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We present a method for efficiently enumerating all allowed, topologically distinct, electronic band
structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to
crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries.
The results presented match the mathematical structure underlying the topological classification of these
crystals in terms of K-theory and therefore elucidate this abstract mathematical framework from a simple
combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological
phases of spinless particles in crystals in class A. Employing this classification, we study transitions
between topological phases within class A that are driven by band inversions at high-symmetry points in the
first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal
structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.
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I. INTRODUCTION

Over the past two decades, topological order has been
established as an organizing principle in the classification
of matter, alongside the traditional symmetry-based
approach. The discovery of the quantum spin Hall effect
and topological insulators [1,2], however, made it apparent
that symmetry cannot be ignored within the topological
classification of free fermion matter. The topological
identities of these systems in fact depend on, and are
protected by, the presence of an underlying symmetry [3].
While the theoretical description of symmetry-protected
topological phases (SPTs) is connected to exotic field
theories and branches of mathematics [4], their interplay
between topology and symmetry also has direct and
prominent experimental consequences. These include the
presence of single protected edge states that circumvent
the usual fermion doubling theorem and the possibility of
excitations having fractional charges and statistics [5,6].
The tenfold periodic table has been a cornerstone in the

description of the connection between topology and sym-
metry [7,8]. It specifies the number of topologically distinct
ground states that are possible in free fermion systems in
any number of dimensions if their behavior under time-
reversal symmetry, particle-hole symmetry, and chiral

symmetry is given [9]. The combinations of discrete
symmetries on which the ten classes in the table are based
do not include any spatial symmetries. Materials in nature,
however, are made up of atoms, which are often positioned
in a periodic crystal structure containing crystal sym-
metries. Indeed, the very existence of periodic band
structures for electrons is a consequence of the breaking
of translation symmetry by an atomic lattice. It is well
known that, within time-reversal symmetric topological
insulators, the discrete translational symmetries surviving
within the atomic lattice lead to the definition of weak
invariants in three dimensions, which need to be used in
addition to the tenfold periodic table to get a full classi-
fication of the topological state [10,11]. This procedure
can be generalized to include any space group symmetry in
two and three spatial dimensions [12] and is expected to
become experimentally accessible and relevant in the
presence of lattice defects [13–18]. More generally, the
interplay of the rich structure of space group symmetries
and topology entails an active field of research, providing
for new phases and quasiparticles [19–29].
In addition to their role in characterizing topological

insulators, lattice symmetries are also vital in describing the
phases that emerge on the boundary between topologically
distinct phases. A notable example is found in gapless Weyl
semimetals [30], one of which has been recently identified
experimentally in TaAs [31–33]. The topological origin of
these Weyl phases ensures the presence of specific surface
states, called Fermi arcs, which connect the band crossings
in the bulk. The presence of either threefold rotations or
nonsymmorphic space group symmetries in these materials
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guarantees that the bulk band crossings cannot be
gapped, and they therefore also protect the corresponding
Fermi arcs [34–36].
In this article, we use space group symmetries to provide

a simple, but universal algorithm for identifying and
labeling distinct crystalline topological phases. The method
specifies all possible phases of spinless particles in class A,
in one or two dimensions, and in three dimensions up
to a subtle open K-theoretical question addressed in
Appendix B. In other words, we address crystals with
broken time-reversal, particle-hole, and chiral symmetries,
or any other anticommuting or anti-unitary symmetry, in all
physically relevant spatial dimensions. Essentially, we use
elementary representation theory to characterize topologi-
cally distinct band structures. In two dimensions, this
results in the complete list of allowed topological phases
shown in Table I. The equivalent table in three dimensions
can be constructed using the same procedure. Our argu-
ments agree with the mathematical computations in terms
of twisted equivariant K-theory, as proposed by Freed and
Moore [37]. This connection elucidates these involved
mathematical concepts in a straightforward physical set-
ting, and, most importantly, it provides a formal math-
ematical underpinning of our classification.
The algorithm will be worked out in detail below, but it

can be presented here on a heuristic level. The occupied
bands in a crystal are described by Bloch functions on the
Brillouin zone (BZ). These functions transform under the
crystal symmetry in a particular way, which changes as one
goes from a generic point in the BZ to a high-symmetry
point. As there are different ways of reaching such high-
symmetry points, the transformation rules of Bloch func-
tions need to satisfy gluing conditions that ensure their
mutual compatibly [39]. The possible valence band struc-
tures in a crystal are thus limited to ones that are consistent
with the gluing conditions implied by its crystal symmetry.
The way a valence band transforms under crystal sym-
metries can only be altered by exchanging it with a
conduction band, which necessarily involves a closing of
the band gap. Since topological phases of matter are
defined to be robust to changes that keep the gap open,
an alteration in the transformation properties of the valence
band can be interpreted as a topological phase transition.

This is analogous to the way changes in more familiar
topological invariants, such as the Chern number or
Thouless, Kohmoto, Nightingale and den Nijs (TKNN)
invariant [40,41], are necessarily accompanied by a closing
of the gap. We therefore find that the transformation
properties of the valence band characterize its topological
phase and need to be included in the topological classi-
fication. We describe the transformation properties of the
valence band with a set of integers, which, together with
the Chern number, completely specify the topological
phase of any crystal within class A. Taking robustness of
a topological phase under smooth deformations of the
Hamiltonian as the starting point of our method, we can
rigorously show that the invariants identified are indeed
topological, and that we find the complete set of distinct
invariants. This should be contrasted with the alternative
approach of generalizing known topological invariants,
such as, for example, in Ref. [42], where completeness
and topological invariance cannot be guaranteed.
Because an exchange of valence and conduction bands

implies a closing of the gap, we can examine the impact of
crystal symmetries on topological phase transitions by
studying band inversions at high-symmetry points in the
first Brillouin zone. Such inversions are accompanied by
either a direct transition between topological phases or the
formation of intermediate (Weyl) semimetallic phases. We
give a complete analysis of the two-dimensional case and
list all possible types of transitions and intermediate phases
consistent with band inversions for the 17 wallpaper groups
in Table VII.
The paper is organized as follows. We first present the

example of a specific two-dimensional crystal structure to
illustrate the classification scheme on a conceptual level
and to introduce some notation. In Sec. III, we then discuss
the general case in two dimensions. This will pave the way
for the description of possible intermediate phases emerg-
ing in topological phase transitions in two dimensions,
which is the subject of Sec. IV. We show in Sec. V that
three-dimensional topological insulators in class A can be
classified using the same scheme after taking into account
some additional subtleties. Generalizations to other classes
will also be considered in this section. Finally, we discuss
our findings and comment on future work.

TABLE I. The complete classification of topological phases of spinless particles within two-dimensional crystals in class A (without
time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries). The wallpaper groups bG in the first row are
denoted in the Hermann-Mauguin notation [38]. The second row denotes the number of integers that need to be specified in order to
completely characterize the representation of the valence bands of a topological phase in the corresponding wallpaper group, whereas
the third row signifies whether or not a Chern number is present. Finally, the last row is the sum of the second and third rows and gives
the complete set of integers that are needed to completely specify the topological phase.bG p1 p2 pm pg cm p2mm p2mg p2gg c2mm p4 p4mm p4gm p3 p3m1 p31m p6 p6mm

Representations Z Z5 Z3 Z Z2 Z9 Z4 Z3 Z6 Z8 Z9 Z6 Z7 Z5 Z5 Z9 Z8

Chern number Z Z 0 0 0 0 0 0 0 Z 0 0 Z 0 0 Z 0
Total Z2 Z6 Z3 Z Z2 Z9 Z4 Z3 Z6 Z9 Z9 Z6 Z8 Z5 Z5 Z10 Z8
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II. ANALYSIS OF p4mm

To give a conceptual description of the proposed
classification scheme, we first focus on the particular
example of a two-dimensional crystal whose crystal struc-
ture falls within the symmorphic wallpaper group p4mm.
Consider a square array of atoms with lattice spacing a,
which is set to unity (a ¼ 1) in the remainder of this paper.
The lattice is spanned by the lattice vectors t1 ¼ ð1; 0Þ and
t2 ¼ ð0; 1Þ. Besides the lattice translations, the crystal is
symmetric under all operations that leave a square invari-
ant. These symmetries form the point group D4, which is
generated by a reflection t about the x axis and an in-plane
90° rotation r. A general element g of the space group
p4mm consists of the combination of a point group element
R (centered at the origin) and a translation along a vector
v ¼ n1t1 þ n2t2. We denote such space group elements as

g ¼ fRjvg: ð1Þ

Going to momentum space, we again find a square lattice in
terms of the two reciprocal lattice vectors g1 ¼ 2πð1; 0Þ
and g2 ¼ 2πð0; 1Þ. The first Brillouin zone is a square with
−π ≤ kx;y ≤ π. Opposing edges of the square are equivalent
and may be identified, giving the first Brillouin zone the
topology of a torus. The presence of a crystal symmetry
allows us to consider only part of the first Brillouin zone.
This is because a space group element g ¼ fRjvg trans-
forms an electronic Bloch function at momentum k to one
with momentum R · k. The band structure is therefore
already fully specified if it is determined just for those
points that are not related to each other by the action of the
point group. This region of wave vectors is known as the
fundamental domain, Ω. The D4 symmetry operations r
and t in our present example affect the momenta of states
within the first Brillouin zone according to

r · ðkx; kyÞ ¼ ð−ky; kxÞ; t · ðkx; kyÞ ¼ ðkx;−kyÞ: ð2Þ

The fundamental domain thus consists of the region with
momentum values 0 ≤ kx ≤ π, 0 ≤ ky ≤ kx, as shown
in Fig. 1.
Within the fundamental domain, there are special wave

vectors that are mapped onto themselves by some or all of
the operations that make up the point group D4. The
electronic states with momenta corresponding to such
special wave vectors are then eigenstates of the subgroup
of operations inD4, which leave their momentum invariant.
These special wave vectors may appear at high-symmetry
points and lines in the first Brillouin zone, which are shown
in Fig. 1 and listed in Table II.
As an example, consider the origin Γ ¼ ð0; 0Þ. The

momentum of Bloch states at this point in the first
Brillouin zone is held fixed under both r and t, and any
combination of reflections and rotations. The same is true
forM ¼ ðπ; πÞ because, under r and t, this point is mapped

onto itself modulo a reciprocal lattice vector. The presence
of reflections in the group D4 also allows entire lines in the
first Brillouin zone to be left invariant under some of
the point group operations. One readily verifies that l1 ¼
ðkx; 0Þ is left invariant by t, while l2 ¼ ðπ; kyÞ and l3 ¼
ðkx; kxÞ are invariant under the action of r2t and rt,
respectively. At the intersection of l1 and l2, we find the
point X ¼ ðπ; 0Þ, which must be left invariant under both
the symmetries that leave l1 unaffected and the symmetries
that keep l2 fixed.
The symmetry transformations, or elements of the point

group, that leave a particular high-symmetry point k
invariant also form a group by themselves. This group is
referred to as the little co-group Gk. From the arguments
above, we see that the little co-groups at the high-symmetry
points Γ and M are equal to the full point group,
GΓ ¼ GM ¼ D4, because all symmetry transformations
in D4 leave these points invariant. Similarly, the high-
symmetry lines are left invariant only by a single trans-
formation, and their little co-groups are thusGli ¼ Z2, with
i ¼ 1, 2, 3. Notice that these Gli are generated by different
transformations along different high-symmetry lines, but

FIG. 1. The fundamental domain (shaded red) Ω of the first
Brillouin zone. It contains only points that are not related to each
other by transformations in the point group D4, as described by
Eq. (2). High-symmetry lines are indicated in red, and high-
symmetry points are in black.

TABLE II. The little co-groups contained within the space
group p4mm. These little co-groups consist of all symmetry
operations that keep the momentum of a particular high-sym-
metry point or line fixed. The fundamental domain Ω in this case
contains momentum points with 0 ≤ kx ≤ π and 0 ≤ ky ≤ kx, and
its interior is denoted intðΩÞ.

k Little co-group Gk

Γ (0,0) D4

M ðπ; πÞ D4

X ðπ; 0Þ Z2 × Z2 ¼ f1; r2; t; r2tg
l1 ðkx; 0Þ Z2 ¼ f1; tg
l2 ðπ; kxÞ Z2 ¼ f1; r2tg
l3 ðkx; kxÞ Z2 ¼ f1; rtg
intðΩÞ ðkx; kyÞ f1g
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the resulting group structure is the same in each case. The
point X finally combines the symmetries of two lines and
has little co-group GX ¼ Z2 × Z2. All little co-groups, and
associated symmetry transformations, are listed in Table II.
The little co-groups at high-symmetry points may

necessitate bands at those points to become degenerate.
This can be seen directly from the way a space group
element acts on the Bloch function ψk;iðrÞ with band index
i, position r, and wave vector k:

fRjvg · ψk;iðrÞ ¼
X
j

Dk
ijðfRjvgÞψR·k;jðr − vÞ: ð3Þ

The point group element R transforms a Bloch function
with momentum k to a Bloch function with momentum
R · k. Bloch functions with different band indices j, but
equal momentum k, may be mixed by the matrix
Dk

ijðfRjvgÞ. This matrix is a representation of the space
group element fRjvg, which for generic points in the
fundamental domain away from high-symmetry locations,
is usually just a phase factor (i.e., a one-dimensional
representation). The elements of the space group for which
v is a pure lattice translation combine Bloch functions
ψR·k;jðr − vÞ that differ from the functions ψR·k;jðrÞ by
pure phase factors. Space groups consisting only of these
types of elements, such as p4mm, are called symmorphic,
and in dealing with these space groups, we only need to
consider ordinary representations of the point groups when
determining the Dk

ijðfRjvgÞ. For nonsymmorphic space
groups, which contain screw axes or glide planes and have
elements with v a fraction of a lattice translation, projective
representations of the point groups need to be taken into
account. These will be considered in detail in Appendix A.
Since the Hamiltonian is symmetric with respect to

the space group of the lattice, eigenstates of space group
elements must also be eigenstates of energy. Equation (3)
shows the eigenstates of fRjvg to be linear combinations of
ψR·k;jðrÞ, so these states must all have equal energy. For
states at high-symmetry points, such that R · k ¼ k, all
bands at k connected by Dk

ijðfRjvgÞ are then necessarily
degenerate. This conclusion can also be expressed on the
level of the Hamiltonian itself. If the full Hamiltonian is
written as a sum of Bloch HamiltoniansHðkÞ, the action of
the crystal symmetries can be described by

ρðRÞHðkÞρðRÞ−1 ¼ HðR · kÞ
½ρðRÞ; HðkÞ� ¼ 0 if R · k ¼ k: ð4Þ

Here, ρðRÞ is a (matrix) representation of the point group
element R or, equivalently, an operator enacting its sym-
metry transformation. The Bloch Hamiltonian commutes
with the elements of the little co-group at high-symmetry
points and lines. At these locations, the eigenfunctions of
the Bloch Hamiltonian are thus also eigenfunctions of the
elements of the little co-group. Conversely, the collection of

states in the valence band with momentum k forms a
representation of the little co-groupGk. This representation
consists of irreducible representations of Gk, which
represent either individual bands (one-dimensional irreduc-
ible representations) or sets of necessarily degenerate
bands (higher-dimensional irreducible representations).
Determining the irreducible representations of Gk can thus
be interpreted as a recipe for constructing the entire set of
valence bands at high-symmetry locations. As we will see
in the following, however, it is necessary to impose
additional constraints when considering the structure of
the valence bands throughout the first Brillouin zone.
These constraints come from the fact that representations

along high-symmetry lines need to connect properly, i.e.,
continuously, to representations at their endpoints, the
high-symmetry points. In other words, if a Bloch state
has a certain eigenvalue for a symmetry transformation on a
high-symmetry line, that eigenvalue cannot suddenly
change at the endpoint of the line. For the case of
p4mm, the bands at Γ and M form a representation of
D4, and at X ofZ2 × Z2. Along the lines li connecting these
three points, the bands need to form a representation of Z2.
Symmetry transformations making up a Z2 group structure
always have eigenvalues�1, so the eigenstates along li can
be either even ðþÞ or odd ð−Þ under the transformation:

Ri · juk;�i ¼ li;�ðRiÞjuk;�i: ð5Þ
Here, Ri is an element of the little co-group Z2 along li, and
juk; ji represents a state at momentum k with reflection
eigenvalue �1. The eigenvalues li;�ðRiÞ ¼ �1, in general,
are representations of the little co-group Z2 along li. Since
the representations are one dimensional (i.e., they apply to a
nondegenerate band), they can be replaced by their char-
acters, which equal the eigenvalues �1, as shown in
Table III. In the general case of higher-dimensional
representations, or a degenerate set of Bloch functions,
the representations become matrices.
If we now follow a particular band along a high-

symmetry line li towards its endpoint, the eigenvalues of
the symmetry transformation are preserved along the line.
On the high-symmetry point at the end of the line, the state
is symmetric under more symmetries and gains some
additional quantum numbers describing those, but it retains
the eigenvalue that it carried along the line. We are thus
restricted in the choice of representation on the high-
symmetry points by the representations along the high-
symmetry lines. In other words, when we follow any band
towards an endpoint of li, its representation is lifted to
either a representation of D4 or of Z2 × Z2, depending on
the endpoint. In terms of character tables, this means that
the characters in the character table corresponding to the
common elements at li and the high-symmetry points need
to agree. For example, suppose a band transforms as l1;−;
i.e., it is odd under t along l1. As the entire line l1 is held
fixed by t, the action of t at the endpoint X must be the same
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as its action along l1. Consulting the character table V, we
see that at X, the band must thus transform as either X1

or X3.
At Γ, the other endpoint of l1, the band should similarly

remain odd under t. According to the character table,
Table IV, we then see that at Γ, the band must transform
as either Γ1 or Γ3. In fact, the two-dimensional representa-
tion Γ4 is also a possibility, as long as there is an additional
even band along l1. In that case, the even and odd bands
becoming degenerate at Γ would be consistent with t being
represented in Γ4 by a two-dimensional matrix with
eigenvalues 1 and −1 (the character for Γ4 in Table IV
is the sum of eigenvalues). At Γ, the two bands then form a
doublet of D4.
Repeating this analysis for even bands along l1, the

entries in Tables Vand IV for the conjugacy classes ftg and
ft; r2tg, respectively, need to be 1. Hence, even bands
along l1 end in X0 or X2 at X and go to Γ0, Γ2, or Γ4 at Γ.
Applying similar constraints to all high-symmetry locations
ensures a consistent representation of the entire set of
valence bands throughout the fundamental domain.
The complete list of which representations along lines li

are enhanced to which representations at the endpoints Γ,
X, and M is given in Table VI. For example, we show that,
starting from a given representation at Γ, only certain
representations at the other high-symmetry locations are
allowed. In the following section, we use this information
to define a set of integers that specifies the representation of
the complete set of valence bands. These integers then
characterize the topological phase in space group p4mm,
modulo Chern numbers.

A. Counting the topological phases
protected by p4mm

The topological phases we would like to characterize are
defined to be phases of matter that are stable under any
deformations that do not close the gap between valence
and conduction bands and that do not change the crystal
symmetry. Deformations that do close the gap necessarily
cause either the representation of the set of valence bands or
the Chern numbers to change. This means that a topological
phase can be uniquely specified by the representation of its
set of valence bands and its Chern numbers. For the specific
case of the space group p4mm, there are no Chern numbers
[20] because of the reflection symmetry in D4, so its
topological phases within class A are completely specified
once the representation of the set of valence bands is
known. In Table VI, we already identified constraints on the
allowed representations, which we will now employ to
classify the possible topological phases of p4mm.
The representation of the set of valence bands, denoted

by V, is built out of a number of irreducible representations
at each high-symmetry point. To specify V, we therefore
simply count the number of bands in each irreducible
representation at the high-symmetry points, subject to
the constraints in Table VI. Formally, these numbers are
allowed to be negative as well as positive because, in the
underlying K-theory, the counting of bands is always

TABLE IV. The character table of D4 at Γ. The irreducible
representations are denoted by Γi. The columns are labeled by the
conjugacy classes of D4. The little co-group at M is also D4 and
has the same character table, but the irreducible representations
are denoted by Mi.

f1g fr2g fr; r3g ft; r2tg frt; r3tg
Γ0 1 1 1 1 1
Γ1 1 1 1 −1 −1
Γ2 1 1 −1 1 −1
Γ3 1 1 −1 −1 1
Γ4 2 −2 0 0 0

TABLE III. The character table of Z2. The irreducible repre-
sentations along the line li are denoted by li;�. The columns are
labeled by the conjugacy classes of Z2, containing all symmetry
operations that share the same character for each representation.
Here, � signifies whether states are, respectively, even or odd
under the symmetry transformation.

f1g ftg
li;þ 1 1
li;− 1 −1

TABLE V. The character table of Z2 × Z2 at X. Irreducible
representations in this case are denoted by Xi, and the columns
are labeled by the conjugacy classes of Z2 × Z2.

f1g fr2g ftg fr2tg
X0 1 1 1 1
X1 1 1 −1 −1
X2 1 −1 1 −1
X3 1 −1 −1 1

TABLE VI. The list of consistency relations between repre-
sentations along high-symmetry lines li and possible representa-
tions at their endpoints Γ, X, and M.

Group enhancement Representation enhancement

l1 D4 ← Z2 Γ0, Γ2, Γ4 ← l1;þ
D4 ← Z2 Γ1, Γ3, Γ4 ← l1;−

Z2 × Z2 ← Z2 X0, X2 ← l1;þ
Z2 × Z2 ← Z2 X1, X3 ← l1;−

l2 D4 ← Z2 M0, M2, M4 ← l2;þ
D4 ← Z2 M1, M3, M4 ← l2;−

Z2 × Z2 ← Z2 X0, X3 ← l2;þ
Z2 × Z2 ← Z2 X1, X2 ← l2;−

l3 D4 ← Z2 Γ0, Γ3, Γ4 ← l3;þ
D4 ← Z2 Γ1, Γ2, Γ4 ← l3;−
D4 ← Z2 M0, M3, M4 ← l3;þ
D4 ← Z2 M1, M2, M4 ← l3;−
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relative. For real materials, one can restrict attention to just
positive integers. As can be seen from the character tables,
Tables IVand V, there are five irreducible representations at
both Γ andM, and four at X. This results in 14 integers nki ,
signifying how many bands there are at k transforming
under the representation labeled i at that point. For
example, the integer nX2 indicates the number of bands at
X transforming as X2.
We can then consult Table VI to see that only certain

representations at Γ, X, and M are possible, depending on
whether the bands are odd or even along the connecting
lines li. This relates the integers nki at different high-
symmetry points to each other. For instance, the number of
even bands along l1, n

l1
0 must be equal to the combined

number of bands in Γ0, Γ2, and Γ4 at Γ,

nl10 ¼ nΓ0 þ nΓ2 þ nΓ4 : ð6Þ

Moreover, going to the other endpoint, X, the number of
even bands must equal the sum of those in X0 and X2. The
combination of the two relations between the number of
even representations along the high-symmetry lines and the
combined numbers of representations at its endpoints then
implies a direct relation between the high-symmetry points:

nΓ0 þ nΓ2 þ nΓ4 ¼ nX0 þ nX2 : ð7Þ

Repeating these steps for the odd bands along l1, we find a
similar relation,

nΓ1 þ nΓ3 þ nΓ4 ¼ nX1 þ nX3 : ð8Þ

The integer nΓ4 specifying the number of bands in the
two-dimensional representation Γ4 appears in both sets of
relations because a doublet at Γmust split into both an even
and an odd band along l1. The analysis for the remaining
high-symmetry lines l2 and l3 is similar and yields the
relations

nΓ0 þ nΓ3 þ nΓ4 ¼ nM0 þ nM3 þ nM4 ; ð9Þ

nΓ1 þ nΓ2 þ nΓ4 ¼ nM1 þ nM2 þ nM4 ; ð10Þ

nM0 þ nM2 þ nM4 ¼ nX0 þ nX3 ; ð11Þ

nM1 þ nM3 þ nM4 ¼ nX1 þ nX2 : ð12Þ

The six relations between integers nki show that they
cannot be chosen independently, and they thus reduce
the number of integers required to specify the complete
representation of the set of valence bands. In fact, only five
of the six relations are independent from each other. In
other words, the rank of the system of equations relating
different integers nki has rank m ¼ 5. This implies that

14 −m ¼ 9 integers need to be specified to characterize
the set of valence bands. These nine integers completely
fix how many valence bands there are and under which
representations they transform on all high-symmetry points
in the fundamental domain. We thus conclude that the
topological phases of spinless particles in class A protected
by p4mm space group symmetry can be classified by a set
of nine integers, i.e., by elements of Z9.

III. GENERAL WALLPAPER GROUP

The method exemplified by our analysis of the wallpaper
group p4mm can be applied in the same way to all
wallpaper groups. The first step is always to determine
the fundamental domain Ω. After that, the point group
operations are used to identify high-symmetry points and
lines as well as their corresponding little co-groups. The
correspondence between characters of the little co-groups
along high-symmetry lines and those at the high-symmetry
endpoints then yields the allowed combinations of their
irreducible representations, akin to the example of
Table VI. To specify a representation of the full set of
valence bands, an integer nki should be assigned to each
irreducible representation i at high-symmetry point k,
which specifies the number of valence bands for those
values of i and k. The previously listed relations between
irreducible representations along high-symmetry lines and
their endpoints can then be converted into a set of m
independent relations between the integers nki . A repre-
sentation of the complete set of valence bands is specified
by n −m integers, where n is the total number of integers
nki one started with. Finally, we need to consider Chern
numbers. These topological invariants can only be present
in wallpaper groups that do not contain reflections because
the Berry curvature is odd under reflection. For groups that
do allow a Chern number, this one additional integer should
be added to the set of nki in order to have a complete
specification of the set of valence bands. It should be noted
that the Chern numbers modulo the order of the point group
can also be obtained from the symmetry eigenvalues of
the point group on the high-symmetry points [20]. Here,
our goal is to go beyond this subset and enumerate all
topologically distinct phases.
Four of the 17 wallpaper groups, pg, p2gg, p2mg, and

p4gm, i.e., the nonsymmorphic ones, need special atten-
tion. In these cases, the representations of the little co-group
become projective representations. This is a consequence
of the fact that we cannot separate their point group actions
R from the translations v, and as a result, an additional
phase factor needs to be accounted for in the analysis
[22,34,36,43]. As long as this subtlety is properly taken
into consideration, however, the procedure outlined above
can still be applied in precisely the same way. This again
enables us to identify the set of integers needed to
completely specify the topological phase given the space
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group symmetry. A detailed discussion of the procedure for
nonsymmorphic groups is given in Appendix A.
Table I collects our results and classifies all topological

phases in class A for any of the 17 wallpaper groups. It
exactly agrees with the mathematical computation in terms
of K-theory as proposed by Freed and Moore in Ref. [37].
This mathematical theory has been formally proven to
classify all topological phases of gapped free fermions. The
connection between our method and K-theory therefore
constitutes a mathematical proof that we classified all
crystalline topological phases of spinless electrons within
class A. For example, this guarantees that the crystalline
topological phases protected by p4mm symmetry identified
in the previous section exhaust all possibilities for such
phases. The agreement between K-theory calculations and
the full list of wallpaper groups in Table I, based on our
combinatorial arguments, can be made explicit using the
results of Refs. [44–47]. As the comparison involves some
intricate mathematical details, we refer the interested reader
to Appendix B, which also discusses the connection for
higher-dimensional space groups.

IV. INTERMEDIATE PHASES

Having found a classification of all possible topological
phases in two-dimensional crystals, we can now also
analyze allowed transitions between them. The sym-
metry-protected phases classified by our band structure
combinatorics scheme are stable as long as perturbations
do not close the band gap and do not break the lattice
symmetry. Lattice distortions, such as defects or impurities,
are examples of perturbations that locally break the space
group symmetry. A small number of isolated defects or
impurities, however, will not significantly affect the proper-
ties of the topological phase since they can be expected to
only change the electronic band structure in a negligible
way. The topological transitions that may result from
breaking or altering the lattice symmetry on a more global
level will be left for future work. Our method works in
any dimension, but for the sake of clarity, we restrict the
discussion of explicit examples to two dimensions. We
comment on particularities arising in higher dimensions at
the end of this section.
In this section, we focus instead on topological tran-

sitions that do not alter the space group symmetry of the
crystal lattice. Such transitions are driven either by changes
in the band filling or by band inversions. Changing the band
filling by adding electrons or holes to a material can turn
any insulator into a metal and therefore has no direct
topological significance. We therefore focus exclusively on
transitions driven by band inversions at fixed filling. Such
inversions can occur anywhere in the first Brillouin zone
and can turn the insulator into a semimetal, hosting
degeneracies at arbitrary points in the first Brillouin zone.
For generic values of the momentum value k at which an
inversion occurs, however, the resulting degeneracies in

two-dimensional materials will generically be lifted and an
avoided crossing is realized instead. This can be seen
directly from the counting arguments in our combinatoric
procedure. Consider the two bands that are being inverted.
They can be parametrized by three Pauli matrices, which
means we need to tune three coefficients to obtain a
degeneracy. In two dimensions, there are only two com-
ponents of the momentum that can be tuned, and states at
generic values of k are not eigenstates of any symmetries
that could be used to force the remaining third parameter to
take a specific value. The implication is that nodes do not
occur at generic momentum values without fine-tuning. For
band inversions on high-symmetry lines, on the other hand,
a point group operation keeping that line fixed, such as the
mirror operation for lines in p4mm, will cause the momenta
of the two nodes resulting from the inversion to be
constrained to the high-symmetry line. These nodes are
still unstable, however, because they can be moved along
the mirror line by a perturbation of the system in such a way
that pairs of nodes annihilate one another. By doing this, the
band inversion can be undone, so no topological phase
transition could have occurred as a result of the inversion
on the high-symmetry line. The only interesting case in
two dimensions, then, involves band inversions at high-
symmetry points. These types of inversions result in single
nodes along high-symmetry lines in the fundamental
domain. They are much more stable than the other cases
because there are no pairs of nodes on the high-symmetry
lines that can mutually annihilate. To get rid of single
nodes, they must be moved all the way to the end of the
high-symmetry line away from where the band inversion
was performed. The node can then meet up with a
symmetry-related partner, which is simultaneously moved
along a related high-symmetry line outside the fundamental
domain, and be annihilated. Because of the relative stability
of single nodes, semimetals in class A resulting from a
space group symmetry-preserving phase transition will
generically be due to inversions at high-symmetry points.
One appealing aspect of the topological classification in

terms of band structure combinatorics, presented here, is
that the topological indices nki precisely reflect the
special role of band inversions at high-symmetry points.
Nevertheless, these are the only operations that can alter the
indices and thereby cause a topological phase transition
while preserving the space group symmetry.
To study band inversions in more detail, we again begin

by focusing on the example of space group p4mm. In this
case, three types of band inversion can be distinguished,
depending on whether single or doubly degenerate bands
are inverted. In terms of representation theory, an inversion
at a high-symmetry point corresponds to changing the
representation of the set of valence bands, given by the
set of indices nki . At the high-symmetry point, the set of
valence bands consists of bands that are either nondegen-
erate or stick together in doubly degenerate pairs. These
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correspond to one- and two-dimensional irreducible rep-
resentations of the little co-group, respectively. The effect
of an inversion amounts to interchanging irreducible
representations within the set of valence bands with those
from the set of conduction bands. The key ingredient in
understanding the result of these inversions is to determine
whether the band crossings created along li may be avoided
or not. This can be done by determining whether or not the
eigenvalues corresponding to the symmetry transforma-
tions along li are the same for the bands involved in the
crossing. If two bands with equal eigenvalues cross each
other, a perturbation can always be introduced which
causes a splitting of the bands without affecting the
symmetry of the system, and the crossing will, in practice,
thus be avoided. If the eigenvalues of the bands differ from
one another, however, splitting them could only be done by
operations that do not respect the space group symmetry,
and such nodes are thus symmetry protected and stable.

A. Nodes along high-symmetry lines

Consider a system with p4mm space group symmetry,
which contains two nondegenerate bands, one above and
one below the Fermi level, as shown in Fig. 2(a). Let us also
assume that the conduction band is in the trivial represen-
tation at Γ,M, and X, meaning that it is even along all li. In
contrast, assume that the valence band is in a nontrivial
representation, i.e., an odd one, along one of the li, say, l1.
An inversion at Γ or X will now create a symmetry-
protected Weyl node along l1 because the band crossing
that it induces cannot be avoided while respecting the
lattice symmetry. The nodes created along other high-
symmetry lines contain bands with equal eigenvalues for
the symmetry transformation and can thus be trivially
avoided or split. The stable state after the inversion is thus
one in which only the protected node remains, as shown in
Fig. 2(b). Reflection symmetry fixes the location of this
node to lie on l1, but it can be moved along the high-
symmetry line in agreement with our previous counting of
the number of tunable parameters.
A second scenario we may consider is that the valence

band originally is odd along two high-symmetry lines while
keeping the conduction band even everywhere. In that case,
two symmetry-protected nodes will be produced upon
performing an inversion. Examples of this can be seen
in Figs. 2(c) and 2(d). In the case of the p4mm space group,
there are no more possibilities to consider because there are
no points in the fundamental domain at which more than
two high-symmetry lines meet.
In both cases considered, the inversion of two non-

degenerate bands gives rise to an intermediate semimetallic
phase. This phase can be turned into a topological insulat-
ing phase different from the original one by performing a
second inversion at the other end of the high-symmetry
line(s) containing Weyl nodes. In the situation shown in
Figs. 2(b) and 2(d), this means inverting the bands at X and

at X and M, respectively. Performing the second inversion
is equivalent to tuning the location of the node to the other
end of the high-symmetry line, where it then annihilates
with a symmetry-related partner from outside the funda-
mental domain.
In the intermediate semimetallic phase, the dispersion

near the nodes is generically linear. Intuitively, this may be
expected from the fact that the two bands crossing each
other cannot be connected by perturbations that respect the
symmetry. Formally, it can be seen from the fact that at the
crossing point, the Hamiltonian forms a tensor product
representation of the two intersecting bands. Combining
this with the fact that the Hamiltonian can always be
expanded in the form H ¼ aþ biki þ cijkikj þ � � �, where
the linear term represents a vector representation of the
corresponding group, it is clear that if the direct sum
decomposition of the tensor product for the crossing bands
contains a vector representation, a linear dispersion will
generically be present. This is the case for a crossing of two
bands with different eigenvalues of a Z2 symmetry.
The intermediate semimetallic phase can be further

characterized using the analysis of Sec. II. An inversion
changes the number of valence bands in a particular
representation and, in doing so, introduces connections
between a valence band at one high-symmetry point and a
conduction band at another. As a result, some of the

(a) (b)

(c) (d)

FIG. 2. Possible effects of a band inversion at Γ on band
structure topologies with p4mm symmetry. Red lines are elec-
tronic bands, which are flattened for clarity. The dashed blue
line indicates the Fermi energy. The eigenvalues along a high-
symmetry line under the associated reflection symmetry are
indicated with �. (a) A topologically insulating state with one
valence band and one conduction band. The representations, or
�1 eigenvalues, along high-symmetry lines are indicated. Rep-
resentations at high-symmetry points are indicated for the valence
band only, as the conduction band is in the trivial representation at
all high-symmetry points. This configuration is gapped every-
where and has Nl1

� ¼ 0. (b) Upon an inversion at Γ, two bands
will cross along l1, creating a Weyl cone. The crossing is
characterized by Nl1

� ¼ �1. Note that along l3, a crossing has
been avoided. (c) A topologically insulating state with a valence
band that is odd on both l1 and l3. (d) An inversion at Γ, in this
case, resulting in Weyl nodes along both l1 and l3, characterized
by Nl1

� ¼ �1 ¼ −Nl3
�.
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relations (7)–(12) will be violated. Equivalently, we can
also say that whenever these relations are not satisfied,
there must be a crossing of valence and conduction bands
somewhere in Ω. Since the electronic filling is assumed
to be conserved, the degeneracy always happens at the
Fermi energy.
The violations of the relations between numbers of

representations can be quantified. Along l1, for example,
they can be specified by the integers Nli

�, with

Nl1þ ¼ nΓ0 þ nΓ2 þ nΓ4 − nX0 − nX2 ; ð13Þ

Nl1− ¼ nΓ1 þ nΓ3 þ nΓ4 − nX1 − nX3 : ð14Þ

For the insulating phase in Fig. 2(a), it is clear that Nl1
� ¼ 0,

signifying that this is a topological insulator. The band
structure after the inversion, however [shown in Fig. 2(b)],
has Nl1

� ¼ �1 and is a Weyl semimetal. In general, we can
be certain a node is present whenever

Nliþ ¼ −Nli− ð15Þ

because in order to get Weyl nodes, a given number of even
bands always has to be interchanged with the same number
of odd bands.
For p4mm, there are six distinct semimetallic phases,

three with a node along one of the high-symmetry lines
and another three with a node along two of the high-
symmetry lines. From Eqs. (13) and (14), it is clear that two
consecutive inversions at adjacent high-symmetry points
result in a state with N� ¼ 0 along the connecting high-
symmetry line, as anticipated.

B. Nodes at high-symmetry points

Besides having nodes along high-symmetry lines, it is
also possible for Weyl nodes to be fixed at high-symmetry
points, akin, for example, to the nodes in graphene [48].
Within our analysis of the possible phases respecting
p4mm space group symmetry, these types of nodes result
from interchanging a nondegenerate band with a doubly
degenerate band. Precisely such an inversion occurs, for
example, in the well-known HgTe systems [49,50]. As an
example, consider again a nondegenerate conduction band
that is even along all high-symmetry lines, and a set of two
valence bands that are degenerate at Γ; i.e., the valence
band is in the representation Γ4 at Γ, as shown in Fig. 3(a).
A band inversion at Γ at fixed filling will now result in the
band structure shown in Fig. 3(b), which exhibits a node at
the high-symmetry point Γ.
The dispersion near the node can again be found by

considering the tensor product representation of the two
intersecting bands. In this case, we find that the dispersion
cannot be linear because there is no vector representation
in the direct sum decomposition of the tensor product.

Heuristically stated, the inversion at Γ imposes too many
constraints on a general Hamiltonian near Γ for it to contain
any linear terms.
The semimetallic phase can again be characterized by

using the topological indicesN�. For the example in Fig. 3,
we find

Nl1;l3− ¼ 0; Nl1þ ¼ −Nl3þ ¼ 1: ð16Þ

In contrast to Eq. (15), this time the characterization
involves two high-symmetry lines. This can be understood
by noting that the inverted band at Γ connects to the even
representations in the set of valence bands at both X andM.
For crystals with space group p4mm, generic inversions at
either M or Γ can in fact always be characterized by a
relation of the type

Nli
r ¼ −Nlj

r0 : ð17Þ

Here, li ≠ lj are the two high-symmetry lines adjacent to
either M or Γ, and the indices r and r0 are not necessarily
the same. In other words, for p4mm, there are eight
possible sets of integers characterizing eight distinct semi-
metallic phases with a node at a high-symmetry point.

C. Two doubly degenerate bands

The final possibility within the p4mm setting is a
scenario with two conduction and two valence bands,
which are both doubly degenerate at a high-symmetry

(a)

(b)

FIG. 3. Inverting a nondegenerate band with a doubly degen-
erate one at fixed filling. (a) A topologically insulating state with
two valence bands and one conduction band. The valence bands
are degenerate at Γ, and Nli

� ¼ 0 for all li. (b) A band inversion at
Γ at fixed filling requires the number of filled bands after the
inversion to still be two everywhere. This implies that, at Γ, a
degeneracy must appear at the Fermi level. This intermediate
phase is characterized by Nl1þ ¼ −Nl3þ ¼ 1, Nl1− ¼ Nl3− ¼ 0.
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point. Figure 4 shows this situation with the degeneracies
occurring at Γ. As wewill see, this case contains an example
of a direct transitionbetweendistinct topologically insulating
phases, which circumvents any intermediate semimetallic
phase. Suppose both the conduction and valence bands are in
the irreducible representation Γ4 at Γ. Performing an inver-
sion at Γ will not change the topological phase according to
the classification in terms of the indices nki because the
inversion does not change nΓ4 . The same conclusion can be
reached by considering the band structure directly, starting
from the situation in Fig. 4(a). The inversion will result in
four band crossings along l1, as well as four crossings along
l2. Two of these crossings on each line are avoided, and two
constitute actual nodes. The resultingband structure is shown
in Fig. 4(b). The two nodes along a given high-symmetry
line, however, can be mutually annihilated. During such a
process, a gap is opened up again, as shown in Fig. 4(c). This
means that only a topologically insulating phase is stable
after the inversion at the high-symmetry point, and a
transition between the two insulating states can therefore
happen directly, in contrast to the cases discussed before.
Notice that, in this case, the initial and final topological

insulators have the same integers nki and are thus the same
phase. A genuine direct transition between different phases
can be obtained when the two doubly degenerate bands are
different.

D. General wallpaper group

The analysis of intermediate phases in crystals with
p4mm symmetry can be straightforwardly generalized
to other wallpaper groups. As before, we only consider
inversions at high-symmetry points.
We start with the simplest wallpaper groups, p1, p2, p3,

p4, and p6, which haveZn as their point groups. In contrast
to p4mm, these wallpaper groups do not any contain
reflection-symmetric (high-symmetry) lines. Since an
inversion in that case cannot result in bands with different
reflection eigenvalues crossing each other, the inversion
will not result in the formation of a node. In other words,
these systems always remain gapped after an inversion,
and we find only direct transitions between topologically
insulating phases, without any intermediate phases. The
same conclusion can be reached by considering the
relations between the nki , which, in this case, only constrain
the total number of bands at each high-symmetry point to
be equal. In fact, whenever a general space group gives rise
to isolated high-symmetry points, which are not connected
to any high-symmetry lines, direct transitions are an
inevitable consequence of inversions at that isolated point.
For the wallpaper groups, this situation occurs only for
p31m, which thus allows for direct transitions whenever a
band inversion takes place at the K point.
Direct transitions may also occur when a band inversion

interchanges two different doubly degenerate sets of bands,
as shown in Fig. 4. The only wallpaper group that has two
different two-dimensional irreducible representations, and
thus allows for this type of direct transition, is p6mm.
For wallpaper groups with a reflection symmetry, the

nodes are constrained to lie on the reflection-invariant line, as
in the case ofp4mm. Again, having two nodes along a single
line can be considered to be an unstable situation since the
nodes may move towards each other and annihilate. More
stable single nodes along a high-symmetry line cannot occur
for wallpaper groupspm,pg, and cm, which haveZ2 as their
point groups. These structures contain high-symmetry lines
but no high-symmetry points. Consequently, an inversion
only creates pairs of nodes along high-symmetry lines. For
wallpaper groups with point groups other than Z2, single
nodes along high-symmetry lines can occur.
Besides nodes along high-symmetry lines, Weyl nodes

can also come about at high-symmetry points. For this to
happen, the inversion has to interchange a nondegenerate
band with a doubly degenerate band at fixed filling, as
shown in Fig. 3. In all cases where a node appears either on
a high-symmetry line or on a high-symmetry point, it can
be checked whether or not the resulting dispersion around
the node is linear. As before, this is done by evaluating the

(a)

(b)

(c)

FIG. 4. Inverting two doubly degenerate bands. (a) A topo-
logically insulating state with two valence bands and two
conduction bands, which are both degenerate at Γ. (b) After a
band inversion at Γ, there will be four band crossings on each
high-symmetry line. Two of them will be avoided and not drawn,
whereas the other two constitute Weyl nodes. (c) Zooming in on
the boxed region in diagram (b), the two opposite Weyl nodes
along a single high-symmetry line can be moved towards each
other and annihilated. A direct transition between the original and
final topologically insulating states is therefore possible. Notice
that the final state is the same as the original one. This agrees with
the fact that the integers Nþ and N− are all zero in both the initial
and final configurations.
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direct sum decomposition of the tensor representation of
the two intersecting bands. We find that the dispersions for
the nodes along reflection lines are always linear, while for
most nodes at high-symmetry points, they are not. The only
exception to the latter rule are points with a D3 symmetry,
such as the K point in graphene [48].
The intermediate phases in general wallpaper groups

can again be characterized by considering whether the
relations between topological indices nki are satisfied or
not. Mismatches in these relations signal the presence
of intermediate phases with gapless excitations. To define
such mismatches more precisely, we take differences of the
relations between high-symmetry points. For the even (þ)
or odd (−) bands along a high-symmetry line L, we get a
single relation, analogous to what was discussed in Sec. III.
The mismatch is then described by integers NL

�, where a
consistent orientation of all high-symmetry lines is chosen
in order to make NL

� well defined. For example, for p4mm,
this means that we define

Nl1þ ¼ nΓ0 þ nΓ2 þ nΓ4 − nX0 − nX2 ; ð18Þ

whereas Nl3þ is defined as

Nl3þ ¼ nM0 þ nM3 þ nM4 − nΓ0 − nΓ3 þ nΓ4 : ð19Þ

A single node along a high-symmetry line L results in a
mismatch given by

NL
� ¼ −NL∓; jNL

�j ¼ 1: ð20Þ

In the case of a node on a high-symmetry point between
two high-symmetry lines L and L0, the characterization is
similar:

NLþ ¼ NL0
þ ¼ 0; NL

− ¼ −NL0
− ; ð21Þ

or, similarly, withþ and − interchanged. In this expression,
jNL;L0

� j ¼ 1 and L ≠ L0. This concludes the analysis of all
possible transitions upon a band inversion respecting a
wallpaper group symmetry. The allowed intermediate
phases and direct transitions for each wallpaper group
and for all possible inversions at high-symmetry points are
listed in Table VII. The table also indicates whether or not
the dispersion around a node can be linear.

E. Nodes without fine-tuning

The transitions between phases we discussed so far
generically require fine-tuning of some of the parameters in
the Hamiltonian; i.e., to achieve the band inversion, we
needed to tune a conduction band below the valence band.
However, it is also possible to have nodes without fine-
tuning that are stable under small deformations of the
Hamiltonian that preserve the crystal symmetry. The
location of the node in reciprocal space may be changed
by the deformation, but for a sufficiently small deforma-
tion, it will not disappear. To understand why these nodes
are stable, one can simply enumerate the different con-
straints allowed on the parameters in a local Hamiltonian
around nodes in two and three dimensions. In doing so,
we take into account the local band structure around the
node only and ignore possible global constraints on the
representations.
As before, we consider high-symmetry locations M,

which can be points, lines, or planes in the Brillouin
zone that are left invariant by a little co-group GM. For
simplicity, we restrict attention to symmorphic space
group symmetries here. The number of bands in a given
irreducible representation Mj of the group GM is given by
the integer nMj . In general, the energy eigenvalues for

TABLE VII. Summary of all possible phases resulting from band inversions within two-dimensional topological insulators in class A.
Direct transitions between two distinct topologically insulating phases may result from band inversions at the listed high-symmetry
points in each wallpaper group (WpG). If a stable intermediate phase results from an inversion, it contains either single Weyl node(s)
along high-symmetry lines or a Weyl node at a high-symmetry point. The points indicated in the former case are the high-symmetry
points at which a band inversion results in a node along a connecting high-symmetry line. The dispersions near these nodes are always
linear. For the latter case, the listed points indicate both the place of the band inversions and the locations of the resulting nodes. The
dispersions near these nodes are linear only in the instances marked by ⋆. Standard notation has been used to indicate the locations of
high-symmetry points, and a cross indicates that no transition of the listed type is possible.

WpG p1 p2 pm pg cm p2mm p2mg p2gg c2mm

Direct transition Γ Γ, X, M, Y × × × × × × ×
Node on line × × × × × Γ, X, M, Y Γ, Y Γ, M Γ, Y 0
Node on point × × × × × × × × ×

WpG p4 p4mm p4gm p3 p3m1 p31m p6 p6mm

Direct transition Γ, X, M × × Γ, M, M0 × K Γ, K, K0 Γ
Node on line × Γ, X, M Γ, M × Γ, K, K0 Γ, X, Y × Γ, K, X
Node on point × Γ, M Γ, M × Γ⋆, K⋆, K0⋆ Γ⋆ × Γ, K⋆
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all bands are different, but there can be special points
where eigenvalues coincide. This requires a fine-tuning of
N ¼ P

jðnMj Þ2 − 1 parameters in the Hamiltonian. Locally
stable degenerate points onM can exist if the dimension of
M is greater than or equal to N. A well-known example of
this argument in three dimensions is to consider the entire
Brillouin zone without imposing any symmetry constraints.
The group GM is then the trivial group, containing only the
identity. It only has a trivial representationM1, so with two
bands in the Brillouin zone, we must have nM1 ¼ 2 and
N ¼ ðnM1 Þ2 − 1 ¼ 3. It is thus possible to have locally
stable degeneracies in the bulk of a three-dimensional
Brillouin zone without any symmetries. These are the well-
known Weyl nodes of a Weyl semimetal.
Applying the same arguments to materials in two

dimensions, it is clear they cannot contain stable degenerate
points at generic points in the Brillouin zone. Along high-
symmetry lines in two dimensions, however, there is
always a Z2 symmetry that gives rise to two representa-
tions, an even and an odd one. If we have one band in each
representation, this means N ¼ 1, and only one parameter
needs to be tuned in order to let the two bands become
degenerate. This can therefore happen at isolated points on
the high-symmetry line. High-symmetry points in two
dimensions may be left invariant by all kinds of different
symmetry operations, but since a high-symmetry point is
only a single location in reciprocal space, there is no room
to fine-tune the location of any node, and representations
generically do not become degenerate.
In three dimensions, besides Weyl nodes in the bulk of

the Brillouin zone, we should also consider isolated high
symmetry points, lines, and planes. The case of a plane is
similar to that of a line in two dimensions. The plane is
always left invariant by a Z2 symmetry operation, and pairs
of even and odd bands can become degenerate. We only
need to tune one parameter to achieve this, and one can
therefore have an entire curve of degenerate points in the
high-symmetry plane. Along a high-symmetry line in three
dimensions, more interesting representations can appear,
and two distinct irreducible representations can become
degenerate at locally stable points. Finally, as in two
dimensions, different representations are generically non-
degenerate at high-symmetry points.
The possibilities considered so far describe bands

becoming degenerate on a high-symmetry location M left
invariant by the group GM. A separate possibility arises
if we consider bands that become degenerate at special
points H within M at which the group GM is enhanced
to a larger group GH, thus forcing several representations
of GM to combine into a single irreducible representation
of GH. This is precisely what happens, for example, when
two bands along a high-symmetry line connect to a
high-symmetry endpoint of that line. These types of
connections are the key ingredient in the combinatorial
arguments presented in the previous sections. When

looking for possible nodes, we should therefore also
consider single higher-dimensional representations at
high-symmetry points or lines, and examine how they split
when going away from that high-symmetry location.
To see whether there is a node when bands become

degenerate, we need to consider the behavior of the
Hamiltonian in a small neighborhood of the degeneracy.
If GH is the little co-group at H, the degenerate bands form
some degenerate representation Hj of GH. The momenta in
the directions perpendicular to H will also transform in a
particular way under the symmetry operations of GH, and
they will form a corresponding representation VH

i . Terms in
the Hamiltonian that are linear in momentum are only
allowed if a vector representation VH

i appears in the direct
sum decomposition of the tensor productHj ⊗ H�

j because
the Hamiltonian itself must be invariant under GH. One
can easily check in explicit examples that, whenever this
happens, there will be a node: The energy eigenvalues
depend linearly on momentum and are nonanalytic at the
degenerate locus. It is beyond the scope of this paper to
attempt to prove this in full generality.
The list of all possible locally stable nodes in two and

three dimensions can be summarized as follows. For
generic points in two dimensions, there are no locally
stable nodes. For high-symmetry lines in two dimensions,
isolated nodes along the line are allowed at places where
an even and an odd band meet. High-symmetry points in
two dimensions will feature nodes if they have D3

symmetry, and there is a band transforming in the two-
dimensional vector representation of D3. In three dimen-
sions, Weyl nodes are possible at generic points, regardless
of the crystal symmetry. On high-symmetry planes in three
dimensions, a curve of nodes may appear as an even and an
odd band become degenerate. Similarly, a line of nodes
may appear along a high-symmetry line in three dimen-
sions if there is a band in an irreducible representation Mj

such that Mj ⊗ M�
j contains a vector representation VM.

An isolated node may appear along a high-symmetry line
in three dimensions if there are bands in two irreducible
representations M1 and M2 such that M1 ⊗ M�

2 contains a
vector representation VM. Finally, a high-symmetry point
in three dimensions may host a node if there is a band in
an irreducible representation Mj such that Mj ⊗ M�

j

contains a vector representation VM. A detailed analysis
of the degeneracies and their dispersion in three dimen-
sions with time-reversal symmetry is, in fact, discussed
in Ref. [23].

V. THREE DIMENSIONS AND OTHER
SYMMETRY CLASSES

Our method can also be straightforwardly applied to
crystal structures in three dimensions. For a general space
group G and its associated first Brillouin zone with high-
symmetry points Mi, the first step is to determine the
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representations of the little co-groupsGMi
for allMi. A set

of integers nM
i

j can then be introduced to indicate the
number of valence bands in representation j at high-
symmetry point Mi. These integers are not independent
because they are constrained by the compatibility relations
imposed by high-symmetry lines connecting various Mi,
as shown pictorially in Fig. 5. Giving a list of values for a
complete set of independent integers nM

i

j amounts to a
characterization of the set of valence bands, so finding the
number of independent integers in a given space group is
equivalent to classifying its possible topological phases. In
three dimensions, it is possible to have high-symmetry
planes but these do not add any compatibility relations
beyond those already imposed by the high-symmetry lines.
As in the two-dimensional case, the combinatorial

argument does not indicate the possible values of Chern
numbers, which need to be included in a full classification
of topologically distinct phases. Fortunately, they can be
obtained in a straightforward manner. Chern numbers are
always given by two-dimensional integrals. For example,
the TKNN invariant is an integral over the full Brillouin
zone in two dimensions. For crystals in three dimensions,
the Chern number will likewise be given by an integral over
a two-dimensional plane within the first Brillouin zone. In
the absence of band crossings, the Chern number can be
evaluated as a sum of contributions from the integration of
individual valence bands. The Chern numbers evaluated on

two parallel two-dimensional planes must be equal by
continuity.
If a three-dimensional crystal contains high-symmetry

planes, these may be used as convenient locations for
defining a set of Chern numbers. First, such a plane can
host a nonzero Chern number if and only if there is no
reflection symmetry within the plane, mimicking the two-
dimensional case. Moreover, a high-symmetry plane in three
dimensions is always left invariant by a reflection acting
perpendicularly to the plane, under which the bands can be
even or odd. Separate Chern numbers c� can then be
assigned to the full set of even or odd bands, and they
are obtained by summing the contributions from individual
even or odd bands. For a full characterization of the
topological phase, both numbers cþ and c− thus need to
be specified for all high-symmetry planes in the first
Brillouin zone. However, these Chern numbers are not
independent in the same spirit as the constraints found
above. Namely, a general plane in the Brillouin zone, a small
distance away from the high-symmetry plane, may have its
(single) Chern number c equal to zero. In that case, cþ must
equal −c− on the high-symmetry plane to ensure continuity.
Therefore, only a nontrivial mirror Chern number cm ¼
ðcþ − c−Þ=2 can be defined in this scenario [51].
The other possibility is that the general plane has a

nonzero Chern number c, so cþ þ c− must equal c by
continuity. This situation results in relations between the
Chern numbers on distinct but parallel high-symmetry
planes. For example, suppose there are mirror planes at
kz ¼ 0 and kz ¼ π that have Chern numbers c0� and cπ�,
respectively. If a general plane between kz ¼ 0 and kz ¼ π
has its total Chern number equal to c, then this implies

c ¼ c0þ þ c0−; c ¼ cπþ þ cπ−: ð22Þ

Combining these two equations then yields the relation

c0þ þ c0− ¼ cπþ þ cπ−: ð23Þ

Out of the four Chern numbers characterizing the two high-
symmetry planes, only three are independent. Notice that
these are exactly the same types of relations as the
constraints between high-symmetry points that we intro-
duced in Sec. III. The combination of all independent
Chern numbers and the set of independent integers
obtained from the representations of the valence bands
constitute our classification of topological phases in class
A. In Appendix B, we discuss the subtle point of whether or
not torsion can arise in the K-theory of nonsymmorphic
three-dimensional space groups.
As a concrete working example of the classification

scheme in three dimensions, consider the symmorphic space
group Pm3̄m (no. 221). It has an octahedral point groupOh,
which contains the symmetries of a cube and has 48 elements.
Note that Oh is generated by the following elements:

FIG. 5. Sketch of the relations between high-symmetry points
imposed by high-symmetry lines. A set of valence bands is shown
between two generic high-symmetry points X and Y, which are
left invariant under the symmetry transformations contained in
the little co-groups GX and GY . The irreducible representations of
GX and GY may be labeled as Xi and Xj. Each of the bands needs
to fall within one of these representations at the corresponding
high-symmetry points. The representations on X and Y, however,
need to be compatible with the representations Λj of the high-
symmetry line connecting X and Y. The remaining set of
independent integers indicating how many bands are in which
representations at the high-symmetry points finally determines
the number of possible topologically distinct configurations
of the set of valence bands, matching the abstract K-theory
classification.
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r ·k¼ð−kz;ky;kxÞ; t ·k¼ðky;kx;−kzÞ; I ·k¼−k: ð24Þ

The fundamental domain is shown in Fig. 6. It contains six
high-symmetry lines coming from the twofold, threefold, and
fourfold rotation axes. The endpoints of these lines are the
high-symmetry points Γ, R, X, and M, which have little
co-groupsOh,Oh,D4 × Z2, andD4 × Z2, respectively. The
high-symmetry points all have 10 different irreducible rep-
resentations, so 40 integers can be introduced to specify the
set of valence bands. The high-symmetry lines yield 25
relations between these integers,which, in this particular case,
were in fact already found by Wigner [39]. Taking into
account the dependencies between the relations, 22 integers
remain to be specified in order to fully characterize the set of
valence bands. The relations coming from mirror planes do
not add any additional constraints on these 22 integers since
they are already implicitly satisfied by taking into account the
constraints coming from the high-symmetry lines.
The octahedral point group has no Chern numbers

because, within each high-symmetry plane, there is a
perpendicular reflection plane. Hence, we find that a
topological phase in class A protected by Oh symmetry is
classified by Z22, i.e., by 22 integers. Once again, this result
can be corroborated by calculations from a more formal,
mathematical perspective. As shown in Appendix B, the
result from such aK-theory calculation is exactly the same as
that obtained in our combinatorial approach.
Having found that the combinatorial arguments can be

applied to three-dimensional space groups in essentially the
sameway as in two dimensions, the question is if it can also
be extended to systems beyond class A, which include time-
reversal, particle-hole, or chiral symmetries. In fact, the
two-dimensional symmorphic space groups in class AIII
can directly be addressed, using the complete classification
of topological matter in class A. This can be done because
there exists an isomorphism relating the K-theory compu-
tation for class A in three dimensions to two pieces in two
dimensions, one of which corresponds to class A while the

other corresponds to class AIII. However, we are not aware
of a similar mapping for nonsymmorphic space groups, so
we refrain from a detailed discussion in the present work.
In the case of class AII, of time-reversal symmetric

topological insulators, the time-reversal symmetry and
crystal symmetry intricately intertwine, which is antici-
pated to give a richer structure than the one presented here.
Nevertheless, we anticipate that the key ideas identified
in the combinatorial approach also hold in that class
and may provide new insights. Indeed, relations between
high-symmetry points in the Brillouin zone for class AII
materials underlie the classification procedure of Ref. [12].
These notions then reduce to the weak invariants if the
space group symmetries are subsequently neglected, as
time-reversal symmetry acts invariantly on high-symmetry
planes. Applying the types of arguments presented in the
present paper to representations of magnetic point groups
may be a way to further characterize these types of
topological materials.

VI. CONCLUSIONS

In this paper, we presented a straightforward combina-
torial procedure that can be used to give a classification of
distinct topological phases of spinless particles within class
A by taking into account the space group symmetries of a
material. The classification is shown to be complete in
one and two spatial dimensions. In three dimensions, the
completeness of the classification relies on a subtle point
regarding the possible presence of torsion in K-theories for
nonsymmorphic space groups, as discussed in Appendix B.
Although the arguments presented involve only basic
representation theory applied to the electronic band struc-
ture, we can be confident about the resulting classification
since it agrees with the formal, but mathematically
involved, K-theory computation [37,47]. Indeed, besides
providing an efficient and easily applicable algorithm for
determining the number of possible topological phases
protected by a given space group symmetry, the combina-
torial arguments also provide physical insight in the
distinctions between topological phases and the mathemati-
cal framework describing them. This may, in itself, be a
useful starting point for future research—for example, by
providing a possible route towards new K-theoretical
computations in systems beyond the scope of the cur-
rent work.
Within the context of materials in class A, the formalism

introduced here provides a way of identifying possible
transitions between topological phases as well as the phases
themselves. In particular, it allows us to list all possible
gapless phases at the boundaries between distinct topo-
logical phases for a given space group. We use this to
explicitly map all possible Weyl phases in two-dimensional
materials in class A and provide general criteria with
respect to their stability.

FIG. 6. Fundamental domain of the octahedral group Oh
(shaded red). The red high-symmetry lines connect the high-
symmetry points Γ, M, X, and R.

JORRIT KRUTHOFF et al. PHYS. REV. X 7, 041069 (2017)

041069-14



Interestingly, our results can also be applied in the
context of high energy physics, in particular, in string
theory. For example, D-branes in string theory carry
charges that are classified using K-theory [52]. For
type IIB superstrings on toroidal orbifolds, the setup is
then exactly the same as we have been discussing here. Our
methods therefore also provide a simple way of counting
D-brane charges in these types of superstring theories.
Besides extending the current work beyond class A and

to other fields of physics, an interesting direction for future
research is the application of the combinatorial arguments
presented here to evaluate the symmetries that are left
invariant at the physical boundaries of a piece of material.
These types of arguments may then be used to identify and
classify possible surface states, which are the hallmark of
topological bulk order and which would naturally comple-
ment the classification of class A materials with a given
space group presented here.
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APPENDIX A: NONSYMMORPHIC
SPACE GROUPS

The combinatorial arguments presented in the main text
can also be applied to nonsymmorphic symmetry groups. In
contrast to the symmorphic case, however, we then need to
explicitly take into account the translations as well as the
point group contributions to the full space group. The
translational part of nonsymmorphic groups gives rise to
additional phase factors in the character tables which
characterize the possible representations at high-symmetry
points. Besides having to include these phase factors, the
method is the same as the one presented for symmorphic
groups.
We closely follow Ref. [43] in our analysis of how

having a nonsymmorphic space group symmetry affects the
representations at fixed points in Ω. In Seitz notation,
nonsymmorphic elements are represented by Si ¼ fRijwig,
where Ri is an element of the point group and wi a
fractional lattice translation. As an example of such a
nonsymmorphic group element, consider a glide reflection
tg. If ðx; yÞ is a lattice point, then the glide reflection acts as

tg · ðx; yÞ ¼ ðxþ 1=2;−yÞ: ðA1Þ

This transformation has the property that t2g ¼ ð1; 0Þ, i.e., a
pure lattice translation. In general, nonsymmorphic ele-
ments make it impossible to separate reflections and
rotations from lattice translations. However, we can still
use the action of just the point group contributions, i.e., the
elements Ri, to determine the high-symmetry locations in
the first Brillouin zone.
Suppose C is a set of wave vectors k held fixed by a

little co-group GC. If this little co-group stems from a
nonsymmorphic space group, some of its elements Si may
themselves contain translations, making the representation
theory of GC much richer than what we saw so far. The
translations in Si are fractional and constrain the repre-
sentation ρk of GC to satisfy

ρkðRiÞρkðRjÞ ¼ exp ð−igi · wjÞρkðRiRjÞ: ðA2Þ

Note that for symmorphic crystals, wj ¼ 0. The reciprocal
lattice vector gi is defined by

R−1
i k ¼ kþ gi: ðA3Þ

Representations that satisfy Eq. (A2) are called projective
representations. The bands on the high-symmetry location
C thus transform under projective irreducible representa-
tions rather than ordinary representations.
In direct analogy to the procedure for symmorphic space

groups, we need to determine the projective irreducible
representations for the little co-groups in the nonsymmor-
phic case, count them, and finally find the relations
between them that are imposed by the representations
along high-symmetry lines. The only difference between
the treatments of symmorphic and nonsymmorphic sym-
metries in class A is thus the type of representations used.
As a concrete example, consider the wallpaper group

p2gg. The associated point group is generated by two
elements: one reflection tx in the kx direction and an
inversion σ. Modulo lattice translations, this wallpaper
group has the following elements:

G=Z2 ≃G0 ¼
�
fej00g; fσj00g;

�
tx

���� 12 12
�
;

�
ty

���� 12 12
��

;

ðA4Þ

where we denoted the identity element by e. Using the
elements σ, tx, and ty, we find that there are four fixed
points, Γ, X, M, and Y, which all have little co-group G0.
There are also four lines that are held fixed by reflections in
the two axes. These lines connect the four high-symmetry
points and form the boundary of the fundamental domain
Ω. These results are summarized in Table VIII.
The nonsymmorphic elements do not enhance the

representations at Γ because gi ¼ 0 for all elements Ri.
There could, however, be projective representations at X, Y,
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and M, as used, for example, in the analysis of Ref. [36].
First, consider the high-symmetry point X and define the
object νðRi; RjÞ as

νðRi; RjÞ ¼ exp ð−igi · wjÞ: ðA5Þ

In this case, all ν’s are unity except for νðtx; txÞ ¼
νðtx; tyÞ ¼ νðσ; txÞ ¼ νðσ; tyÞ ¼ −1. This can easily be
seen by noting that ge ¼ 0, gσ ¼ −g1, gtx ¼ −g1, and
gty ¼ 0, with g1 ¼ ð2π; 0Þ. This information is enough to
determine the representations at X using the standard
theory of projective representations. We find that these
values of ν only allow for the two-dimensional representa-
tion of D4 to appear. Hence, at X, there is a single two-
dimensional representation, and all bands must be pairwise
degenerate.
Repeating the analysis for Y and M, one easily verifies

that the two-dimensional representation of D4 is found also
at Y, whereas at M, there are four possible irreducible
representations of the group Z2 × Z4. From here, we can
again set up the combinatorial arguments in terms of the
number of bands in each allowed representation at high-
symmetry points and the constraining relations between
them. To define the constraints, we need to determine the
representations along high-symmetry lines. We do this by
including the phase factors arising once the representations
ρk of the little co-group are promoted to representations of
the space group. More precisely, the representations ρk are
related to space group representations Dk by

DkðfRijwigÞ ¼ expð−ik · wjÞρkðRiÞ: ðA6Þ

The phase factor ξ ¼ expð−ik · wjÞ appears in the character
tables and is only present for nonsymmorphic elements. In
the space group p2gg, we have wi ¼ ð1=2; 1=2Þ. For X
and Y, this implies ξ ¼ −i, while for M, it yields
ξ ¼ −1. Moreover, we have ξ ¼ e−iα=2 for l1 and l3, and
ξ ¼ −ie−iα=2 for l2 and l4.

Fromhere,we can assign an integer to each representation
of the little co-group at high-symmetry points. This gives
four integers at Γ and M and one integer for both X and Y,
hence ten integers in total. There are also seven independent
relations between these integers, giving rise to only three
independent integers. The representation theory of the set of
valence bands for a crystal with p2gg symmetry is thus
specified by three integers, in agreement with the K-theory
computation. For the other two-dimensional nonsymmor-
phic space groups, p2gm, p4gm, and pg, the analysis is
similar. The results can be found in Table 1.
The lowest symmetry group in the table, pg, is interest-

ing because the nonsymmorphic elements in this case
only affect high-symmetry lines, on which new constraints
emerge. Young and Kane [36] already noted these specific
constraints rooted in the nonsymmorphic nature of the
space group. The little co-group keeping the high-
symmetry lines in pg fixed is the factor group G=Z2,
which consists of two elements:

G=Z2 ≃
�
fej00g;

�
ty

���� 12 0
��

: ðA7Þ

Here, ty is a reflection in the kx axis. For this factor group,
we obtain the character table shown in Table IX, where we
defined ξðαÞ ¼ e−iα=2. Because the fixed line l ¼ ðα; 0Þ
goes around the full Brillouin zone, the representation of
the valence band must be periodic. This is only possible
when the number of bands in ρ0 equals that in ρ1. Imposing
a similar constraint along the other fixed line at ky ¼ π, and
imposing that the total number of bands on each high-
symmetry line is equal, we find that there is a single integer
specifying the topological phase of crystals in class A with
pg symmetry. This again agrees with the K-theory com-
putation as discussed in Appendix B.

APPENDIX B: MATHEMATICAL DETAILS

In this appendix, we give some mathematical details that
were omitted in the main text. Although we will not be
completely rigorous, we give arguments from both a
mathematical and physical point of view to substantiate
our claims. We note that the main text is self-consistent and
may be read independently from the following discussion.
We focus on the symmorphic symmetries, for simplicity,
and refer to a detailed discussion on nonsymmorphic
symmetries and their incorporation in K-theory in
Refs. [37,47].

TABLE VIII. The high-symmetry locations for p2gg. The same
structure is also valid for p2mm and p2gm. The corresponding
fundamental domain Ω is given by the first quadrant of the first
Brillouin zone, i.e., 0 ≤ kx;y ≤ π.

Cni Stabilizer group

Γ ¼ ð0; 0Þ Z2 × Z2 ¼ f1; σ; tx; tyg
X ¼ ðπ; 0Þ Z2 × Z2 ¼ f1; σ; tx; tyg
M ¼ ðπ; πÞ Z2 × Z2 ¼ f1; σ; tx; tyg
Y ¼ ð0; πÞ Z2 × Z2 ¼ f1; σ; tx; tyg
l1 ¼ ðα; 0Þ Z2 ¼ f1; tyg
l2 ¼ ðα; πÞ Z2 ¼ f1; tyg
l3 ¼ ð0; αÞ Z2 ¼ f1; txg
l4 ¼ ðπ; αÞ Z2 ¼ f1; txg

TABLE IX. Character table of pg along l1 ¼ ðα; 0Þ and l2 ¼
ðα; πÞ with ξðαÞ ¼ e−iα=2.

fej00g ftyj 12 0g
ρ0 1 ξðαÞ
ρ1 1 −ξðαÞ
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The mathematical classifications of gapped free fer-
mion theories protected by symmetry groups all stem from
work by Horava in 2005 [53], who noticed a connection
between Fermi surfaces and K-theory, which was further
elaborated on by Kitaev in 2009 [7]. In particular, Kitaev
discussed gapped free fermions in various Altland-
Zirnbauer (AZ) classes with discrete translational
symmetry. These systems form the starting point for
topological band theory, which was recently shown to
be relevant also in an experimental setting. Nonetheless,
this study failed to rigorously include the full crystal
symmetry in its analysis. From the K-theory side, Freed
and Moore attempted to fill this hiatus in 2013 [37]. They
pointed out what type of mathematical objects could
classify topological phases in any AZ class in the presence
of arbitrary space group symmetry.
The rest of the appendix is organized as follows. In

Appendix B 1, we discuss the general setup and the role of
the translational symmetry in this regard. In particular, we
observe the emergence of a vector bundle structure. This
provides the basis for the next section in which we discuss
the classification of these bundles usingK-theory. Inclusion
of the full space group symmetry is then discussed in
Appendix B 3. There, we give a simple combinatorial way
of computing the corresponding equivariant K-theory. At
the end of this appendix, we consider the space group
Pm3̄m as an explicit example. In this appendix, we do not
use crystallographic terminology such as little co-groups
or high-symmetry locations but rather the standard math-
ematical terminology such as stabilizer group and fixed-
point sets.

1. Setup

We are interested in the topological properties of class A
massive fermions on a d-dimensional lattice. These systems
have a particular space group symmetry bG.
The dynamics of massive free fermions or insulator

are governed by a gapped Hamiltonian H. Let E be the
eigenvalues of H and jψi its eigenstates. We say that a
Hamiltonian is gapped if there exists a range jEj < Δ for
some Δ > 0 such that H does not have an eigenstate χ
with eigenvalue α within this range in the infinite volume
limit. As these gapped free fermions live on a lattice
in d dimensions, H respects the lattice symmetry, i.e.,
ρðgÞH ¼ HρðgÞ, with ρðgÞ a representation of the space
group. Let us first consider the discrete translations in bG. A
lattice Λ is a subset of Euclidean space. It is isomorphic to
Zd and is spanned by orthogonal basis vectors ti,
i ¼ 1;…; d. The discrete translation symmetry

Tn∶v ↦ v þ niti; ðB1Þ

with n ¼ ðn1;…; ndÞ inZd and v a lattice vector, constrains
the fermions to form a representation of this symmetry.

The representations are simple phases labeled by a
d-dimensional momentum vector k. More precisely, the
representations are defined by

ρkðfejvgÞ ¼ expð−iv · kÞ; ðB2Þ
where we used Seitz notation to represent the discrete
translation. This is basically a discrete Fourier transforma-
tion. The nature of these representations allows for a
simple description of fermions in momentum space because
ki ∼ ki þ gi, with fgig a basis of momentum space such
that gi · gj ¼ 2πδij. In momentum space, the fermions thus
live on a d-dimensional torus: the Brillouin zone M. The
Brillouin zone is in fact the space of characters of the form
given in Eq. (B2), and we use k as a parametrization. For
each k vector, we have a Hamiltonian HðkÞ and Hilbert
spaceHðkÞ. The HamiltonianHðkÞ is related to the second
quantized gapped Hamiltonian H as

H ¼
X
k

HðkÞc†kck; ðB3Þ

where c†k and ck are creation and annihilation operators
such that fck; c†k0g ¼ δðk − k0Þ. Besides discrete transla-
tional symmetry, lattices may also have reflection and
rotation symmetries. For example, a square lattice in two
dimensions has an extra D4 symmetry coming from the
symmetries of the square. These symmetries naturally act
in position space but also act in the Brillouin zoneM in the
transpose representation, as can be seen from Eq. (B2). In
momentum space, the states in HðkÞ will form a repre-
sentation of the symmetry group that acts on M. This
symmetry group is the full space group bG modded out by
discrete translations and is denoted byG. More precisely, bG
sits in the group extension

1 → Zd → bG → G → 1: ðB4Þ
Concretely, G is called the point group and is isomorphic
to bG=Zd.
The data HðkÞ, HðkÞ, and M can be conveniently

packaged in terms of a Hilbert bundle:

H→ E

↓
M

↻ H

The fibers of this bundle are the Hilbert spacesH, which,
because of the gapped nature of the system, split into a
direct sum E ¼ Ec ⊕ Ev, with Ec the conduction band and
Ev the valence band. For an insulator, the valence band is
completely filled, and the fermions, i.e., electrons, in those
states can have nontrivial behavior. For topological phases,
the nontrivial behavior stems from the topology of Ev. For
example, the quantization of the Hall conductivity σxy may
be seen to be due to the topology of Ev using the TKNN
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invariant [40,41]. In fact, the first Chern number of Ev is
directly proportional to σxy. A topologically trivial insulator
is then one for which Ev is topologically trivial. In contrast,
for nontrivial topological insulators, the vector bundle Ev is
nontrivial. The different topological types of vector bundles
can be enumerated under a suitable notion of equivalence.
This enumeration is a classification of vector bundles and
thus of topological phases.

2. Briefest introduction to K-theory

The classification of finite-rank vector bundles as a
mathematical pursuit was initiated in the late 1950s and
early 1960s by Grothendieck and Atiyah with the develop-
ment of K-theory. Since then, this theory has been
generalized in several directions. The basic idea of this
work can be readily understood by considering a space X
that consists of a single point, i.e., X ¼ fxg. Vector bundles
over x are vector spaces of a particular rank n. Suppose Vn
and Vn0 are two vector spaces of rank n and n0, respectively.
In order to classify these vector spaces, we need a notion
that compares them. In K-theory, the notion of bundle
isomorphisms is used. Specifically, in the present example,
Vn is isomorphic to Vn0 if and only if n ¼ n0. Different
vector bundles over X are thus classified by their rank,
which is a non-negative integer. Vector bundles can be
added using the so-called internal Whitney sum, giving the
set of isomorphism classes, vectðXÞ, the structure of an
Abelian monoid. Using the bundle isomorphism, the
monoid is isomorphic to N. The resulting set does not
form a group (it does not contain inverses), complicating
further analysis. Fortunately, however, vectðXÞ may be
converted to a group using the Grothendieck completion.
This construction takes two copies of vectðXÞ and subjects
them to the following equivalence relation:

ðm; nÞ ∼ ðm0; n0Þ
⇔ there exists p such that mþ n0 þ p ¼ nþm0 þ p:

ðB5Þ

Let us denote the equivalence classes by ½ðm; nÞ�. The
essential new feature is now that we can take inverses;
½ðn;mÞ� is the inverse of ½ðm; nÞ�. Consequently, elements
in the Grothendieck completion are denoted by formal
differences, m − n. For the case at hand, N is converted
to Z by the Grothendieck completion. The K-theory of X is
then said to be Z and is denoted as K0ðXÞ ¼ Z. Although
we discussed only the zero-dimensional case, for general
compact base manifolds X, a similar statement has been
verified [54] and is encapsulated in the following
proposition.
Proposition B.1 Every element in K0ðXÞ can be written

as ½E� − ½Θn�, where E is a vector bundle over X and Θn
is a trivial vector bundle of rank n over X. Moreover,

½E� − ½Θn� ¼ ½F� − ½Θp� if and only if there exists an integer
q such that E ⊕ Θpþq ≃ F ⊕ Θnþq.
From a physics point of view, the proposition is easily

interpreted. In Appendix B 1, we discussed how free
fermion systems naturally acquire the structure of a
Hilbert bundle. The Hilbert bundle H can have a topology
measured, for example, by the TKNN invariant. Adding a
trivial vector bundle Θm to H should not change, for
example, the conduction properties of the electrons.
We thus want to regard H and H0 ¼ H ⊕ Θm as being
topologically equivalent. Indeed, in K-theory, we see that
the trivial piece can be subtracted, i.e., ½H� ¼ ½H0� − ½Θm�.

3. Equivariant K-theory

The final ingredient in our discussion is the point group
symmetry of the lattice. In momentum space, the action of
G on M is defined as

g · k ¼ DðgÞk ðB6Þ

for k in M and g in G, the point group. Here, DðgÞ is a
fixed d-dimensional representation acting by matrix multi-
plication on k. To see that the states in HðkÞ form a
representation of G, it is enough to notice that for g in G,
the Hamiltonian satisfies

ρkðgÞHðg · kÞ ¼ HðkÞρkðgÞ; ðB7Þ

with ρk a representation of G under which the states
transform. This can be verified using ρðgÞH ¼ HρðgÞ
and Eq. (B3). In particular, we denote the action on the
states jψki in HðkÞ by

g � jψki ¼ ρkðgÞjψki: ðB8Þ

For generic momenta, the states will form a trivial repre-
sentation because Eq. (B7) is not a commutation relation.
Nevertheless, for a subset S of M that is held pointwise
fixed by a subgroup GS, we have ½Hðg · kÞ; ρkðgÞ� ¼ 0.
The states with k in S can then form nontrivial represen-
tations. These extra data provide the Hilbert bundle with an
equivariant structure in the sense discussed by Segal in
Ref. [55]. In particular, the projection p∶E → M is defined
as pðjψkiÞ ¼ k. This implies

pðg�jψkiÞ¼pðρkðgÞjψg·kiÞ¼g ·k¼g ·pðjψkiÞ; ðB9Þ

which shows that p respects the action of G. Furthermore,
the action of g provides a homomorphism between the
fibers, i.e., vector spaces, at k and g · k. With these
properties and the action of G on M and E, as well as
relation (B7), we can choose the representation of the filled
states, i.e., Ev, which is relevant for classifying topological
phases in class A. Let us make this concrete. Consider a
point k0 in M and its stabilizer group Gk0 (little co-group
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in the main text), which leaves k0 pointwise fixed. The
fiber Ek0

at k0 is a vector space of eigenstates of Hðk0Þ.
These states, and hence also Ek0

, form a representation of
Gk0 . Let ρk0

be a representation of Gk0 . Now, consider
variations of k0. We do this by choosing a path αðtÞ in M
such that αð0Þ ¼ k0 and αð1Þ ¼ k1 for some k1 in M, as
shown in Fig. 7. Along α, a subgroup Gα of Gk is
preserved. Without loss of generality, we can choose this
situation instead of the reverse case with Gk being a
subgroup of Gα, and we can assume Gα to be independent
of t. At α, the states form a representation of Gα, which we
denote by ~ρα. Taking the limit t → 0, ~ρα induces the
representation ρk0

, meaning that ρk0
jGα ¼ ρα. This con-

strains the representations that can be induced at k0 given a
representation along α. Similar arguments hold when
taking the limit t → 1. Finding the constraints between
all fixed points in this way results in a finite set of gluing
conditions between fibers at different k. These conditions
signify the fact that we cannot just pick any number of
representations at the fixed points and guarantee that we
obtain a representation of Ev.
The constraints can be understood more clearly when

considering the representation rings of the various fixed
points in M. Consider the example discussed above, with
k0 and k1 connected by a path α. The stabilizer groups are
Gk0 ; Gk1 , and Gα respectively. Denote by RðGk0Þ, RðGk1Þ,
and RðGαÞ the representation rings over Z of the stabilizer
groups. These rings are constructed by assigning to each
irrep of the stabilizer group a copy of Z. We denote the
dimensions of the representation rings by d0, d1, and dα,
respectively. The constraints are then maps ϕ0;1 in

Zd0 →
ϕ0 Zdα →

ϕ1 Zd1 ; ðB10Þ

which can be represented by the following matrix:

Ak
ij ¼

(
1 ρikjGα ¼ ρjα

0 ρikjGα ≠ ρjα
ðB11Þ

with k ¼ k0;1.

The task of finding the constraints between all fixed
points can be simplified using the fact that g∶Ek → Eg·k is a
homomorphism. We can use this homomorphism to focus
on just the fundamental domain Ω of the action of G. This
domain only includes points k that are not related to each
other by an element of G, and hence knowing the con-
straints in that region is enough to know all constraints in
all of M.
As an example, consider the p4mm case, which was

detailed in the main text. Let us concentrate on α ¼ l1 with
k0 ¼ Γ and k1 ¼ X. In that case, the matrices Ak take the
form

AΓ ¼
�
1 0 1 0 1

0 1 0 1 1

�
; AX ¼

�
1 0 1 0

0 1 0 1

�
:

ðB12Þ

In fact, since both images of AΓ and AX are Zl1 ¼ Z2,
we can combine the above relations into two relations.
Denoting elements in a representation ring by nk ¼
ðnk0 ;…; nkdkÞT , we have

AΓnΓ ¼ AXnX: ðB13Þ

Imposing these relations on the elements in the repre-
sentation rings at each fixed point in Ω gives us a set of
independent integers that specify the representation of E
and, in particular, of Ev. In the above, we did not specify the
type of representation, and thus, the same arguments also
hold for projective representations. These representations
occur when the group extension in Eq. (B4) is not split, i.e.,
for nonsymmorphic crystals. The integers discussed above
thus fix the representation of Ev for both split and nonsplit
extensions in Eq. (B4). However, they do not fix the
characteristic classes of Ev. For the complex vector bundles
discussed above, the Chern character is the most important
one, and it results in an integer once integrated over an
even-dimensional submanifold of the base manifold M. In
Appendix B 3 b, we discuss how these are constrained by
space group symmetry.
In summary, to fix the topology and representation of

the G-equivariant bundle E → M, one specifies the Chern
numbers and the set of independent integers in each
representation ring associated with each fixed point.
The point of view we have taken in the above discussion

is in fact an easy way of understanding the classification
of G-equivariant vector bundles. The integers and Chern
numbers discussed there are the only integers that need to
be specified to fix an equivalence class in K-theory. In fact,
the K-theory of M given an action of G computes Abelian
invariants of G-equivariant bundles over M. These are the
representations of the bundle and the Chern numbers. The
K-theory is K0

GðMÞ. In terms of crystal symmetries, this is
true for both symmorphic and nonsymmorphic crystals. In

FIG. 7. Representations ofGα along α induce representations of
Gki at ki. The shaded paths indicate other possible fixed-point
sets in M.
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conclusion, topological phases in class A protected by
space group bG are classified by

TopPhdbG ¼ K0
GðTdÞ: ðB14Þ

A similar conclusion was found in Ref. [37]. For class AIII,
we can use the same type of K-theory, but now K0 is
replaced by K−1.
From a mathematical point of view, this, in principle,

concludes the analysis, were it not for the fact that these
K-theories are, in general, very hard to compute. Although,
for a given space group bG, mathematically precise methods
are being developed to compute K0

GðTdÞ [47], the argu-
ments and results of the present work provide an intuitive
and simple way of performing that computation.

a. Relations between K-theory and
de Rham cohomology

Before going into actual examples, we briefly discuss
some interesting results relating K-theory to de Rham
cohomology. These results help us to check the arguments
we made above and in the main text. Details can be found in
Refs. [54,56,57].
To make the connection with de Rham cohomology, we

use the Chern character. The Chern character assigns an
even-dimensional form to a vector bundle E as

ChðEÞ ¼
X∞
n¼0

1

n!
Tr

�
iFE

2π

�
n
; ðB15Þ

where FE is the Berry curvature two-form of the bundle E.
The nth Chern character is given by

ChnðEÞ ¼
1

n!
Tr
�
iFE

2π

�
n
: ðB16Þ

From the K-theory perspective, the Chern character pro-
vides a (ring) homomorphism

Ch∶ K0ðMÞ → Heven
dR ðM;QÞ ¼ ⨁

∞

n¼0

H2n
dRðM;QÞ;

Ch∶ ½E − Θm� ↦ Chð½E�Þ; ðB17Þ

where H2j
dRðM;QÞ is the 2jth de Rahm cohomology ofM

over the rational Q. Forgetting about torsion in K0ðMÞ,
this becomes an isomorphism K0ðMÞ ⊗ Q≃Heven

dR ðMÞ.
For K-theory, K−1ðMÞ, a similar statement holds. In fact,

Ch∶K−1ðMÞ → Hodd
dR ðM;QÞ ðB18Þ

is a group homomorphism and

Hodd
dR ðM;QÞ ¼ ⨁

∞

n¼0

H2nþ1
dR ðM;QÞ: ðB19Þ

These odd-dimensional cohomology classes are
generated by odd-dimensional forms of the form
Tr(ðf−1dfÞ2nþ1Þ), with f∶M → E a smooth function on
M. In contrast to the Chern characters, they can be
understood as winding numbers once integrated. A similar
isomorphism as for K0ðMÞ also exists in this case:

K�ðMÞ ⊗ Q≃H�
dRðM;QÞ: ðB20Þ

The purpose of this isomorphism is to translate information
hidden in the K-theory of M to a more familiar form in
terms of the cohomology of M. The Chern characters in
Eq. (B16) give an accurate account of this information,
which is most easily seen by integrating them. In doing so,
the characters Chn become topological invariants, called
Chern numbers cn. These Chern numbers can only take
integer values and account for various topological proper-
ties of gapped free fermion systems. An example of a
physical observable related to Chern numbers is the TKNN
invariant. This invariant is directly proportional to the first
Chern number and is related to the Hall conductivity by

σxy ¼
e2

h

Z
T2

Ch1ðEÞ ¼
e2

h
c1: ðB21Þ

Here, the integration is over the full Brillouin zone
M ¼ T2. The winding numbers obtained from integrating
odd forms in Hodd

dR also capture information about the
topological phase but for those in class AIII. We note that
they are related to electric and magnetoelectric polariz-
ability [58], but we will not discuss them here.
In the present context of electrons within a crystal lattice,

we are mostly interested in M ¼ T2 or T3, and hence
we are only concerned with the zeroth and first Chern
numbers. In the equivariant picture sketched above, we
already saw how the zeroth Chern number, which is
responsible for the representations, is constrained by space
group symmetry. We now see how these constraints affect
the first Chern number.

b. Chern numbers and crystal symmetry

Chern numbers can only be defined on even-dimensional
fixed submanifolds of T3. In the case at hand, these are the
bounding planes P in Ω. These are planes in the funda-
mental domain, but to integrate the Chern character, we
need a submanifold N in T3. Denote by Cg the centralizer
of the symmetry g that leaves P invariant. This submanifold
N is then obtained by acting with Cg on P. In other words,
Cg still has a nontrivial action on the submanifold. When
the Chern characters are integrated, the action of Cg needs
to be taken into account. The action ofCg can be such that it
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inverts the orientation of N . Thus, when unfolding P, N
will consist of patches U− and Uþ with different orienta-
tions, indicated by the subscript. More precisely, the
submanifold N is a jCgj-fold cover of P, and whenever
orientation-reversing elements are in Cg, jCgj is even.
Suppose g� is the orientation-reversing element. The
submanifold N will then contain an equal number of
patches Uþ and U− ¼ g�Uþ. The integral of the Chern
character over N will therefore vanish. Thus, whenever
there are orientation-reversing elements in Cg, the Chern
numbers on planes fixed by g will be zero.
To be a bit more explicit, consider N to be two

dimensional, i.e., N ≃ T2. This two-torus is held fixed
by GN ≃ Z2 ¼ hgi and has centralizer Cg. In the funda-
mental domain, we denote it as the subset P; thus, N is a
jCgj-fold cover of P. For topological phases in real
materials, this is the only case of interest. Let FE ¼
Fxydkx ∧ dky be the Berry curvature of a vector bundle
E. Suppose h is an element of Cg; then h acts on FE as

FxyðDðhÞkÞ ¼ detðDðhÞÞFxyðkÞ ðB22Þ

with D a fixed representation, as in Eq. (B6). The Chern
number is given by

c1 ¼
Z
N
Fxyðkx; kyÞd2k

¼
X
h∈Cg

detðDðhÞÞ
Z
P
Fxyðkx; kyÞd2k: ðB23Þ

The sum will tell us whether c1 vanishes or not. The
centralizer can either be Zn or Dn with n ¼ 2, 3, 4, or 6,
or it can be trivial. When it is one of the cyclic groups,
then c1 does not vanish, but when Cg contains reflections,
half of the terms in the sum in Eq. (B23) have a negative
determinant, ensuring that c1 ¼ 0.

c. Segal’s formula

The maps relating K-theory to ordinary cohomology are
useful when considering the following result by Segal [57],

K−n
G ðMÞ ⊗ C ¼ ⨁

½g�
K−nðMgÞCg ⊗ C; ðB24Þ

with M compact and G finite. The sum is over represent-
atives of conjugacy classes of G. The centralizer of g is
denoted by Cg, and Mg is the fixed-point set of g. This
formula relates G-equivariant K-theory (tensored with C)
to the ordinary K-theory of the fixed points Mg. To deal
with the Cg acting on K−nðMgÞ, we compose this formula
with the Chern character Ch as discussed above. The
summand on the right-hand side then amounts to counting
invariant forms on Mg.

4. Example: Octahedral group

To see how all this applies to a nontrivial example,
consider again the case that was also discussed in the main
text: G ¼ Z2 × S4. The corresponding group represents the
symmetries of the cube and is generated by three elements,
which act on M ¼ T3 as

r · k ¼ ð−kz; ky; kxÞ; I · k ¼ −k;

t · k ¼ ðky; kx;−kzÞ: ðB25Þ

The space group containing this point group that wewant
to consider is Pm3̄m. This space group is symmorphic,
meaning that

1 → Z3 → Pm3̄m → Z2 × S4 → 1 ðB26Þ

is split; hence, we only need to compute ordinary irreduc-
ible representations at the fixed points. From Fig. 8, we
see that the fixed points are Γ, R, X, and M. The stabilizer
groups of the fixed points are GΓ ¼ GR ¼ Z2 × S4 and
GM ¼ GX ¼ Z2 ×D4. The fixed lines are GZ ¼ GΣ ¼
GS ¼ Z2 × Z2, GΔ ¼ GT ¼ D4, and GΛ ¼ S3. The bound-
ing planes of the fundamental domain Ω are held fixed by a
Z2 subgroup of Z2 × S4, which acts as a reflection.
At the fixed points, the representation rings are RðGΓÞ ¼

RðGRÞ ¼ Z10, RðGMÞ ¼ RðGXÞ ¼ Z10. The six fixed lines
in the fundamental domain result in 25 relations between
the 40 integers coming from these rings. This results in only
22 integers that are independent and specify the represen-
tation of a G-equivariant vector bundle over T3. Moreover,
the centralizers of fixed planes always contain a reflection,
and hence all Chern numbers vanish. From this result, we
can conclude that

K0
Z2×S4

ðT3Þ≃ Z22: ðB27Þ

FIG. 8. Fundamental domainΩ of the octahedral group Z2 × S4
(shaded red). The red lines are the high-symmetry lines Λ, Δ, Σ,
S, T, and Z.
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Let us now show that this computation agrees with
Eq. (B24), proposed by Segal. In this formula, we need
to compute the fixed-point manifolds associated with
representatives of the conjugacy classes of G. This infor-
mation is collected in Table X. From this table, the integers
found in Eq. (B27) can easily be extracted. The only thing
that we need to take into account is the action of Cg onMg.
Let us start with the Chern numbers. For ½1�, ½Itr2t�, and
½tI�, no Chern numbers are possible because the centralizer
contains a reflection. The K-theory is then

K0ðT3ÞG ⊗ C ⊕ K0ðT2 ∐ T2ÞZ2×D4 ⊗ C

⊕ K0ðT2ÞZ3
2 ⊗ C≃C4: ðB28Þ

Similarly, for the one-dimensional fixed-point sets, we get
eight copies of C because, for ½tr2tr2�, two circles are
related by the action of Ctr2tr2 ¼ Z2 ×D4. Finally, the
zero-dimensional fixed-point sets give C10, following the
same reasoning as before. Adding all of these results
together, we obtain

K0
GðT3Þ ⊗ C≃C22: ðB29Þ

Hence, up to torsion, Eqs. (B27) and (B29) exactly agree,
as anticipated. In the K-theory literature, there is no
consensus about whether or not torsion can exist in the
presence of three-dimensional space group symmetries.
Some authors claim that nonsymmorphic space groups can
give rise to torsion in K-theory, but it is not absolutely clear
whether or not this result depends on the accidental
presence of additional anticommuting symmetries that
are present in the models and arguments presented in those
papers [27,29,47,59–61]. We remain agnostic about this
aspect but suggest that it would be interesting to complete
the classification presented here by proving or disproving
the possible existence of torsion in class A in three
dimensions, without any anticommuting or anti-unitary
symmetries.
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