (1)
for the mass density in the form Dtρ ¼ −ρΘ and Eq. (B1),
we find, by the chain rule,

Dtp ¼ −Θρð∂p=∂ρÞ þ ðΣ=ρÞð∂p=∂smÞ;
DtpB ¼ −Θρð∂pB=∂ρÞ: ðB4Þ
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Taking Xðx; tÞ to be the Lagrangian fluid trajectory that
satisfies ðd=dtÞX ¼ vðX; tÞ and that starts at point x, and
defining the difference Δðρ; smÞ ¼ pðρ; smÞ − pBðρÞ, one
easily obtains, by subtracting the two equations in Eq. (B4)
and integrating in time,

ΔjðXðx;tÞ;tÞ − Δjðx;0Þ
¼

Z
t

0

dτ½−Θρð∂Δ=∂ρÞ þ ðΣ=ρÞð∂p=∂smÞ�ðXðx;τÞ;τÞ:

ðB5Þ

Multiplying this relation by initial density ρðx; 0Þ, integrat-
ing x over space, and noting the Jacobian detð∂X=∂xÞ ¼
ρ0=ρt with ρt ¼ ρðx; tÞ, we finally obtainZ

t

0

dτ
Z
ddxΣτð∂p=∂smÞτ ¼

Z
ddx½ρtΔt − ρ0Δ0�

þ
Z

t

0

dτ
Z

ddxΘτρ
2
τð∂Δ=∂ρÞτ:

ðB6Þ

This relation clearly implies that Σϵ → 0 for any
sequence of flows such that Δϵ → 0. This can be shown
rigorously from the bound

0 ≤ Φ0

Z
t

0

dτ
Z

ddxΣϵ
τ ≤

Z
ddx½ρϵt jΔϵ

t j þ ρϵ0jΔϵ
0j�

þ
Z

t

0

dτ
Z

ddxjΘϵ
τj½ρϵτ�2jð∂Δ=∂ρÞϵτj: ðB7Þ

For example, if the convergence conditions Δϵ → 0 and
∂Δϵ=∂ρ → 0 in Eqs. (B2) and (B3) are taken to hold
pointwise in space-time (or even in L1-sense) and the fields
Θϵ, ρϵ are bounded uniformly in ϵ > 0, then as ϵ → 0,Z

t

0

dτ
Z

ddxΣϵ
τ → 0: ðB8Þ

This argument illustrates the grave concerns with the
physical consistency of viscous barotropic models. It
appears quite difficult to make these models consistent
with basic physics principles (thermodynamics, conserva-
tion of energy, second law) for isolated molecular fluids.
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