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Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-
dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions
among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective
of exploring quantum many-body physics beyond the mean-field approximation. The present work
demonstrates that local couplings can be created using multimode cavity QED. This is established through
measurements of the threshold of a superradiant, self-organization phase transition versus atomic position.
Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a
strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity.
We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their
virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling
may be tuned from short range to long range. This capability paves the way toward future explorations of
exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
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I. INTRODUCTION

Cavity QED provides strong light-matter coupling [1].
For example, exotic nonlinear optical properties arise in
cavity systems with atom-mediated photon-photon inter-
actions [2]. Realizations of topologically nontrivial states
of interacting photons are within reach [3]. Adiabatically
eliminating the photonic field, rather than the atomic, yields
photon-mediated atom-atom interactions. These inter-
actions may be sufficiently strong to create novel quantum
phases of matter [4]. Indeed, single- and few-mode cavity
QED in the optical domain have already provided dem-
onstrations of supersolidity [5,6] and exotic Mott physics
[7,8], in addition to supermode-density-wave-polariton
condensation [9]. Moreover, the driven-dissipative, open-
quantum-system nature of cavity QED can change the
character of quantum phase transitions, providing a new
window into quantum nonequilibrium physics [10,11].

An outstanding challenge has remained to create many-
body cavityQEDsystemswhose description requires physics
beyond mean-field approximation. Doing so enables, e.g.,
exploration of spin glass physics beyond the Sherrington-
Kirkpatrick model, where mean-field, replica-symmetry-
breaking solutions may no longer hold [12–14], or quantum
liquid crystals and intertwined orders such as those found in
strongly correlated materials like high-Tc superconductors
[15–18]. More generally, strongly fluctuating, inhomo-
geneous (and frustrated) systemsmay organize in unexpected
ways and the resulting surprises may lead to a deeper
understanding of how quantum matter organizes. A crucial
limitation to exploring such physics using cavity QED stems
from the fact that the single- or few-mode cavities employed
so far admit photon-mediated interactions that are all to all
in coupling [4]. The global (infinite-range) nature of these
interactions necessarily implies that mean-field approxima-
tions are adequate to explain observed physics [19]. However,
it has been suggested that this challenge may be met either
by employing networks of single-mode cavities [20–22],
using squeezed light to engineer interactions [23], using
photonic crystal waveguides [24,25], or using a single
multimode cavity [13,17,26].
This work presents a realization of a multimode cavity

QED system and demonstrates that such a system does
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indeed provide strong, tunable, and local interactions
among intracavity atoms. While no beyond-mean-field
physics has been explored yet, we show that the crucial
ingredient of local interactions is present in the system,
opening the road to future investigations where beyond-
mean-field physics may be manifest.
We measure the interaction range versus tunable param-

eters by manipulating the position of Bose-Einstein con-
densates (BECs) within the cavity. The symmetry of our
confocal cavity is exploited to measure the interaction
between real BECs and their virtual images without
unwanted contributions arising from the merger of real
BECs. The experimental results are compared to theory,
with good agreement. Furthermore, we show that the
reduction in interaction range is accompanied by an
increase in the effective atom-light coupling strength
(geff ) and an emergence of a continuous translational
symmetry in the plane transverse to the cavity axis.
Our work is the first to demonstrate the regime of multi-

mode cavity QED wherein structural, superradiant phase
transitions may take place. The employed adjustable-length
confocal cavity-BEC apparatus was first demonstrated in
Ref. [27]. Several groups have explored the superradiant, self-
organization phase transition with thermal atoms or BECs in
single-mode cavities [28–30]. Previousworkwithmultimode
cavities explored this phase transition with thermal atoms,
though without attention to the character of the photon-
mediated interactions among the atoms [31]. The authors of
Ref. [32] observed supermodes in a thermal-gas multimode
cavityQEDsystem,where a supermode is themixture of bare
cavity modes by the atomic dielectric, in a configuration
where the cavity modes were close to resonance with bare
atomic transitions. This contrasts with the single-mode
experiments mentioned above, where the bare cavity modes
are nonresonant, and the superradiant state arises from a
two-photon transition involving an external transverse pump.
With this transversely pumped, far-detuned configuration,
condensation of supermode-density-wave polaritons was
subsequently demonstrated in Ref. [9] in the regime of a
few degenerate modes. Two crossed single-mode cavities
with a BEC coupled to both was shown to exhibit a Uð1Þ
symmetry in the superradiant, self-organization phase as
well as a Higgs mode [5,6]. Though BECs were employed
in the latter two experiments, the number of modes was
insufficient to mediate short-range interactions. In addi-
tion to the experimental platform described in this paper,
prospects are bright also for the future observation of the
self-organization of atoms coupled to photonic bandgap
waveguides [33] and for creating and exploring topologi-
cal states with Rydberg atoms coupled to multimode
twisted ring cavities [3,34].
The paper is organized as follows. Section II describes in

general terms how tunable-range, photon-mediated inter-
actions arise in a transversely pumped multimode cavity
QED system undergoing a superradiant, self-organization

transition. Section III then describes the cavity apparatus and
BEC production and manipulation. Section IV presents the
experimental results, while Sec. V compares these to theory.
The Appendix discusses in greater detail the theoretical
calculation of the photon-mediated atom-atom interaction.

II. PHOTON-MEDIATED INTERACTIONS
IN A MULTIMODE CAVITY

Atomic gases placed in transversely pumped optical
cavities have been shown to undergo a superradiant,
self-organization transition arising from the competition
between their free-particle dispersion and cavity-mediated
interactions [28–31,35]. Figure 1 shows examples of
transversely pumped cavities. For a pump laser red-detuned
from the cavity resonance, atoms separated by a pump
wavelength λ along the cavity axis ẑ constructively scatter
pump photons into the cavity mode, leading to a buildup of
intracavity light. Conversely, scattering from atoms sepa-
rated by λ=2 is suppressed. The resulting atomic light shift
from the intracavity field creates an optical lattice potential
that further localizes the atoms at integer-λ separations.

(b)

(a)

FIG. 1. Sketches of experimental configurations employed. (a) A
87Rb BEC (red circle) is trapped at the cavity waist z ¼ 0 at a
location x1 relative to the cavity center. The transverse pump beam
(red beam) propagates along x̂; the system undergoes a super-
radiant, self-organization phase transition above a critical field
strength Ωc. Photons scattered off the BEC into the modes of the
confocal cavity (green) create a virtual image (not shown) of the
BEC at −x1. The distance δL indicates the tunable offset of
the mirror from the confocal configuration. Emission of intracavity
photons can either be sent to a single-photon counter or imaged
onto an EMCCD camera to resolve the spatial structure of
superradiant emission. An absorption imaging laser for imaging
BEC density travels along ŷ (not shown). (b) Two 87Rb BECs
trapped at locations x1 and x2 on opposite sides of the cavity center.
Images of the two BECs are created at −x1 and −x2 (not shown).
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The cavity may be interpreted to mediate a periodic,
infinite-range interaction along ẑ that lowers the energy
of a λ-period atomic density wave. Above a critical pump
strength Ω ¼ Ωc, the cavity-mediated interaction energy of
the density wave overcomes kinetic energy 2Er ¼ h2=mλ2

and the atoms self-organize into a λ-periodic pattern [36].
In doing so, the atoms spontaneously choose to localize at
either the even or odd antinodes of the standing wave.
Interference between the pump and cavity beams means
this even/odd choice is staggered along the pump direction
and leads to a 2D checkerboard lattice in the xz plane
[35,37]. Concomitantly, the atoms superradiate into the
cavity. This second-order nonequilibrium phase transition
is heralded both by a change in the atomic distribution [28]
and by an increase in cavity emission proportional to N
[31]. The momentum distribution of the atoms may be
detected in time-of-flight imaging, where Bragg peaks
appear at wave vectors associated with the λ-period
checkerboard lattice [28].
In conventional Fabry-Perót cavities, i.e., those sup-

porting a single TEM0;0 mode near the pump frequency,
the ðx; yÞ position dependence of the interaction energy
between atoms follows the Gaussian profile Ξ0;0ðx; yÞ of
this mode. The interaction energy vanishes at distances
larger than the mode waist w0. We now describe the
explicit form of this interaction. Atoms at position x
coherently scatter pump photons into the cavity mode at
a rate η ¼ g0ΩΞ0;0ðxÞ=Δa, according to second-order
perturbation theory, where g0 is the single-atom atom-
cavity coupling rate at x ¼ 0. This expression is valid
when the atomic excited state can be adiabatically
eliminated from the dynamics for sufficiently large
detuning Δa of the pump. A virtual photon may be
exchanged between atoms within a time given by the
inverse of the pump-cavity detuning Δc. This virtual
photon mediates an interaction given by (to second order
in perturbation theory) [17]

Uðx;x0Þ ¼ ηðxÞηðx0Þ
Δc

¼ g20Ω2Ξ0;0ðxÞΞ0;0ðx0Þ
Δ2

aΔc
: ð1Þ

As mentioned above, this interaction energy smoothly
vanishes versus distance for x − x0 larger than w0. Atoms
in gases much smaller than w0 interact with a global,
all-to-all coupling, up to the sinusoidal variation in ẑ
because of the standing-wave field modulation between
the cavity mirrors.
This coupling need not be global in a multimode cavity,

such as a confocal Fabry-Perót resonator in which the
cavity length L equals the mirrors’ radius of curvature R
[38]. A multimode cavity can support several Hermite-
Gaussian transverse modes at the same frequency, but
with orthogonal mode functions Ξl;mðxÞ. Ξl;mðxÞ is the
Hermite-Gauss function, describing the functional form of

the TEMl;m mode at ðx; yÞ position x. An atom scattering a
pump photon into the cavity does so into a superposition
of Ξl;m. The weights of the superposition are given by the
mode strengths at the atomic position. These weights also
depend on any differences in detuning Δl;m between the
ðl; mÞ modes and the pump arising from the residual
differences ϵ in their mode frequencies. When δL¼L−R
is increased to move the system away from confocality,
the Hermite-Gaussian modes of our near-confocal cavity
exhibit a linear frequency dispersion with mode number:
Δl;m ¼ Δ0;0 þ ðlþmÞϵ. In the limit δL ≪ L, ϵ ¼ cδL=L2,
where c is the speed of light [38].
We write the interaction energy as a sum over these

modes weighted by Δl;m:

Uðx;x0Þ ¼ g20Ω2

Δ2
aΔ0;0

Dðx;x0Þ ð2Þ

Dðx;x0Þ ¼
X
l;m

Ξl;mðxÞΞl;mðx0Þ
1þ ðlþmÞϵ=Δ0;0

Sl;m; ð3Þ

where the spatial dependence of the interaction is
encoded in the dimensionless interaction energy function
Dðx;x0Þ. The factor Sl;m, discussed in detail in the
Appendix, accounts for the overlap between the atomic
density wave and the photon mode profiles along the
cavity axis. Because of the nature of confocal cavities,
the sum over ðl; mÞ is restricted to lþm being either odd
or even [38]. Additional dispersion, present even at
δL ¼ 0, is due to mirror aberrations and mirror surface
defects [27].
As we discuss in more detail below, the restriction to

either odd or even modes means that this function can be
thought of predominantly as containing two contributions,
a direct interaction Dlocðx;x0Þ and its mirror image,
Dlocðx;−x0Þ. We will see that the dimensionless interaction
energy function Dðx;x0Þ appearing in Fig. 2(b), evaluated
at equal positions x ¼ x0, contains two contributions: a
broad background of self-interaction providing a flat
plateau from the direct term, and a sharp peak from the
mirror term for small values of x1. The range of the cavity-
mediated interactions can be extracted from the width of
this peak.
For an ideal cavity, supporting an infinite number of

modes, there would be a delta-function interaction peak
from Dlocðx;−x0Þ because the Hermite-Gaussian poly-
nomials form a complete basis [39], and the background
self-interaction contribution from Dlocðx;x0Þ would be
entirely flat and nonzero. However, real cavities support
only a finite number of modes, yielding a finite-range
interaction: A photon is scattered into a wave packet
localized around the atom, and only atoms with over-
lapping polaritonic excitations—dressed atom-photon
states—can interact.
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As discussed further below, the overall magnitude of
the flat plateau also changes depending on the number of
modes contributing to the sum in Eq. (3). Nonetheless,
because the central peak has a clear length scale, we can
identify the range of the short-distance part of the
interaction. Because the cavity waist is a fundamental
length scale that remains (almost) unchanged for each
cavity, it is reasonable to compare the characteristic length
scale of the peak to this fundamental length scale and
use this single number as the range of interactions. We
note that the flat plateau (which originates from self-
interactions) eventually falls to zero energy as the atoms
reach the edge of the highest-order mode supported by
the cavity. While Fig. 2(b) shows the plateau out to a few
w0 for δL ¼ 0, we measured that it persists out to ∼6w0,
indicating that several thousand modes are supported at
confocality.
We note that there is a mirror image of the cavity mode

focused through −x1 and, for two atomic gases, through
both −x1 and −x2. These virtual images arise because
confocal cavities only support modes of good parity at each
degenerate resonance. That is, the mode content alternates
between all even or all odd modes every half free spectral
range [38]. The fields at the real and virtual image locations
are of the same (opposite) sign for cavities tuned to even
(odd) modes resonances. We employ even mode configu-
rations in this work. The direct and mirror contributions can
be seen in Figs. 1(a) and 1(b), which sketch the mode—
supermode—that forms around each BEC for either one or
two BECs in the cavity, respectively. The minimum waist

of the supermode is as small as the width of the atomic gas
if there are sufficiently many intracavity modes to create a
compact superposition.
The form of Dðx;x0Þ is set by the parameter ϵ=Δ0;0,

which may be experimentally controlled to tune the
interaction range. The length scale of the range may be
tuned between that of the waist w0 for a single-mode
cavity to a small fraction of w0 for a multimode cavity.
This is analogous to the phonon-mediated interaction in
ion traps, where large pump detunings from resonances
in the phonon spectrum generate shorter-ranged inter-
actions [40–42].
To characterize the interaction profile Dðx;x0Þ, we use

local measurements of the self-organization threshold for
a small BEC. Using the expression for interactions in
Eq. (3), we may write a mean-field threshold condition for
self-organization as

g20Ω2
cN2

Δ2
aΔ0;0

Z
ρTFðxÞDcðx;x0ÞρTFðx0Þdxdx0 ¼ 2NEr; ð4Þ

where ρTFðxÞ is the Thomas-Fermi density distribution
of the BEC. See Refs. [17,26] for the beyond-mean-field
expression. For BEC radii much smaller than w0, we may
approximate the density by ρTFðxÞ ≈ δðx − x1x̂Þ to obtain
an expression for Dðx1; x1Þ at threshold,

Dcðx1; x1Þ ¼
2ErΔ2

aΔ0;0

Ng20Ω2
cðx1Þ

¼ Ω2
0

Ω2
cðx1Þ

; ð5Þ

FIG. 2. Dimensionless interaction strengths Dðx1; x1Þ versus position of a single BEC for various cavity lengths L. (a) Transmission
spectra of the five cavities studied. The spacing between even-mode families is ϵ ≈ 25 MHz for δL ¼ 29.2 μm. Individual transverse
modes are unresolvable at confocality (δL ¼ 0 μm). The dotted vertical line indicates the frequency difference Δ0;0 ¼ 30 MHz between
the pump beam and the TEM0;0 mode. Images of the superradiant emission are shown in Fig. 4. (b) The spatial dependence of the
dimensionless interaction energy Dðx1; x1Þ, also with Δ0;0 ¼ 30 MHz. The color of each trace corresponds to the cavity lengths
presented in panel (a). The error bars represent one standard error in the mean over three runs. The solid lines are fits of Eq. (9) to our
data and neglect the effect of astigmatism and spherical aberrations on our cavity spectrum. A close-up of data near the cavity center is
displayed in the inset.
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where Ω0 is the threshold Rabi frequency for a delta-
function-width gas localized at the center of a single-mode
cavity. Measuring Ωcðx1; x2Þ for a pair of atomic gases
located at x1 and x2 allows one to determine Dcðx1; x2Þ via
the relation

Ω2
0

Ω2
cðx1; x2Þ

¼ U2ðx1; x2Þ

≡Dðx1; x1Þ þDðx2; x2Þ þ 2Dðx1; x2Þ; ð6Þ

where we have dropped the subscript on the D’s for
convenience here and below. The value of Ωcðx1; x2Þ at
which the superradiant, self-organization transition occurs
allows us to measure the photon-mediated atom-atom
interaction strength versus position through a closed-form
expression related to Eq. (8), described in Sec. IV.
When considering a pair of gases, we may exploit the

mirror symmetry to cleanly measure the interactions
between atoms in different gases without physically merg-
ing two real BECs. That is, we use the fact that atoms in
one gas can overlap and thus interact with the image of the
other gas. By avoiding overlap of the real gases, we avoid
unwanted systematics because of the change in atomic
density and mean-field energy from collisions as the two
traps merge. From the standpoint of photon-mediated atom-
atom interactions, atoms at xi interact with their virtual
images at −xi just like dipoles near a dielectric can be
thought of as interacting with their mirror images in
classical electrodynamics [43].
For x1 ¼ x2, and away from x1 ¼ 0 where x1 approaches

−x1, Dðx1; x1Þ assumes a nearly flat distribution. Dðx1; x1Þ
begins to decay as a Lorentzian at a distance given
by w0

ffiffiffiffiffiffiffiffiffi
2M�p

, where ðM�Þ2 is a measure of the effective
number of modes coupled to the atoms; see the Appendix.
This provides a translationally invariant interaction energy
over a large distance in the xy plane. For example, this
distance is ∼200 μm on either side of our near-confocal
cavity, far larger than typical BEC widths. We now describe
the characterization of the strength and range of cavity-
photon-mediated interactions for various pump and cavity
configurations.

III. EXPERIMENTAL APPARATUS

We investigate the behavior of photon-mediated inter-
actions by trapping within an adjustable-length multi-
mode optical cavity a BEC of 2.5ð3Þ × 105 87Rb atoms
in the jF ¼ 1; mF ¼ −1i state. See Ref. [27] for the
BEC preparation procedure and Fig. 1 for an illustration
of the experiment. The BEC is confined in a crossed
optical dipole trap (ODT) formed by a pair of 1064-nm
laser beams propagating along x̂ and ŷ with waists of
40 μm in the xy plane and 80 μm along ẑ. The resulting
trap frequencies of ðωx;ωy;ωzÞ ¼ 2π × ½224ð2Þ; 86ð1Þ;
102ð1Þ� Hz create a compact BEC with Thomas-Fermi

radii ðRx; Ry; RzÞ ¼ ½4.0ð1Þ; 11.3ð3Þ; 8.3ð1Þ� μm that are
significantly smaller than the w0 ¼ 35 μm waist of the
TEM0;0 cavity mode. Acousto-optic deflectors (AODs)
placed in the path of each ODT control the intensity and
location of the ODTs, allowing us to translate the BEC to
any point in the xy plane with an uncertainty of 0.9 μm.
Some of the experiments discussed require two intra-
cavity BECs that can be moved relative to one another.
We use dynamic trap-shaping techniques [44] to split the
BEC into two smaller BECs of 1.0ð3Þ × 105 atoms each,
with an imbalance uncertainty of < 10%. These BECs
may be separated in x̂ by any relative distance using the
AOD; see Fig. 1(b). Absorption imaging of the BECs is
performed along ŷ after a 15-ms time of flight (TOF) to
reveal the momentum distribution of either the single or
double BECs.
The cavity is operated in a near-confocal regime in

which the cavity length L is set to be close to the mirrors’
R ¼ 1 cm radius of curvature. Because of astigmatism,
there are two orthogonal radii of curvature that are slightly

FIG. 3. Dimensionless interaction strengths versus position of a
single BEC for various pump-cavity detunings Δ0;0. Images of
the superradiant emission are similar to those in Fig. 4. (a) Trans-
mission spectrum of the δL ¼ 8.8 μm cavity presented in
Fig. 2(a). The dotted lines indicate the five values of Δ0;0 at which
the interaction energy of a single BEC was measured. The
corresponding interaction energies are presented in (b). The solid
lines are fits of Eq. (9) to our data and neglect the effect of
astigmatism and spherical aberrations in our cavity spectrum. The
error bars represent one standard error in the mean over three runs.
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different. Because Lmay only be set to match one radius at
a time, the cavity is never perfectly confocal. This con-
tributes, along with spherical aberration and mirror surface
defects, to the finite bandwidth (small spread) of modes
seen in Fig. 2(a) for δL ¼ 0 μm [9,27]. The mode degen-
eracy is maximal when L ¼ R, as shown in Fig. 2(a) for
δL ¼ L − R ¼ 0 μm. A slip-stick piezo attached to one
of the mirrors allows us to change L in situ [27]. The
frequency spacing ϵ between each family of transverse
modes is controlled by δL, which provides tunability of
mode density; see the transmission spectra in Fig. 2(a).
By family, we mean TEMl;m modes that satisfy lþm ¼
const. We have observed modes in cavity transmission
with indices up to lþm ¼ 300. This indicates that
approximately 104 modes are supported by the cavity near
degeneracy.
The system with an atom at the field maximum of the

TEM0;0 mode has a single-atom cooperativity of 2.2(1), a
vacuum Rabi splitting of g0 ¼ 2π × 1.47ð3Þ MHz, and κ ¼
2π × 167ð4Þ kHz [27]. A laser propagating along x̂ with
Rabi frequency Ω pumps the BEC-cavity system near the
even modes of the confocal cavity. The pump-cavity
detuning Δ0;0 is defined as the difference in frequency
between the pump and the TEM0;0 mode. Where unclear,
e.g., at small δL, the frequency of the TEM0;0 mode is
found by measuring the resonance frequency of a TEM0;0

mode injected using a spatial light modulator [45]. The
Δ0;0’s employed in this work are much larger than
measured dispersive shifts at the atomic detuning of
Δa ¼ −102 GHz. To achieve homogeneous pumping of
the BEC and to minimize any perturbation to the BEC trap
potentials, the transverse pump has a large waist (1=e field
radius) of 500 μm. In contrast to the standing-wave pump
configuration used in previous studies of cavity-induced
self-organization [28,46], we employ a running-wave pump
[29] in the data taken in Figs. 2, 3, 5, and 7. This is done so

(a) (b) (c) (d) (e) (f) (g) (h)

(j) (k) (l) (m) (n) (o) (p)

(i)

FIG. 4. Superradiant emission into the cavity supermode above the self-organization threshold for the data similar to that shown in
Fig. 2(b). (a)–(i) Spatial structure of superradiant emission into the modes of a near-confocal cavity (δL ¼ 0 μm) as the BEC is
translated from x1 ¼ −1.92w0 to 1.92w0. The two peaks merge at the center of the cavity, yielding a spot size smaller than the TEM0;0

mode waist. Images (j)–(p) show superradiant emission for BECs in a single-mode cavity. The BECs are in the same locations as in the
above panels. The cavity is set to δL ¼ 65.1 μm, ϵ ≈ 60 MHz, to achieve near-single-mode operation. We see that the profiles are close
to the width and shape of a TEM0;0 mode. All images are plotted with identical length scales, including panels (a) and (i), which have
larger fields of view. Data are taken at a pump-cavity detuning of Δ0;0 ¼ 20 MHz. The white bars in (a) and (e) represent the length of
the waist of the TEM0;0 mode.

(a)

(b)

FIG. 5. Dimensionless interaction strengths for two intracavity
BECs versus their center-of-mass position for various pump-
cavity detunings Δ0;0. (a) Transmission spectrum of the δL ¼
0 μm cavity. The dotted lines indicate the four values of Δ0;0

at which the interaction energy was measured. (b) The local
interactions versus position between a real BEC at x1 and the
virtual BEC at −x2 of a different real BEC at x2. The interaction
strength saturates away from the center because of the self-
interaction energy. The data were taken in the confocal configu-
ration (δL ¼ 0 μm) with the two BECs located on opposite sides
of the cavity; see Fig. 1(b). Similar behavior is seen with δL ≠ 0
cavities. Insets: The observed superradiant emission patterns for
the data indicated. The white bar in panel (b) shows the length of
the waist of the TEM0;0 mode. Error bars represent standard error.
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as not to generate a lattice potential along x̂ in the absence
of intracavity light. The absence of such a lattice leads to a
simpler dependence of threshold pump power on the
cavity-mediated interaction: For a standing wave, one must
calculate the kinetic energy for atoms in the band structure
of the standing-wave lattice potential, and this means that
pump power would appear on both sides of Eq. (4), making
extraction of interaction strength less direct. We do,
however, use a standing-wave pump for the cavity output
and atomic density images presented in Figs. 4, 5, and 6 to

avoid distortions due to atomic motion excited by a
running-wave pump.

IV. MEASUREMENTS OF CAVITY-INDUCED
INTERACTIONS

We first measure the interaction energy of a single BEC
as a function of its location in x̂. With the BEC trapped at a
location x1, the transverse pump power is linearly increased
in time while the cavity emission is monitored on a single-
photon counter. A sharp increase in emission heralds the
onset of the superradiant, self-organization transition,
which allows us to measure Ωcðx1Þ and, consequently,
using Eq. (5), extract the interaction strength Dðx1; x1Þ.
Figure 2(a) shows the transmission spectra of the

even modes in the five near-confocal cavities studied.
Figure 2(b) presents Dðx1; x1Þ measured at a fixed pump

(a)

(b)

FIG. 7. Tunability of the effective number of coupled modes,
proportional to the square of M�, and interaction range ξ versus
δL and Δ0;0. (a) The dependence ofM� on Δ0;0 for various cavity
lengths δL. The solid lines are a fit to the theoretical expectation,
M� ∼ Δ0;0=ϵ. (b) The dependence of the interaction range
ξ=w0 ¼ 1=

ffiffiffiffiffiffiffiffiffi
2M�p

on Δ0;0 inferred from the data in panel (a).
We measure an interaction range of ξ=w0 ¼ 0.09ð1Þ at the largest
value of Δ0;0 studied in the confocal configuration. This is over
an order of magnitude smaller than the TEM0;0 waist w0. Solid
lines are the same fits to the theoretical interaction profile as
above. The dashed lines are extensions of the fitted curve outside
the regions of validity; i.e., where M� < 1. Inset: Agreement
between interaction ranges extracted from the single-cloud
(unfilled squares) and two-cloud (filled circles) data sets for
δL ¼ 0 μm. The solid line is a fit to the single-cloud data. All
error bars represent standard error.

(a)

(b)

(c)

FIG. 6. Absorption images in time-of-flight expansion of two
intracavity BECs located on opposite sides of the cavity at x1 and
x2. The image is not purely of a momentum distribution because
of the short time of flight. The images show the contributions
from each BEC along with the diffraction peaks from each gas.
(a) Time-of-flight expansion with no transverse pumping
(Ω ¼ 0). In this and the subsequent panels, the left BEC has
60% fewer atoms than the one on the right. (b) Time-of-flight
expansion for a spacing of x1 ¼ −x2; i.e., each real BEC spatially
overlaps with the other BEC’s virtual image. The BECs self-
organize at the same threshold pump Rabi frequency Ω ¼ Ω0

c.
First-order Bragg peaks are visible for both the left BEC (red
dashed circles) and right BEC (white dashed circles), heralding
self-organization [28]. Additional diffraction peaks from the
standing-wave pump beam are found to the left and right of
each BEC. (c) Separating the BECs from each other’s virtual
image by 32.4 μm, close to a cavity waist w0, reduces the
interaction energy, causing the small BEC to be unable to reach
threshold at the same pump power as the larger BEC. [Ω ¼ Ω0

c is
the same as in panel (b).] That is, the larger (smaller) BEC at right
(left) exhibits (no) Bragg peaks, indicting (no) self-organization
into a checkerboard lattice. The color scale has been increased in
panels (b) and (c) with respect to panel (a) to make the Bragg
peaks more visible.
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detuning ofΔ0;0 ¼ 30 MHz in the aforementioned cavities.
For large values of δL, and consequently large ϵ, the
interaction strength would follow a single Gaussian decay
as the BEC is moved further away from the center of the
cavity. This is because Dðx1; x1Þ is following the mode
profile of the TEM0;0 mode in this near-single-mode cavity.
By contrast, as ϵ is reduced by shrinking δL, we observe a
form with two components. There is a flatter, more trans-
lationally invariant background, falling off over a length
scale w coming from the self-interaction of the gas.
Furthermore, we observe the emergence of a prominent
peak at the cavity center that decays over a much shorter
range ξ because of the interaction of the cloud with its
mirror image. As ϵ becomes smaller, the scale w grows and
ξ shrinks. A similar behavior is observed for holding ϵ fixed
but varying Δ0;0, as presented in Fig. 3.
The length scale w of the background component reflects

an overall envelope of the interactions, while the scale ξ of
the sharp peak reflects the interaction range. Both the
growth of w and shrinking of ξ can be understood as the
result of superposing ever-larger high-order Hermite-
Gaussian polynomials, allowing the interaction to both
extend to larger distances and resolve finer features. That
we can measure the short-range interaction with only a
single, compactly localized BEC is a consequence of the
mirror symmetry inherent to confocal cavities. The inter-
action energy increases as the real atoms come near to their
virtual images, even though there is only one real BEC
present. Viewed equivalently, as the two spots of the
supermode begin to overlap, the intracavity field magnitude
increases, leading to a lower Ωc.
Images of the supermode can be directly observed in

superradiant cavity emission patterns. Figures 4(a)–(i)
show examples in which the superradiant spots pass
through each other. One cannot differentiate the spots from
the picture alone, though from the orientation of the camera
and apparatus, we know that the lower (upper) spots are the
real atoms in panels 4(a)–(d) [4(f)–(i)]. The waists of the
spots are smaller than that of a TEM0;0 mode and their size
at the object plane is similar to the BEC Thomas-Fermi
radius, as expected. Their small size stands in stark contrast
to the single-mode cavity’s size shown in Figs. 4(j)–(p):
The superradiant emission pattern maintains its TEM0;0

structure as the BEC is moved over the same distance in x̂,
only dimming as the gas nears the edge of the single
Gaussian mode [47].
We now present similar measurements of two identical

intracavity BECs. The BECs are located approximately
45 μm from either side of the confocal cavity center, at x1
and x2 as illustrated in Fig. 1(b). Each real BEC can then
overlap and interact with the nearby virtual image of the
other BEC. This is accomplished by moving x1 and x2 by
the same amount in x̂ while keeping x1 − x2 fixed. Again,
this allows us to probe the behavior of the photon-mediated
interaction while avoiding any energy shifts due to density

changes and s-wave collisions between the two BECs. As
shown in Fig. 5, we observe four distinct spots in the
superradiant emission pattern—two at the BEC locations
ðx1; x2Þ and two at the locations of their virtual images
ð−x1;−x2Þ. At x1 þ x2 ¼ 0, the BECs merge with each
other’s virtual images, and we again observe a peak in
Dðx1; x2Þ arising from a photon-mediated local interaction.
The sequence of BEC momenta observed by time-of-flight
imaging in Fig. 6 further demonstrates how the interaction
energy of two nearby BECs can push a system above
threshold: A smaller BEC can undergo self-organization at
a lower threshold power when it is near a larger BEC than
when it is far away.

V. MEASUREMENT OF INTERACTION RANGE

To extract the local interaction range from the decay
of the peaks in interaction strength, we use a closed-
form expression of Dðx;x0Þ—valid under the condition
ϵ=Δ0;0 ≪ 1—to fit the data in Figs. 2(b), 3(b), and 5. See
the Appendix for details. This expression can be separated
into three terms:

Dðx;x0Þ ¼ Dlocðx;x0Þ þDlocðx;−x0Þ þDnonðx;x0Þ; ð7Þ

where Dlocðx;x0Þ is a local interaction between two atoms
and Dlocðx;−x0Þ represents its corresponding atom-image
interaction. The third termDnonðx;x0Þ is a weaker, nonlocal
oscillatory interaction that will be discussed later.
The local terms have the form

Dlocðx;x0Þ ¼ M�

4π
K0

 
jδxj ffiffiffiffiffiffiffiffiffi2M�p

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

cm

w2
02M

�

s !
; ð8Þ

where K0 is the modified Bessel function of the second
kind and δx ¼ x − x0 is the separation between the atoms,
and the center-of-mass coordinate of the two atoms is
Xcm ¼ ðxþ x0Þ=2. This interaction function falls off as
e−δx=ξ=

ffiffiffiffiffiffiffiffiffiffi
δx=ξ

p
for large δx and increases as − ln δx=ξ for

δx → 0, where ξ ¼ w0=
ffiffiffiffiffiffiffiffiffi
2M�p

. This simple behavior
requires that the center of mass coordinate be near the
center of the cavity, jXcmj ≪ w0

ffiffiffiffiffiffiffiffiffi
2M�p

. Note that when
M� ≫ 1, the interaction range ξ is much smaller than
w0

ffiffiffiffiffiffiffiffiffi
2M�p

, and so one may simultaneously have both
δx ≫ ξ and Xcm ≪ w0

ffiffiffiffiffiffiffiffiffi
2M�p

. Thus, we see that the
strength and range of this interaction are controlled by
the parameter M� ¼ Δ0;0=ϵ. The quantity ðM�Þ2 may
loosely be associated with the effective number of cavity
modes that maximally couple in 2D to the BEC to form the
supermode (see Sec. A 4); M� is the number of modes that
couple in 1D. We stress that the value ofM� depends on the
pump detuning and any aberration of the mirrors.
Therefore, one should not equate ðM�Þ2 with the number
of modes supported by the cavity near degeneracy, which
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is ∼104. A second length scale w ¼ ffiffiffiffiffiffiffiffiffi
2M�p

w0 controls the
strength of this interaction as the pair of atoms is moved far
from the cavity center. SmallM� dilutes the strength of this
interaction versus distance from the cavity center: wmay be
interpreted as a measure of the degree to which the system
is translationally symmetric.w diverges in an ideal confocal
cavity as ϵ → 0, resulting in translationally invariant
interactions determined only by atomic separation δx, with
no dependence on absolute position.
We characterize the range of the local interactions in our

cavity by fitting our data in Figs. 2 and 3 to the theoretical
model in Eq. (7), while neglecting the weak nonlocal term
Dnon. To account for the finite size of the BEC,Dðx1; x1Þ is
evaluated by numerically integrating over the BEC’s
Thomas-Fermi distribution ρTF instead of a δ-function:

Deffðx1; x1;M�Þ ¼
ZZ

ρTFðx − x1Þ½Dlocðx;x0;M�Þ

þDlocðx;−x0;M�Þ�ρTFðx0 − x1Þdxdx0:

ð9Þ

We fit the above expression to our data using M� and an
overall scale factor as free fit parameters. Details of how
this integral may be efficiently evaluated are given in
Sec. A 3. The results of these fits are shown as solid lines
in Figs. 2(b), 3(b), and 5. Extracted values of M� and the
interaction range ξ are presented in Figs. 7(a) and 7(b),
respectively, for several values of δL and Δ0;0 using the
single BEC configuration. Large values ofΔ0;0=ϵ result in a
more uniform coupling to transverse modes of the cavity
and a shorter-ranged interaction. With this control param-
eter, we can tune the interaction range to be as low as
ξ ¼ 3.4ð4Þ μm. This is over an order of magnitude shorter
than the range set by w0 for a single-mode cavity.
Moreover, this close agreement between the data and fits
for values of M� ≳ 1 highlights the validity of the theo-
retical model presented in the Appendix. We note that we
do not reliably infer M� for M� < 1 because the closed-
form expression in Eq. (8) is only valid for ϵ ≪ Δ0;0.
We now turn our attention to the nonlocal interaction

term in Eq. (7), which displays the oscillatory behavior of
the form

Dnonðx;x0Þ ∝ cos

�
x · x0

w2
0

�
: ð10Þ

As discussed below, the form of this term can be traced to
the Gouy phase shifts of the bare-cavity modes. The Gouy
phase shift between modes arises because of the need to
satisfy the mirror boundary conditions despite the slight
change in k-vectors between transverse modes [38].
The nodes in the intracavity field transverse to the cavity
axis in Fig. 8(a) are due to the Gouy phase shifts. While we
cannot resolve the effects of this term in our interaction

measurements, we do observe a weak signal in our images
of superradiant cavity emission shown in Fig. 8. The cavity
emission is recorded by imaging the plane containing the
atoms onto the camera, so this emission records the light
profile at the atom plane. For a single BEC at x1, the image
at position x corresponds to Dðx;x1Þ, and so the nonlocal
term creates fringes in the cavity emission with a wave-
length that becomes shorter as x1 is increased, as shown in
Figs. 8(b)–(d). The oscillatory behavior can most easily be
understood by considering the “hourglass” structure of
confocal cavity modes. While familiar ray-tracing repre-
sentations of these modes depict the parallel and diagonal
“arms” of the closed hourglass path [38], they do not
account for interference of the paths. A full calculation of
the field of a confocal cavity supermode is shown in
Fig. 8(a): The parallel arms of the hourglass path create two
spots at x1 and −x1, while the diagonal arms interfere with
each other to create fringes along x. A calculation of the
superradiant intracavity field pattern shown in Figs. 8(e)–(g),
using the theory presented in the next section, reveals a
similar structure and is in qualitative agreement with
our data.

(a)

(b) (c) (d)

(e) (f) (g)

FIG. 8. Manifestation of the nonlocal interaction Dnonðx;x0Þ.
(a) Illustration of the hourglass structure in the supermode field
(blue) when populated by photons scattered into the confocal
cavity from the BEC (red). The field displays a weak oscillatory
behavior between the two spots at x1 and −x1. (b)–(d) Observed
superradiant emission patterns for BECs placed at x1 ¼ 0 μm,
45.0 μm, and 67.5 μm, respectively. (e)–(g) Simulations of the
intracavity field with the BEC at these locations.
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VI. CONCLUDING DISCUSSION

The ability to engineer tunable-range interactions
among intracavity atoms and, equivalently, high-M� sys-
tems, opens several research directions. We conclude with a
discussion of three such directions, one involving exotic
spatial organization of superfluid atoms and two involving
spin organization.
The nature of the superradiant, self-organization phase

transition can differ in a multimode cavity. In the single-
mode cavity, the behavior is governed by mean-field
theory, because of the all-to-all coupling. In contrast, the
multimode cavity allows transverse variations of phase
across the cavity. The atomic gases studied in this paper are
(purposefully) too small to allow such variations, but by
combining much larger intracavity BECs with the confocal
cavity, transverse phase variation becomes possible. This
has a number of consequences.
An immediate consequence of transverse phase variation

is the possibility of topological defects and phase textures.
This is because atoms are no longer constrained to organize
with respect to the profile of a single mode but may fluctuate
between the Hermite-Gaussian profiles of the multiple
degenerate modes. Similar to classical systems like diblock
copolymers [48] and fluids undergoing Rayleigh-Bénard
convection [49], the organization should exhibit wandering
stripelike (smectic) patterns of atoms [17,26]. The interac-
tion length scale ξ controls the minimum size of a patch of
stripes pointing in the same direction with the same spatial
period, while the envelope of the interactions w controls the
maximum size of an atomic gas that can fully couple to
the cavity. As a result, the number of patches in the 2D
transverse profile is ∼ðM�Þ2. The fact that we can engineer
systems with M� ≫ 1 means that such complex, superfluid
smectic states are within reach [17,26]. This opens the door
to exploring analogs of the quantum liquid crystals found in
strongly correlated electronic materials, such as cuprate and
iron-based high-Tc superconductors [50]. Controllability of
quenched disorder and dimensionality using external optical
dipole trap beams and speckle would provide unique ways to
investigate the intertwined nature of the order—crystalline,
superfluid, and even magnetic (see below)—found in these
systems [16].
A second consequence of transverse degrees of freedom

is their effect on the universality class of the phase
transition. For a single-mode cavity, the all-to-all coupling
means the phase transition—analogous to the Hepp-Lieb-
Dicke transition [4]—falls within the mean-field-Ising
universality class. This second-order mean-field phase
transition is expected to become weakly first order as
the number of degenerate modes increases [17,26]. This
occurs in a scenario akin to that of a quantum version of the
Brazovskii transition known from classical liquid crystal
physics [51,52]. As one approaches the critical pump
strength for the second-order transition, soft modes emerge
corresponding to long-wavelength transverse fluctuations.

The additional, beyond-mean-field contribution to the
effective action that arises from these fluctuations drives
the transition first order.
In addition to modifying the universality class of the

phase transition, the presence of soft transverse modes
can be seen in other ways. The dispersion relation of such
modes could be measured through established methods for
observing dynamical susceptibilities [53]. Just like x-ray
diffraction patterns of classical liquid crystals are arc
shaped [54], signatures of this quantum liquid crystalline
state might appear as arclike Bragg diffraction peaks in
time-of-flight measurements. Because of the small size of
the atomic gases, no such patterns are seen in Fig. 6, but
may become apparent by expanding the size of the intra-
cavity BEC. This may easily be accomplished by lowering
the optical dipole trap frequencies.
In the current configuration, the cavity mediates inter-

actions between atomic density-wave excitations. One can
also consider cavity-mediated interactions between atomic
spins. In either case, it is large collective, not single-atom,
cooperativity that matters for enabling access to phases of
interest, since these phases arise from a collective organi-
zation threshold that is proportional to the collective coop-
erativity [4]. Coupling among spins can be engineered if the
transverse pump lasers drive a Raman transition between
atomic Zeeman states representing a pseudospin-1=2 system
[13,55,56]. If the atoms are trapped at random positions
inside the cavity to realize quenched disorder, then the
multiple modes of the cavity can in principle mediate
frustrated spinful interactions resulting in a spin-glass-like
state [13,14]. However, there is a subtlety regarding the
effects of summing many cavity modes: in some geometries,
the sum over cavity modes may yield a short-range inter-
action, in which case the degenerate limit produces a short-
range spin model. However, as we have shown in this
paper, the Gouy phase naturally present for a confocal
cavity also induces a long-range sign-changing interaction
Dnonðx;x0Þ ∼ cosðx · x0=w2

0Þ. Such a Ruderman-Kittel-
Kasuya-Yosida (RKKY)-like changing interaction is exactly
the ingredient needed to enable glassy physics [12]. The
ability to tune the relative strengths between this long-range
interaction and the short-range interaction Dlocðx;x0Þ pro-
vides a unique means (outside of numerical simulation) to
experimentally compare the dynamics of infinite-range spin
glasses to those with short-range interactions. While the
former has an order known to be described by mean-field
replica-symmetry breaking, the latter’s order defies explica-
tion despite many decades of investigation [57]. Direct spin-
state detection combined with repeatable atomic disorder
from shot to shot will allow us to create, observe, and
compare system replicas. This may provide sufficient
experimental information to discriminate among various
theories of short-range spin glass order.
Spin glasses may serve as models for neural networks.

Realizing spin glasses would provide the means to create a
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neural network comprised of atomic spins serving as neurons,
cavity modes serving as synapses, and photons within the
modes serving as action potentials [13,58]. Wiring the net-
work to implement a particular graphical combinatorial
optimization problem simply involves placing the atoms in
specific locations within the cavity modes. This may be
possiblewith optical tweezer arrays [59,60]. The combination
of local and nonlocal interactions demonstrated here
will enable the construction of a wide variety of graphical
combinatorial optimization problems, not just those of a
complete graph. In this way, Hopfield associative memories
[13,58,61,62] and coherent Ising machines [63,64] may be
implemented in the presence of quantum effects like spin
entanglement and quantum criticality, providing a new route
to quantum neuromorphic computation.
Parts of the research data supporting this publication can

be accessed from [65].
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APPENDIX: THEORETICAL MODEL

The primary goals of this appendix are to find a func-
tional form for Dðx;x0Þ and to find an expression for M�.

1. Hamiltonian and equations of motion

To derive the atom-atom interaction, we start from a
model of N atoms in a condensate wave function ΨðrÞ
interacting with cavity modes âμ by the Hamiltonian

H ¼ −
X
μ

Δμâ
†
μâμ

þ N
Z

d3rΨ�ðrÞ
�
−
∇2

2m
þ VðrÞ þUjΨðrÞj2

�
ΨðrÞ

þ N
Δa

Z
d3rΨ�ðrÞjϕ̂j2ΨðrÞ; ðA1Þ

where for compactness we use μ ¼ ðl; mÞ to index the
transverse modes of our cavity. The first term is the
Hamiltonian of the cavity modes with detuning
Δμ ¼ Δ0;0 þ ðlþmÞϵ. The remainder is the standard
Hamiltonian for a weakly interacting BEC with contact
interactions of strength U in an external trap VðrÞ and with
a Stark shift proportional to 1=Δa because of the light in
the cavity. This light field ϕ̂ consists of the running-wave
pump and a sum over all cavity modes with their transverse
and longitudinal spatial dependence,

ϕ̂ðrÞ ¼ Ωeikx þ g0
X
μ

âμΞμðrÞ cos ½kz − θμðzÞ�; ðA2Þ

where Ω is the pump Rabi frequency, ΞμðrÞ is a Hermite-
Gaussmode of the cavity, and θμ contains other contributions
to the phase which vary slowly compared to kz. In particular,
its dependence on μ ¼ ðl; mÞ is due to the Gouy phase
term ðlþmÞ½π=4þ arctanðz=zRÞ�, where zR ¼ L=2 is the
Rayleigh range, and this formula assumes z is measured
from the center of the cavity. This term accounts for the
fact that in order to have equal frequencies, a mode with
higher order transverse structure must have a slower rate of
change of the longitudinal phase [38]. The form of Eq. (A2)
results in a spatially varying single-photon Rabi frequency
g0ΞμðrÞ=Ξ00ð0Þ for the mode μ. Note that the sum is only
over modes of the same parity; lþm is even in this work.
To study the location of threshold, we assume that most

of the condensate is in the ground state, with a small
fraction having a momentum kick from either scattering a
photon from the pump into the cavity or vice versa. Hence,
we write

ΨðrÞ ¼ Zðz − z0Þ½ψ0ðrÞþ
ffiffiffi
2

p
ðψFðrÞeikx þ ψ�

BðrÞe−ikxÞ�;
ðA3Þ

where Z is an envelope function that describes the confine-
ment of the gas in ẑ, ψ0ðrÞ is the wave function of the
ground state of the gas in the transverse plane, and ψFðBÞ is
the wave function of the gas that has been scattered forward
(backward) by scattering between the pump beam and the
cavity modes. Because of scattering into the cavity modes,
these functions ψF;B have a sinusoidal variation kz along
the cavity. However, because of the different Gouy phase
terms of different cavity modes, it is not a priori clear what
phase the atomic density wave should take. To allow the
possibility of coupling to any cavity mode, we further
decompose the scattered atomic wave functions into two
out-of-phase density waves

ψFðrÞ ¼ ψF1ðxÞ cos ðkz − θ0;0ðz0ÞÞ
þ ψF2ðxÞ sin ðkz − θ0;0ðz0ÞÞ; ðA4Þ

and similarly for ψB. Here, x ¼ ðx; yÞ is the transverse
coordinate vector, and ψFð1;2ÞðxÞ are now slowly varying
envelope functions. As we see below, different cavity modes
couple preferentially to ψF1 or ψF2. For convenience, the
phase offset θ0;0ðz0Þ corresponding to the Gouy phase of the
(0,0) mode at the position of the atomic gas is introduced.
We can now use Eq. (A1) to find the mean-field equations of
motion for ψ0;F;B and αμ ≡ hâμi. As the threshold is where
the normal state αμ, ψF;B ¼ 0 becomes unstable, we need
only do this to leading order in these fields.
To write equations in terms of only the transverse

coordinates x, we must perform the z integral in
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Eq. (A1). This can be done straightforwardly in the limit
where we assume Zðz − z0Þ has a width σz and that
λ ≪ σz ≪ zR. The first inequality allows us to drop any
terms oscillating at wave vector k; this imposes momentum
conservation so that recoiling atoms pick up the difference
of pump and cavity momenta. The second condition means
we can evaluate the slowly varying phase terms as being
effectively constant over the width of the gas: we can
approximate θμðzÞ≃ θμðz0Þ≡ θ0;0ðz0Þ þ ðlþmÞθ0 with
θ0 ≡ π=4þ arctanðz=zRÞ. In the linearized treatment, all
relevant z integrals involve the cross pump-cavity term,
causing scattering between at-rest atoms ψ0ðxÞ and the
functions ψF;BðrÞ. We then find that the z integrals yield
two possible values,

Oi
μ ¼

�
cos ½ðlþmÞθ0� i ¼ 1

cos½ðlþmÞθ0 − π=2� i ¼ 2
: ðA5Þ

For the equations of motion, we find

i∂tαμ ¼ −ðΔμ þ iκÞαμ −
g20N
2Δa

Z
dxjψ0ðxÞj2ΞμðxÞΞνðxÞαν

−
g0NΩffiffiffi
2

p
Δa

Z
dxΞμðxÞψ0ðxÞ

×
X
i¼1;2

½ψ�
FiðxÞ þ ψBiðxÞ�Oi

μ ðA6Þ

i∂tψFiðxÞ ¼
�
−
∇2

2m
þ VðxÞ þ 2ωr þUjψ0ðxÞj2

�
ψFiðxÞ

þ 1

2
Uψ�2

0 ðxÞψBiðxÞ

−
g0Ωffiffiffi
2

p
Δa

X
μ

α�μΞμðxÞψ0ðxÞOi
μ; ðA7Þ

where we have included photon loss κ and ωr is the recoil
momentum k2=2m. The ground state condensate has no
linear perturbations, so at leading order we have

i∂tψ0ðxÞ ¼
�
−
∇2

2m
þ VðxÞ

�
ψ0ðxÞ; ðA8Þ

while ψBiðxÞ obeys an equation identical to Eq. (A7) with
F ↔ B and αμ → α�μ. The ground state density profile is that
of a Thomas-Fermi gas ρðxÞ ¼ ρ0½1 − ðx=x0Þ2 − ðy=y0Þ2�,
and so we have taken ψ0ðxÞ to be real.

2. Calculation of effective interaction Dðx;x0Þ
We wish to study the effective photon-mediated atom-

atom interaction. Since we expect the cavity field to reach a
steady state on a time scale much faster than the atomic
motion, we adiabatically eliminate the photons by setting
the time derivative in Eq. (A6) to zero and solving for αμ.

We also neglect the corrections to the bare cavity modes
caused by the ground state atomic gas; i.e., the term
proportional to the integral of jψ0ðxÞj2 in Eq. (A6) is set
to zero. Substituting this back into the equation of motion
of the atomic condensate gives

i∂tψFiðxÞ ¼ HAψFiðxÞ þ
1

2
Uψ0ðxÞ2ψBiðxÞ

þ g20Ω2N
2Δ2

aΔ0;0

Z
dx0X

j¼1;2

Dijðx;x0Þψ0ðxÞψ0ðx0Þ

× ½ψFjðx0Þ þ ψBjðx0Þ�; ðA9Þ

where we defined an atomic Hamiltonian,

HA ¼ −
∇2

2m
þ 2Er þ VðxÞ þ Ujψ0ðxÞj2; ðA10Þ

and the cavity-mediated interaction takes the form

Dijðx;x0Þ ¼ Δ0;0

X
μ

ΞμðxÞΞμðx0Þ
Δμ þ iκ

Oi
μO

j
μ: ðA11Þ

To simplify further, we assume that the atoms are close
enough to the cavity center that θðz0Þ ≈ π=4. In this case,
one may see that as long as lþm is even, either O1

μ ¼ 0 or
O2

μ ¼ 0, so the interaction becomes diagonal, Dijðx;x0Þ ¼
δijDiðx;x0Þ. Furthermore, using standard trigonometric
identities, we can reduce the expression to

Diðx;x0Þ ¼ Δ0;0

X
l;m

Ξl;mðxÞΞl;mðx0Þ
Δl;m þ iκ

Si
l;m ðA12Þ

Si¼1;2
l;m ¼ 1

2
½1� cos ½ðlþmÞπ=2��½1þ ð−1Þlþm�: ðA13Þ

In writing this, we introduced the factor ½1þ ð−1Þlþm�
into Sl;m so that the sum in Eq. (A12) is now over all
modes. This extra factor serves to cancel odd modes.
This rewriting will enable us below to make use of
known expressions for sums of Gauss-Hermite functions
multiplied by phase factors, exp½iφðlþmÞ�. As a
reminder, the detuning in the denominator takes the form
Δl;m ¼ Δ0;0 þ ϵðlþmÞ.
This termDiðx;x0Þ is the expression given in Eq. (3), the

interaction between atoms at different points x and x0 due
to the cavity modes [except that in Eq. (3) we neglected
cavity loss]. Again, an equation identical to Eq. (A9) holds
for ψBðxÞ with F ↔ B and Dðx;x0Þ replaced with its
complex conjugate.

3. Analytic forms of interaction near confocality

In this section, we discuss those cases where it is
possible to extract an analytic closed form for the
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interaction term, Eq. (A12). We are able to find
expressions for both an ideally confocal system
(ϵ ¼ 0) and a near-confocal cavity with ϵ ≠ 0.
Moreover, we show that restricting the number of
modes contributing to the interaction and including
deviations from confocality affect the interaction profile
similarly. This connection allows us to identify, in
Sec. A 4, an effective number of modes M� that couple
to the atoms.
If we first consider the ideal confocal case, ϵ ¼ 0, the

denominator in Eq. (A12) becomes a constant, independent
of l, m. In this case, we can make use of the harmonic
oscillator Green’s function,

Gðx;x0;αÞ¼
X
l;m

Ξl;mðxÞΞl;mðx0Þe−αðlþmÞ

¼ 1

πð1−e−2αÞ

×exp

�
−

x2þx02

2w2
0 tanhðαÞ

þ x ·x0

w2
0 sinhðαÞ

�
: ðA14Þ

In terms of this, the interaction can be written as

Diðx;x0Þ ¼ 1

4ð1þ i~κÞ limα→0

�
Gðx;x0; αÞ þGðx;−x0; αÞ

�
�
G

�
x;x0; α − i

π

2

�

þ G

�
x;−x0; α − i

π

2

���
; ðA15Þ

where ~κ ¼ κ=Δ0;0 and we have made use of the
relation Gðx;x0;α − iπÞ ¼ Gðx;−x0; αÞ. If we then take
the limit of Eq. (A15) for α → 0, we find the simple
expression

Diðx;x0Þ ¼ 1

4ð1þ i~κÞ
�
δ

�
x − x0

w0

�
þ δ

�
xþ x0

w0

�

� 1

π
cos

�
x · x0

w2
0

��
; ðA16Þ

consisting of a local interaction between atoms, a local
interaction between atoms and virtual atoms at their
mirror image, and a non-translationally-invariant oscilla-
tory interaction.
We can extend this result at confocality to find the

interaction function in the limit of near confocality, where
ϵ ≪ Δ0;0. Defining ~ϵ ¼ ϵ=Δ0;0, we rewrite the l, m
dependence of the denominator as an integral:

Diðx;x0Þ

¼
X
l;m

Ξl;mðxÞΞl;mðx0Þ
1þ ðlþmÞ~ϵþ i~κ

Si
l;m

¼
Z

∞

0

dτe−τð1þi~κÞX
l;m

Ξl;mðxÞΞl;mðx0ÞSi
l;me

−ðlþmÞð~ϵτÞ

¼ 1

4

Z
∞

0

dτe−τð1þi~κÞ
�
Gðx;x0; ϵτÞ þGðx;−x0; ϵτÞ

�
�
G

�
x;x0; ϵτ − i

π

2

�
þ G

�
x;−x0; ϵτ − i

π

2

���
:

ðA17Þ

We may group the terms together as discussed in Eq. (7)
to write

Diðx;x0Þ ¼ Dlocðx;x0Þ þDlocðx;−x0Þ �Dnonðx;x0Þ:

The nonlocal contribution comes from the last two terms
in Eq. (A17). By using the identities sinhðθ − iπ=2Þ ¼
−i coshðθÞ; coshðθ − iπ=2Þ ¼ −i sinhðθÞ, we can write

Dnonðx;x0Þ ¼ 1

4

Z
∞

0

dτ
e−τð1þi~κÞ

πð1þ e−2~ϵτÞ

× exp

�
−
x2 þ x02

2w2
0

tanhð~ϵτÞ
�

× 2 cos

�
x · x0

w2
0 coshð~ϵτÞ

�
: ðA18Þ

Because the first exponential suppresses contributions
where τ ≫ 1, we may consider the small ~ϵ behavior
by making a small ~ϵτ expansion, tanhð~ϵτÞ≃ ~ϵτ and
coshð~ϵτÞ≃ 1, along with 1þ e−2~ϵτ ≃ 2. The τ integral
then becomes straightforward, yielding

Dnonðx;x0Þ≃
cosðx·x0w2

0

Þ
4π½1þ i~κ þ ~ϵðx2þx02

2w2
0

Þ� : ðA19Þ

For the local terms, a similar expansion for small ~ϵτ is
possible; however, here we must note that the prefactor
involves 1 − e−2~ϵτ ≃ 2~ϵτ. We thus find

Dlocðx;x0Þ ¼ 1

4

Z
∞

0

dτ
e−τð1þi~κÞ

2π ~ϵτ

× exp

�
−
~ϵτ

2

�
xþ x0

2w0

�
2

−
2

~ϵτ

�
x − x0

2w0

�
2
�
:

ðA20Þ

The τ integral here can be shown to produce a modified
Bessel function of the second kind, i.e.,
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Dlocðx;x0Þ ¼ 1

4π ~ϵ

× K0

 ffiffiffi
2

~ϵ

r ����x − x0

w0

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i~κ þ ~ϵ

2

�
xþ x0

2w0

�
2

s !
:

ðA21Þ

Because the Bessel function diverges at zero argument, it
is crucial to consider the smoothed version of this function
when comparing Deffðx1; x1Þ in Eq. (9) to experimental
results. In doing this, we may note that the two terms in
the argument of the Bessel function have very different
dependence on coordinates. The first term depends strongly
on the separation, with a characteristic length scale
w0

ffiffiffiffiffiffiffi
~ϵ=2

p
, while the second term (inside the square root)

has a much weaker dependence, with a characteristic
length scale w0

ffiffiffiffiffiffiffi
2=~ϵ

p
≫ w0. In the smoothed function

Deffðx1; x1Þ, we integrate over Thomas-Fermi distributions
of the atom cloud. Assuming the cloud width is small
compared to the length scale w0

ffiffiffiffiffiffiffi
2=~ϵ

p
, we may neglect any

difference among x, x0, and x1 when evaluating the term in
the square root. This leads to the expression

Deffðx1; x1Þ ¼
1

4π ~ϵ

ZZ
dxdx0ρTFðx − x1ÞρTFðx0 − x1Þ

�
K0

 ffiffiffi
2

~ϵ

r ����x − x0

w0

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i~κ þ ~ϵ

2

x21
w2
0

s !

þ K0

� ffiffiffi
2

~ϵ

r ����xþ x0

w0

���� ffiffiffiffiffiffiffiffiffiffiffiffiffi1þ i~κ
p ��

:

Assuming symmetric clouds, this can further be simplified
by suitable changes of variables to put it into the form of a
convolution,

Deffðx1; x1Þ ¼
1

4π ~ϵ

Z
dzρ2ðzÞ"

K0

 ffiffiffi
2

~ϵ

r ���� zw0

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i~κ þ ~ϵ

2

x21
w2
0

s !

þ K0

 ffiffiffi
2

~ϵ

r ���� 2x1 − z
w0

���� ffiffiffiffiffiffiffiffiffiffiffiffiffi1þ i~κ
p !#

; ðA22Þ

where ρ2ðzÞ ¼
R
dyρTFðyÞρTFðz − yÞ. This is the pro-

cedure used in fitting Figs. 2 and 3.
Note that the first Bessel function in Eq. (A22) describes

the “self”-interaction of the cloud, and its only dependence
on x1 is via the square root in the Bessel function, which
ultimately leads to a slow falloff with length scale
w≡ w0

ffiffiffiffiffiffiffi
2=~ϵ

p
≫ w0. The second term is the mirror inter-

action, and it falls off exponentially with x1 with a length
scale ξ≡ w0

ffiffiffiffiffiffiffi
~ϵ=2

p
≪ w0. To see this behavior more

clearly, we can consider the analytic expressions that result
if we replace ρTFðxÞ with a Gaussian of width σ. In this
case, ρ2ðzÞ is a Gaussian with width

ffiffiffi
2

p
σ. For the first term,

which we denote Deff;selfðx1Þ, we may use the result

Z
dz

e−z
2=4σ2

4πσ2
K0ð2AjzjÞ ¼

1

2

Z
dτ

e−τ

τ þ 4σ2A2
;

which comes from an integral representation of the Bessel
function and defining A ¼ ð1=2ξÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i~κ þ x21=w

2
p

. In
this expression, the quantity Aσ > ðσ=2ξÞ ≫ 1, and
thus for the typical values of τ that dominate the integral,
we have 4A2σ2 ≫ τ. We thus find that the first part of
Eq. (A22) has the form

Deff;selfðx1Þ ¼
ðw0=σÞ2

16πð1þ i~κ þ x21=w
2Þ : ðA23Þ

There is no such simple closed form for the image term.
However, using the same approach as above, we can write
the expression in the form

Deff;imgðx1Þ ¼
1

8π ~ϵ

Z
dτ

exp ð−τ − 4x2
1
A2

τþ4σ2A2Þ
τ þ 4σ2A2

;

where now A ¼ ð1=2ξÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i~κ

p
. We still have that Aσ ≫ 1;

however, the extra terms in the exponent mean that it is no
longer always true that the integral is dominated by terms
for which τ ≪ 1. At large x1, the saddle point of the integral
occurs when τ≃ 2Ax1, and so for large enough x1 we have
that the dominant contribution comes from values for
which τ ≫ A2σ2. The crossover occurs when x1 ≃ σ2=ξ.
We thus have two asymptotic limits:

Deff;imgðx1Þ ¼
8<
:

ðw0=σÞ2e−x
2
1
=σ2

16π ~ϵð1þi~κÞ x1 ≪ σ2=ξ

1
4π~ϵK0

	
2x1
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i~κ

p 

x1 ≫ σ2=ξ

:

ðA24Þ

4. Relating the ratio of mode dispersion to mode
detuning ~ϵ to the effective number

of coupled modes ðM�Þ2
In order to make precise the sense in which we regard a

nonzero ~ϵ ¼ ϵ=Δ0;0 as corresponding to a finite mode
cutoff, we discuss here the results for such a cutoff. For
simplicity we consider a “square” cutoff, where we remove
all modes Ξl;mðxÞwith either l; m > M. This means we may
write expressions in terms of the 1D Green’s functions.
Neglecting nonlocal terms, we have

DMðx;x0Þ ¼ 1

4
½G1D

M ðx; x0ÞG1D
M ðy; y0Þ

þ G1D
M ðx;−x0ÞG1D

M ðy;−y0Þ þ � � ��: ðA25Þ
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The 1D Green’s functions with finite cutoff can be written
in terms of the Christoffel-Darboux identity to give

G1D
M ðx; x0Þ ¼

XM
n¼0

ΞnðxÞΞnðx0Þ

¼ ΞMþ1ðxÞΞMðx0Þ − ΞMðxÞΞMþ1ðx0Þ
x − x0

: ðA26Þ

Here and throughout this section we measure all lengths in
units of the cavity beam waist, i.e., w0 ≡ 1. Using the 1D
Green’s functions, we want to evaluate

DM;selfðx1Þ ¼
1

4
G1D
M ðx1; x1ÞG1D

M ðy1; y1Þ

DM;mirrorðx1Þ ¼
1

4
G1D
M ðx1;−x1ÞG1D

M ðy1;−y1Þ:

In the following, we will find approximate forms for these
terms at large M. For simplicity, we assume M is even;
similar results occur for odd M, but with various sign
changes in intermediate formulas. To consider the behavior
at large M, we make use of the Wenzel-Kramers-Brillouin
(WKB) approximation for a Gauss-Hermite function:

ΞnðxÞ≃ EnðxÞ cos
�
SnðxÞ − n

π

2

�
;

SnðxÞ ¼
Z

x

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1 − z2

p
;

EnðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πð2nþ 1 − x2Þ4
p :

The mirror term has a simple form as we may write

G1D
M ðx;−xÞ ¼ ΞMþ1ðxÞΞMðxÞ

x
:

The 1=x factor means we need only focus on behavior at
small x. This means we can approximate the phase function
SMðxÞ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1
p

x and the envelope function as EMðxÞ≃
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 14

p
, and so we find

G1D
M ðx;−xÞ≃ sinð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1
p

xÞ
2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2M þ 1Þp ¼ sincð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1
p

xÞffiffiffi
π

p :

Thus, we find that the mirror term describes a sharp peak
with a width that scales as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1

p
. Comparing this to

the results at nonzero ϵ, we can identify an “effective”
mode number, M� ¼ Δ0;0=ϵ, as parametrizing this finite
peak width.
The self-interaction term is more subtle. We can

first rewrite the Green’s function at x0 → x in terms of
derivatives

G1D
M ðx; xþ 0Þ ¼ ΞMðxÞΞ0

Mþ1ðxÞ − ΞMþ1ðxÞΞ0
MðxÞ

and then use the recurrence relation on Gauss-Hermite
functions, Ξ0

MðxÞ ¼
ffiffiffiffiffiffiffi
2M

p
ΞM−1ðxÞ − xΞMðxÞ, to obtain

G1D
M ðx; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM þ 1Þ

p
ΞMðxÞ2

−
ffiffiffiffiffiffiffi
2M

p
ΞMþ1ðxÞΞM−1ðxÞ:

Onemay nowuse that for largeM, we can neglect differences
between the envelope functions, EMðxÞ≃ EM�1ðxÞ, and
approximate

ffiffiffiffiffiffiffi
2M

p ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM þ 1Þp ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1
p

in the pre-
factors to write

G1D
M ðx; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1

p
EMðxÞ2

2

× ½cosð2SMðxÞÞ − cos ðSMþ1ðxÞ þ SM−1ðxÞÞ
þ 1þ cos ðSMþ1ðxÞ − SM−1ðxÞÞ�:

If we consider that

SM�1ðxÞ ¼
Z

x

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1 − z2

p

×

�
1� 1

2M þ 1 − z2
þOðM−2Þ

�
;

one may readily see that SMþ1ðxÞ þ SM−1ðxÞ ¼ 2SMðxÞ þ
OðM−2Þ, and so to leading order in 1=M, we have

G1D
M ðx; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1

p
EMðxÞ2

2
½1þ cos ðδSMðxÞÞ�

δSMðxÞ≡
Z

x

0

dz
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1 − z2
p

¼ 2 arcsin

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1
p

�
:

Finally, using double-angle formulas gives the result

G1D
M ðx; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1 − x2

π

r
: ðA27Þ

This shows that the self-interaction term gives a broad
semicircular function. Its algebraic form does not match
the finite ~ϵ result, but we can again identify the width of this
function,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1

p
, with the width of the nonzero ϵ self-

interaction, to again give the identification M� ¼ Δ0;0=ϵ.
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