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Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by
a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation
symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon
including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly
intertwined with discrete broken global symmetries. We present dual theories of the same phases starting
from amean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations
about this π-flux state are described by (2þ 1)-dimensional quantum chromodynamics (QCD3) with a
SU(2) gauge group and Nf ¼ 2 flavors of massless Dirac fermions. It has recently been argued by Wang
et al. [Deconfined QuantumCritical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017).] that
this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in
QCD3 and obtain fermionic dual descriptions of the phases withZ2 topological order obtained earlier using
the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the
U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points,
and our results imply new boson-fermion dualities between critical gauge theories of these points.
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I. INTRODUCTION

Spin-liquid states of the square lattice antiferromagnet,
with global SU(2) spin rotation symmetry, have long been
recognized as important ingredients in the theory of the
cuprate high temperatures superconductors [1–4]. The
earliest established examples of gapped states were “chiral
spin liquids,” which were constructed by analogy to the
fractional quantum Hall states [5,6]. These have a topo-
logical order which is not compatible with time-reversal
symmetry. Soon after, “Z2 spin liquids” were proposed
[7–13]: their topological order is compatible with time-
reversal symmetry, and exactly solvable examples were
later found in Kitaev’s toric code and honeycomb lattice
models [14–16]. Wen [17] used a fermionic spinon repre-
sentation of the antiferromagnet to obtain a plethora of
possible square lattice spin-liquid states, distinguished by
different realizations of symmetry-enriched topological
order [18,19]. Wen’s classification criterion was that the
spin-liquid states preserve time-reversal, SU(2) spin rota-
tions, and all the square lattice space group symmetries.

However, in the application to the cuprates, there is no
fundamental reason all such symmetries should be pre-
served. If we also allow for breaking of time-reversal and/or
point group symmetries, then many more spin-liquid states
are clearly possible, all of which preserve SU(2) spin
rotations and the square lattice translational symmetry
[7,8,20,21]. This proliferation of possible spin liquids,
intertwining with broken symmetries, sets up a daunting
task of deciding which states, if any, are relevant for the
pseudogap phase of the underdoped cuprates.
We need an energetic and physical criterion to focus on a

smaller set of relevant spin-liquid states, rather than relying
exclusively on symmetry and topology. In recent work,
Chatterjee et al. [22] proposed examining spin liquids which
are proximate to the magnetically ordered Néel state. These
proximate states are reachable by continuous (or nearly
continuous) quantum phase transitions involving the long-
wavelength excitations of the antiferromagnet. Specifically,
they used a CP1 theory of quantum fluctuations of the Néel
state, expressed in terms of bosonic spinons zα to argue for
the importance of three possible Z2 spin-liquid states. These
three states are identified here as Ab, Bb, and Cb, and appear
in Figs. 1(a) and 2(a). The state Ab preserves all symmetries
[23], while Bb breaks lattice rotation symmetries and so
has Ising-nematic order [7]. The state Cb breaks inversion
and time-reversal symmetries, but not their product, and was
argued to possess current-loop order.
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A related motivation for the physical importance of these
states comes from an examination of the classical phase
diagram of frustrated antiferromagnets on the square lattice.
By examining models with two-spin near-neighbor and

four-spin ring exchange interactions, Ref. [22] found
magnetically ordered states with canted, spiral, and conical
spiral order near the Néel state. Quantum fluctuations
about these classical ordered states can be described by

(a) (b)

FIG. 2. (a) Schematic phase diagram of the CP1 theory in Eqs. (1.4) and (1.7) as a function of s1 and s2 (for large g). (b) Schematic
phase diagram of the SU(2) QCD3 theory with Nf ¼ 2 flavors of massless Dirac fermions in Eqs. (1.6) and (1.8) as a function of s̄1 and
s̄2 (for s < 0 and jsj large). All four phases in (a) and (b) are argued to be topologically identical. So for the Z2 spin liquids, Ab ¼ Af ,
Bb ¼ Bf, and Cb ¼ Cf. Phases Bf and Cf do not appear in Wen’s classification [17] because they break global symmetries.

(a) (b)

FIG. 1. (a) Schematic phase diagram of the CP1 theory in Eq. (1.4) as a function of g and s1 [s2 in Eq. (1.7) is large and positive];
Eq. (1.2) describes the deconfined critical Néel-VBS transition at a critical g ¼ gc. (b) Schematic phase diagram of the SU(2) QCD3

theory with Nf ¼ 2 flavors of massless Dirac fermions in Eq. (1.6) as a function of s and s̄1 [s̄2 in Eq. (1.8) is large and positive]. The
“Wen” labels refer to the naming scheme in Ref. [17]. The Z2 spin liquids Ab and Af in (a) and (b) are argued to be topologically
identical, as are the confining states with VBS order. The critical spin liquids in (b) are argued to be unstable to the corresponding phases
with magnetic order in (a), with the critical SU(2) spin liquid surviving only at the Néel-VBS transition. All Z2 spin liquids are shown
shaded in all figures.

ALEX THOMSON and SUBIR SACHDEV PHYS. REV. X 8, 011012 (2018)

011012-2



extensions of the CP1 theory, and the quantum disordered
states obtained across a continuous transition involving loss
of magnetic order are precisely the three Z2 spin liquids,
with the correspondence [22,24]

canted order → Ab;

spiral order → Bb;

conical spiral order → Cb: ð1:1Þ

One of the purposes of the present paper is to present a
unified theory of the three Z2 spin liquids noted above,
but using the fermionic spinon approach [17,25,26]. For
gapped Z2 spin-liquid states, a mapping between the
fermionic and bosonic spinons approaches has been
achieved for specific states on the kagome, triangular,
square, and rectangular lattices [19,21,23,27–32]. This
mapping relies on the fusion rules of the toric code [14]:
the fusion of any two of the anyon species yields the third.
In Z2 spin liquids, the three types of anyons are bosonic
spinons, fermionic spinons, and a bosonic Z2-flux spinless
vison. We extend such mappings here to the states of
interest on the square lattice, but using a method which
allows us to treat the three Z2 spin liquids and the quantum
phase transitions between them in a unified manner. We
obtain a phase diagram of the states proximate to the Néel
state using the fermionic spinon approach, and propose
critical theories of the phase transitions involving massless
Dirac fermions. The connection to the earlier analysis [22]
using the bosonic spinons of the CP1 model also leads us to
propose new boson-fermion dualities of the strongly
coupled, gapless, quantum field theories describing the
(multi)critical points.
Our point of departure will be a boson-fermion duality of

a conformal field theory (CFT) proposed by Wang et al.
[33]. They examined the critical theory of the Néel-valence
bond solid (VBS) transition in the CP1 theory [34–37], and
proposed that it was equivalent to quantum chromodynam-
ics (QCD) with a SU(2) gauge group and Nf ¼ 2 flavors of
massless, two-component Dirac fermions [note that the
SU(2) gauge group is not to be confused with the global
SU(2) spin rotation symmetry]. The latter theory can also
be obtained from the fermionic spinon approach to the
square lattice antiferromagnet: it describes fluctuations
about a π-flux mean-field theory [17,25,26], which is
labeled by Wen as SU2Bn0n1.
Starting from the SU(2) QCD3 theory, we explore routes

to condensing Higgs fields for fermionic bilinears, so that
the SU(2) gauge group is ultimately broken down toZ2 and
we obtain gapped spin liquids with Z2 topological order.
Our main results are contained in the phase diagrams in
Fig. 2. These phase diagrams contain the phases Af, Bf,
and Cf, which are fermionic counterparts of the Ab, Bb, and
Cb states obtained from the bosonic CP1 theory.

One important feature of the fermionic phase diagram in
Fig. 1(b) is that it does not contain the counterparts of the
magnetically ordered Néel and canted states in the bosonic
phase diagram in Fig. 1(a). Instead, Fig. 1(b) contains two
critical phases, with massless Dirac fermions interacting
with gapless SU(2) and U(1) gauge bosons. Building on the
fermion-boson equivalence of Wang et al. [33], we argue
here that these critical phases of Fig. 1(b) are unstable to the
corresponding magnetically ordered phases in Fig. 1(a); the
instability is assumed to be driven by relevant operators
which are allowed by the symmetries of the underlying
square lattice antiferromagnet. However, given the strongly
coupled nature of the critical theories, this conclusion is
based upon circumstantial, rather than firm, evidence.

A. Summary of results

Let us first recall the bosonic spinon approach [22,38]
to the phases in Fig. 1(a). This is obtained by extending the
Lagrangian for the theory of deconfined criticality for the
Néel-VBS transition [39]:

Ldcp ¼
1

g
jð∂μ − ibμÞzαj2 þ SB: ð1:2Þ

The Lagrangian is in three spacetime dimensions with μ a
spacetime index in Minkowski signature ðþ;−;−Þ, and
α; β ¼ ↑;↓, so there is global SU(2) spin rotation sym-
metry. The Néel order parameter is z�ασaαβzβ, where σa are
the Pauli matrices. The U(1) gauge field bμ is compact, and
monopole tunneling events are permitted, and associated
with a Berry phase SB [35,40]. The spinons are represented
by the bosonic complex scalar zα, which is of unit lengthX

α

jzαj2 ¼ 1; ð1:3Þ

and carries unit U(1) charge. For small g, zα is condensed,
and this yields the Néel phase with broken spin rotation
symmetry. For large g, zα is not condensed, and we appear
to obtain a U(1) spin liquid (which we call Db) with a
gapless photon bμ, and gapped zα spinons. However, the
condensation of monopoles yields the confinement of
spinons and the appearance of VBS order [34,35]. The
transition from the Néel state to the VBS is described by a
deconfined critical theory [36,37] at g ¼ gc in which
monopoles are suppressed.
We now extend Ldcp by including complex, charge-2

Higgs fields whose condensation can induce phases with
Z2 topological order, while preserving SU(2) spin rotation
symmetry. We can construct such Higgs fields by pairing
spinons, but the simplest possibility, εαβzαzβ, vanishes
identically. Any such spinon pair Higgs field must involve
gradients, and the simplest nonvanishing cases involve a
single temporal or spatial gradient. We consider first the
Higgs field P conjugate to a pair of spinons with a single
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temporal gradient, and include the spatial gradient Higgs
field Qi later. The Lagrangian for zα, bμ, and P is

Lb ¼ Ldcp þ jð∂μ − 2ibμÞPj2 − s1jPj2 þ λ1P�εαβzα∂0zβ

þ λ1Pεαβz�α∂0z�β þ � � � ; ð1:4Þ

where εαβ is the unit antisymmetric tensor, and so SU(2)
spin rotation symmetry is maintained. For s1 large and
positive, when there is no P condensate, we obtain the
phases of Ldcp already described. For smaller s1, when
there is a P Higgs condensate, we obtain the canted
antiferromagnet and the symmetric Z2 spin liquid Ab for
small and large g, respectively, as shown in Fig. 1(a). The
Z2 spin liquid Ab was first obtained in Ref. [23], where it
was called Z2½0; 0�.
Now we turn to our results for the fermionic counterpart

of Fig. 1(a), which is shown in Fig. 1(b). We start with the
fermionic equivalent of the deconfined Néel-VBS critical
theory, which was identified by Wang et al. [33] as SU(2)
QCD3 with Nf ¼ 2, described by the Lagrangian

LQCD3
¼ itr½X̄γμð∂μX þ iXaμÞ�: ð1:5Þ

Here, X represents the massless Dirac fermions, γμ are
Dirac matrices, and the details of the index structure are
specified in Sec. II B. The SU(2) gauge field is represented
by aμ. The fermion kinetic term in Eq. (1.5) has a global
SO(5) symmetry, which is an enlargement of the global
SU(2) spin rotation and Z4 lattice rotation symmetries of
the lattice Hamiltonian [33]. To obtain Fig. 1(b), we extend
Eq. (1.5) in Sec. III B by adding two real Higgs fields,
Φ ¼ Φaσa and Φ1 ¼ Φa

1σ
a, both of which transform as

adjoints of the gauge SU(2). So we have the Lagrangian

Lf ¼ LQCD3
þ ðDμΦaÞ2 − sðΦaÞ2 þ λ2ΦatrðσaX̄μyXÞ

þ ðDμΦa
1Þ2 − s̄1ðΦa

1Þ2 þ iλ3Φa
1trðσaX̄∂0XÞ þ � � � :

ð1:6Þ

Here, Dμ is a covariant derivative, a is SU(2) gauge index,
σa are Pauli matrices, while μy is a Pauli matrix which acts
on the flavor space. We assume the higher order terms are
such that when both Higgs condensates are present, hΦi
and hΦ1i will be oriented perpendicular to each other in
SU(2) gauge space. For instance, the topological order
would be stabilized by the presence of a term like
−μðΦaΦa

1Þ2 when μ > 0. By varying s and s̄1 we can
obtain four phases in which the two Higgs condensates are
either present or absent, as shown in Fig. 1(b). We show in
Sec. IVA 1 that the gapped Z2 spin liquid Af, so obtained,
is topologically identical to the Z2 spin liquid Ab in
Fig. 1(a).
We also examine the U(1) spin liquid with a spin gap Df

obtained when there is only a Φ condensate. We compute

the monopole Berry phases in this state in Sec. IV C, and
find that they are identical to those indicated by SB in the
bosonic theory in Eq. (1.4). As monopoles are eventually
expected to proliferate in this U(1) spin liquid [34], we
expect VBS order to appear, just as in the corresponding
phase in Fig. 1(a).
Now we turn our attention to the critical U(1) and SU(2)

spin liquids in Fig. 1(b). As we noted earlier, we expect that
in the absence of fine-tuning, there are relevant perturba-
tions to Lf which will drive these critical phases to the
corresponding magnetically ordered phases in Fig. 1(a).
These perturbations will break the SO(5) flavor symmetry
of LQCD3

down to the symmetries of the underlying lattice
Hamiltonian [33].
Finally, we note that both Figs. 1(a) and 1(b) contain

multicritical points accessed by tuning two couplings
where all four phases meet. A natural conjecture is that
these multicritical points are identical to each other. On the
bosonic side, this is the theory obtained by tuning g and s1,
so that both the matter fields zα and P are critical. On the
fermionic side, this is the theory obtained by tuning s and
s̄1, so that the bosonic matter fields Φ and Φ1 are critical,
while the fermionic matter X remains critical. A further
conjecture is that the Yukawa couplings λ1 and λ3 renorm-
alize to zero at the multicritical point, then both the bosonic
and fermionic theories will represent CFTs.
We also extend our results to include additional Higgs

fields which lead to phases with Z2 topological order and
broken lattice rotation and/or time-reversal symmetries. On
the bosonic side, we introduce the complex, charge-2 Higgs
field Qi, where i ¼ x, y is a spatial index, leading to the
Lagrangian [8]

L0
b ¼ Lb þ jð∂μ − 2ibμÞQij2 − s2jQij2

þ λ4Q�
i εαβzα∂izβ þ λ4Qiεαβz�α∂iz�β þ � � � : ð1:7Þ

In the absence of magnetic order, so that g is large, the
phase diagram obtained by varying s1 and s2, with possible
condensates of P and Qi, is shown in Fig. 2(a). There are
now three Z2 spin liquids, and these meet at a possible
multicritical point with the VBS state.
On the fermionic side, in Sec. III C, we add another real

Higgs field Φ2i, which transforms as the adjoint of SU(2).
We now extend Lf in Eq. (1.6) to

L0
f¼LfþðDμΦa

2iÞ2− s̄2ðΦa
2iÞ2þ iλ5Φa

2itrðσaX̄∂iXÞþ���:
ð1:8Þ

The phase diagram obtained by varying s̄1 and s̄2, to obtain
possible Higgs condensates of Φ1 and Φ2i, is shown in
Fig. 2(b). We assume that s is negative, so that a Higgs
condensate Φ is always present in Fig. 2(b). We obtain
three Z2 spin liquids in Fig. 2(b), and one of our main
results is that these are topologically identical to the
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corresponding Z2 spin liquids in Fig. 2(a). The relative
orientations of the condensates of Φ, Φ1, and Φ2 in gauge
space are discussed in Sec. III D. Note that the spin liquids
Bf and Cf do not appear in Wen’s classification: this is
because they break global symmetries associated with
the appearance of Ising-nematic and current-loop order,
respectively.
Again, the multicritical points in Figs. 2(a) and 2(b),

if present, are expected to map to each other, setting up
possible dualities of critical fermionic and bosonic gauge
theories.
The paper is organized as follows. In Sec. II, we provide

the background information necessary for our analysis. We
begin by discussing the relevant symmetries and reviewing
the π-flux phase, showing that its low-energy dynamics are
described by Nf ¼ 2 QCD. The section finishes with a
brief summary of the boson-fermion duality proposed by
Wang et al. [33]. Section III explains our procedure for
finding spin liquids and how these phases are classified.
Using this, we next list all gapped spin liquids accessible
using our methods and which are either fully symmetric
or have Ising-nematic order. We also describe how spin
liquids breaking additional discrete symmetries can be
realized, with particular focus given to the Z2 spin liquid
Cf with current-loop order. These spin liquids, both
symmetric and ordered, are subsequently identified in
Sec. IV. We start by using the symmetry fractionalization
technique to verify the correspondence between theZ2 spin
liquids we study and those realized using Schwinger
bosons. This allows us to verify the equivalence of Af,
Bf, and Cf with Ab, Bb, and Cb. A comparison with Wen’s
[17] lattice classification scheme is also provided before we
turn to the unstable U(1) spin liquid Df and demonstrate
that the proliferation of monopoles necessarily results in a
confined phase with VBS order. We conclude in Sec. V
with some discussion.
We note a related paper [41], which appeared recently,

describing phases of antiferromagnets with only a U(1),
easy-plane, global spin rotation symmetry.

II. π-FLUX PHASE AND Nf = 2 QCD

A. Model and symmetries

We are interested in this paper in spin-liquid states of the
spin-1=2 Heisenberg model on the square lattice, with
Hamiltonian of the form

HH ¼ J
X
hiji

Si · Sj þ � � � ; ð2:1Þ

where the summation is over nearest neighbors and the
ellipsis indicates interactions over further distances or terms
which are composed of three or more spin operators. In the
absence of these higher order terms, the ground state is
known to have Néel order; nonetheless, we operate under

the assumption that the terms contained in the ellipsis
provide enough frustration that the ground state loses long-
range magnetic order.
It has been shown that a fully symmetric phase describ-

ing spin 1=2’s on a square lattice must have topological
order [42,43]. It turns out that there are many possible such
symmetric spin liquids, and a large body of work has been
directed at classifying these phases. One such scheme is
provided by Wen in Ref. [17]. He extended the physical
symmetry group to include gauge transformations, and
showed that distinct spin liquids can be differentiated based
on the behavior of the gauge degrees of freedom. We take
this approach and apply it it to a continuum formulation of
the phases in question. However, as discussed, the true
hallmark of a spin liquid is topological order, not the
absence of broken symmetries, and there is no a priori
reason to restrict to fully symmetric spin liquids. We
therefore also consider phases in which certain discrete
symmetries are broken.
The physical symmetries relevant to the problem are the

SU(2) spin symmetry, time-reversal T , and the space group
symmetries. The space group of the lattice is generated by
the two translation operators, Tx and Ty, the inversion
operator Py, and the rotation operator Rπ=2. These act on the
lattice sites as

Tx∶ ðix; iyÞ ↦ ðix þ 1; iyÞ; Ty∶ðix; iyÞ ↦ ðix; iy þ 1Þ;
Py∶ ðix; iyÞ ↦ ðix;−iyÞ; Rπ=2∶ðix; iyÞ ↦ ð−iy; ixÞ:

ð2:2Þ

In addition, these generators imply a symmetry under
inversion of the x coordinate, Px ¼ Rπ=2PyR−1

π=2, as well

as reflection about the x ¼ y axis, Pxy ¼ PyR−1
π=2. An

equivalent definition of the space group is given through
its commutation relations:

T−1
y TxTyT−1

x ¼ 1; P−1
y Rπ=2PyRπ=2 ¼ 1;

P−1
y TxPyT−1

x ¼ 1; R4
π=2 ¼ 1;

P−1
y TyPyTy ¼ 1; R−1

π=2TxRπ=2Ty ¼ 1;

P2
y ¼ 1; R−1

π=2TyRπ=2T−1
x ¼ 1: ð2:3Þ

The generators all commute with time reversal,
G−1T −1GT ¼ 1, G ¼ fTx; Ty; Py; Rπ=2g. Because the
fundamental degrees of freedom are bosonic spins, we
have T 2 ¼ 1.
Naturally, a different set of commutation relations is

required to describe the space group in a symmetry-broken
phase, and these will be presented as needed. To make
contact with these phases, we will often describe the action
of Px independently from the other symmetries even when
considering fully symmetric spin liquids.
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B. Heisenberg antiferromagnet and the π-flux state

We now present a lattice derivation of the π-flux model.
We begin by rewriting the spin operators in terms of
so-called slave fermions [17]:

Si ¼
1

2
f†iασαβfiβ; ð2:4Þ

where σ ¼ ðσx; σy; σzÞ are the Pauli matrices. This expres-
sion introduces additional degrees of freedom and therefore
cannot reproduce the Hilbert space of the spin operators
without being supplemented by a constraint. It can easily
be verified that provided

P
αf

†
iαfiα ¼ 1 on every site, the

representation in Eq. (2.4) is correct. This further implies
that

P
α;βϵαβfiαfiβ ¼

P
α;βϵαβf

†
iαf

†
iβ ¼ 0, where ϵαβ is the

fully antisymmetric 2-index tensor. By defining a matrix

X i ¼
 
fi↑ −f†i↓
fi↓ f†i↑

!
; ð2:5Þ

we see that these constraints generate a SU(2) gauge
symmetry which acts on X i as

SUð2Þg∶ X i → X iU
†
g;i: ð2:6Þ

The physical spin symmetry acts on X i on the left:

SUð2Þs∶ X i → UsX i: ð2:7Þ

The absence of a charge degree of freedom suggests that a
more natural fermionic representation may be obtained by
replacing the complex f fermions with Majoranas:

fi↑¼
1ffiffiffi
2

p ðχi;0þ iχi;zÞ; fi↓¼
1ffiffiffi
2

p ð−χi;yþ iχi;xÞ; ð2:8Þ

where χ†i;a ¼ χi;a and fχi;a; χj;bg ¼ δabδij. In this notation,

the matrix X i is written X i ¼ ð1= ffiffiffi
2

p Þðχi;0 þ iχi;aσaÞ and
the local constraints can be expressed as the conditions

trðσaX†
iX iÞ ¼ 0: ð2:9Þ

The first step to an approximate solution to HH is to
loosen the local constraint on the fermions to

htrðσaX†
iX iÞi ¼ 0: ð2:10Þ

Next, we decouple the four-fermion interaction through a
Hubbard-Stratonovich transformation, leaving a quadratic
mean-field Hamiltonian. The most general such
Hamiltonian which can be made symmetric under spin
rotation symmetry is [17,44]

HMF ¼
X
hiji

½iαijtrðX†
iX jÞ þ βaijtrðσaX†

iX jÞ

þ iγijtrðσaX†
i σ

aX jÞ�; ð2:11Þ

where αij, βaij, and γij are real numbers. In accordance with
its name, the π-flux state is obtained by threading a π flux
through every plaquette: we take βaij ¼ γij ¼ 0 and

αij ¼ −αji; αiþx̂;i ¼ α; αiþŷ;i ¼ ð−1Þixα: ð2:12Þ

This gives

Hπ ¼ −iα
X
i

½trðX iX iþx̂Þ þ ð−Þix trðX iX iþŷÞ�: ð2:13Þ

While it is clear that this Ansatz preserves the full SU(2)
gauge and spin symmetries, the invariance of the π-flux
Hamiltonian under the space group symmetries may be
less clear. In particular, translations in the x direction
do not preserve the form of Hπ . However, the original
Hamiltonian can be recovered through a gauge trans-
formation, implying that the symmetry transformed state
is (gauge) equivalent to the original. Wen [17] termed this
extended symmetry group the “projective symmetry group”
(PSG) and used it to show the existence of eight distinct
fully symmetric SU(2) spin liquids on the square lattice.
In his scheme, the Hamiltonian Hπ describes the SU2Bn0
state (this is shown in Appendix C 1). We discuss the PSG
extensively in subsequent sections, albeit in a slightly
different context than originally formulated. His scheme
is briefly reviewed in Appendix B.
The band structure of Hπ has two Dirac cones. We

expand about these cones, labeling them by a valley index
v ¼ 1, 2. A convenient expression for the resulting theory
is achieved by defining the 4 × 2 matrix operator

Xα;v;β ¼
1ffiffiffi
2

p ðχ0;vδαβ þ iχa;vσaαβÞ; ð2:14Þ

where α, β, and v are spin, gauge, and valley indices,
respectively. The low-energy excitation of HMF are
described by the relativistic Dirac Lagrangian

LMF ¼ itrðX̄γμ∂μXÞ; ð2:15Þ

where χ̄ ¼ χTγ0, ðγ0; γx; γyÞ ¼ ðτy; iτz; iτxÞ. Here and in
what follows, we express operators in real time.
While Eq. (2.10) may hold in the ground state of Hπ , the

full constraint in Eq. (2.9) does not, and gauge fluctuations
must be included to take this into account. The SU(2) gauge
transformation in Eq. (2.6) becomes

SUð2Þg∶ X → XU†
g; aμ → UgaμU

†
g þ i∂μUgU

†
g;

ð2:16Þ
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in the continuum. As before, global spin rotations act on the
Majorana X on the left:

SUð2Þs∶ X → UsX: ð2:17Þ

Letting Da
μX ¼ ∂μX þ iXaμ, the inclusion of quantum

fluctuations results in the following Lagrangian:

LQCD3
¼ itrðX̄γμDa

μXÞ: ð2:18Þ

LQCD3
can be expressed in a more familiar form by defining

Dirac fermions:

ψ1;v ¼
iffiffiffi
2

p ðχx;v − iχy;vÞ; ψ2;v ¼ −
1ffiffiffi
2

p ðχ0;v þ iχz;vÞ:

ð2:19Þ

In terms of these operators, the Lagrangian becomes

LQCD3
¼
X
v¼1;2

iψ̄vγ
μð∂μ − iaaμσaÞψv: ð2:20Þ

That is, the low-energy physics of the π-flux state is
described by QCD3 with Nf ¼ 2 fermions. The Dirac
representation is not nearly as useful as the Majorana
representation of LQCD3

: while gauge transformations act
on the ψ fermions in the usual fashion, the action of the spin
symmetry is nontrivial. We therefore primarily use the form
given in Eq. (2.18).
A side effect of the expansion about the Dirac cones is

that the χ fermions transform nontrivially under time-
reversal and the space group symmetries:

Tx∶ χ→μxχ; Rπ=2∶ χ→eiπτ
y=4e−iπμ

y=4χð−y;xÞ;
Ty∶ χ→μzχ; Px∶χ→ τzμzχð−x;yÞ;
T ∶ χ→ τyμyχ; i→−i; Py∶χ→−τxμxχðx;−yÞ: ð2:21Þ

In addition, the spin and space group symmetries of the
model are significantly enlarged at this fixed point.
Not only is LQCD3

Lorentz invariant, but it is symmetric
under rotations mixing the spin and valley indices of X:
X → LX, where L is a 4 × 4 unitary matrix. Because X is
composed of Majorana fermions, there is an important
reality condition,

X� ¼ σyXσy; ð2:22Þ

and therefore only L such that LTσyL ¼ σy are allowed.
This reduces what would have been a U(4) symmetry to
Sp(4). Finally, since both SUð2Þg and Sp(4) share the
nontrivial element −1, the true global symmetry is obtained
by taking the quotient: Spð4Þ=Z2 ≅ SOð5Þ.

C. Dual description

As with any mean-field approach involving a continuous
gauge group, the existence of LQCD3

is by no means
guaranteed once gauge fluctuations have been taken into
account. However, in spite of some of the terminology, in
this paper we do not view the π-flux “phase” as a stable
state of matter existing over a finite region in parameter
space. Instead, we treat it as a parent theory with insta-
bilities potentially leading to U(1) and Z2 spin liquids, as
well as to ordered phases like Néel and VBS. This approach
is motivated by a duality between LQCD3

and CP1 proposed
byWang et al. [33] to describe the Néel-VBS transition. We
discuss the relation between CP1 and QCD3 in this context.
One of the key components to their proposal is the SO(5)

symmetry we just discussed. On the QCD3 side of the
duality, an order parameter for this symmetry is

nj¼ trðX̄ΓjXÞ; Γj ¼fμx;μz;μyσx;μyσy;μyσzg: ð2:23Þ

The symmetry transformations in Eq. (2.21) indicate that n1

and n2 are the VBS order parameters, while n3, n4, and n5

correspond to the Néel order parameter. Using this,
Refs. [45–47] showed that taking LQCD3

to

LQCD3;ϕ ¼ LQCD3
þmϕjtrðX̄ΓjXÞ; ð2:24Þ

and subsequently integrating out the fermions, yields a
nonlinear sigma model for ϕ with a Wess-Zumino-Witten
term. This topological term manifests itself physically by
making the defects of the order parameter of one symmetry
transform nontrivially under the action of the other sym-
metry. These nontrivial correlations prompted Tanaka and
Hu [45] and Senthil and Fisher [46] to propose this
nonlinear sigma model as a description of the critical
theory describing the Landau-forbidden continuous phase
transition between Néel and VBS.
Conversely, the CP1 formulation of the phase transition

circumvents the obstruction to continuity by eschewing
the traditional notion of an order parameter. While the Néel
phase is entered through the condensation of Na ¼ z†σaz,
the VBS phase is described by the proliferation of monop-
oles, events which change the flux of the gauge field by 2π
(or, equivalently, change the global Skyrmion number by
one). Not only do these monopoles confine the U(1) gauge
field, but, because they transform nontrivially under the
space group, this symmetry is necessarily broken in the
condensate. In spite of the very different forms the Néel
and VBS order parameters take, numerics [48] have
observed an emergent SO(5) symmetry between the two,
implying that SO(5) emerges as a symmetry in the IR. In
this version, the VBS portion of SO(5) order parameter is
given by ðϕ1;ϕ2Þ ¼ 2ðReM; ImMÞ, whereM denotes the
monopole operator, while the remaining pieces are sim-
ply ðϕ3;ϕ4;ϕ5Þ ¼ ðz†σxz; z†σyz; z†σzzÞ.

FERMIONIC SPINON THEORY OF SQUARE LATTICE … PHYS. REV. X 8, 011012 (2018)

011012-7



Wang et al. [33] suggest that both of these models flow
to the same SO(5) symmetric CFT in the IR. An important
feature of this CFT is the absence of a relevant singlet
operator. The critical point is instead obtained by tuning the
coupling μ of a relevant, anistropic operator to zero:

L ¼ LSOð5Þ þ μOan;

Oan ∼
2

5
ðϕ2

3 þ ϕ2
4 þ ϕ2

5Þ −
3

5
ðϕ2

1 þ ϕ2
2Þ: ð2:25Þ

When μ > 0, the system has VBS order, while when μ < 0,
it orders along the Néel directions. The approach we take is
slightly different in spirit to this proposal, and we discuss
this further in Sec. IV C.

III. SPIN LIQUIDS PROXIMATE
TO THE π-FLUX PHASE

In this section, we describe the Higgs descendants of
QCD3 and our approach to their classification. We start by
discussing which operators can couple to the Higgs field,
before turning to a more complete discussion of the
projective symmetry group than what was provided in
the previous section. Given a set of criteria described below,
we conclude that there exists a single (spin) gapped U(1)
spin liquid among the Higgs descendants of QCD3. We
next list all gapped and fully symmetry Z2 spin liquids, as
well as all gapped Z2 spin liquids with Ising-nematic order.
Special note is taken of the spin liquids Af and Bf, though
we wait until Sec. IVA 1 to prove their equivalence to Ab
and Bb. The section finishes with a description of the
gapped Z2 spin liquid with current-loop order we call Cf.

A. Higgs fields

We being by examining the set of operators we will be
coupling to the Higgs field. QCD3 is strongly coupled in
the IR, and so very little can be said with certainty
regarding the operators and their scaling dimensions in
the IR. We focus on fermion bilinears since these are the
most relevant gauge-invariant bosonic operators of the UV
theory. Nonperturbative operators such as monopoles are
not considered.
We consider interaction terms of the form

trðφX̄MXÞ ¼ φatrðσaX̄MXÞ; ð3:1Þ

where φ ¼ φaσa is a generic Higgs field transforming in
the adjoint representation of SUð2Þg and M is a matrix
acting on the sublattice, color, and/or flavor space of the
fermions and which may or may not contain derivatives.
The physical properties of the various possible Higgs
phases are defined primarily by the bilinear it couples to.
Restricting for the moment to bilinears without deriva-

tives, those which are charged under the gauge group are

trðσaX̄γμXÞ; trðσaX̄ΓjγμXÞ; trðσaX̄TjXÞ; ð3:2Þ

where Γj ¼ fμz;−μx; μyσag and Tj ¼ fμy; σa; μxσa; μzσag
are the vector and adjoint representations of SO(5),
respectively. The first set of operators are the gauge currents
Ja;μ. These cannot couple a Higgs field since the gauge
theory description of the Heisenberg model is predicated
on the requirement that these currents vanish. In fact, the
gauge fields can be interpreted as Lagrange multipliers
which have been added to LQCD3

in order to impose the
Ja;μ ¼ 0 constraint.
No such obstacles exist for the other two sets of bilinears.

The second group of operators, trðσaX̄ΓaγμXÞ, are SO(5)
and spacetime vectors in addition to gauge adjoints. The
presence of the gamma matrices γμ indicates that the
fermions will remain massless upon coupling these bilin-
ears to a condensed φ.
On the other hand, should the Higgs field couple to one

of the final operators in Eq. (3.2), hφi ≠ 0will act as a mass
for the fermions. The only other bilinears which act as
masses to the fermions are the singlet and SO(5) vector,
neither of which are fully symmetric. Therefore, given the
aforementioned restriction on which operators we consider,
we conclude that an operator of the form trðσaX̄TjXÞ must
couple to a condensed Higgs field in Af andDf. (It can also
be verified that these color-singlet mass terms cannot
provide a spin gap to the ordered spin liquids, Bf or Cf.)
We will see shortly that the operators in Eq. (3.2) are not

sufficient to reproduce the phase diagram in Figs. 1(b)
and 2(b). Consequently, we also allow the Higgs field to
couple to bilinears which contain a single derivative:

trðσaX̄i∂μXÞ; trðσaX̄Γji∂μXÞ; trðσaX̄Tjγμi∂νXÞ: ð3:3Þ

We now discuss how symmetries manifest in Higgs
phases. The action of the space group and time reversal on
the bilinears listed above is given in Figs. 3 and 4; the spin
symmetry rotates operators with spin indices among
themselves in the usual way. It naively appears that a
Higgs field coupling to any of these bilinears will neces-
sarily break one or more symmetries upon condensing. As

FIG. 3. How trðσaX̄TjXÞ transform under the physical
symmetries. Tj ¼ fμy; σa; μxσa; μzσag are the ten generators
of SO(5).
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with the π-flux Hamiltonian in Eq. (2.13),Hπ , this intuition
does not account for the fact that the Higgs field is not a
gauge-invariant operator. A symmetry is only truly broken
if the original and symmetry transformed actions are not
gauge equivalent.
For instance, in Eq. (1.6), trðσaX̄μyXÞ couples to the

Higgs fieldΦ. Since trðσaX̄μyXÞmaps to minus itself under
T , Tx, and Ty, the naive argument would suggest that these
symmetries are broken when hΦai ≠ 0. However, it is not
difficult to find a gauge transformation capable of
“undoing” the action of these symmetries. In particular,
supposing that only hΦxi ≠ 0, we see that the gauge
transformation V ¼ iσz takes trðσxX̄μyXÞ to minus itself,
thereby proving the equivalence of the original and
symmetry transformed actions.
This set of gauge transformations comprises the PSG and

is what we use to characterize the Higgs descendants. More
generally, when a group element acts on a bilinear as

G∶ trðσaX̄MXÞ → trðσaX̄ŪGMUGXÞ; ð3:4Þ

where ŪG ¼ γ0U†γ0, the projective symmetry group is
defined as

PG∶ trðσaX̄MXÞ → trðV†
Gσ

aVGX̄ŪGMUGXÞ; ð3:5Þ

where

trðV†
Gσ

aVGX̄ŪGMUGXÞ ¼ trðσaX̄MXÞ: ð3:6Þ

We will see that requiring the existence of a VG for every
UG places stringent conditions on which operators can
couple to a Higgs field while preserving certain symmetries
in the condensed phase.

B. Symmetric spin liquids

In this section, we focus on fully symmetric and gapped
spin liquids (by “gapped,” we are referring specifically to
the matter content). As mentioned, in order to simulta-
neously gap the fermions and Higgs the gauge boson, an
operator of the form trðσaX̄TjXÞ, where Tj is a generator
of SO(5), must couple to a Higgs field. These are listed in
Fig. 3. Of the ten generators of SO(5), nine transform as
vectors under the spin symmetry, and we show in
Appendix A that a fully symmetry spin liquid cannot be
formed by coupling a Higgs field to any of these bilinears.
Roughly, the argument relies on the fact that in order to
preserve the spin symmetry, a linear combination of the
form ∼

P
atrðσaX̄MσaXÞ for M ¼ 1, μx, μz must couple to

the Higgs, which then makes it impossible to preserve all of
the discrete symmetries.
This observation establishes trðσaX̄μyXÞ as the only

fermion bilinear capable of both giving the fermions a mass
and coupling to a Higgs field. As indicated in Eq. (1.6) and
Sec. III A, we denote the Higgs field coupling to this
bilinear as Φa. Since the action remains invariant under all
gauge transformations about the direction of the conden-
sate, Φa cannot fully Higgs the SU(2) gauge symmetry
down to Z2. For instance, if we assume that only hΦxi ≠ 0,
U(1) operations of the form X → Xe−iθσ

x
remain a gauge

symmetry. We label this U(1) spin liquid Df.
It is well known [49] that without gapless degrees of

freedom, a U(1) gauge theory is unstable to the prolifer-
ation of monopoles and confinement [50]. We ignore the
ultimate fate of Df until Sec. IV C, where we show that the
true ground state is a VBS.
With this caveat in mind, we deduce the projective

symmetry group of the gapped U(1) spin liquid from Fig. 3:

Vt ¼ eiθtσ
x
iσz; Vtx ¼ eiθtxσ

x
iσz;

Vpy ¼ eiθpyσ
x
; Vty ¼ eiθtyσ

x
iσz;

Vpx ¼ eiθpyσ
x
; Vr ¼ eiθrσ

x
; ð3:7Þ

where the θG are arbitrary angles parametrizing the residual
U(1) gauge degree of freedom. Here, the subscripts t, px,
py, tx, ty, and r indicate that these gauge transformations
accompany the action of T , Px, Py, Tx, Ty, and Rπ=2,
respectively.
We note that while the physical symmetries are all

preserved in Df, the emergent SO(5) symmetry of QCD3

has been broken. Of the SO(5) generators, Tj ¼ fμy; σa;
μxσa; μzσag, the U(1) gauge theory is only invariant under
fμyg × fσag, indicating that the SO(5) is broken to
Uð1Þ × SUð2Þ. From the perspective of the SO(5) order
parameter, nj ¼ trðX̄ΓjXÞ, Γj ¼ fμx; μz; μyσag, the VBS
order parameters, n1 and n2, can no longer be rotated into the
Néel order parameters, n3, n4, and n5.

FIG. 4. How trðσaX̄ΓjγμXÞ transform under the physical
symmetries. Γj ¼ fμx; μz; μyσag transform under the vector
representation of the emergent SO(5).
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To break the gauge group down to Z2, an additional
Higgs field Φ1 is needed. However, there are strict con-
straints on which bilinears can couple to Φ1 in order for the
resultantZ2 spin liquid to preserve all physical symmetries.
We approach this problem from a vector representation
by associating an SO(3) matrix Q to each SUð2Þg gauge
transformation V. That is, instead of looking at V such that
trðφX̄MXÞ → trðV†φVX̄MXÞ, we consider Q such that
φatrðσaX̄MXÞ → ðQφÞatrðσaX̄MXÞ. In this notation, when
hΦxi ≠ 0, we must have

QG ¼
�
1 0

0 RG

�
; G ¼ px; py; r; ð3:8Þ

and

QG ¼
�−1 0

0 ~RG

�
; G ¼ t; tx; ty; ð3:9Þ

where RG and ~RG are determined by the bilinear coupling
to Φ1. The constraints on this bilinear arise from the
fact thatQG must be special orthogonal, therefore implying
that RG and ~RG must be 2 × 2 orthogonal matrices with
determinants þ1 and −1, respectively.
We now argue that none of the operators in Fig. 4

satisfy these requirements. First, all bilinears with spin
indices can be excluded by the same reasoning given
above and in Appendix A. Next, we note that all remain-
ing operators still transform differently than trðσaX̄μyXÞ
under at least one of the symmetries, and therefore the Φ1

condensate must be perpendicular to x in color space. For
the remaining six operators, the obstruction to forming a
spin liquid may be understood by studying the action of a
90° rotation. The last column of the table indicates that

Rπ=2 maps each bilinear to plus or minus another bilinear
in the table; e.g., Rπ=2∶trðσaX̄μxγ0XÞ → trðσaX̄μzγ0XÞ. In
order for this to describe a rotationally symmetric phase,
both bilinears must couple to a Higgs field. We might
imagine that Φ1 couples to both operators in a pair, but
this is not a viable option because the other discrete
symmetries do not act on the members of each pair in the
same way. For instance, no gauge transformation can
preserve the form of hΦa

1itrðσaX̄γ0½μx � μz�XÞ under Px,
Py, Tx, and Ty since trðσaX̄γ0μxXÞ and trðσaX̄γ0μzXÞ
behave differently under these symmetries. We might try
coupling each of these operators to different Higgs fields,
Φ1 and Φ1

0, and require that they condense in mutually
perpendicular channels; e.g., hΦy

1i ≠ 0 and hΦ1
0zi ≠ 0.

However, the matrix required to undo the action of the
time-reversal symmetry is then Qt ¼ diagð−1; 1; 1Þ,
which is not an element of SO(3). We conclude that this
does not work either.
We next perform the same analysis on bilinears con-

taining a single derivative. Once again, the arguments in
Appendix A are valid, and we immediately exclude all
operators in Eq. (3.3) which transform nontrivially under
spin rotations. The action of the space group and time-
reversal symmetries on the remaining operators is provided
in Fig. 5. Again, Rπ=2 maps many of the operators to plus or
minus a different operator in the table. As discussed in the
previous paragraph, only bilinears which transform in the
sameway under T , Px, Py, Tx, and Ty as their partner under
Rπ=2 are suitable candidates, and these are highlighted in
different colors. In Fig. 6, we list the PSGs of all gapped
and symmetric Z2 spin liquids which can be formed using
this set of operators.
In Sec. IVA 1, we determine which (if any) bosonic

Ansatz these PSGs correspond to. We find that sPSG5

FIG. 5. Symmetry transformation properties of bilinears of the form trðσaX̄i∂μXÞ, trðσaX̄Γji∂μXÞ, and trðσaX̄Tjγμi∂νXÞ, which do not
transform under spin. The operators that can couple to a Higgs field in a gapped symmetric spin Z2 spin liquid are colored; entries with
the same color transform into one another under Rπ=2.
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corresponds to the fully symmetric spin liquid Ab, and for
this reason we denote it Af.

C. Z2 spin liquids with Ising-nematic order

As emphasized in Sec. I, it is not necessary to restrict
to fully symmetric spin liquids. We therefore also study
gapped, nematic Z2 spin liquids proximate to the gapped
U(1) spin liquid Df. In particular, we investigate spin
liquids which are obtained by coupling a third Higgs
field, Φ2i, to the operators in Figs. 3, 4 and 5, and which
preserve the continuous spin symmetry, T , Px, Py, Tx,
and Ty, but break the 90° rotation symmetry Rπ=2. The
absence of rotation symmetry makes it possible to couple
any of the operators in Figs. 3 and 4 to the Higgs field,
and the ten candidates we find are listed in Fig. 7.
We note that nPSG5 and nPSG6 are continuously

connected to sPSG1-2 and sPSG3-4, respectively. For
instance, in the case of nPSG5, if the Higgs field couples
as
P

i¼x;yΦa
2itrðσzX̄γii∂iXÞ, then phases where the con-

densate satisfies hΦa
2xi ¼ �hΦa

2yi do not break Rπ=2 and are
precisely sPSG1 and sPSG2. The same considerations hold
for nPSG6 in relation to sPSG3 and sPSG4.
In all cases, the phase with hΦi ¼ 0 and hΦ1i ≠ 0 is a

fully symmetric U(1) spin liquid. However, unlike Df, the
matter sector is gapless.
In the next section we find that nPSG7 is the

fermionic version of the bosonic phase Bb, leading
us to label it Bf.

D. Z2 spin liquid with current-loop order

Thus far, we have defined three separate Higgs fields.
To ensure that the condensed phases had a spin gap, Φ and

trðσaX̄μyXÞ were required to couple. We then identified
which bilinears could couple to a second Higgs field Φ1,
such that the phase with hΦi ≠ 0, hΦ1i ≠ 0, and
hΦi⊥hΦ1i was a fully symmetric spin Z2 liquid.
Similarly, we determined in the previous section which
bilinears could couple to a Higgs field Φ2i such that the
phase with hΦi ≠ 0 and hΦ2ii ≠ 0 was a Z2 spin
liquid with Ising-nematic order, again provided
hΦi⊥hΦ2ii.
A natural extension is to ask which phases result when

all three Higgs fields have condensed: hΦi ≠ 0, hΦ1i ≠ 0,
and hΦ2ii ≠ 0. However, there are clearly a large number of
possibilities. Not only have we identified many candidate
sPSGs and nPSGs, but different symmetries will be broken
depending on the relative orientation of the Higgs fields.
Therefore, we focus on producing the phase diagram in
Fig. 2(b) and restrict our study to the situation where the
symmetric and nematic spin liquids are Af and Bf, the
phases described by sPSG5 and nPSG7.
This scenario describes the following four different

patterns of symmetry breaking.
(1) hΦi⊥hΦ1i, hΦi⊥hΦ2ii, & hΦ1i∥hΦ2ii.
(2) hΦi⊥hΦ1i, hΦ1i⊥hΦ2ii, & hΦi∥hΦ2ii.
(3) hΦ2ii⊥hΦi, hΦ2ii⊥hΦ1i, & hΦi∥hΦ1i.
(4) hΦi⊥hΦ1i⊥hΦ2ii.

In Fig. 8 we list which symmetries are broken for each of
these cases.
Referring to the phase diagram in Fig. 1(b), it is natural

to restrict to the case where Af and Bf are accessible by
taking hΦ2ii or hΦ1i to zero. Since both the second and
third cases have hΦi parallel to either hΦ1i or hΦ2ii, we
eliminate these options. Of the remaining two phases, the
resulting spin liquid only possesses current-loop order

FIG. 6. All symmetric PSGs associated with symmetric Z2 spin liquids in which hΦxi ≠ 0, whereΦ couples to trðσaX̄μyXÞ. These are
listed as a function of the operator trðσaX̄MXÞ which Φ1 couples to. We assume that only hΦy

1i ≠ 0.
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when hΦ1i∥hΦ2ii. This situation is further distinguished by
breaking the fewest symmetries. We refer to this phase as
Cf and later equate it and the bosonic phase Cb.

IV. SPIN-LIQUID IDENTIFICATION

We now identify the phases examined above with
previously studied spin liquids. On the lattice, Wen [17]
showed that 58 distinct Z2 PSGs can be accessed from the
π-flux state (SU2Bn0). However, his PSG classification
gives no indication of the physical properties of these
phases and, moreover, as we will see, it includes certain
“anomalous” PSGs which cannot be obtained from a
mean-field Ansatz. We therefore begin by discussing the
“symmetry fractionalization” approach to spin-liquid clas-
sification, and relate it to Wen’s scheme. This will signifi-
cantly simplify the process of relating the symmetric U(1)
spin liquids and the phases in Fig. 6 to the spin liquids
studied by Wen. Its greatest power, however, will be to treat
fermionic and bosonic mean-field Ansätze on the same
footing, allowing us to relate our results to phases described
using Schwinger bosons, and prove our earlier claim that
Af, Bf, and Cf are fermionic versions of Ab, Bb, and Cb.
We next show that the gapped U(1) spin liquid Df

corresponds to Db. The gapless gauge degrees of freedom
invalidate the symmetry fractionalizaton approach to com-
paring spin liquids represented with bosons and fermions.
Instead, we show through linear response that the prolif-
eration of monopoles induces the condensation of the VBS
order parameters given by the first two components of the
vector in Eq. (2.23). We provide additional verification
by demonstrating that the Berry phase of the monopole
matches the calculation performed by Haldane [40] and
Read and Sachdev [35].

A. Symmetry fractionalization and
Z2 spin-liquid identification

In this section, we relate the gapped Z2 spin liquids
determined in the previous section to spin liquids obtained
using Schwinger bosons by Yang and Wang [23] and
Chatterjee et al. [21]. Since these phases are gapped, they
are completely defined via their symmetry fractionalization
[19]. Of the PSGs listed in Figs. 6 and 7, we find that
precisely one matches onto the spin liquid Ab, and one
onto Bb of Fig. 2(a). We begin by briefly reviewing this
classification scheme in the context ofZ2 topological order.
See Ref. [19] for more details.
One of the defining characteristics of topological order is

the presence of anyonic excitations. For the Z2 case we
consider here, there are two bosonic particles, typically
denoted e and m, which are mutually semionic: the wave
function picks up a minus sign upon the adiabatic motion of
an e particle traveling around an m particle. A bound state
of an e and m is a fermionic excitation, ε ∼ em, and it also
satisfies mutual semionic statistics with e and m. We
frequently refer to the m particle as the “vison” and the
e and ε particles as the bosonic and fermionic “spinon,”
respectively. These excitations carry Z2 gauge charge and
therefore must appear in pairs. Nonetheless, the Z2 gauge

FIG. 7. Nematic PSGs associated with order parameters of the
form ΦatrðσaX̄μyXÞ þΦa

2itrðσaX̄MiXÞ. We do not include
trðσaX̄∂0XÞ since this operator is invariant under the action of
Rπ=2 and already accounted for as sPSG5. The labels x, y are
simply a convenient notation and do not necessarily signify a
physical direction.

FIG. 8. Symmetries broken depending on the orientation in
gauge space taken by the Higgs condensates. The fields couple to
the bilinears as trðΦX̄μyXÞ þ trðΦ1X̄i∂0XÞ þ trðΦ2xX̄i∂xXÞ.
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field is gapped and these phases are deconfined, meaning
that e, m, and ε particles may be very far from one another.
A comparison of these particles with the excitations in

the Higgs phases implies that the fermionic spinons ε
should be identified with the excitations of the field
operator X. In addition, in ð2þ 1ÞD the Abrikosov vortices
of the condensate are pointlike, and we associate these with
the vison excitationsm. The remaining particle, the bosonic
spinon e, is therefore described by a bound state of X and
the vortex. In contrast, CP1 is formulated in terms of the
bosonic spinons. The vison is present as a vortex in the
condensate as before, but now it is the fermionic spinon that
is expressed as a bound state.
This representation of the degrees of freedom of a gapped

Z2 spin liquid provides a means to compare phases
described using fermionic and bosonicAnsätze. In a manner
analogous to the classification of symmetries in terms of
quantum numbers, these symmetry-enriched topological
phases can be classified by what is known as symmetry
fractionalization numbers. Independent of any formalism,
suppose we create from the ground state two ε (or e or m)
excitations and separate them so that they lie at very distant
points r and r0: jr; r0i. Since the rest of the system is
indistinguishable from the ground state, the action of an
unbroken symmetryGwill exclusively affect these regions:

Gjr; r0i ¼ GεðrÞGεðr0Þjr; r0i; ð4:1Þ

where GεðrÞ has support only in the region immediately
surrounding r. As discussed in Sec. II A, the generators of a
symmetry group satisfy certain commutation relations, and
for the space group of the square lattice (plus time reversal),
these relations are given in Eq. (2.3) and below. It follows
that the action of any of these operations on all wave
functions must be equivalent to the identity. For example,
since T−1

y TxTyT−1
x ¼ 1, it must map jr; r0i to itself:

jr; r0i ¼ T−1
y TxTyT−1

x jr; r0i: ð4:2Þ

In terms of the local symmetry operations, this becomes

jr; r0i ¼ T −1
ε;yðrÞT ε;xðrÞT ε;yðrÞT −1

ε;xðrÞ
· T −1

ε;yðr0ÞT ε;xðr0ÞT ε;yðr0ÞT −1
ε;xðr0Þjr; r0i: ð4:3Þ

Since the transformations are localized at either r and r0, they
must be independent from one another and therefore
constant. However, because of the Z2 gauge degree of
freedom, ζεtxty ¼ T −1

ε;yðrÞT ε;xðrÞT ε;yðrÞT −1
ε;xðrÞ need not nec-

essarily equal unity: the symmetry can be fractionalized
such that ζεtxty ¼ −1. The value of ζεtxty will be consistent for
every excitation of that species within a phase
It is not difficult to connect this to the PSG classification

of the previous section. The PSG is the set of gauge
transformations required to preserve the form of the
action following a symmetry transformation, as shown in

FIG. 9. The columns labeled “sPSG1-5” list the symmetry fractionalizations of the gapped, symmetric Z2 spin liquids given in Fig. 7.
The corresponding bosonic symmetry fractionalization numbers are obtained by multiplying the sPSG numbers with the those given in
the Vison and Twist columns. We see that sPSG5 corresponds to the Z2½0; 0� state of Ref. [23]. No bosonic counterparts to sPSG1–4 are
present in Ref. [23].
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Eq. (3.6). Now, however, we present the PSG action solely
in terms of an operator which creates fermionic spinons, X:

PG∶X → UGXV
†
G: ð4:4Þ

The same argument given above then requires that under
the action of T−1

y TxTyT−1
x , X is mapped to plus or minus

itself:

T−1
y TxTyT−1

x ½X� ¼ U†
txUtyUxyU

†
tyXVtyV

†
txV

†
tyVtx ¼ �X:

ð4:5Þ

This factor is precisely the fractionalization number of ε.
When time reversal is involved, this is modified to

G−1T −1GT ½X� ¼ U�
t σ

yU�
Gσ

yUT
t U

†
GXVGV�

t σ
yVT

Gσ
yVT

t ;

T 2½X� ¼ U�
t σ

yUtσ
yXσyV†

t σ
yVT

t ; ð4:6Þ

where the reality condition in Eq. (2.22) has been used.
Fig. 3 lists the numbers corresponding to each of the
sPSGs in Fig. 9. (We note that the 7th group relation,
R−1
π=2TxRπ=2Ty ¼ 1, can be fixed by a gauge transformation

on the relative sign of Vtx and Vty. In keeping with the
convention of Ref. [23], we require that the symmetry
fractionalization number be −1 for the fermionic spinons.)
The argument also demonstrates a shortcoming of the

PSG classification. While it immediately returns the sym-
metry fractionalization of the fermionic spinons, it provides
no information regarding the symmetry fractionalization of
the vison and bosonic spinon. However, it fortunately turns
out that the vison’s fractionalization numbers are indepen-
dent of the precise Z2 spin liquid under study and can be
obtained by examining a fully frustrated transverse-field
Ising model [23,51–53]. We quote these results in the
column labeled “Vison” in Fig. 9.

1. Correspondence between fermionic
and bosonic Ansätze

Comparing fermionic and bosonic Ansätze may appear
straightforward from this point: since e ∼ εm, it seems
reasonable to assume that the symmetry fractionalization of
the bosonic spinon is obtained through a simple multipli-
cation of the symmetry fractionalization numbers of the
fermionic spinon and the vison. However, the mutual
statistics of ε and m occasionally change this relation.
For instance, upon rotating e by 360°, R4

π=2, either the vison
will encircle the fermionic spinon or vice versa. In either
case, an extra factor of −1 must be taken into account.
These additional multiplication factors were worked out in
Ref. [23], and we quote them under the column labeled
“Twist” in Fig. 9.
The comparison with the bosonic symmetry fractionali-

zation allows us to identify sPSG5 with Z2½0; 0�, showing

that Af ¼ Ab as promised. We do not find fermionic
counterparts to the remaining four spin liquids in Ref. [23].
Using a slightly altered set of commutation relations to

account for the symmetry breaking, the exact same analysis
can be performed for the nematic spin liquids. These
symmetry fractionalization numbers are shown in
Fig. 11, and, as claimed, by comparing with the analysis
of Ref. [21] we positively identify Bf (nPSG7) with the
Ising-nematic Z2 spin liquid Bb.
Finally, the equivalence of Af and Bf with Ab and Bb

indicates the equivalence of Cf and Cb. In Appendix D,
we provide additional verification of this result using the
symmetry fractionalization technique.

B. Lattice classification of fermionic PSGs

The data compiled in Fig. 9 can also be used to compare
the phases we find against fermionic spin liquids described
on the lattice. In Appendix B, we review Wen’s classi-
fication scheme [17] and identify the lattice PSGs corre-
sponding to the two U(1) spin liquids as well as the five
symmetric Z2 spin liquids. This classification is useful
since it allows us to express the phases we have studied on
the lattice without having to reverse-engineer the bilinears.
We identify the gapped U(1) spin liquid Df with

U1Cn0n1 and the gapless U(1) spin liquid (hΦ1i ≠ 0)
with U1Bx11n. The lattice PSGs corresponding to the five
symmetric Z2 spin liquids we obtain are shown in Fig. 10.
Both sPSG1 and sPSG5 seemingly correspond to

multiple lattice PSGs. However, in Appendix B 4, we
prove that while the spin liquids have the same symmetry
fractionalizations, of the two shown, only one of each pair
actually corresponds to the spin liquids we consider. In the
case of sPSG5, it is not difficult to show that Z2Bxx2z is
always gapless, immediately ruling it out as a description of
the gapped phase Af. Further, we show that Z2Bxx2z is not
proximate to either the gapped or gapless U(1) spin liquids
U1Cn0n1 and U1Bx11n. Similarly, we find that Z2Bxx23
is not proximate to U1Cn0n1, leaving Z2Bxx13 as the sole
realizable lattice PSG capable of reproducing sPSG1.
These statements can be verified explicitly by comparing

our continuum theory with mean-field Hamiltonians on the

FIG. 10. Spin liquids according to the labeling scheme given in
Ref. [17] and reviewed in Appendix B 4. All of the spin liquids
listed are found to be proximate to the π-flux phase SU2n0
though not necessarily U1Cn0n1. While the symmetry fraction-
alization of sPSG1 and sPSG5 corresponds to multiple fermionic
PSGs, the two that are italicized (Z2Bxx23 and Z2Bxx2z) are not
proximate to U1Cn0n1 and therefore cannot represent the Higgs
phases we obtain (see Appendix B 4).
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lattice which have been constructed using only information
provided by the lattice PSG. In Appendix C, we study the
lattice Hamiltonians for the gapped and gapless U(1) spin
liquids, as well as Af. We find that a low-energy expansion
of the mean-field Hamiltonian describing U1Cn0n1 cor-
responds to adding trðσxX̄μyXÞ to the π-flux Hamiltonian
as expected, but that no analogous statement can be made
for either U1Bx11n or Z2Bxx1z. In particular, we dem-
onstrate that no mean-field Ansatz on the lattice can realize
the U(1) spin liquid U1Bx11n. This should not be too
surprising as the continuum realization of this phase is the
product of condensingΦ1 when coupled to trðσaX̄∂0XÞ, the
time component of a vector. This description is manifestly
dependent on the presence of temporal fluctuations in
contrast to the purely static mean-field analysis.
Conversely, a lattice Hamiltonian describing the Z2

phase Af does exist. However, upon expanding the
resulting Hamiltonian about its Dirac cones, the hopping
term which breaks the U(1) symmetry down to Z2 appears
to arise from coupling trðσaX̄μy∂x∂y½∂2

x − ∂2
y�XÞ to a

condensed Higgs field. We can see why this may be the
case by observing how symmetries act on
Ξ ¼ trðσaX̄μy∂x∂y½∂2

x − ∂2
y�XÞ:

T ½Ξ� ¼ −Ξ; Px;y½Ξ� ¼ −Ξ;

Tx;y½Ξ� ¼ −Ξ; Rπ=2½Ξ� ¼ Ξ: ð4:7Þ

It follows that a Higgs field Φ0
1 which couples to Ξ may

have a nonzero expectation value in the Af phase provided
it is perpendicular in color space to both Φ and Φ1. That is,
supposing hΦxi ≠ 0 and hΦz

1i ≠ 0, having hΦ0
1
zi ≠ 0 will

not break any of the symmetries.
It can also be shown that the Ising-nematic spin liquid Bf

is not “anomalous” in the manner just discussed.

C. Identification of U(1) spin liquid

The arguments that allow us to compare Z2 spin liquids
expressed using bosonic and fermionic spinons breaks
down in the presence of gapless degrees of freedom. In
both cases, these phases are unstable to the proliferation of
monopoles, and their true ground states will break any
symmetries under which the monopoles transform non-
trivially. In order to ensure that Df actually corresponds to
the massive phase of the CP1 theory Db, we verify that the
two spin liquids share the same fate and ultimately realize a
VBS. We approach this problem from two perspectives. We
first follow the method outlined in Ref. [54] and determine
which bilinear operators respond to a weakly varying flux
and, consequently, the monopoles’ presence. We comple-
ment this analysis by calculating the Berry phase of the
monopole in a certain limit and show that it agrees with the
analogous calculation performed using Schwinger bosons
in Ref. [35].

1. Flux response

The effective Lagrangian describing Df is

LUð1Þ ¼ itrðX̄γμ½∂μX þ iXσxaxμ�Þ þ λ2hΦxitrðσxX̄μyXÞ:
ð4:8Þ

Because both ayμ and azμ are gapped, only axμ is included in
LUð1Þ. In what follows, we drop the x index, taking axμ → aμ
[this aμ should not be confused with the gauge field of the
original SU(2) gauge field]. Finally, at this point in the
discussion, it is more convenient to express the Lagrangian
in terms of Dirac spinors. Using Eq. (2.19), we find

LUð1Þ ¼ ψ̄iγμð∂μ − iaμσxÞψ þmψ̄σxμyψ ; ð4:9Þ
where m ¼ λ2hΦxi.
In the context of a U(1) gauge theory, a monopole is

a topologically nontrivial field configuration of aμ. In
imaginary time, this configuration corresponds exactly to
a (stationary) Dirac monopole in ð3þ 1ÞD electromagnet-
ism. However, instead of behaving as a particle, in
ð2þ 1ÞD the monopole is actually an instanton: it describes
tunneling between different vacua or topological sectors
labeled by their total flux,

R
dSμϵμνλ∂νaλ ¼ 2πn, where n is

an integer. This number is zero in the deconfined phase of
the gauge theory whereas it fluctuates and ceases to take a
definite value once the monopoles proliferate.
A complete treatment of the monopole proceeds by first

expanding the gauge field into a classical background piece
Aμ and a quantum fluctuation piece ~aμ, aμ ¼ Aμ þ ~aμ, and
quantizing the theory about this background. Because
the monopole background breaks translational symmetry,
this is quite an involved calculation which we do not
perform. Instead, we investigate the impact a nonzero
flux has on the other operators of the theory. That is,
we assume that the classical monopole configuration
described by Aμ varies very slowly and, through linear
response, determine which operators O the flux couples to
at leading order: hOðxÞi ¼ R d3x0χμOðx; x0ÞAμðx0Þ, where
χμO ¼ hOðxÞψ̄γμσxψðx0Þi. This calculation is outlined in
Appendix E, and at low energies yields

hψ̄γμμyψi ¼ 1

π
ϵμαβ∂αAβ: ð4:10Þ

Consequently, whenever there is a net flux,R
d2xð∂xAy − ∂yAxÞ ≠ 0, we expect hψ̄γ0μyψi ≠ 0 as well.

This allows us to identify ψ̄γμμyψ with the topological
current. The topological charge is then obtained by inte-
grating the zeroth component of the current over space:

Q ¼ 1

2

Z
d2rψ̄γ0μyψ : ð4:11Þ

The factor of 1=2 is chosen to ensure that Q is always an
integer, as follows from Eq. (4.10).
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A conserved charge is the generator of the associated
symmetry, meaning that Q generates the flux conservation
symmetry. However, this operator should be familiar from
Sec. III A, where it is observed to be the generator of the
U(1) VBS symmetry. This can be confirmed by checking
that

½Q;Vx� ¼ iVy; ½Q;Vy� ¼ −iVx; ð4:12Þ

where Vx ¼ 1
2
ψ̄μxψ , Vy ¼ 1

2
ψ̄μzψ . It follows that Q is

conjugate to the VBS order parameters.
When the gapped U(1) gauge theory confines, the

monopole proliferation induces large fluctuations in Q.
This in turn suppresses the fluctuations of the operators
conjugate toQ, ultimately resulting in long-range order. We
conclude from the analysis above that the proliferation of
monopoles triggers the condensation of one of the VBS
order parameters, proving that Df is unstable to a VBS and
therefore equivalent to Db. This mechanism should be
contrasted with the scenario outlined in Sec. II C, where
VBS order is achieved by tuning μ > 0 in Eq. (2.25).

2. Berry phase

A separate argument for the identification of the U(1)
spin liquid proceeds by a computation of the monopole
Berry phase, along the lines of the original arguments using
the semiclassical quantization of the antiferromagnet [40],
or the Schwinger boson theory of the U(1) spin liquid [35].
Here, this argument starts from a lattice Hamiltonian for
the U1Cn0n1 U(1) spin liquid, which we obtain from
Eq. (C21) for a generic direction of the Higgs field Φ:

H ¼ −
X
i

fiα½ψ†
i ψ iþx̂ þ ð−Þixψ†

i ψ iþŷ þ H:c:�

þΦað−Þixþiyβðψ†
i τ

aψ iþ2x̂ þ ψ†
i τ

aψ iþ2ŷ þ H:c:Þ
−Φaa0ð−Þixþiyψ†

i τ
aψ ig: ð4:13Þ

We are interested in saddle points of the associated action
where the Φa Higgs field, and the associated SU(2) gauge
field [not written explicitly in Eq. (4.13)], take the configu-
ration of ’t Hooft–Polyakov monopoles [55,56] in (2þ 1)-
dimensional spacetime. After obtaining such saddle points,
we have to compute the fermion determinant in such a
background, and the phase of this determinant will yield the
needed monopole Berry phase. This is clearly a demanding
computation, and we will not attempt to carry it out in any
generality. However, assuming the topological invariance of
the needed quantized phase, we can compute it by distorting
the saddle point Lagrangian, without closing the fermion
gap, to a regime where the phase is easily computable.
Specifically, consider the limit where the parameter a0 in
Eq. (4.13) ismuch larger than all other parameters, including
α and β. For the ’t Hooft–Polyakovmonopole at the origin of
spacetime, Φa ∼ r̂a, where r̂a is a unit radial vector in

spacetime. Ignoring all but the a0 term in Eq. (4.13), we
then have to compute the Berry phases of single fermions,
each localized on a single site, in the presence of a staggered
field ∝ Φa. However, this Berry phase is precisely that
computed by Haldane [40]; in his case, the staggered field
was the antiferromagnetic order parameter which acts in the
spin SU(2) space [in contrast to the staggered field in the
gauge SU(2) space in our case], and the Berry phase arose
fromthatof aquantizedS ¼ 1=2 spin.As theBerryphaseofa
spin-1=2 localized fermion is equal to the spin Berry phase,
we conclude that the ’t Hooft–Polyakov monopole Berry
phase is equal to that obtained by Haldane [40] for S ¼ 1=2.
Therefore, the monopole Berry phases in the fermionic
spinon U(1) spin liquid U1Cn0n1 are equal to those of
the U(1) spin liquid of the bosonicCP1 theory of the square
lattice antiferromagnet [38,39].

V. CONCLUSIONS

Two distinct classes of (2þ 1)-dimensional fermion-
boson dualities have recently seen much discussion in the
literature.
One class concerns gapped Z2 spin liquids which have

both bosonic and fermionic spinon excitations. Binding
with a vison transmutes a spinon from a boson to a fermion,
or vice versa [57], and this allows one to map between Z2

spin liquids obtained in mean-field theory using fermionic
or bosonic Ansätze. Specific examples of such dualities
have been described on a variety of lattices [19,21,23,
27–32], and our results for such dualities appear in Figs. 1
and 2. We describe the dualities between the bosonic Z2

spin liquids Ab, Bb, Cb and the fermionic spin liquids Af,
Bf, Cf, respectively. The first two of these dualities have
been obtained earlier [21,23], but we obtain all three in a
unified manner with reference to continuum theories.
The second class of dualities concerns conformal gauge

theories with fermionic and bosonic matter [58–63]. Most
relevant to our considerations is the proposed duality [33]
between the critical bosonic CP1 U(1) gauge theory
and fermionic SU(2) QCD3 with Nf ¼ 2 flavors of
Dirac fermions.
Among our results is a demonstration of the compati-

bility between these two classes of dualities. We Higgs the
critical bosonicCP1 and fermionic QCD3 theories, and find
nontrivial consistency between the gapped Z2 spin liquids
so obtained. We also obtain a fermionic counterpart to the
U(1) spin liquid with gapped bosonic spinons on the square
lattice originally obtained by Arovas and Auerbach [38]
(which is equivalent to the gapped zα phase of the CP1

theory [34,35]): the U(1) spin liquid with gapped fermionic
spinons was identified as U1Cn0n1 (in Wen’s notation).
Both the bosonic and fermionic U(1) spin liquids are
eventually unstable to monopole proliferation, confine-
ment, and VBS order, and have identical monopole
Berry phases (as shown in Sec. IV C).
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Our analysis also led us to propose new fermion-boson
dualities between multicritical theories. One example is the
duality between (i) the U(1) gauge theory in Eq. (1.4) with
two unit charge bosons zα, a doubly charged Higgs field
P, and the masses of both fields tuned to criticality, and
(ii) the SU(2) gauge theory in Eq. (1.6) with Nf ¼ 2

massless fundamental Dirac fermions ψ , and two adjoint
Higgs fields Φ, Φ1, and the masses of both Higgs fields
tuned to criticality.
The fermionic approach to square lattice spin liquids

[17,25,26] yields a variety of critical spin liquids coupled
to U(1) and SU(2) gauge fields. Two examples are in
Fig. 1(b), the states labeled by Wen as U1Bx11n and
SU2Bn0. The results of Wang et al. [33] indicate that the
SU(2) critical state SU2Bn0 cannot appear as an extended
critical phase in a square lattice antiferromagnet, and it is
only realized as a critical point between the Néel and VBS
states. From our comparison of Figs. 1(b) and 1(a), we
obtain evidence that the critical U(1) spin liquid U1Bx11n
also cannot be realized as an extended phase on the
square lattice: it is unstable to the appearance of canted
antiferromagnetic order.
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APPENDIX A: SPIN LIQUIDS WITH
PROJECTIVE SPIN SYMMETRY

We expand upon our assertion in Sec. III B that a fully
symmetric, gapped spin liquid cannot be obtained through
the condensation of a Higgs field Φ coupling to a bilinear
which transforms in a nontrivial manner under the SU(2)
spin symmetry. As discussed, in order for the resulting spin
liquid to have a spin gap, Φ must couple to one of the
operators in Fig. 3. We start by studyingNab ¼ trðσaX̄σbXÞ
and couple it to a Higgs field as

P
a;bΦabNba ¼ etrðΦNÞ,

where “etr” refers to a trace over the spin and color vector
labels (as opposed to the usual trace “tr” over spin and color
spinor indices). In the Higgs phase, we write Φ̄ ¼ hΦi ≠ 0.
Naturally, having the Higgs couple to Nab implies that

spin symmetry is realized projectively in the condensed
phase, if at all. We associate SO(3) matrices to both the
SU(2) gauge and spin transformations. That is, instead of
studying the action of gauge and spin transformations Ug

and Us, we consider matrices Q, R ∈ SOð3Þ, such that

SUð2Þs∶Nab → trðσaX̄U†
sσbUsXÞ ¼ NacðRTÞcb;

SUð2Þg∶Nab → trðUgσ
aU†

gX̄σbXÞ ¼ QacNcb: ðA1Þ

Under a projective spin transformation,

PSUð2Þs∶etrðΦ̄NÞ → etrðΦ̄QNRTÞ ¼ etrðΦ̄NÞ; ðA2Þ

implying that Q ¼ Φ̄−1R. The requirement that
Q ∈ SOð3Þ implies that Φ̄ ∈ SOð3Þ as well, for example,
Φ̄ab ¼ jΦjδab.
The obstruction to forming a fully symmetric spin liquid

is then apparent. Since Nab → −Nab under T , Px, and Py,
the equivalence of the original and symmetry transformed
states requires that Φ̄ be gauge equivalent to −Φ̄. This is
only possible if Qt;px;py ¼ −1∈SOð3Þ.
These considerations apply equally to trðσaX̄μx;zσbXÞ,

as indicated in Sec. III B.

APPENDIX B: WEN’S LATTICE PSG
CLASSIFICATION SCHEME

In this appendix, we relate our results to the spin-liquid
classification scheme proposed in Ref. [17] by Wen. We
begin by reviewing his conventions and formalism before
explaining what it means for two spin liquids to be
“proximate” in this language. We then discuss how we
determined that the gapped and gapless U(1) spin liquids
in Fig. 1(b) correspond to U1Cn0n1 and U1Bx11n,
respectively. We subsequently consider the Z2 sPSGs
and explain how the identification in Fig. 10 was obtained.
We note that frequent reference will be made to

information that is present only in the arXiv version
of Ref. [17].

1. Conventions and formalism

Here, we briefly review the spin-liquid classification
scheme proposed in Ref. [17]; for a complete discussion,
see to the original paper. In keeping with these conventions,
we express the mean-field Hamiltonian of Eq. (2.11) in
terms of fermions ψ ¼ ðψ1;ψ2ÞT ¼ ðf↑; f†↓ÞT . The mean-
field Ansatz is written in terms of the matrix

uij ¼
3

8
J

 
α†ij βij

βij −αij

!
¼ u†ji: ðB1Þ

The average constraint in Eq. (2.10) becomes

hψ†
i τ

lψ ii ¼ 0; ðB2Þ

where τl are Pauli matrices (with τ0 ¼ 1) and the mean-
field Hamiltonian can then be written as
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HMF ¼
X
hiji

�
4

3Jij
trðu†ijuijÞ − ðψ†

i uijψ j þ H:c:Þ
�

þ
X
i

al0ψ
†
i τ

lψ i: ðB3Þ

Here, uij is the analogue to αij, βaij (when γij ≠ 0, the spin
symmetry is realized projectively, a possibility this formalism
does not take into account [44]). al0 are Lagrange multipliers
enforcing the constraint in Eq. (B2). In order for HMF to
preserve spin, we must choose iuij ∈ SUð2Þ. Finally, the
SU(2) gauge symmetry acts on the ψ fermions and Ansatz as

ψ i → WðiÞψ i; uij → WðiÞuijW†ðjÞ: ðB4Þ
The projective symmetry group in this context is

expressed as the invariance of the Ansatz uij under the
joint action of a symmetry transformation G and a gauge
transformation WG:

WGG½uij� ¼ uij; ðB5Þ

where

G½uij� ¼ uGðiÞ;GðjÞ;

WG½uij� ¼ WGðiÞuijW†
GðjÞ;

WGðiÞ ∈ SUð2Þ: ðB6Þ
Here, we assume thatG is a space group operation; for time
reversal, we have T ½uij� ¼ −uij. The invariant gauge group
is the set of gauge transformations which do not alter the
Ansatz,

W ¼ fWðiÞjWðiÞuijWðjÞ†;WðiÞ ∈ SUð2Þg; ðB7Þ

and, therefore, W can be either SU(2), U(1), or Z2. In the
main body of the text, this is what we simply refer to as the
gauge group or, sometimes in a Higgs phase, the “residual
gauge group."
In order to make use of the symmetry fractionalization

technique, we translate the commutation relations in Eq. (2.3)
and below to the lattice case:

1. W−1
ty ðix; iy þ 1ÞWtxðix; iy þ 1ÞWtyðix − 1; iy þ 1ÞW−1

tx ðix; iyÞ ∈ W;

2. W−1
pyðix;−iyÞWtxðix;−iyÞWpyðix − 1;−iyÞW−1

tx ðix; iyÞ ∈ W;

3. W−1
pyðix;−iyÞWtyðix;−iyÞWpyðix;−iy − 1ÞWtyðix; iy þ 1Þ ∈ W;

4. Wpyðix; iyÞWpyðix;−iyÞ ∈ W;

5. W−1
pyðix;−iyÞWrðix;−iyÞWpyð−iy;−ixÞWrð−iy; ixÞ ∈ W;

6. Wrðix; iyÞWrðiy;−ixÞWrð−ix; iyÞWrð−iy; ixÞ ∈ W;

7. W−1
r ð−iy; ixÞWtxð−iy; ixÞWrð−iy − 1; ixÞWtyðix; iy þ 1Þ ∈ W;

8. W−1
r ð−iy; ixÞWtyð−iy; ixÞWrð−iy; ix − 1ÞW−1

tx ðix; iyÞ ∈ W;

9. W−1
t ðix; iyÞW−1

r ð−iy; ixÞWtð−iy; ixÞWrð−iy; ixÞ ∈ W;

10: W−1
t ðix; iyÞW−1

pyðix;−iyÞWtðix;−iyÞWpyðix;−iyÞ ∈ W;

11: W−1
t ðix; iyÞW−1

tx ðix þ 1; iyÞWtðix þ 1; iyÞWtxðix þ 1; iyÞ ∈ W;

12: W−1
t ðix; iyÞW−1

ty ðix; iy þ 1ÞWtðix; iy þ 1ÞWtyðix; iy þ 1Þ ∈ W;

13: Wtðix; iyÞWtðix; iyÞ ∈ W: ðB8Þ

2. SU(2) spin-liquid classification

We present the mean-field Ansatz of the π-flux phase in
Sec. II B. In Wen’s notation, it corresponds to the spin
liquid SU2Bn0, and consequently has the following PSG:

WtxðiÞ ¼ ð−Þiygtx; WpxðiÞ ¼ ð−Þixgpx;
WpxyðiÞ ¼ ð−Þixiygpxy;
WtyðiÞ ¼ gpy; WpyðiÞ ¼ ð−Þiygpy;
WtðiÞ ¼ ð−Þixþiygt; ðB9Þ

where gξ ∈ SUð2Þ, ξ ¼ tx, ty, px, py, pxy, t. All PSGs
proximate to SU2Bn0 can be obtained by fixing the values
of the gξ to a specific element in SU(2) (the PSGs are only
defined modulo the invariant gauge group). In Appendix B
of Ref. [17], Wen enumerates which U(1) and Z2 PSGs are
proximate to SU2Bn0. All of the phases we consider must
be identified with one of these options.

3. U(1) spin-liquid classification

Wen [17] finds that the following U(1) phases are
proximate to SU2Bn0:
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U1B000n U1Bn10n U1Cn0nn U1C11nn

U1B0001 U1Bx10x U1Cn0n1 U1C11nx

U1B001n U1Bx11n U1Cn0x1 U1C11xn

U1B0011 U1Bx11x U1Cn01n U1C11xx

In this section, we determine which of these lattice PSGs
corresponds to the gapped and gapless U(1) spin liquids
obtained by condensing Φ and Φ1, respectively.
Gapped U(1) spin liquid (Df).—To compare with Wen’s

classification, we condense the Higgs fields in the z compo-
nent. Therefore, for the gapped U(1) spin liquid Df, only
hΦzi ≠ 0, and the PSG in Eq. (3.7) should be rewritten:

Vtx ¼ eiθtxσ
z
iσx; Vpx ¼ eiθpyσ

z
; Vr ¼ eiθrσ

z
;

Vty ¼ eiθtyσ
z
iσx; Vpy ¼ eiθpyσ

z
; Vt ¼ eiθtσ

z
iσx:

ðB10Þ

The resulting symmetry fractionalization is shown in
Table I.
We identify this phase in several steps. We note that

independent from θt, ðWtUtÞ2 ¼ −1, and therefore, of the
spin liquids proximate to SU2Bn0, only those with
WtðiÞ=∝τ0 are possible candidates. Moreover, the U1B spin
liquids all have Wtx ¼ ð−Þiyg3ðθtxÞ, WtyðiÞ ¼ g3ðθtyÞ,
where glðθÞ ¼ eiθτ

l
. Inserting these into group relation

no. 1 in Eq. (B8) returns −1, again independent of the
angles θtx and θty, invalidating these options. This leaves
four candidates: U1Cn0n1, U1Cn0x1, U1C11nx, and
U1C11xx. We have computed the symmetry fractionaliza-
tion of each of these phases and determined that Df

corresponds to U1Cn0n1 whose lattice PSG is

U1Cn0n1∶

WtxðiÞ ¼ ð−Þiyg3ðθtxÞiτ1; WtyðiÞ ¼ g3ðθtyÞiτ1;
WpxðiÞ ¼ ð−Þixg3ðθpxÞ; WpyðiÞ ¼ ð−Þiyg3ðθpyÞ;
WpxyðiÞ ¼ ð−Þixiyg3ðθpxyÞ; WrðiÞ ¼ ð−Þixiyþixg3ðθrÞ;
WtðiÞ ¼ ð−Þixþiyg3ðθtÞiτ1: ðB11Þ

Gapless U(1) spin liquid.—The (continuum) PSG of the
gapless spin liquid with hΦz

1i ≠ 0 is

Vtx ¼ eiθtxσ
z
; Vpx ¼ eiθpyσ

z
; Vr ¼ eiθrσ

z
;

Vty ¼ eiθtyσ
z
iσx; Vpy ¼ eiθpyσ

z
iσx; Vt ¼ eiθtσ

z
:

ðB12Þ

From the symmetry fractionalization in Table I and the
arguments in the previous section, we conclude that only
U1B spin liquids with Wt ∝ τ0 are possible candidates:
U1B000n, U1Bn10n, U1B001n, U1Bx11n. Computing
the symmetry fractionalization of these four spin liquids
identifies U1Bx11n as the correct lattice analogue:

U1Bx11n∶

WtxðiÞ¼ ð−Þiyg3ðθtxÞτ0; WtyðiÞ¼ g3ðθtyÞτ0;
WpxðiÞ¼ ð−Þixg3ðθpxÞiτ1; WpyðiÞ¼ ð−Þiyg3ðθpyÞiτ1;
WpxyðiÞ¼ ð−Þixiyg3ðθpxyÞiτ1; WrðiÞ¼ ð−Þixiyþixg3ðθrÞ;
WtðiÞ¼ ð−Þixþiyg3ðθtÞτ0: ðB13Þ

In Appendix C 3, we show that this PSG has no lattice
realization.

4. Z2 spin liquids

Wen divides the Z2 spin liquids into two classes. Their
PSGs are

WtxðiÞ ¼ ~ηiyτ0; WpxðiÞ ¼ ηixxpxη
iy
xpygpy;

WpxyðiÞ ¼ ð−Þixiygpxy;
WtyðiÞ ¼ τ0; WpyðiÞ ¼ ηixxpyη

iy
xpxgpy;

WtðiÞ ¼ η
ixþiy
t gt; ðB14Þ

where A spin liquids have ~η ¼ þ1 and B spin liquids
have ~η ¼ −1. Unlike for the SU(2) case, each of the
group elements gξ takes only a single value. He labels
these spin liquids by Z2AðgpxÞηxpxðgpyÞηxpygpxyðgtÞηt and

Z2BðgpxÞηxpxðgpyÞηxpygpxyðgtÞηt . An equivalent short-hand

notation replaces ðτ0; τ1; τ2; τ3Þ and ðτ0þ; τ1þ; τ2þ; τ3þÞ by
(0,1,2,3) and ðτ0−; τ1−; τ2−; τ3−Þ by ðn; x; y; zÞ (this is the
notation used in the majority of the paper). There are
272 distinct such PSGs, however, though at least 72 of

TABLE I. Symmetry fractionalization of U(1) spin liquids.

Group relations Gapped (Df) Gapless

1 T−1
y TxTyT−1

x −e−2iðθtx−θtyÞσz −1
2 P−1

y TxPyT−1
x e2iθpyσ

z −e2iθtxσz

3 P−1
y TyPyTy e2iθpyσ

z −1
4 P2

y e−2iθpyσ
z −1

5 P−1
y Rπ=2PyRπ=2 e−2iθrσ

z
1

6 R4
π=2 e−4iθrσ

z
e−4iθrσ

z

7 R−1
π=2TxRπ=2Ty e2iθrσ

zþiðθtx−θtyÞσz −e−iðθtxþθtyÞσz

8 R−1
π=2TyRπ=2T−1

x e2iθrσ
z−iðθtx−θtyÞσz eiðθtx−θtyÞσz

9 R−1
π=2T

−1Rπ=2T e2iθrσ
z

1

10 P−1
y T −1PyT e2iθpyσ

z
e2iθtσ

z

11 T−1
x T −1TxT −e2iðθtþθtxÞσz −1

12 T−1
y T −1TyT −e2iðθtþθtyÞσz −1

13 T 2 −1 e2iθtσ
z
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these are anomalous and cannot be described with a mean-
field Hamiltonian on the lattice.
We can determine the symmetry fractionalization of each

of these PSGs using Eq. (B8), forming a table similar to
Fig. 9, and this information is what leads to the identi-
fication in Fig. 10. It is clear that the symmetry fraction-
alization does not completely determine the PSG since both
sPSG1 and sPSG5 have the same symmetry fractionali-
zation as two different spin liquids. We will show that in
both cases, a single lattice PSG can be associated with each
of our continuum versions.
Our primary strategy will be to check which PSG’s in

Fig. 10 are proximate to U1Cn0n1. By studying Table I,
we determine which values of θξ give the Z2 symmetry
fractionalization of the phases we are interested in. In both
cases we find only a single possibility. We also verify that
sPSG5 is proximate to U1Bx11n.
We note that the symmetry transformations in Table I

depend on only five generators: Tx, Ty, Py, Rπ=2, T . To
make contact with Wen’s conventions, we also display the
gauge transformations corresponding to Px ¼ Rπ=2PyR−1

π=2

and Pxy ¼ Rπ=2P−1
y ; their forms are also determined by the

angles θtx, θty, θpy, θr, and θt.
Lattice PSG of Af phase (sPSG5).—We begin by

determining which choice of angles of the gapped U(1)
spin liquid returns the symmetry fractionalization of
sPSG5. Setting θtx ¼ 0 fixes the remaining angles to be

θty¼π; θpy¼�π

2
; θr¼0;π; θt¼0;π: ðB15Þ

The choices only result in gauge transformations differing
by a minus sign and, except for Wty, do not affect the
symmetry fractionalization. In what follows we choose
positive prefactors for all of the gauge transformations
below. Modulo these considerations, this is the only PSG
proximate to U1Cn0n1 with the same symmetry fraction-
alization as sPSG1. This gives

Wtx ¼ ð−Þiy iτ1; Wty ¼ −iτ1;

Wpx ¼ ð−Þix iτ3; Wpy ¼ ð−Þiy iτ3;
Wpxy ¼ ð−Þixiy iτ3; Wr ¼ ð−Þixiyþixτ0;

Wt ¼ ð−Þixþiy iτ1: ðB16Þ

We can bring it into the form of Eq. (B14) by performing
the gauge transformation

WðiÞ ¼
(
ð−ÞðixþiyÞ=2iτ2 ix þ iy ¼ even

ð−Þðixþiy−1Þ=2iτ3 ix þ iy ¼ odd:
ðB17Þ

Under this transformation, the PSG in Eq. (B16) becomes

Wtx ¼ ð−Þiyτ0; Wty ¼ −τ0;

Wpx ¼ ð−Þixþiy iτ3; Wpy ¼ ð−Þixþiy iτ3;

Wpxy ¼ ð−Þixðiyþ1Þiτ3; Wr ¼ ð−Þixðiyþ1Þτ0;

Wt ¼ ð−Þixþiy iτ1: ðB18Þ

Upon shifting iy → iy þ 1, we recognize this PSG as
Z2Bzz3x, and, rotating by 90° about the y axis, this
becomes Z2Bxx1z. This identifies Z2Bxx1z as the unique
lattice PSG capable of describing the phase Af.
Another way we could have reached this conclusion is

by studying the mean-field Ansatz allowed by either of
these PSGs. It turns out that the mean-field Hamiltonian
corresponding to the other candidate PSG, Z2Bxx2z,
cannot be gapped, whereas no such restrictions exist
for Z2Bxx1z.
We also show that Z2Bxx1z is proximate to the

gapless spin liquid U1Bx11n. In order to reproduce the
symmetry fractionalization of sPSG5, the angles in
Eq. (B13) must be

θtx¼�π

2
; θty¼∓π

2
; θr¼0;π; θt¼�π

2
: ðB19Þ

θpy is undetermined, and therefore, unlike in the previous
case, proximity to U1Bx11n does not fully determine the
lattice PSG corresponding to sPSG5. The angles that are
restricted indicate that

Wtx ¼ ð−Þiy iτ3; Wty ¼ −iτ3;

Wr ¼ ð−Þixðiyþ1Þτ0; Wt ¼ ð−Þixþiy iτ3: ðB20Þ

Rotating by 90° about the y axis takes τ3 → τ1. We then
observe that all of the gauge transformations shown
above are equal to the corresponding gauge transforma-
tion in Eq. (B16). It can be shown that θpy can be chosen
to obtain Z2Bxx1z but not Z2Bxx2z. Therefore, only
Z2Bxx1z is proximate to U1Bx11n.
sPSG1.—Performing the same analysis as above, we

find that the only way for the symmetry fractionalization of
U1Cn0n1 to return the symmetry fractionalization of
sPSG1 is if the angles in Eq. (B11) are

θty¼π; θpy¼�π

2
; θr¼0;π; θt¼�π

2
; ðB21Þ

where, again, we have set θtx ¼ 0. The gauge transforma-
tions associated with the symmetry generators are then

Wtx ¼ ð−Þiy iτ1; Wty ¼ −iτ1;

Wpx ¼ ð−Þix iτ3; Wpy ¼ ð−Þiy iτ3;
Wpxy ¼ ð−Þixiy iτ3; Wr ¼ ð−Þixðiyþ1Þτ0;

Wt ¼ ð−Þixþiy iτ2: ðB22Þ
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Performing the gauge transformation in Eq. (B17), these
become

Wtx ¼ ð−Þiyτ0; Wty ¼ −τ0;

Wpx ¼ ið−Þixþiy iτ3; Wpy ¼ ið−Þixþiy iτ3;

Wpxy ¼ ð−Þixðiyþ1Þiτ3; Wr ¼ ð−Þixðiyþ1Þτ0;

Wt ¼ iτ2: ðB23Þ

It is not difficult to see that this corresponds to Z2Bzz32,
which is equivalent to Z2Bxx13.

APPENDIX C: LATTICE REALIZATIONS
OF SPIN LIQUIDS

In this appendix, we use the lattice PSGs determined in
Appendix B for the π-flux phase and Af, Bf, and Df to
write down the corresponding lattice Hamiltonian. Doing
so serves as further verification of the symmetry fraction-
alization used in the main text. Further, the calculation
of the Berry phase in Sec. IV C 2 requires the lattice
description of the gapped U(1) spin liquid corresponding
to U1Cn0n1.

1. SUBn0 mean-field Hamiltonian

The Ansatz for the π-flux state is given in Eq. (B9).
Gauge invariance and the form of the translational sym-
metry operations compels the mean-field parameters to take
the following form:

ui;iþm ¼ ð−Þixmy iu0m: ðC1Þ

In order for the mean-field Hamiltonian to be Hermitian, u†ij
must equal uji. This can be used to show that

ð−Þixmy iu0m ¼ −ð−Þixmyð−Þmxmyiu0m; ðC2Þ

which indicates

u0−m ¼ −ð−Þmxmyu0m: ðC3Þ

Next, Eq. (B5) states that uij must be invariant under the
action of all (projective) symmetry operations. In particular,
acting with PxPy and using Eq. (C3), we find

ui;iþm ¼ WpxPxWpyPy½ui;iþm�
¼ −ð−Þixmyð−Þmxmyð−Þmxþmyiu0mτ0: ðC4Þ

Similarly, the action of time reversal requires

ui;iþm ¼ WtT ½ui;iþm� ¼ ð−Þixmyð−Þmxþmyiu0mτ0: ðC5Þ

Between these two equations, we conclude that u0m ≠ 0
only when mx þmy ¼ odd. Finally, we relate mean-field

parameters for different m’s through the action of Px, Py,
and Pxy:

u0ð−mx;myÞ ¼ ð−Þmxu0ðmx;myÞ; u0ðmx;−myÞ ¼ ð−Þmyu0ðmx;myÞ;

u0ðmy;mxÞ ¼ ð−Þmxmyu0ðmx;myÞ: ðC6Þ

The mean-field Ansatz we obtain is

ui;iþx̂ ¼ iατ0; ui;iþŷ ¼ ð−Þix iατ0: ðC7Þ

Inserting these hopping terms into Eq. (B3) (and drop-
ping the constant), we obtain

H0
π ¼ −iα

X
i

½ψ†
i ψ iþx̂ þ ð−Þixψ†

i ψ iþŷ þ H:c:�: ðC8Þ

We now show that the low-energy theory is precisely the
Dirac Hamiltonian. In momentum space, we find

H0
π ¼ 2α

Z
π=2

−π=2

dkx
2π

Z
π=2

−π=2

dky
2π

Ψ†
kðsin kx ~τ3μ3τ0

þ sin ky ~τ1μ3τ0ÞΨk; ðC9Þ

whereΨk¼ðψk;ψkþQxþQy
;ψkþQx

;ψkþQy
ÞT , withQx¼ðπ;0Þ

and Qy ¼ ð0; πÞ, and

~τ3μ3 ¼

0BBB@
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1CCCA;

~τ1μ3 ¼

0BBB@
0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

1CCCA;

~τ0μ1 ¼

0BBB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1CCCA: ðC10Þ

Equivalently,writingΨk ¼ ðψ1;1;k;ψ1;2;k;ψ2;1;k;ψ2;2;kÞT ,we
can identify the ~τl’s with Pauli matrices acting on the first
index of Ψk and the μl’s with Pauli matrices acting on the
second index. Finally, to make contact with the expression in
Sec. II B, we express H0

π in terms of

~Ψk ¼ eiπ~τ
2μ3=4Ψk: ðC11Þ

The resulting mean-field Hamiltonian is

FERMIONIC SPINON THEORY OF SQUARE LATTICE … PHYS. REV. X 8, 011012 (2018)

011012-21



H0
π ¼2α

Z
π=2

−π=2

dkx
2π

Z
π=2

−π=2

dky
2π

~Ψ†
kðsinkxτ1μ0σ0−sinkyτ3μ0σ0Þ

≅−2α
Z

d2k
ð2πÞ2

~Ψ†ðkxγ0γxþkyγ0γyÞ ~Ψk; ðC12Þ

where we have rewritten the gauge-charged τl’s as σl’s
(as done in the main body of the text) and used the fact
that γμ ¼ ð~τy; i~τz; i~τxÞ. It is clear that once dynamic
gauge fields are included, this is equivalent to LQCD3

in Eq. (2.20).

2. U1Cn0n1 mean-field Hamiltonian

We now use the Ansatz for Eq. (B11) to determine the
lattice Hamiltonian corresponding to the gapped spin-liquid
phaseDf. We show that it is preciselyH0

π plus a term which
breaks the SU(2) symmetry to U(1): HDf

¼ H0
π þH1.

Equation (B11) indicates that all bonds must be of the
form

ui;iþm ¼ ð−Þixmy ½iu0mτ0 þ ð−Þixþiyu3mτ3�: ðC13Þ

Further, Hermiticity of the Hamiltonian requires u†ij ¼ uji,
and therefore,

ð−Þixmy ½−iu0mτ0 þ ð−Þixþiyu3mτ3�
¼ ð−Þixmyð−Þmxmy ½iu0−mτ0 þ ð−Þixþiyð−Þmxþmyu3−mτ3�;

ðC14Þ

implying that

u0m ¼ −ð−Þmxmyu0−m; u3m ¼ ð−1Þmxþmyð−Þmxmyu3−m:

ðC15Þ

Similarly, to satisfy Eq. (B5), uij must be invariant under
180° rotations:

ui;iþm ¼ WpxPxWpyPy½ui;iþm�
¼ ð−Þixmyð−Þmxmy ½−ð−Þmxþmyiu0mτ0 þ ð−Þixþiyu3mτ3�;

ðC16Þ

where we have used the previous expression to relate ulm and
ul−m. It follows that u0m ¼ 0 when ðmx;myÞ ¼ ðeven; evenÞ
and that u3m ¼ 0 when ðmx;myÞ ¼ ðodd; oddÞ. The Ansatz
must also be invariant under T :

ui;iþm ¼ WtT ½ui;iþm�
¼ ð−Þixmyð−Þmxþmy ½−iu0mτ0 þ ð−Þixþiyu3mτ3�; ðC17Þ

showing that u0m is nonzero only for mx þmy ¼ odd and
that u3m is only nonzero when mx þmy ¼ even. Together,
these give

ui;iþm¼
(
ð−Þixþiyu3m ðmx;myÞ¼ðeven;evenÞ
ð−Þixmyiu0mτ0 mxþmy¼odd:

ðC18Þ

We can also show that the action of Px, Py, and Pxy implies
the following relations:

ulðmx;myÞ ¼ ð−Þmxulð−mx;myÞ; ulðmx;myÞ ¼ ð−Þmyulðmx;−myÞ;

ulðmx;myÞ ¼ ð−Þmxmyulðmy;mxÞ; ðC19Þ

for l ¼ 0, 3. Using these relations, we find

ui;iþx̂ ¼ iατ0; ui;iþ2x̂ ¼ ð−Þixþiyβτ3; ui;i ¼ð−Þixþiya0τ3;

ui;iþŷ ¼ð−Þix iατ0; ui;iþ2x̂ ¼ð−Þixþiyβτ3: ðC20Þ

As expected, the nearest-neighbor bonds are identical to
those we found for the π-flux phase in the previous section.
The SU(2) symmetry is already broken to U(1) by the
inclusion of the next-nearest-neighbor bonds and so this is all
we consider.
As in the previous section, the mean-field Hamiltonian is

obtained by inserting these hopping terms into Eq. (B3):

HDf
¼ H0

π þH1;

H1 ¼
X
i

ð−Þixþiy ½βðψ†
i τ

3ψ iþ2x̂ þ ψ†
i τ

3ψ iþ2ŷ þ H:c:Þ

− a30ψ
†
i τ

3ψ i�; ðC21Þ

where H0
π is given above in Eq. (C9). In momentum space,

this becomes

HDf
¼
Z

π=2

−π=2

dkx
2π

Z
π=2

−π=2

dky
2π

Ψ†
kf2αðsinkx ~τ3μ3τ0þsinky ~τ1μ3τ0Þ

−ð2β½cos2kxþcos2ky�−a0Þ~τ0μ1τ3gΨk; ðC22Þ

where we have used the same notation as in the previous
section: Ψk ¼ ðψk;ψkþQxþQy

;ψkþQx
;ψkþQy

ÞT , with Qx ¼
ðπ; 0Þ and Qy ¼ ð0; πÞ, and the matrices defined in

Eq. (C10). In terms of ~Ψk ¼ eiπ~τ
2μ3=4Ψk:

HDf
¼
Z

π=2

−π=2

dkx
2π

Z
π=2

−π=2

dky
2π

~Ψ†
kf2αðsinkx ~τ1μ0σ0−sinky ~τ3μ0σ0Þ

−ð2β½cos2kxþcos2ky�−a0Þ~τ2μ2σ3g ~Ψk; ðC23Þ

where, again, we have rewritten the SU(2) matrices τl as σl

in accord with the continuum notation. Expanding HDf

about k ¼ ð0; 0Þ, we obtain
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HDf
≅
Z

d2k
ð2πÞ2

~Ψ†½−2αðkxγ0γx þ kyγ0γyÞ

þ ð4β − a0Þγ0μyσz� ~Ψk; ðC24Þ

where γμ ¼ ð~τy; i~τz; i~τxÞ. We conclude that the term which
reduces the SU(2) symmetry down to U(1) is precisely
equivalent to ψ̄μyσzψ ∼ trðσzX̄μyXÞ.

3. U1Bx11n mean-field Hamiltonian

In this section, we demonstrate that U1Bx11n has no
lattice analogue. Referring to Eq. (B13), we see that gauge
and translational symmetry requires

ui;iþm ¼ ð−Þixmyðiu0mτ0 þ u3mτ3Þ: ðC25Þ

We relate u0;3−m ¼ u0;3m using the fact that u†i;iþm ¼ uiþm;i:

u0−m ¼ −ð−Þmxmyu0m; u3−m ¼ ð−Þmxmyu1m: ðC26Þ

Then, acting on ui;iþm with PxPy and T gives

WpxPxWpyPy½ui;iþm�
¼ ð−Þixmyð−Þmxmyð−Þmxþmyð−iu0mτ0 þ u3mτ3Þ;

T ½ui;iþm�
¼ ð−Þixmyð−Þmxþmyð−iu0mτ0 − u3mτ3Þ: ðC27Þ

Equating these expressions with ui;iþm implies that u0m ≠ 0

only for mx þmy ¼ odd, as for SU2Bn0 and U1Cn0n1; it
can be shown that they must satisfy identical constraints
as the τ0 bonds allowed by these PSGs. In particular, the
nearest-neighbor values are identical to those in Eq. (C7).
Conversely, there are no consistent solutions for u3m: it

always vanishes and is therefore unable to break the SU(2)
gauge symmetry to U(1).

4. Z2Bxx1z mean-field Hamiltonian

We choose a gauge such that Eq. (B16) describes the
PSG of Z2Bxx1z. Translational symmetry and gauge
invariance implies that

ui;iþm ¼ ð−Þixmyfiu0mτ0 þ u1mτ1 þ ð−Þixþiy ½u2mτ2 þ u3mτ3�g:
ðC28Þ

Hermiticity then requires

u0−m ¼ −ð−Þmxmyu0m; u1−m ¼ ð−Þmxmyu1m;

u2;3−m ¼ ð−Þmxmyð−Þmxþmyu3m: ðC29Þ

Under the action of PxPy and T the Ansatz transforms
as

WpxPxWpyPy½ui;iþm�
¼ ð−Þixmyð−Þmxmyf−ð−Þmxþmyiu0mτ0 þ ð−Þmxþmyu2mτ1

þ ð−Þixþiy ½u2mτ2 þ u3mτ3�g;
T ½ui;iþm�
¼ ð−Þixmyð−Þmxþmyf−iu0mτ0 − u1mτ1

þ ð−Þixþiy ½u2mτ2 þ u3mτ3�g: ðC30Þ

These relations imply that u1m ¼ 0 for all m, u0m ≠ 0 only
for mx þmy ¼ 0, and that u2;3m ≠ 0 only for ðmx;myÞ ¼
ðeven; evenÞ. By studying the action of Px, Py, and Pxy, we
obtain the following relations:

u0ð−mx;myÞ ¼ ð−Þmxu0ðmx;myÞ; u2ð−mx;myÞ ¼ −u2ðmx;myÞ; u3ð−mx;myÞ ¼ u3ðmx;myÞ;

u0ðmx;−myÞ ¼ ð−Þmyu0ðmx;myÞ; u2ðmx;−myÞ ¼ −u2ðmx;myÞ; u3ðmx;−myÞ ¼ u3ðmx;myÞ;

u0ðmy;mxÞ ¼ u0ðmx;myÞ; u2ðmy;mxÞ ¼ −u2ðmx;myÞ; u3ðmy;mxÞ ¼ u3ðmx;myÞ: ðC31Þ

These show that u0;3m are restricted to take the same values
as in Eq. (C20) for the gapped U(1) spin liquid, leaving the
u2m bonds to break the U(1) gauge symmetry down to Z2. It
turns out that its first nonzero value occurs at the sixth
nearest neighbor:

ui;iþ2x̂þ4ŷ ¼ ð−Þixþiyγτ2; ui;iþ2x̂−4ŷ ¼ −ð−Þixþiyγτ2;

ui;iþ4x̂þ2ŷ ¼ −ð−Þixþiyγτ2; ui;iþ4x̂−2ŷ ¼ ð−Þixþiyγτ2:

ðC32Þ

The contribution of these bonds to the Hamiltonian is

H2 ¼ γ
X
i

ð−Þixþiy ½ψ†
i τ

2ψ iþ2x̂þ4ŷ − ψ†
i τ

2ψ iþ2x̂−4ŷ

− ψ†
i τ

2ψ iþ4x̂þ2ŷ þ ψ†
i τ

2ψ iþ4x̂−2ŷ − H:c:�; ðC33Þ

and the minimal Hamiltonian needed to describe Z2Bxx1z
is HAf

¼ HDf
þH2. In momentum space, we have

FERMIONIC SPINON THEORY OF SQUARE LATTICE … PHYS. REV. X 8, 011012 (2018)

011012-23



H2 ¼ 4γ

Z
π=2

−π=2

dkx
2π

Z
π=2

−π=2

dky
2π

ðsin 4kx sin 2ky

− sin 2kx sin 4kyÞΨ†
k ~τ

0μ2τ2Ψk; ðC34Þ

whereΨk is defined in Eq. (C11), and the action of the Pauli
matrices ~τl and μl is given in Eq. (C10) and below. Once
more, we change notation such that Pauli matrices acting on
color space τl become σl’s and express H2 in terms of the
transformed fermion operator, ~Ψk ¼ eiπ~τ

2μ3=4Ψk:

H2 ¼ 4γ

Z
π=2

−π=2

dkx
2π

Z
π=2

−π=2

dky
2π

ðsin 4kx sin 2ky

− sin 2kx sin 4kyÞ ~Ψ†
kτ

yμyσy ~Ψk

≅ −16γ
Z

d2k
ð2πÞ2

~Ψ†
k½kxkyðk2x − k2yÞγ0μyσy� ~Ψk: ðC35Þ

Notably, H2 does not correspond to any of the continuum
operators in the action we study in the main text, in
particular, trðσaX̄∂0XÞ ∼ ψ̄σa∂0ψ . Instead, in the continuum
language, H2 is proportional to ψ̄μyσy∂x∂yð∂2

x−∂2
yÞψ∼

trðσyX̄μy∂x∂y½∂2
x−∂2

y�XÞ. This is discussed in Sec. IVA 1.

APPENDIX D: SYMMETRY
FRACTIONALIZATION OF CURRENT-LOOP

ORDERED SPIN LIQUID

We can also use symmetry fractionalization to verify that
the phase Cf corresponds to Cb. There are now only eight
group relations, and these are listed in Table II. The PSG
of the reduced symmetry group is defined by the gauge
transformations

Vtx ¼ iσy; Vpy ¼ iσx;

Vtx ¼ iσy; Vtpx ¼ iσz; ðD1Þ

where the subscript tpx denotes the joint group action of
T Px. With these, we determine the fermionic symmetry

fractionalization using the methods described in Sec. IVA.
The results are shown in Table II under the column labeled
“Fermionic”.
Both the symmetry fractionalization of the vison and the

twist factors for the reduced symmetry relations can be
worked out from the ones already given; Table II lists these
under the columns “Vison” and “Twist,” respectively.
In order to determine the bosonic symmetry fractionali-

zation, we borrow notation from Ref. [22]. In Table III, the
symmetry transformation properties of the bosonic spinon
andHiggs fields inEqs. (1.4) and (1.7) are reproduced. Itwill
be convenient to express the bosonic spinon in terms of the
four-component field Z ¼ ðz; z�ÞT ¼ ðz↑; z↓; z�↑; z�↓ÞT . We

then let Pauli matrices τl act on this new index, while σ
matriceswill acton thespin indicesasbefore.TheU(1)gauge
transformations are expressed as Uð1Þg∶Z → eiθτ

z
Z. In this

language, the symmetry transformations are expressed as

T ½Z�¼ iσyτzZ; Px;y½Z�¼Z; Tx;y½Z�¼ iσyτxZ: ðD2Þ

Using these, we obtain the numbers in the column of Table II
labeled “Boson”.
Finally, we multiply the twist, vison, and boson columns

and obtain the numbers in the fermion column, thereby
verifying the equivalence of Cf and Cb.

APPENDIX E: LINEAR RESPONSE TO
NONTRIVIAL FLUX

In this appendix, we calculate the relation in Eq. (4.10) in
imaginary time. The residual U(1) gauge field aμ couples
to the current Jμ ¼ ψ̄γμσxψ . The response function of an
operator O is χμO ¼ hOðxÞJμðx0Þi, and the linear response
equationinmomentumspaceissimplyhOðqÞi ¼ χμOðpÞAμðqÞ
(we specify to operators whose vacuum expectation values
vanish in the absence of perturbations). Assuming
O ¼ trðX̄MXÞ, χμ0ðqÞ is represented by the Feynman diagram
in Fig. 12 at leading order. We evaluate this as

χμOðqÞ¼−
Z

d3p
ð2πÞ3 tr

�
M
=pþ imσxμy

p2þm2
γμσx

=pþ=qþ imσxμy

ðpþqÞ2þm2

�
:

ðE1Þ

TABLE III. Symmetry action on the bosonic spinon and Higgs
fields in the bosonic dual to the theories studied here, as presented
in Eqs. (1.4) and (1.7) [22]. The spinon here is written as a two
component spinor, z ¼ ðz↑; z↓ÞT , with iσy acting on the ↑, ↓
indices. We note that T ½z�� ¼ −iσyz� and that Tx;y½z�� ¼ iσyz.

T Px Py Tx Ty

zα iσyz z z iσyz� iσyz�

Qx Qx −Qx Qx Q�
x Q�

x

P −P P P P� P�

TABLE II. Symmetry fractionalization and twist factors for the
fermionic and bosonic spinon and the vison in the phase Z2 spin
liquid with current-loop order. By comparing with the result in
Ref. [22], we are able to verify the equivalent of Cf and Cb.

Group relations Fermionic Vison Twist Bosonic

1 T−1
y TxTyT−1

x −1 −1 1 1
2 P−1

y TxPyT−1
x −1 −1 1 1

3 P−1
y TyPyTy −1 1 1 −1

4 P2
y −1 1 −1 1

5 T−1
x ðT PxÞ−1TxðT PxÞ −1 1 1 −1

6 T−1
y ðT PxÞ−1TyðT PxÞ 1 −1 1 −1

7 P−1
y ðT PxÞ−1PyðT PxÞ −1 −1 1 1

8 ðT PxÞ2 −1 1 1 −1
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If M ∝ σx, it can be shown that the leading order term is
quadratic in q. A q-linear piece is obtained by assuming that
trðMσxÞ ¼ 0, in which case

χμOðqÞ

¼ −m
Z

d3p
ð2πÞ3

1

½p2 þm2�½ðpþ qÞ2 þm2�
× fpαtr½Mγαγμμy� þ ðpþ qÞαtr½Mμyγμγα�g

¼ m
8π

iqα
jqj arctan

� jqj
2m

�
AμðqÞðtr½μyMγαγμ� − tr½Mμyγμγα�Þ:

ðE2Þ

This is only nonzero for M ¼ μyγν. Expanding the inverse
tangent in small q, we find

χμνðqÞ ≅ −
1

π
ϵναμqαAμðqÞ ≅

i
π
ϵμνα∂αAβðqÞ: ðE3Þ

Returning to real time, we obtain the result in Eq. (4.10).
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