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We investigate linear and nonlinear light propagation in weakly perturbed AlGaAs slab waveguides
whose fabrication induced local defects give rise to random multiple scattering. The statistical evaluation of
the intensity distribution at the rear facet reveals an abundance of high-amplitude events in the linear
regime, contradicting the predictions of the central limit theorem by far. In this article we propose weak
successive backscattering to be a generator of high-amplitude events, while a focusing nonlinearity of the
Kerr type counterintuitively diminishes them, thus effectively randomizing the intensity distribution. We
support our experimental findings with numerical simulations based on the stray matrix approach
introduced by Edrei et al. [Phys. Rev. Lett. 62, 2120 (1989)]. This novel proposed mechanism for the
formation of extreme events in the context of linear wave dynamics represents the first encounter of the
phenomenon in the limit of weak scattering.
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I. INTRODUCTION

The rare, but inevitable occurrences of high-amplitude
events, which significantly peak out of the ensemble
average, are a widely experienced side effect of wave
dynamics in complex systems [1,2]. As statistical extremes
they are characterized by their ferocity and suddenness and
are thus of vital relevance particularly in the context of
damage prevention. The most spectacular and devastating
incidents happen in the context of hydrodynamics, namely,
ocean wave dynamics, where they are labeled rogue waves
due to their unpredictable nature [3,4]. But even so, reports
from such freak waves were disbelieved by the scientific
community for a long time. While being plausible as
outliers from a statistical point of view, they were deemed
too seldom to be witnessed by humans and, hence, not
worthy of any methodical investigation.
The singular giant recorded impact that hit the

Draupner platform on New Year’s Day in 1995 is widely

considered as one of the first scientific proofs that rogue
waves actually exist and are not simply the plot point of an
old seaman’s yarn [5]. Since then, oil rig and radar-based
measurements have confirmed their omnipresence in the
open sea [3]. It was found that their frequency exceeds
expectations by far. As of now, they are identified as a
substantial threat to the commercial shipping industry and
have stirred up a lot of research as to their origin,
formation, and predictability [6].
The astonishment over rogue waves, i.e., waves with

heights exceeding twice the so-called significant wave
height H1=3 (the mean of the highest third of all wave
heights), mostly arises because of the conception that
ordinary ocean waves are very well approximated by a
linearization of the underlying set of hydrodynamic equa-
tions and are thus to a fair degree sinelike [7,8]. That is why
a superposition of random amplitudes and phases is
expected to follow the central limit theorem yielding the
statistics of wave heights to show characteristics of a
Rayleigh distribution [9,10]. Taking the square of the wave
heights, one should find an exponentially decaying dis-
tribution in close correspondence with the probability
density function p for intensities I of speckle patterns
known from illumination with coherent light after its phase
front was randomly disturbed, for example, by the reflec-
tion off a rough surface [11]:

*vincent.schultheiss@fau.de
†ulf.peschel@uni-jena.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 011017 (2018)

2160-3308=18=8(1)=011017(23) 011017-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.011017&domain=pdf&date_stamp=2018-02-05
https://doi.org/10.1103/PhysRevLett.62.2120
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevX.8.011017
https://doi.org/10.1103/PhysRevX.8.011017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


pðIÞ ¼ 1

I0
e−I=I0 : ð1Þ

Here, I0 is the mean intensity over the considered interval.
In this vein, the frequent occurrence of rogue waves or,
more generally speaking, any long-tailed deviation of the
probability density function from a Rayleigh distribution,
remains a mystery. There is an ongoing debate whether the
origin of this phenomenon is merely linear as, e.g., a
dispersion effect [1] or the formation of caustics by spatial
focusing on random impurities [12–16], or whether its
explanation requires the inclusion of nonlinear terms into
the evolution equations [17–22]. In the past few years, the
systematic investigation of extreme wave events has been
aided by the close analytic analogy between hydrodynamic
surface gravity waves and the envelope of electromagnetic
field oscillations [23,24]. It has been shown that growing
modulation instabilities can create spontaneous solitary
peaks in optical systems during supercontinuum generation
in glass fibers [25]. Since then, many examples for the
occurrence of high-amplitude events were found in optics
[26–29]. However, it is widely believed that rogue waves
are not based on a single physical mechanism, apart from
some sort of disturbance in the system to begin with [30].
In this article, we present evidence that linear wave

dynamics can generate histograms with pronounced tails,
which are underestimated by the central limit theorem,
solely on the basis of weak backscattering. To this end we
investigate light propagation in a randomly perturbed
planar waveguide structure and consider the intensity
profile at the rear facet for low and high input beam
powers. In contrast to common perception, we find that
nonlinearity (NL) suppresses the formation of rogue waves,
and that for increasing power, extreme events become more
and more unlikely, thus transforming the light field back
into a speckle distribution. Our experimental findings are
supported by results obtained from discrete numerical
simulations based on a random distribution of scattering
matrices [31,32].
This article is structured as follows. After providing

details of the used waveguide samples and the experimental
setup in Sec. II, experimental findings in the linear regime
are presented in Sec. III, accompanied by first simulation
results that emerge from our numerical model. In Sec. IV,
we give an overview of the 2D diffusion approach used to
characterize the samples and necessary to understand the
numerical model, which is presented in detail in Sec. V. In
Sec. VI, we experimentally and numerically investigate the
impact of a Kerr nonlinearity on the intensity distribution.
Finally, in Sec. VII, we conclude the article with a short
summary of our findings.

II. EXPERIMENTAL SETUP

The waveguides used in the experiments consist of
layered stacks of AlxGax−1As, with varying content x of

aluminum, deposited on top of a semi-insulating GaAs
wafer [see Fig. 1(a)]. They were fabricated by means of
molecular beam epitaxy. The thickness of the bottom layer
is 5.0 μm with aluminum content x ¼ 24%, followed by a
1.5-μm-thick guiding layer with x ¼ 18% and secluded by a
1.0-μm-thick cladding layer with x ¼ 24%. Since the
refractive index of AlGaAs decreases with increasing
aluminum concentration [33], the light is primarily confined
and guided inside the middle layer. Hence, the stacking
constitutes a slab waveguide with single mode operation at
the working wavelength λ0 ¼ 1550 nm. Leakage into the
substrate is negligible. As the photon energy is well below
half the band gap, the waveguide is transparent at this
wavelength and two-photon absorption plays no role
[34]. The nonlinear Kerr index n2 of AlGaAs is
∼1.5 × 10−17 m2W−1, corresponding to a nonlinear suscep-
tibility of third order, χð3Þ ¼ 5.9 × 10−19 m2V−2 [35,36].
Microscope images taken from above the sample show

the existence of elliptically shaped ripples, which were
induced by thermal stress during layer growth [visible in
Fig. 1(b) by illuminating the sample from the back with an
infrared light source]. They are preferably aligned in the
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FIG. 1. Experimental setup. (a) Waveguide structures consist-
ing of a stacking of AlxGax−1As layers with varying refractive
index (depending on the content x of aluminum). (b) Because of
thermal stress during fabrication, ripples form in a preferred
direction. The red arrow indicates the main propagation direction
of the guided light. Scale bar is 20 μm. (c) Light is coupled into
the waveguide by focusing an elliptically shaped laser beam onto
the front facet of the samples (see bottom left-hand inset). A beam
splitter is used to monitor the front facet with a CCD camera (see
top left-hand inset). Note the differing magnification factor in
the horizontal direction due to the cylindrical lens. Besides the
backreflected impinging beam, the backscattered light from
inside the sample is clearly visible. The intensity distribution
at the rear facet is monitored with another CCD camera (see
bottom right-hand inset).
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11̄0 direction of the GaAs bed due to the orientation
dependence of the interfacial energy of Ga on AlGaAs at
deposition [37]. In what follows, this direction also
corresponds to the main direction of light propagation
chosen in our experiments. The defects do not deteriorate
the guiding properties considerably (scattering out of the
waveguide provokes an attenuation length Lloss¼5.40mm;
see Sec. IV), but lead to slight anisotropic inhomogeneous
variations of the effective refractive index neff of the
waveguide, thus causing weak but noticeable scattering
inside the guiding layer. By performing a Fourier analysis
of the microscope images, the distance between two
adjacent scattering sites, that is, the scattering mean free
path length, is determined to be lscat;∥ ≈ 20 μm and lscat;⊥ ≈
3 μm parallel and orthogonal to the main propagation
direction of light, respectively.
A TE-polarized Gaussian laser beam with elliptic inten-

sity profile [full width half maximum of the intensity
profile is 53 μm in the x and 1.7 μm in the y direction,
see bottom left inset in Fig. 1(c)] is focused on the front
face to excite the waveguide mode. The effective refractive
index of the guided mode is neff ¼ 3.33, so that λeff ¼
λ0=neff ¼ 465 nm and the transverse diffraction length
zR ¼ πw2

0=λeff ¼ 31 mm, where w0 ¼ FWHM=
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
is

half the width of the Gaussian field envelope.
We utilize two different types of lasers in the experi-

ments: an infrared diode laser source at λ0 ¼ 1550 nm
producing continuous wave (cw) radiation at power Pav ≈
1 mW for linear reference measurements, and a pulsed
laser source with high peak powers of up to Ppeak ≈ 1 MW
at a constant pulse length of 500 fs to trigger nonlinear
beam evolution. The intensity profile at the rear facet along
the guiding layer of the waveguide is imaged onto a
calibrated infrared CCD camera chip [see bottom right-
hand inset of Fig. 1(c)]. The retrieved images form the basis
of our experimental measurements. After taking account of
a constant background and sporadic bad pixels, the
intensity profile IðxÞ is normalized with respect to its
mean intensity I0. Finally, a histogram of the resulting
intensity ratios I=I0 is recorded with bin size 0.5.
The front facet of the waveguide can be monitored by the

insertion of a nonpolarizing beam splitter cube, which
directs the fraction of the impinging light that is reflected
at the front facet as well as the light that is scattered back
from within the waveguide to another CCD camera [see top
left-hand inset of Fig. 1(c)]. Both components are distin-
guishable in the images in terms of their lateral extent and
brightness.
Different propagation lengths are realized via samples

of different sizes, all originating from the same AlGaAs
wafer, while a number of ten different realizations within
each sample with statistically equivalent features is accom-
plished by laterally shifting the samples between consecu-
tive measurements. Changing the incoupling position, the
guided light interacts with a different set of imperfections.

The histograms plotted throughout this paper represent the
cumulative frequencies of the normalized intensities taken
from the various measurements. The total number of
evaluated intensity values per sample length and input
power is about 5 × 103 for the short and intermediate
samples and 8 × 103 for the sample of length L ¼ 30 mm.
Reference measurements are taken using an unperturbed
AlGaAs sample of length L ¼ 4 mm without index inho-
mogeneities, but with an identical progression of layers
with varying aluminum concentration.

III. RESULTS IN THE LINEAR REGIME

The results of the measurements in the linear regime
(achieved with the cw diode laser) are depicted in Fig. 2(a).
The histogram plot of the ensemble averaged normalized
intensity distribution at the rear facet shows how the typical
statistics of an unperturbed Gaussian beam intensity profile
(green solid line) is quickly transformed during propaga-
tion in the perturbed sample (turquoise to magenta solid
lines). Multiple scattering randomizes the intensity profile
into a speckle distribution for intermediate propagation
lengths L ¼ 5 and 10 mm (turquoise and gray solid lines).
However, as the propagation length increases, the tail of the
distribution stretches out further, eventually surpassing the
specklelike behavior stated by Eq. (1) (purple and magenta
solid lines; for comparison, see black dashed line). It still
resembles an exponentially decaying curve for high inten-
sities, but with a decay factor significantly smaller than the
one expected from a random process. Thus, extreme events
are much more likely to occur than for a speckle distribu-
tion. Since multiple scattering at the random defects is
supposed to meet the prerequisites of the central limit
theorem and so lead to a randomized distribution, this
comes as a complete surprise. It is the aim of this article to
elaborate on this unexpected outcome and to provide a
comprehensive explanation.
Comparable deviations from Rayleigh statistics have been

found recently during linear beam propagation in slowly
varying refractive index distributions with weak variations
on the one hand [15,16] and randomly distributed Luneburg
lens (LL) type defects with very strong index variations on
the other [38]. In both regimes extreme events could be
observed as a result of the formation of caustics due to the
(de)focusing effect induced by the spatial index variations.
These caustics typically form after a few correlation lengths
or LLs, but as was observed for the slowly varying index
landscapes, they disappear after many such lengths when
the randomization of the light field increases, thus eventually
manifesting a speckle distribution. A property of these
systems is that the evolution can be traced well with
Hamiltonian ray optics, which is a clear indication that it
is mainly governed by classical refraction.
This is not the case in our setup, where the light

undergoes multiple scattering (about 1500 times) before
it reaches the end facet, where the intensity profile is
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finally observed with a CCD camera. The randomization
along the propagation is so strong that the ray optics
approximation ceases to give an adequate explanation of
our experimental situation.
However, finite-difference time-domain (FDTD) simu-

lations for strong index variations (around 30%) as stated in
Ref. [38] already hint at the possible importance
of backreflection. As we show, our system can be well
described as an ensemble of weakly scattering pointlike
defects that are separated by lscat, where the ratio between
backward and lateral scattering plays a key role in explain-
ing the occurrence of extreme events.
Naturally, it must be checked whether the measurements

and the evaluation are sound. Since in the experiment we
are only evaluating the intensity statistics on a bounded
spatial interval along the rear facets, special care must be
taken to ensure that the choice of the considered region
does not deteriorate the validity of the statistics. A perfect
generic specklelike distribution, for example, can only be
expected from unlocalized field distributions. However, the
initial Gaussian bell shape of the incoupled beam affects the
envelope of the intensity profile even after many scattering
events. The actual evaluation of the intensity profile
observed at the back side of the waveguide structures is
executed in more technical detail in Appendix A. There it is
proven that considering only a finite interval of the intensity
distribution tends to underestimate the frequency of extreme
events and thus cannot explain the observed abundance of
high-amplitude events discussed in this article.
In fact, nonspecklelike probability distributions are

also known from very strong scattering [14,32,39–45].

In respective systems the scale on which a wave loses all
information about its original propagation direction—the
so-called transport mean free path length ltrans—is equal to
the scattering length lscat and of the order of the effective
wavelength. Here the extensive amount of lateral scattering
during propagation leads to different light paths crossing
each other and to a buildup of transverse spatial correlation,
which undermines the prerequisites of the central limit
theorem and manifests itself in a growing number of high-
amplitude events. However, this is clearly not the case in
our experiments, where scattering is much weaker, result-
ing in a transport mean free path length of ltrans ¼ 1.87 mm
as is deduced from transmission measurements in Sec. IV
[46–48]. This is much larger than both lscat and the effective
wavelength λeff inside the waveguide.
Although individual scattering events are weak, multiple

scattering still dominates the field evolution in our samples,
resulting in a classical diffusion process for light [49]. In
principle, this should be adequately replicated by numerical
simulations utilizing the beam propagation method (BPM)
[50], a well-established technique based on the paraxial
approximation of scalar and the assumption of solely
forward light propagation, yielding a Schrödinger-like
differential equation for the components of the electro-
magnetic field. To our surprise the remarkable deviance
from a specklelike intensity distribution observed in the
experiment cannot be reproduced by these calculations for
a large set of randomly distributed refractive index land-
scapes (see Appendix B).
In this article we suggest that the small, but noticeable

backscattered field components not accounted for in the
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FIG. 2. Comparison of experimental and numerical results in the linear regime. (a) Histogram of the normalized intensity distribution
as obtained experimentally from the rear facets of the samples. The shortest sample (L ¼ 4 mm) is unperturbed, all other samples are
perturbed. For L ¼ 5 and 10 mm, the trend follows the exponentially decaying curve of a speckle distribution [dashed black line;
compare with Eq. (1)]. For longer propagation lengths (L ¼ 15, 20, 30 mm), extreme events are more probable than anticipated from a
random distribution. (b) Histogram of normalized intensity distribution at different propagation lengths z from simulations based on the
stray matrix method with plane wave excitation and weak, but prevailing backscattering. The exact scattering amplitudes are stated in the
pictogram displayed in the bottom left-hand corner (clockwise, starting from the top): backward jrj, leftward jr⊥j, forward jtj, and
rightward jr⊥j (see also Fig. 5). For increasing z the probability distribution quickly surpasses a speckle distribution, before
asymptotically approaching a heavy-tailed limiting function between z ¼ 20 and 30 mm. See also the inset for the dependence of the
probability density at a fixed intensity value I ¼ 7.0I0 on z. (c) Numerical results with less dominant backscattering. For intermediate
propagation lengths the frequency of extreme events is greatly diminished. However, partial diffuse reflection at the rear facet increases
the probability of extreme events in its vicinity (also visible in the inset).
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BPM but observed in our experiments [see top left-hand
inset in Fig. 1(c)] cause the detected abundance of extreme
events. Our conclusion is supported by numerical results
obtained from a discrete simulation scheme. The computed
results are depicted in Fig. 2(b). There it can be seen that—
although being very weak—backscattering accomplishes
the expected deviation from a speckle distribution.
Provided that it prevails over lateral scattering, it generates
an abundance of extreme events in very good accordance
with the experimental data. If backscattering is less
dominant [see Fig. 2(c)], extreme events are greatly
diminished and the tails of the intensity distribution
approach the exponential trend line of a speckle pattern.
In Sec. V, we give an elaborate introduction to the under-
lying numerical scheme, which was brought up first by
Edrei et al. [31] to investigate the strong scattering case. In
this article it is expanded to the weakly scattering regime.
But before we delve into the numerics, first we revisit

diffusion theory and properly apply it to the two-
dimensional waveguide structures at hand. After what
follows, we will be able to extract the characteristic features
of the waveguide structures by means of experimentally
accessible parameters in order to endorse our reasoning and
to insert them into the numerical model.

IV. 2D DIFFUSION EQUATION

The aim of this section is to introduce all the critical
quantities describing the scattering process analytically and
to motivate the way that they are measured experimentally.
To this end we first derive the two-dimensional diffusion
equation from the respective radiative transfer equation,
largely reproducing the derivation of the three-dimensional
analogue as stated, for example, in detail in Refs. [39,49],
but emphasizing the subtle changes due to the reduced
dimensionality. Later we provide solutions of this equation
to be compared with experimental results.

A. Derivation of the 2D diffusion equation

The time-dependent, emission-free (no source term)
radiative transfer equation for the diffuse radiance
Iðr; n; tÞ, corresponding to the energy flux at position r
into direction n, is given by [39,51]

tscat
∂
∂t Iðr; n; tÞ þ lscatn · ∇Iðr; n; tÞ

¼
Z
Ω

dn0

2π
pðn; n0ÞIðr; n0; tÞ − Iðr; n; tÞ; ð2Þ

where tscat and lscat denote the mean time and the mean free
path length between two scattering events, respectively,
∇ ¼ ð∂=∂x; ∂=∂yÞ is the two-dimensional gradient oper-
ator, and pðn;n0Þ is the so-called phase function of one
scatterer, describing the scattered intensity into direction n0
from an incident plane wave traveling in the direction n.

Accordingly, n ¼ ðsin ϑ; cosϑÞ and n0 ¼ ðsin ϑ0; cosϑ0Þ
stand for arbitrary unit vectors, the angle between which
shall be denoted by θ. The integral on the right-hand side
of Eq. (2) is performed over the whole two-dimensional
angular range, so that

R
Ω dn0 ≡ R

2π
0 dϑ0. Note that here and

in the following the normalization factor on the right-hand
side differs from the 3D case treated in Ref. [39].
Next, we introduce the local radiation density or, in other

words, intensity Iðr; tÞ,

Iðr; tÞ ¼
Z
Ω
dnIðr; n; tÞ;

and the local current density Jðr; tÞ,

Jðr; tÞ ¼ lscat
tscat

Z
Ω
dnIðr; n; tÞn:

For circularly symmetric scatterers, the phase function
pðn;n0Þ solely depends on cos θ. For arbitrarily shaped
scatterers this assumption still holds after averaging over
many different scatterers. This allows us to define a scalar
a, called the albedo, as a measure for losses during one
scattering event (0 < a < 1, with a ¼ 1 indicating the
absence of losses):

a≡
Z
Ω

dn
2π

pðn; n0Þ:

Thus, we obtain the continuity equation by integrating
Eq. (2) over the full two-dimensional angular range

∂
∂t Iðr; tÞ þ ∇ · Jðr; tÞ ¼ −

1 − a
tscat

Iðr; tÞ: ð3Þ

On the other hand, first taking the dot product on both sides
of Eq. (2) with n before integrating over the full angular
range, we are left with

t2scat
lscat

∂
∂t Jðr; tÞ þ lscat

Z
Ω
dn(∇ · Iðr; n; tÞn) · n

¼
Z Z

Ω

dndn0

2π
Iðr; n0; tÞpðn; n0Þn −

Z
Ω
dnIðr; n; tÞn:

ð4Þ

For symmetry reasons,Z
Ω

dn
2π

pðn; n0Þn ∝ n0

always holds for rotationally symmetric scatterers.
Hence, we are allowed to multiply the first term on the
right-hand side of Eq. (4) by n0 · n0 ¼ 1 and associate one
of the dashed unit vectors with the above integral to find the
expression
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Z
Ω

dn
2π

pðn;n0Þn ·n0 ¼
Z
Ω

dn
2π

pðcosθÞcosθ¼hcosθi ð5Þ

to be the average cosine of the scattering angle. By utilizing
this result, we can rewrite Eq. (4) as

t2scat
lscat

∂
∂t Jðr; tÞ þ

tscat
lscat

ð1 − hcos θiÞJðr; tÞ

¼ −lscat
Z
Ω
dn(∇ · Iðr; n; tÞn) · n: ð6Þ

In the following we assume z to be the main propagation
direction. The respective component of the current density
is given by

Jz ¼ J · ez ¼
lscat
tscat

Z
Ω
dnIðr; n; tÞn · ez: ð7Þ

In the so-called diffusion approximation it is assumed that
the diffuse intensity is almost independent of the direction
n, except for a small excess in the forward, i.e., positive z
direction:

Iðr; n; tÞ ≈ 1

2π
Iðr; tÞ þ γ

tscat
lscat

Jzez · n

¼ 1

2π
Iðr; tÞ þ γ

tscat
lscat

Jz cos ϑ; ð8Þ

where γ is an unknown constant. By inserting this ansatz
into the definition of Jz stated in Eq. (7), we find γ ¼ 1=π.
Finally, after some calculation, Eq. (6) takes the form

t2scat
lscat

∂
∂t Jðr; tÞ þ ð1 − hcos θiÞ tscat

lscat
Jðr; tÞ ¼ −

lscat
2

∇Iðr; tÞ:

In the static case there is no time dependence and we can
neglect the first term on the left-hand side, so that we get

JðrÞ ¼ −D∇IðrÞ; ð9Þ

where we introduced the diffusion constant D as

D≡ l2scat
2tscatð1 − hcos θiÞ≡

vltrans
2

:

Note again the different factor in the denominator com-
pared to the 3D case [39]. Here we have also defined the
velocity of diffuse light transport v ¼ lscat=tscat and the
transport mean free path length:

ltrans ¼
lscat

1 − hcos θi : ð10Þ

The latter can be used to estimate the (average) phase
function of one scatterer (see Sec. IV C). In contrast to the

scattering mean free path length lscat, which is the distance
between consecutive, potentially weak scattering events
(mainly emitting in the forward direction), the transport
mean free path length ltrans can be thought of as the
distance, after which all information about the propagation
direction of the incident light beam is completely lost. This
might happen only after many consecutive weak scattering
events. In the case of strong scattering hcos θi ¼ 0, the
transport mean free path length equals the scattering mean
free path length. In fact, in scattering theory one often
assumes strong scattering in order to significantly simplify
the math involved, only to invoke weak scattering in the
end result in virtue of Eq. (10).
When inserted in Eq. (3) and again assuming static

behavior, Eq. (9) leads to the diffusion equation for the
intensity IðrÞ,

∇ · ½D∇IðrÞ� − D
L2
loss

IðrÞ ¼ 0; ð11Þ

where we introduce the absorption length Lloss so that

Lloss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lscatltrans
2ð1 − aÞ

s
:

Keep in mind that in general the diffusion constantDmight
depend on the position. However, here we treat it as a
constant, which can be omitted from Eq. (11).

B. Solution of the diffusion equation

Our desired task is to extract the absorption length Lloss
and transport mean free path length ltrans from experimental
transmission measurements. To do so, we consider the
propagation of light through a slab waveguide of length L
with fixed mode profile in the y direction (see Fig. 3). The
input and output facets of the waveguide are placed at z ¼ 0
and z ¼ L. The effective refractive index of the waveguide
mode is neff and that of the surrounding environment is
nenv. Spatially coherent radiation entering the slab from the
left is transformed into diffuse light during its propagation
through a layer roughly as thick as the transport mean free
path length ltrans. For the sake of simplicity we neglect the
details of this transformation and consider a source of
diffuse intensity being placed at z ≈ ltrans.
In the static case and in the presence of absorption, the

diffuse light intensity thus obeys the diffusion equation
[see Eq. (11)],

ΔIðx; zÞ − 1

L2
loss

Iðx; zÞ ¼ −S0δðz − ltransÞ; ð12Þ

with Δ ¼ ∇2 and where we assume a delta-peak-shaped
source of strength S0 at z ≈ ltrans. Since in our simplified
model all diffuse light is originating from the source layer,
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there is no incoming flux through the boundaries at z ¼ 0
and z ¼ L. Hence, the energy flux is determined by energy
loss through the boundary and is expected to be propor-
tional to the diffuse intensity I leading to [46]�

Iðx; zÞ − z0
∂
∂z Iðx; zÞ

�
z¼0

¼ 0 ð13Þ

and �
Iðx; zÞ þ z0

∂
∂z Iðx; zÞ

�
z¼L

¼ 0: ð14Þ

Here the so-called extrapolation length z0 is introduced,
which is the hypothetical distance after which the diffuse
intensity vanishes due to the light being scattered back to
the positive (or negative) z direction completely. The form
of the boundary conditions and the value of z0, which
generally depends on the reflectivity of the interfaces (and
therefore the ratio of neff and nenv), is derived in detail in
Appendix C.
The resulting profile of the diffuse intensity correspond-

ing to the Green’s function of the system, that is, the
solution of Eq. (12), is given by [39,47]

IðzÞ ¼ S0Lloss

h
sinh

�
zmin
Lloss

�
þ z0

Lloss
cosh

�
zmin
Lloss

�ih
sinh

�
L−zmax
Lloss

�
þ z0

Lloss
cosh

�
L−zmax
Lloss

�i
�
1þ z2

0

L2
loss

�
sinh

�
L

Lloss

�
þ 2 z0

Lloss
cosh

�
L

Lloss

� ; ð15Þ

where zmin ¼ minðz; ltransÞ and zmax ¼ maxðz; ltransÞ [see
Fig. 3(b) for a plot]. To calculate the diffuse intensity Iout
leaving the slab waveguide through the rear interface at
z ¼ L, similar to the above consideration, one often
assumes that no scattering or considerable absorption takes
place in a layer next to the rear interface roughly as thick as
ltrans and that, hence, the emitted intensity corresponds to
the diffusive intensity a distance ltrans away from the output
facet; formally, IoutðLÞ ¼ Iðz ¼ L − ltransÞ. For a slab
length L ≥ 2z0, this results in

IoutðLÞ ¼ S0Lloss

h
sinh

�
ltrans
Lloss

�
þ z0

Lloss
cosh

�
ltrans
Lloss

�i
2

�
1þ z2

0

L2
loss

�
sinh

�
L

Lloss

�
þ 2 z0

Lloss
cosh

�
L

Lloss

� :

ð16Þ

To gauge the source power S0 and retrieve an expression
for the total transmission TðLÞ of the waveguide, we
assume a short section of the waveguide with length
L ¼ 2ltrans to have a transmission of

TðL ¼ 2ltransÞ≡ 1

2
:

Such an assumption is in agreement with our model,
because the source at z ¼ ltrans emits the same amount
of power to the front and rear facet resulting in reflection
and transmission being equal. As long as the transport
length ltrans is reasonably smaller than the absorption length
Lloss, losses are negligible and half of the power entering
such a short waveguide section must be transmitted. With
this, we finally get

TðLÞ ¼ IoutðLÞ
2IoutðL ¼ 2ltransÞ

ð17Þ

for the total transmission through a multiply scattering,
fairly lossy two-dimensional waveguide, where IoutðLÞ is
given by Eq. (16).

C. Characterizing the sample

To determine the scattering strength of the defects in the
waveguide structures used in the experiments, measure-
ments of the mean total transmission through the wave-
guides as a function of the various sample lengths L were
performed. When doing so one must consider that only a
fraction of the actual impinging power is transmitted
through the front facet of the sample due to the Fresnel
coefficient for normal incidence and is then converted to
diffuse intensity. If this is taken into account, then by
comparing the experimental results with Eq. (17), one
can readily extract both the attenuation length Lloss ¼
ð5.41� 0.48Þ mm and the transport mean free path length
ltrans ¼ ð1.87� 0.13Þ mm by means of a two-parameter fit
[see gray squares and solid red line in Fig. 3(c)]. Comparing
the quality of the fit to another model based on Eq. (15),
where possible losses along the order of ltrans are specifi-
cally taken into account [solid green line in Fig. 3(c)], the
assumption ltrans < Lloss made above seems well justified.
Comparing ltrans with the distance between scattering

events in the longitudinal direction lscat;∥ ≈ 20 μm, we
gain knowledge of the scattering strength by means of
Eq. (10) [32,39], finally finding hcos θi ¼ 0.989. In gen-
eral, hcos θi ¼ 0 implies strong (Rayleigh) scattering and
hcos θi≲ 1 represents weak (Mie-like) scattering. So,
indeed, scattering in the perturbed AlGaAs samples is
very weak, while the scattering length lscat is so short that
multiple scattering is ensured, rendering the deviation of
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the intensity statistics from a random light distribution the
more peculiar.
Next we are striving to estimate the average direction-

dependent scattering amplitude of the defects in the wave-
guide. However, as we present a discrete numerical model
in the next section, we do not need to derive the full angular
dependence of the phase function pðcos θÞ, and it will be
sufficient to consider the scattering amplitudes into the four
major directions only.
In order to roughly approximate the scattering ampli-

tudes and—more importantly—the ratios between them,
we assume that the distribution of bright and dark streaks
visible in the backlit microscope image depicted in
Fig. 1(b) qualitatively mirrors the spatial variation of the
refractive index distribution in the perturbed waveguide
structure. After applying a suitable high-pass filter and

defining a brightness threshold, we are left with a mono-
chromatic distribution [see inset of Fig. 4(a)] that can
readily be used as a template for the spatial index variation
in a FDTD simulation (commercial software Lumerical
FDTD Solutions). The extracted section is 20 μm long and
4 μm wide. To avoid specular reflection at the section
boundaries, straight edges and corners are rounded off and
the resulting template is convoluted with a Gaussian with
width w ¼ 0.5 μm ≈ λeff . We utilize a plane wave source
polarized as in the experiment, i.e., parallel to the plane of
incidence (TE polarized in terms of the waveguide struc-
ture) and monitor the angle-dependent scattered field
amplitude in the far field (use of a total-field scattered-
field source and subsequent far field transformation). An
exemplary numerical result is illustrated in Fig. 4(b). The
logarithmic intensity plot in the outer frame reveals the
phase function. In Fig. 4(c), the angle-dependent scattered
intensity distribution is plotted for an exemplary index
variation Δn ¼ 0.001 between the background and the
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FIG. 4. Estimation of scattering amplitudes. (a) Microscope
image of one of the samples illuminated from the back by an
infrared diode. Inset: Filtered and extracted structure used in the
FDTD simulation, where the light gray section is considered as a
part of the background and the dark gray section constitutes the
actual defect with varying refractive index. (b) Numerical result
of the FDTD simulation for plane wave excitation (contour of
defect plotted for reference) and index variation Δn ¼ 0.001. The
absolute value of the total field is displayed in the inner rectangle,
while the scattered field is shown in the outer frame (see
respective color scale). Most of the radiation is scattered to
the front. Only a small part is backscattered and the radiation
scattered to the sides is negligible. (c) Plot of the angle-dependent
scattering amplitudes for the index structure depicted in (a) for
illumination with a plane wave polarized parallel to the plane of
incidence (TE polarized in terms of the waveguide structure).
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FIG. 3. Sketch of the diffuse intensity. (a) A waveguide
structure consisting of a guiding layer packed between two
cladding layers. The mode profile in the y direction is localized
in the guiding layer (light blue solid line). The excited mode
defines an effective refractive index neff . The waveguide is of
length L in the z direction and practically infinite in the x
direction. (b) Schematic normalized diffuse intensity for a source
located at ltrans ¼ 1. The length of the waveguide L is taken to be
10 and z0 ¼ 1. Depicted are the cases for vanishing absorption
(dark blue solid line) and Lloss ¼ 3 (red solid line). (c) Fit (red
solid line) to the experimentally determined mean total trans-
mission TðLÞ ¼ Pout=Pin (gray squares) for cw operation as
measured at the rear facets of the samples, based on Eq. (17). We
obtain Lloss ¼ 5.40 mm and ltrans ¼ 1.87 mm. Note the logarith-
mic scale, which amplifies errors at low transmission values. The
fit function is dashed for L < 2ltrans, since Eq. (16) is reasonable
only for L ≥ 2ltrans. The light red corridor illustrates the func-
tional prediction bounds for 1σ. A fit based on a model with non-
negligible losses along ltrans (green solid line) does not result in a
better fit.
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defect. Clearly, most of the radiation is scattered in the
forward direction (scattering angle θ ¼ 0°) and only a small
part is scattered to the sides, with backscattering (θ ¼ 180°)
notably dominating over transverse scattering.
As we are only interested in discrete scattering direc-

tions, namely the forward, backward, left, and right
direction, we shall integrate over some angular blocks of
90° with the respective major directions in their center. Still,
the FDTD simulations suggest that even for small index
variations significantly more radiation is scattered in the
back direction than to the sides (up to 10 times for very
small index variations).
In the following, we conservatively estimate jrj ≈ 2jr⊥j,

which as will turn out is enough to numerically provoke the
abundance of extreme events as observed in the experi-
ments. An even stronger imbalance would result in even
more pronounced deviations from a speckle distribution.
Now, for discrete scattering the computation of the

average cosine of the scattering angle defined in Eq. (5)
simplifies to

hcos θi ¼ jtj2 − jrj2: ð18Þ

To estimate the moduli of the scattering amplitudes in the
four major directions, we state

jtj2 þ 2jr⊥j2 þ jrj2 ¼ a ≈ 1; ð19Þ

which is a direct consequence of the conservation of
energy, with scattering out of the waveguide being the
only relevant loss mechanism. By combining the deter-
mined result for the average cosine of the scattering angle,
the estimate for the ratio between the backscattering and the
lateral scattering amplitude, and Eqs. (18) and (19), we
eventually find the scattering amplitude in the forward
direction to be jtj ¼ 0.997, the scattering amplitude in the
backward direction jrj ¼ 0.063, and for transverse scatter-
ing jr⊥j ¼ 0.032. For comparison, the case of strong
scattering would correspond to jtj ¼ jrj ¼ jr⊥j ¼ 0.5, stat-
ing that all incoming light would be scattered isotropically.

V. STRAY MATRIX APPROACH

After having properly described the samples from the
experiments by their characteristic features, next we strive
to replicate the experimental situation with a numerical
model. To study the impact of backscattering we make use
of the stray matrix approach proposed by Edrei et al. [31]
(see also [32]) and represent our randomly perturbed
waveguide samples in a very simplified manner by a
discrete two-dimensional square lattice of pointlike scat-
terers (see Fig. 5). This approach has a tremendous
advantage over rigorous finite element calculations regard-
ing computation time. For a domain size as large as
considered in this analysis there is no alternative, which
still incorporates multiple scattering that is inherent to our

experimental situation. Also note the necessity of an
appropriate ensemble size for valid statistical conclusions.
In the following we close some holes in the justification

of the applicability of the simulation scheme not touched
upon in the original references and transfer the scheme to
the limiting case of weak scattering.
Each scatterer is connected only to its adjacent neighbors

on the left, right, front, and back, so that the scattering sites
constitute a discretized network with four bonds leaving
each scatterer. The effect of one single scattering event and,
hence, the field evolution after one time step, is described
by a linear set of equations a ¼ Ŝb, where b is an input
vector at a specific scattering site (consisting of the field
components injected from the back, left, right, and front)
and a is the respective output vector (consisting of the field
components leaving the scattering site to the back, left,
right, and front). Where no ambiguities arise, the notion of
the position dependence [indicated by the indices n,m as in
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FIG. 5. Numerical model. (a) Approximation of the sample as a
network of scatterers. The initial field distribution is continuously
fed to the first row as the field components propagate further and
further through the network with every simulation step (see red
arrows) until a steady state is reached. (b) One building block,
i.e., a single scattering event, is implemented by a stray matrix m̂
composed of the complex valued scattering amplitudes in the
forward (t), backward (r), and transverse (r⊥) directions. Illus-
trated is the effect on a discrete field component uin entering from
the top. The scattered components are multiplied with a phase
factor φp (with p ¼ 1, 2, 3, 4) to account for the propagation
between scattering sites. To simulate wave propagation in a
randomly perturbed waveguide, these phases are picked from a
Gaussian distribution with mean value klscat. The effect of
scattering and intermediate propagation is combined in the matrix
Ŝ. The pictogram on the bottom right illustrates the short notion
utilized in the other figures. (c) The transverse coordinate is
denoted with n (with 1 ≤ n ≤ NW) and the longitudinal coor-
dinate is denoted with m (with 1 ≤ m ≤ NL).
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Fig. 5(c)] will be dropped. The 4 × 4 matrix Ŝ has the
components

Spq ¼ mpqeiðφpþφqÞ;

with p, q ¼ 1, 2, 3, 4 [see Fig. 5(b)]. The factors φp and φq

represent the phase accumulated along the bonds p and q,
respectively (note that each scattering matrix Ŝ contains
only half the total bond length between adjacent scattering
centers). The matrix m̂ is unitary and symmetric (ensuring
conservation of energy and time-reversal symmetry) and
contains the complex valued scattering amplitudes,

ðmpqÞ ¼

2
6664

r r⊥ r⊥ t

r⊥ r t r⊥
r⊥ t r r⊥
t r⊥ r⊥ r

3
7775;

where r ¼ jrjeiφr is the reflection coefficient, t ¼ jtjeiφt is
the transmission coefficient, and r⊥ ¼ jr⊥jeiφ⊥ is the
transverse scattering amplitude. Here we have imposed
left-right symmetry, which should be present at least in
average. Note that in this form the scatterers are assumed to
be rotationally invariant so that, for example, t is the
scattering amplitude of the nondeflected field component
no matter from which direction the initial field was
approaching.
Since only relative phases are of importance, for the sake

of simplicity we set φ⊥ ¼ 0. Then, due to m̂ being unitary,
we end up with the following constraints:

jrj2 þ 2jr⊥j2 þ jtj2 ¼ 1;

cosðφr − φtÞ ¼ −
jr⊥j2
jrjjtj ⇒ jrjjtj ≥ jr⊥j2;

jrj cosφr ¼ −jtj cosφt:

As we show in the next section, if all scatterers which
comprise the network, are represented by identical matrices
and have uniform distances between them, this system
reproduces wave diffraction in an unperturbed planar
waveguide well (see Fig. 6 and the discussion of the
dispersion relation in the following section). On the other
hand, in order to introduce randomness into our model and
simulate a chaotic distribution of scatterers, we assume the
accumulated phase to fluctuate around a mean value with a
normal distribution derived from our experiments (see
Fig. 7 for the effect of phase variations).
In the simulations the size of the computational domain

is NL ¼ 1500 scatterers in length and NW ¼ 501 scatterers
in width. The edges of the computational domain have
to be treated separately and require the implementation of
boundary conditions. All numerical results presented in this

article are achieved with plane wave excitation and periodic
boundary conditions on the sides. The front and rear facets
are partially reflective according to the reflection coeffi-
cient for diffuse intensity of the interface between the
waveguiding medium and the environment. The reflection
coefficient for diffuse intensity differs from the Fresnel
coefficient for specular reflection (see Appendix C). For the
evaluation of the intensity profiles we have always utilized
the forward propagating field component on each site.
Numerical results as pictured throughout the article are
built from the average outcome of 256 different bond phase
realizations, where each simulation was allowed to run until
a steady state was reached (about 2 hours per realization on
a desktop computer).
Each iteration of the simulation consists of multiplying

the input vector b at each scattering site with its respective
scattering matrix Ŝ and then copying the components of the
output vector to the corresponding input vector slots of all
four adjacent scattering sites. This procedure is repeated
until variations of the intensity profile between single
iterations become negligibly small (this is the steady state).
In case of nonlinear propagation, as discussed in Sec. VI,
no steady state is reached in this strict sense. Still, after a
certain amount of iterations the average overall spatial
intensity distribution does not change anymore and only
fluctuates locally. This is considered sufficient to analyze
its probability density function of the intensities.

A. Spatial dispersion relation

To test the applicability of our model and to determine
appropriate input parameters, we study the case of the
unperturbed slab waveguide first. Monochromatic wave
propagation in uniform two-dimensional media is com-
pletely determined by the so-called spatial dispersion (or
diffraction) relation, which imposes a dependency between
the longitudinal component k∥ and the transverse compo-
nent k⊥ of the wave vector.
While in the isotropic case k2∥ ¼ ð2πn=λ0Þ2 − k2⊥ (which

is the definition of a circle) always holds, this is not
necessarily true in periodic media [52]. Given some k⊥, the
effective propagation direction is perpendicular to the graph
of the spatial dispersion relation at that point. Its second
derivative hints at the divergence, i.e., defocusing behavior
of plane waves with slightly varying values of k⊥. In the
following we show that—depending on the specific choice
of the bond phase parameters φ—our discrete network
model also displays a circular diffraction relation and is
thus indeed capable of simulating homogeneous space.
In order to do so, we first stipulate a regular (translational

and rotational invariant) lattice with φ1 ¼ φ2 ¼ φ3 ¼ φ4 ≡
φbond for all scatterers. We may put φbond ¼ klscat=2,
with the wave number k ¼ 2πn=λ0 (with a certain refractive
index n and the wavelength λ0) and a physical distance lscat
between scatterers.
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The time-step-dependent global field distribution along
the mesh of scatterers is characterized by the output and
input vectors atnm and btnm at sites n, m, respectively. Since
output vectors at a time t generate input vectors of
adjacent scatterers at time tþ δt [see Fig. 5(c)], we can
formulate the global field distribution after one time step
δt generally as a function of the field distribution before
scattering as

btþδt
nm ¼ Â Ŝ btnm−1 þ B̂ Ŝ btn−1m þ Ĉ Ŝ btnþ1m þ D̂ Ŝ btnmþ1;

with

Â ¼

2
6664
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

3
7775; B̂ ¼

2
6664
0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

3
7775;

Ĉ ¼

2
6664
0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

3
7775; D̂ ¼

2
6664
0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

3
7775:

Note that in the perturbed case the scattering matrix
Ŝ ¼ Ŝnm would be site dependent.
While boundary conditions must be implemented in the

limited spatial domain of the simulation, in this analysis
we assume an infinitely extended domain in order to derive
the dispersion relation. Assuming no time evolution and
inserting the plane wave ansatz bnm ¼ b0eiαneiβm (with
α ¼ k⊥lscat and β ¼ k∥lscat), we arrive at

b0 ¼ Â Ŝ b0e−iβ þ B̂ Ŝ b0e−iα þ Ĉ Ŝ b0eiα þ D̂ Ŝ b0eiβ;

or simply Ĝb0 ¼ 0, with

Ĝ ¼ 1 − Â Ŝ e−iβ − B̂ Ŝ e−iα − Ĉ Ŝ eiα − D̂ Ŝ eiβ:

This homogeneous set of equations has only nontrivial
solutions for detðĜÞ ¼ 0. In general, detðĜÞ is complex, but
we may consider the real or the imaginary part separately,
since both give the same results. We can then calculate the
resulting dispersion relation β ¼ βðαÞ.

1. Strong scattering

For the case of strong scattering (jrj ¼ jtj ¼ jr⊥j ¼ 0.5),
the structure of Ĝ simplifies drastically and we are left with

β ¼ arccos½4cos2φbond − cos α − 2�:

The shape of the dispersion relation depends on φbond.
If cos2φbond ≈ 1, this equation has real valued solutions

only for α ≪ 1 leading to β ≪ 1, so that we are able to
approximate

1 −
β2

2
≈ 4cos2ðφbondÞ − 1þ α2

2
− 2;

leading to

α2 þ β2 ≈ 8φ2
bond;

which is the equation of a circle with radius 2
ffiffiffi
2

p
φbond.

Hence, for cosφbond ≈ 1, the dispersion relation of a
homogeneous system with the effective wave number
keff ¼

ffiffiffi
8

p
φbond=lscat ¼

ffiffiffi
2

p
k is reproduced. Remember that

for strong scattering, lscat ¼ ltrans.

2. Weak scattering

In the weakly scattering case the expression for the
dispersion relation is in general quite complicated, but
can still be solved analytically. As in the case of strong
scattering, a critical phase φbond;crit can be found at which
the dispersion relation dwindles to a point, but for all
jrj ≥ jr⊥j is asymptotically circular as φbond approaches
φbond;crit, thus ensuring physically correct diffraction. For
jrj < jr⊥j, the dispersion relation is distorted into a
diamondlike shape, leading to physically incorrect dif-
fraction. But as has been confirmed by means of FDTD
simulations in Sec. IV, assuming jrj > jr⊥j is very
appropriate in the experimental context and thus poses
no restriction on the applicability of the discrete numerical
scheme. In Fig. 6(a), we have plotted the critical phase for
different values of the modulus of the scattering amplitude
in the forward direction jtj under the assumption
jrj ¼ 2jr⊥j.
Just like multiple weak scattering has the same effect as

strong scattering after the light has passedN ¼ ltrans=lscat ¼
1=ð1 − hcos θiÞ ¼ 1=ð1 − jtj2 þ jrj2Þ scattering sites,
imposing weak scattering in the unperturbed simulation
can be thought of as effectively increasing the resolution of
the simulation by a factor of N in comparison with the
strongly scattering case. This is reflected in the approx-
imately identical values of the effective wave numbers
keff taken from the radius of the asymptotically circular
dispersion relation in units π=ltrans displayed in Fig. 6(b).
The comparison of two numerical results implementing
isotropic and weak scattering can be found in Figs. 6(c)
and 6(d).
At first sight, any criterion for φbond leading to a

circular dispersion relation implements a notable restric-
tion. However, we show now that this restriction is quite
weak, when the numerical model is compared with the
experimental situation.
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B. Distribution of the mean free path lengths

The elliptically shaped defects in the AlGaAs waveguide
structures used in our experiments impose an anisotropic
distribution of scattering mean free path lengths. This can
be accommodated in the simulation by considering two
different phase factors, φ1 ¼ φ4 ¼ φlong ≈ 43π and φ2 ¼
φ3 ¼ φshort ≈ 6.5π, corresponding to lscat;∥ and lscat;⊥ with
respect to the effective wavelength λeff (see Sec. II for a
description of the setup). As a consequence, the dispersion
relation loses its fourfold rotational symmetry, but remains
axially symmetric.
However, it should be noted that the dispersion relation

solely consists of trigonometric functions and, hence,
depends only on mod ðφp; 2πÞ (with p ¼ 1, 2, 3, 4).
Consequently, in this model any anisotropy arises solely
due to differing phases between the longitudinal and the
lateral direction in the order of 2π. Since the distance
between adjacent scattering sites in the utilized waveguides
corresponds to a phase accumulation of several times 2π
and the uncertainty in their measurements exceeds π=2,

it is in fact reasonable to roughly neglect any deviance in
mod ðφp; 2πÞ. Hence, within this uncertainty the dispersion
relation can be regarded as isotropic.
Practically, depending on the chosen values of the

scattering amplitudes jrj, jtj and jr⊥j, the bond phase
φbond is gauged so as to result in the spatial dispersion
relation of the unperturbed discrete system to be circular.
This ensures the system to simulate homogeneous space
as apparent from the normal diffraction of a Gaussian beam
as depicted in Fig. 7(a).
Still, the two different length scales enter the simulation

through the variation of the bond lengths in the perturbed
case, which are considered to be distributed normally with
a standard deviation σ taken to be 10% of the respective
mean values φ̄long=short, namely, σðφbond;longÞ ¼ 4.3π and
σðφbond;shortÞ ¼ 0.7π. Although it is our aim here to alter the
mean free path length between scattering sites thus ran-
domizing the discrete network, it should be noted that this
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FIG. 7. Exemplary simulated intensity distributions inside the
sample for an excitation with a Gaussian beam. The intensity is
normalized row-wise and color scaling is the same for all images
[note that in (b) the intensity has been divided by 2 and in (c) by 10
to comply with the color bar]. (a) For vanishing standard deviation
σ of the phases φbond accumulated between scattering events, the
system simulates homogeneous space so that the Gaussian beam
diffracts normally. (b) For a slight variation of the phases the beam
is disturbed during propagation, leading to the formation of large
speckles. (c) For a stronger variation of the phases the intensity
distribution qualitatively changes to a scarlike pattern, with single
pixel values standing out up to a factor of 100 relative to the
background (see inset). These randomly distributed resonant
substructures are responsible for the deviation of the probability
distribution from a speckle distribution.
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Weak scattering can be thought of as increasing the spatial
resolution. The initial width of the Gaussian field distribution and
the size of the considered region are the same in both cases in
effective transverse and longitudinal distance measures x ¼ n=N
and z ¼ m=N, respectively, which are the multiples of traversed
transport mean free path lengths.
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approach is formally identical to a two-dimensional refrac-
tive index variation inside the waveguide structure.
It has been found that a certain amount of randomness is

crucial and that too small variations will not lead to the
deviation of the intensity distribution from a speckle pattern,
as found in our experiments. A series of simulations for a
varying standard deviation σ of the Gaussian phase distri-
bution is depicted in Fig. 7. Depending in detail on the actual
scattering amplitudes, a standard deviation σ of about 0.1%
gives rise to the formation of large speckles only. This case is
comparable to beam propagation in a slowly varying, but
otherwise random refractive index landscape with a macro-
scopic correlation length. In contrast, a σ amounting to 10%
leaves adjacent scatterers mostly uncorrelated, but allows for
sporadic resonant substructures, in which the intensity can
become excessively high. Further simulations suggest that a
σ of about 1% of the mean value can be considered random
enough to provoke the emergence of outstanding high-
amplitude events.
We end this section by noting that a cross-check has

been performed on the numerical results to extract the
transport mean free path length and the attenuation length
in return from the simulations that emerge from our now
established model. The same two-parameter fit based on
Eqs. (16) and (17) that was applied earlier to the exper-
imental results yields ltrans ¼ ð1.84� 0.12Þ mm and
Lloss ¼ ð5.32� 0.44Þ mm. Since these values are in very
good accordance with the experiments, we are confident
that the numerical model mimics the key features of the
setup adequately.

C. Linear scattering

Certainly, there are many ways to implement the stray
matrix scheme numerically. To perceive the field distri-
bution after a single time step, one might iterate over
all the scattering sites performing anm ¼ Ŝnmbnm with
1 < n < NW and 1 < m < NL individually, then copy
each component of the output vector anm to the appro-
priate counterpart of the input vectors bn�1m�1 of the next
time step of the adjacent sites and progress to the next
scatterer. However, this procedure turns out to be rela-
tively time consuming.
In contrast, it is particularly enlightening to achieve all

the necessary computation for one time step with a single
matrix multiplication. To do so, all local input vectors bnm
are assembled systematically in one large input column
vector btotal of dimension 4 · NL · NW . In the following, it
should be kept in mind that this column vector can be
reordered into a two-dimensional grid at any time, hence
illustrating the complete field distribution along the bonds
over the whole considered domain.
In this section, we focus on linear propagation and

neglect scattering losses. Both the individual scattering
processes and the propagation along the bonds can be
described by

btþδt
total ¼ M̂bttotal;

where M̂ is a ð4 · NL · NWÞ × ð4 · NL · NWÞ matrix which
mainly consists of groups of constant values along the main
diagonal. Hence, although it is very large, most of the
matrix’s entries are in fact zero so that it can be conven-
iently represented by a sparse matrix, which still fits into
the memory of most computers even for large computa-
tional domains. Not only does this approach improve
computation speed by an order of magnitude, the consid-
eration of one sole evolution matrix is an interesting
mathematical concept by itself as it opens up a way to
understand our system in terms of linear algebra.
We may strive now to understand the matrix’s action on a

given field distribution encoded in btotal in terms of its
eigenvectors. The eigenvectors of M̂ represent stable field
profiles across the computational domain which do not
change after one iteration apart from being multiplied
uniformly with a complex number, which is given by the
corresponding eigenvalues λ. Hence, these particular field
profiles are only attenuated and/or phase shifted between
consecutive time steps. They correspond to configurations
where numerous local cavities are excited and coupled in just
the right way so as to form a macroscopic stationary state.
The modulus of λ determines how fast its field decays for
vanishing excitation. Those eigenvectors with eigenvalues of
modulus close to 1 behave like cavity modes with a quality
factor Q ¼ 2πneffd=λ0ð1 − ajλj2Þ, where λ0=neff is the
effective wavelength in the waveguide, d ¼ lscat;∥ is the
lattice period in the simulations, and a is the albedo. In our
case the Q factors of the cavity modes reach values up to
about 105 (see discussion below). The resonance frequency
of such modes is encoded in the phase of λ. For example, a
cavity mode with very high Q factor resonating at the
excitation frequency corresponds to a real eigenvalue slightly
smaller than þ1.
There are in fact 4 · NL · NW distinctive eigenvectors.

For plane wave excitation at the front facet, all of them
are excited approximately uniformly. In what follows we
investigate the statistical properties of the eigenvectors for
varying backscattering strength of the local scatterers. If
backscattering and lateral scattering are equal but weak
(jrj ¼ jr⊥j ≪ jtj), the field statistics is Gaussian, yielding a
specklelike intensity distribution [see blue lines in
Figs. 8(a) and 8(b)]. The intensity statistics of the eigen-
vectors in this case corresponds very well to the iterative
simulation results of the total intensity distribution as
displayed in Fig. 2(c).
As can be seen in Fig. 8(c), the intensity profile of the

respective cavity modes is not just chaotic, but shows an
increased correlation along the propagation direction result-
ing in pronounced scars caused by the dominant forward
scattering.
If backscattering prevails lateral scattering several times,

as it is the case in our samples, the field statistics gradually
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transforms from a Gaussian to a sech shape [see red and
yellow solid lines in Fig. 8(a)]. Thus, heavy tails form and
extreme intensity events are promoted [see Fig. 8(b)].
Again, as visible in Figs. 8(d) and 8(e), a certain coherence
length can be witnessed in the intensity profile of the
respective eigenvectors represented by highly pronounced
scars. This extreme focusing in longitudinal cavities formed
via backscattering is promoted by the relatively small
lateral scattering, which hinders light to escape in the
sideward direction.
If backscattering completely dominates lateral scattering

(10 times or more), the system resolves into an ensemble of
weakly coupled one-dimensional transmission lines. In this
case the field components are Laplace distributed [see

green line in Fig. 8(a)]. Looking at the intensity profile
at a fixed propagation length [see Fig. 8(f)], we find the
characteristic log-normal intensity distribution, which is
well known for strictly one-dimensional randomly dis-
turbed channels [53–55].
This analysis shows that the abundance of extreme

events in our system can be traced back to the level of
the eigenvectors of the evolution matrix M̂ and thus the
excitation of quasi-one-dimensional cavity states. It illus-
trates that our experiment takes place in between isotropic
two-dimensional and highly directional one-dimensional
scattering.
But how is it then in the light of the central limit theorem

that a superposition of many such field distributions as
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varying ratios between the backscattering amplitude jrj and the lateral scattering amplitude jr⊥j. For jrj ¼ jr⊥j, the statistics of the field
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suggested by the uniform excitation of all eigenvectors can
still yield extreme events as evident from the intensity
histogram plots in Figs. 2(a) and 2(b) and is not simply
specklelike, as the central limit theorem would suggest?
Besides a small amount of leakage to the surroundings

during scattering, which is treated here as affecting all
scatterers equally and thus is accounted for by a scalar
factor a that is not of further interest, losses mainly occur
at the front and end facet only. As a consequence, all
eigenvalues of M̂ have moduli very close to but slightly
smaller than 1 [see an exemplary plot of eigenvalues for a
computational domain with NL ¼ 100 and NW ¼ 31 in
Fig. 9(a)].
Under consecutive excitation with a plane wave, in the

steady state (btþδt
total ¼ bttotal) the amplitude of each eigen-

vector is proportional to 1=ð1 − λÞ. Hence, from all excited
eigenvectors only those survive (or are severely enhanced)

for which the real part of λ is very close to þ1. As it turns
out, only a handful of eigenvectors actually contribute to
the field distribution then [see Fig. 9(b), where despite of
12 400 eigenvectors in total, the steady state is constituted
of only about a dozen eigenvectors with even less standing
out significantly]. Under this condition the central limit
theorem does not hold and the intensity distribution of
individual eigenvectors dominates the intensity distribution
of the steady state.
If, however, losses due to scattering or absorption

become too big and the moduli of the eigenvalues drop
significantly below 1, more and more eigenvectors con-
tribute to the steady state equally. Then indeed it follows
from the central limit theorem that the superposition of
quasirandom field components adds up to a total field
whose distribution is Gaussian [see Fig. 9(c)]. This is
confirmed by the iterative approach, where small additional
scattering losses lead to a “delay” of the formation of the
heavy-tailed probability distribution (see Appendix D for
numerical results).

VI. RESULTS IN THE NONLINEAR REGIME

While we already see extreme field enhancement in
the linear case, according to common expectation this effect
should be intensified by incorporating a focusing non-
linearity of the Kerr type, often thought of as playing
a key role in generating extreme events [1–3,8,18–25,27,
30,38,56]. Here we assume the simplest case of a Kerr NL
and suppose the refractive index to be changed proportional
to the intensity of the propagating light like n ¼ n0 þ n2I.
This is well justified for our waveguide having a fixed
mode profile and polarization structure. In the numerical
model this can be thought of as implementing an additional
phase accumulation between scattering centers propor-
tional to the local intensity along the bonds. Since the
Kerr NL of AlGaAs has a positive value, one expects it to
counteract diffraction, eventually leading to an intensity-
dependent self-focusing of the local field amplitude.
The impact of nonlinear beam evolution in a random

medium has been at the core of only a few experimental
or theoretical considerations. In these related systems, the
interplay of disorder and nonlinearity was shown to affect
weak [57–59] and strong [60,61] localization as well as
pulse broadening [56].

A. Experiments

Overall the results of the experiments executed with the
pulsed laser source for low pulse powers align very well
and cross over continuously with the respective measure-
ments conducted with the cw laser [reproduced as dark blue
dashed curves in Figs. 10(a)–10(c)]. From this, we con-
clude that the shorter coherence length of the pulses plays
no significant role. Increasing the laser power leaves the
pulse length constant.
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FIG. 9. Eigenvalues and evolution coefficients in the steady
state for a small domain (NL ¼ 100, NW ¼ 31). (a) The eigen-
values λ (blue dots) are situated close to a circle of radius 1 in the
complex plane, since the evolution matrix M̂ is almost unitary.
Additional losses reduce the radius of this circle (light blue dots
in the inset). Red circles of increasing intensity illustrate incre-
ments of the function 1=ð1 − λÞ by an order of 10 around its pole.
(b) Moduli of the amplitudes of the eigenvectors in the steady
state versus the real part of the eigenvalues. For negligible losses,
a few coefficients exceed all others (blue crosses); hence, few
respective eigenvectors dominate the steady state. For increasing
losses this effect is damped (light blue circles). (c) Comparison of
the field statistics of the superposition in the steady state for
negligible losses (blue squares, solid line is fit with sech function)
and additional losses (light blue squares, solid line is fit with
Gaussian).
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Indeed, we see a power driven rise of extreme events
for the shortest perturbed sample with L ¼ 5 mm [see
Fig. 10(a)]. Here, modulation instabilities are expected to
grow, finally leading to solitons that arise from the weakly
disturbed field distribution. This results in an increase of
the frequency of high-amplitude events for growing input
powers. But for longer samples with a nonspecklelike
distribution in the linear regime, the trend is inverted: For
increasing input power extreme events become less likely
and the tail of the distribution restores a specklelike
behavior in complete accordance with Eq. (1) [see
Figs. 10(b) and 10(c)]. For the longest sample with
L ¼ 30 mm, the abundance of extreme events that can
be observed in the linear regime is completely suppressed.
An overview of the power-dependent development of the
probability density function for varying sample lengths at
one fixed intensity I ¼ 7.0I0 is plotted in Fig. 10(d).
Although it still possesses focusing properties, the non-

linearity merely tends to randomize the intensity pattern by
destroying the coherent superposition of light scattered
back and forth between the defects. Consequently, resonant
field enhancement is prevented, a trend which becomes
more and more pronounced for increasing sample length.
This is illustrated most clearly in an exemplary plot of an

experimentally determined intensity profile for increasing
input powers and L ¼ 30 mm in Fig. 10(e). As the non-
linearity grows, the intensity distribution becomes more
chaotic and the power is allocated over an increasing
number of spikes, so that the most outstanding ones are
diminished.

B. Simulations

Despite the simplicity of our discrete numerical model,
it reproduces self-focusing in the homogeneous wave-
guide with uniform bond phases very well (see Fig. 11).
The NL successfully compensates for the divergence of
the injected Gaussian beam, up to the formation of a
solitary solution. After that successful test of our model
we are ready to investigate the nonlinear propagation in
the perturbed waveguide. Here we consider individual
scattering events as linear [57] and assume that the
nonlinearity only causes an intensity-dependent phase
accumulation during propagation between scatterers. To
this end additional phase shifts proportional to the squared
field modulus at the input (right before scattering) and
output (right after scattering) ports are added to the linear
phase distribution.
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The experimentally determined power-dependent inten-
sity profile as well as the statistics match well with the
results of the simulations depicted in Fig. 12. Since the
linear phase is already randomized, one might expect

the influence of additional phase terms to be negligible
in average. But as can be seen by comparing Fig. 12(a) to
Fig. 12(c), increasing the nonlinearity gradually oppresses
extreme events [see Fig. 12(e) for a plot of an intensity
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FIG. 12. Numerical results in the nonlinear regime. Histograms of the normalized intensity distribution resulting from a plane
wave excitation for increasing nonlinearity and various propagation lengths. (a) Linear simulation taken from Fig. 2(b) for
reference. (b) Numerical results invoking weak nonlinearity, that is, a relative nonlinear phase shift φnl=φ0 ¼ 0.2 × 10−4I
compared to the linear phase accumulation φ0 along a given bond. Here, I is the local field intensity in the bond (the exciting field
profile is normalized to I ¼ 1). While the probability density distribution still deviates from a speckle distribution at long
propagation lengths, the difference is smaller. (c) Numerical results for strong nonlinearity (φnl=φ0 ¼ 1.0 × 10−4I). The
probability density distribution is specklelike. There is no excess of extreme events other than expected from a random
superposition of field components. (d) Introducing a Kerr-type nonlinearity to the situation depicted in Fig. 7(c) completely
randomizes the phase distribution of the propagating field. This results in a thermal, i.e., speckle, distribution in accordance with
Eq. (1). (e) Intensity profile along a horizontal line intersecting the extreme event highlighted in Fig. 7(c) at a propagation length
z ≈ 3 mm in the linear regime (blue line) and the respective nonlinear case depicted in (d) (red line); compare with Fig. 10(e). In
the linear case the central extreme event overshoots the mean intensity by 2 orders of magnitude (peak cut off in the figure). See
the magnification on the right.
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profile at low and high NL]. It coarsens the field shape
significantly, leading to a kind of thermalization [see also
Fig. 12(d)]. Apparently, the formation of randomly spread
resonating substructures, which create coherent amplifica-
tion by chance in the linear regime, seems to get lost for
increasing levels of nonlinearity.

VII. CONCLUSION

In conclusion, we observe an abundance of extreme wave
events at low power in a slab waveguide with embedded
random but only weakly scattering obstacles. Obvious
deviations from a specklelike intensity distribution are
caused by backscattering, which although small in amplitude
dominates over scattering in the transverse direction and so
occasionally gives rise to the emergence of resonant cavities.
This mechanism is in stark contrast to the buildup of spatial
correlation through the crossing of light paths in strongly
scattering media, but its impact on the intensity probability
distribution is quite comparable. In addition, against the
common notion, here a focusing nonlinearity of the Kerr
type suppresses those extreme events by preventing resonant
field enhancement in the random cavities, thus reinforcing a
specklelike intensity pattern.
The findings we present in this paper are applicable

to all linear wave dynamical systems subject to weak
multiple scattering in stationary random environments,
under the prerequisites of reduced lateral scattering
amplitudes (effectively forming a 1.5-dimensional sys-
tem) and only minor losses. This includes optics and
microwave dynamics, acoustics, seismic waves, electron
transport, Bose-Einstein condensates, and interplanetary
scintillation. Understanding the generation of nonspeckle
intensity distributions is thought to be of high value in
examining biological tissue and improving the yield of
solar cells and broad area laser diodes. Anisotropic phase
functions as considered in this work appear naturally for
Mie-like scattering or can be realized intentionally with
photonic antennas. Our results give evidence that the role
of nonlinearity concerning the origin and formation of
extreme wave events is still poorly understood and even
counterintuitive in the regime of weak multiple scatter-
ing. Since until now weakly scattering systems were
considered to only exhibit exponentially damped high-
amplitude events, our findings underline the need to
rethink the risk potential of hazardous extreme waves
in such environments.
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APPENDIX A: INFLUENCE OF A LOCALIZED
SOURCE ON THE INTENSITY STATISTICS

In the experimental setup an elliptically shaped Gaussian
laser beam is coupled into a highly perturbed waveguide
structure and acts as a coherent light source. As the light
propagates further and further through the medium, coher-
ent radiation is gradually converted into diffuse intensity,
forming an extended specklelike pattern with an ever
fading localized Gaussian background. This can in fact
be thought of as the sum of different field profiles: the
Gaussian and the specklelike field distribution. Here we
show that a slight Gaussian background tends to suppress
extreme events, if the profile is normalized with respect to
the mean intensity within a reasonable interval, and that the
number of extreme events found in our experiments might
thus be slightly underestimated.
As schematically described in Fig. 1(c), in the experi-

ments the intensity profile is monitored at the rear facet of
the waveguide samples. By laterally shifting the individual
samples between single measurements, ten different real-
izations of the refractive index landscape with equal
statistical features and sample length are obtained. To
standardize the evaluation, the various measured intensity
profiles IðxÞ from a certain sample length are centered with
respect to their first moment and then superimposed to
determine the average width of the extended speckle
pattern. The resulting mean intensity profile ĪðxÞ is fitted
with a bell-shaped Gaussian to extract (half) its width w0.
For the subsequent evaluation of the individual intensity
profiles, a region of interest with the transverse coordinate
x ∈ ½−2.5w0; 2.5w0� symmetrically located around the
first moment is chosen. As we demonstrate, this region
of interest renders the evaluation sound in terms of the
statistics of extreme events and ensures the general validity
of our statements.
First, imagine a Gaussian bell-shaped field distribution

with amplitude A and width
ffiffiffi
2

p
w0 (so that the intensity

profile has width w0) along the x direction:

E1ðxÞ ¼ Ae−x
2=2w2

0 :

Since we are going to treat E1 like a random number, we
suppress the notion of the dependence of E1 on the position
x in the following. The (normalized) probability density
distribution of this supposed random number E1 in some
interval x ∈ ½−mw0; mw0� is given by

pE1
ðξÞ ¼ 1

2mξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðA=ξÞp θðA − ξÞθðξ − Ae−m

2Þ:

Here, θðξÞ denotes the Heaviside step function, which
limits the range of possible values for E1.
Now consider a specklelike field distribution E2 ¼

Ereal þ iEimag, where the real and imaginary parts are
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uncorrelated and normally distributed random variables
with standard deviation σ according to

pEreal
ðξÞ ¼ pEimag

ðξÞ ¼ 1ffiffiffi
π

p
σ
e−ξ

2=σ2 :

We are interested in the probability density distribution
of the squared modulus of the sum of the amplitudes E1

and E2, which (apart from some factors) corresponds to
the intensity distribution of the coherent superposition;
that is,

I ¼ jE1 þ E2j2 ¼ jE1 þ Ereal þ iEimagj2
¼ ðE1 þ ErealÞ2 þ E2

imag: ðA1Þ

The probability density function pðI=I0Þ of the intensity
I of the total field as defined in Eq. (A1), with I0 being
the mean value over the considered interval, can then
be calculated following these general rules for the
manipulation of random numbers (see, for example,
Ref. [62]).
(1) If X1 and X2 are random numbers with probability

density functions pX1
ðξÞ and pX2

ðξÞ, respectively,
the new random number Y ¼ X1 þ X2 has the
probability density function

pYðζÞ ¼
Z þ∞

−∞
pX1

ðξÞpX2
ðζ − ξÞdξ;

which is simply the convolution integral of the
given probability density functions pX1

ðξÞ and
pX2

ðξÞ.
(2) For an arbitrary (monotonically increasing or de-

creasing) function of a random number Y ¼ fðXÞ,
the relation

pYðζÞ ¼ pX(f−1ðζÞ)
���� df−1ðζÞdζ

����
holds. In particular, for Y ¼ X2, we find

pYðζÞ ¼ pXð
ffiffiffi
ζ

p
Þ 1

2
ffiffiffi
ζ

p :

(3) In addition, we would like to consider the normali-
zation of a distribution of random numbers with
respect to their mean value. The mean value of a set
of random numbers X is given by

x0 ≡
Z þ∞

−∞
ξpXðξÞdξ;

so that the probability density function of the nor-
malized random number Y ¼ X=x0 is calculated as

pYðζÞ ¼ x0pXðx0ζÞ:

While there is no closed analytical solution for
pðI=I0Þ, numerical results are presented in Fig. 13(a)
for m ¼ 2.5 (which is used in the evaluation of the
experimental data depicted throughout this article) and
varying ratios A=σ.
The statistics of the fluctuating field in which we are

interested (in this case a speckle distribution) is only
revealed for coherent residuals of the input beam being
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FIG. 13. Influence of a Gaussian background on the intensity
statistics. (a) Probability density function pðI=I0Þ, where
I ¼ jE1 þ Ereal þ iEimagj2. A pronounced Gaussian background
tends to suppress extreme events, if the profile is normalized with
respect to its mean intensity I0 in an interval x ∈ ½−2.5w0; 2.5w0�,
where w0 is (half) the width of the squared modulus of the
Gaussian field profile. For an increasing ratio of the amplitude A
of the Gaussian background and the standard deviation σ of the
normally distributed random variables, the tail of the probability
density drops down significantly already at small intensities.
(b)–(d) Exemplary numerical realizations of intensity profiles
for A=σ ¼ 5.0 (b), A=σ ¼ 1.0 (c), and A=σ ¼ 0.1 (d).
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noticeably smaller than the field fluctuations. To some
degree the suppression of high-amplitude events for ratios
A=σ > 0 is a result of the intensity profile not dropping
down to zero in the central region of the considered interval
[see Fig. 13(b)]. This affects the mean intensity I0, whose
reciprocal value corresponds to the decay factor of the
exponentially decaying probability density function of the
intensity I of an ideal speckle pattern as stated by Eq. (1)
represented by the dashed black line in Fig. 13(a).
Since the Gaussian background suppresses extreme

events by trend, the frequency of extreme events visible
in our experimental results might be underestimated.

APPENDIX B: NUMERICAL RESULTS
OBTAINED WITH THE BEAM
PROPAGATION METHOD

The experimental results presented in this article could
not be reproduced with numerical schemes only consid-
ering forward propagation, like the beam propagation
method, which is based on the discretized paraxial
approximation of the Helmholtz equation. In Fig. 14
we have plotted some BPM results for a normally
distributed refractive index landscape with correlation
lengths corresponding to our experimental situation
(lcorr;∥ ¼ 20 μm in the direction parallel to the main
propagation of light and lcorr;⊥ ¼ 3 μm in the transverse
direction) for varying strength of the refractive index
modulations Δn. As can be seen, there is no significant
abundance of extreme events relative to a speckle dis-
tribution (indicated by the dashed black line) even for
strong variations of the refractive index.
For a weak modulation the central limit theorem does

not yet hold as the output field still carries the imprint
of the initial Gaussian beam. On the length scale of a few
correlation lengths (for z < 1 mm) and for large index
variations, deviations from speckle statistics are to be

expected as a result of a slightly distorted phase front,
effectively leading to focusing spatial regions and the
consecutive formation of caustics. This phenomenon was
reported in detail in Refs. [15,16]. However, this is an effect
that can be attributed solely to the spatial coherence of the
impinging beam. It reaches its maximum a few times lscat
behind the front facet, but then quickly fades away as soon
as wave dynamical effects like random interference play an
increasing role and dominate the intensity distribution to
ultimately form a speckle pattern after all.

APPENDIX C: CALCULATION OF THE
EXTRAPOLATION LENGTH z0 IN 2D

To solve the diffusion equation properly, we have to
propose adequate boundary conditions for the front and
back facet [see Eqs. (13) and (14)]. These are constructed
by considering the total flux in the positive and negative z
direction at the interfaces [46]. In the case of a two-
dimensional geometry and plane wave excitation the
diffuse intensity, the radiation density and the current
density only evolve in z. In the following, we also
suppress the y dependence, which is defined only by the
mode profile evoked by the waveguide structure. From
Eqs. (7)–(9), we find

JzðzÞ ¼ v
Z

2π

0

dϑJðz; nÞ cosϑ

¼ v
Z

2π

0

dϑ

�
1

2π
IðzÞ − ltrans

2π
I0ðzÞ cosϑ

	
cosϑ:

Here and in the following, a dash symbolizes taking the
derivative in the z direction. The current flowing in the
positive z direction is given by integrating over the positive
half-space of ϑ only:
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FIG. 14. Results of numerical simulations based on the beam propagation method (BPM) for a normally distributed refractive index
variation with lcorr;∥ ¼ 20 μm, lcorr;⊥ ¼ 3 μm and variance Δn ¼ 0.001 (a), Δn ¼ 0.003 (b), and Δn ¼ 0.01 (c). When the index
variation is strong enough to cause a random superposition of deviated field components, the intensity profile exhibits characteristics of a
speckle pattern and the probability density function becomes an exponentially decaying curve [black dashed line in accordance with
Eq. (1)]. No abundance of extreme events can be observed here in contrast to our experiments.
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JþzðzÞ ¼ v
Z ðπ=2Þ

−ðπ=2Þ
dϑ

�
1

2π
IðzÞ cosϑ −

ltrans
2π

I0ðzÞcos2ϑ
	

¼ v
π
IðzÞ − vltrans

4
I0ðzÞ: ðC1Þ

The modulus of the current flowing in the negative z
direction is given by integrating over the negative half-
space and multiplying the result by −1:

J−zðzÞ ¼ −v
Z

3
2
π

ðπ=2Þ
dϑ

�
1

2π
IðzÞ cos ϑ −

ltrans
2π

I0ðzÞcos2ϑ
	

¼ v
π
IðzÞ þ vltrans

4
I0ðzÞ: ðC2Þ

According to our model there is no source at z ≤ 0 and all
current flowing in the positive z direction is caused by a
reflection of the current flowing in the negative direction;
formally,

Jþzð0Þ≡ RJ−zð0Þ:

Inserting Eqs. (C1) and (C2), we find

Ið0Þ − z0I0ð0Þ ¼ 0;

with the extrapolation length

z0 ¼
π

4
ltrans

1þ R
1 − R

: ðC3Þ

Here, we introduced the effective reflectivity R for
diffuse light, which must not be confused with the angle-
(and polarization-)dependent Fresnel coefficient RFresnelðϑÞ
for specular reflection. For R ¼ 0, we find z0 ¼
ðπ=4Þltrans ≈ 0.785ltrans, which is in very good agreement
with the theoretical value 0.7104ltrans found by calculating
the Milne equation in three dimensions [39,40].
The effective reflectivity R takes into account the

distribution of propagation directions of the diffusive light
impinging on the interfaces. To derive z0 from Fresnel
coefficients, we calculate the reflected current flowing in
the positive z direction as

Jreflþz ðzÞ ¼ −
Z

3
2
π

ðπ=2Þ
dϑRFresnelðϑ − πÞ

�
v
2π

IðzÞ cos ϑ −
vltrans
2π

I0ðzÞcos2ϑ
�

¼
Z ðπ=2Þ

−ðπ=2Þ
dϑ0RFresnelðϑ0Þ

�
v
2π

IðzÞ cosϑ0 þ vltrans
2π

I0ðzÞcos2ϑ0
�
≡ v

2π
C1IðzÞ þ

vltrans
2π

C2I0ðzÞ:

Here we have defined

C1 ≡
Z ðπ=2Þ

−ðπ=2Þ
dϑ0RFresnelðϑ0Þ cosϑ0

and

C2 ≡
Z ðπ=2Þ

−ðπ=2Þ
dϑ0RFresnelðϑ0Þcos2ϑ0:

From Jreflþz ð0Þ≡ Jþzð0Þ, we finally find

z0 ¼
π
2
þ C2

2 − C1

ltrans: ðC4Þ

Equating the right-hand sides of Eqs. (C3) and (C4), we can
readily calculate the effective reflectivity R as

R ¼ 4C2 þ πC1

4π þ 4C2 − πC1

:

Since in our experiments we consider only the propagation
of TE-polarized light (in terms of the waveguide struc-
tures), we have to take the Fresnel component RFresnel;∥ for
light polarized in the plane of incidence. Performing the
integrals for neff ¼ 3.33 (effective refractive index of the
ground mode of the AlGaAs waveguide structure at

λ0 ¼ 1550 nm) and nenv ¼ 1.00 (refractive index of air),
we finally find R ¼ 0.75 and z0 ≈ 5.5ltrans.

APPENDIX D: ROBUSTNESS OF THE EFFECT
TO LOSSES

The abundance of extreme events in the simulations and
the shape of its accompanying probability density function
are to some extent robust with regards to losses (absorption
or, as in our case, scattering losses to the environment). In a
lossy environment the buildup of high-amplitude events,
visible as a clear deviation from the speckle distribution,
takes a longer propagation length to reach its full extent.
See Fig. 15 for a compilation of numerical results for
different intrinsic losses. Figure 15(b) emulates the exper-
imental results depicted in Fig. 2(a) even slightly better
than the simulation displayed in Fig. 2(b), for which the
attenuation length Lloss as obtained from a fit to the total
transmittance of the samples was used (see Sec. IV).
This is in accordance with the discussion in Sec. V C,

which is based on the fact that losses reduce the eigenvalues
of the system in general. As a result, the pole of the function
1=ð1 − λÞ, which describes the amplitude of an eigenvector
with corresponding eigenvalue λ in the steady state, has a
less filtering effect. Since a multitude of eigenvectors
equally contribute to the steady state, the central limit
theorem kicks in, rendering the intensity distribution more
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specklelike. The fact that deviations from a speckle dis-
tribution can still be witnessed in Fig. 15 for long
propagation lengths is most likely due to the iterative
simulation having not quite reached the steady state yet.
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